JP5884327B2 - Enclosure controller, blade enclosure, and program - Google Patents

Enclosure controller, blade enclosure, and program Download PDF

Info

Publication number
JP5884327B2
JP5884327B2 JP2011164089A JP2011164089A JP5884327B2 JP 5884327 B2 JP5884327 B2 JP 5884327B2 JP 2011164089 A JP2011164089 A JP 2011164089A JP 2011164089 A JP2011164089 A JP 2011164089A JP 5884327 B2 JP5884327 B2 JP 5884327B2
Authority
JP
Japan
Prior art keywords
blade
cooling fan
power
unit
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011164089A
Other languages
Japanese (ja)
Other versions
JP2013029915A (en
Inventor
智則 星野
智則 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011164089A priority Critical patent/JP5884327B2/en
Publication of JP2013029915A publication Critical patent/JP2013029915A/en
Application granted granted Critical
Publication of JP5884327B2 publication Critical patent/JP5884327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エンクロージャー制御装置、ブレードエンクロージャー、およびプログラムに関する。   The present invention relates to an enclosure control device, a blade enclosure, and a program.

CPUやメモリ等の部品を搭載した基板等で構成される1つのユニットであるブレードサーバというものがある。複数のブレードサーバを1つの筐体内に搭載し、各ブレードサーバにより処理負荷を分散する。
このため、1つの筐体内において複数のブレードサーバが稼動している場合、各ブレードから発生する熱が筐体内に溜まってしまい、ブレードサーバが故障するおそれがある。
そこで、各ブレードサーバを平行に配置し、各ブレードサーバの間を冷却ファンからの空気が流動するように、ブレードサーバと冷却ファンとを配置したものがある(例えば、特許文献1参照)。
There is a blade server which is a single unit composed of a substrate on which components such as a CPU and a memory are mounted. A plurality of blade servers are mounted in one casing, and the processing load is distributed by each blade server.
For this reason, when a plurality of blade servers are operating in one housing, heat generated from each blade is accumulated in the housing, which may cause the blade server to fail.
Therefore, there is a configuration in which the blade servers are arranged in parallel, and the blade servers and the cooling fans are arranged so that air from the cooling fans flows between the blade servers (for example, see Patent Document 1).

特開2004−240967号公報JP 2004-240967 A

しかしながら、処理負荷の大きさに応じて稼動するブレードサーバの数が決定するため、処理負荷が変わることにより、筐体内において各ブレードサーバから発生する熱の分布も変動する。このため、筐体内の全てのブレードサーバを冷却するように冷却ファンを稼動させた場合、稼動していないブレードサーバを冷却するために冷却ファンを稼動させてしまい、無駄な電力を消費するという問題があった。   However, since the number of blade servers that operate according to the size of the processing load is determined, the distribution of heat generated from each blade server in the housing also varies as the processing load changes. For this reason, when a cooling fan is operated so as to cool all blade servers in the chassis, the cooling fan is operated in order to cool a blade server that is not in operation, and wasteful power is consumed. was there.

そこで、本発明は、ブレードサーバを冷却するための冷却ファンを効率よく稼動することができるエンクロージャー制御装置、ブレードエンクロージャー、およびプログラムを提供することを目的とする。   Therefore, an object of the present invention is to provide an enclosure control device, a blade enclosure, and a program that can efficiently operate a cooling fan for cooling a blade server.

この発明は上述した課題を解決するためになされたもので、本発明の一態様によるエンクロージャー制御装置は、筐体内に搭載された複数のブレードサーバに対して電源装置からの電力供給を制御する電源制御部と、前記複数のブレードサーバの一つまたは複数に対応して配置された複数の冷却ファンの少なくとも一つは、自装置を冷却する位置に配置されており、電源オンしている前記ブレードサーバの位置、または、自装置の位置に基づいて前記複数の冷却ファンを制御する冷却ファン制御部と、自装置を冷却する位置に配置された少なくとも一つの冷却ファンを動作させつつ、電源オフしている前記ブレードサーバのうち電源オンが指示された数の前記ブレードサーバが仮に電源オンしたと仮定した場合、前記複数の冷却ファンに供給される電力が最小となるように電源オンする前記ブレードサーバを決定するブレードユニット制御部と、を備える。 The present invention has been made to solve the problems described above, the enclosure control system according to one aspect of the present invention, controls the supply of power from the power supply for the plurality of blades servers mounted in the housing And at least one of the plurality of cooling fans arranged corresponding to one or more of the plurality of blade servers is arranged at a position for cooling the own device and is powered on. While operating the cooling fan control unit that controls the plurality of cooling fans based on the position of the blade server or the position of the own apparatus, and at least one cooling fan arranged at a position for cooling the own apparatus, If oFF to number the blade server power-on is instructed of the blade server has is assumed to have the power turned on if, subjected to the plurality of cooling fans Comprising a blade unit control section power to determine the blade server to power on so as to minimize the.

この発明は上述した課題を解決するためになされたもので、本発明の一態様によるブレードエンクロージャーは、筐体内に搭載された複数のブレードサーバと、前記複数のブレードサーバの一つまたは複数に対応して配置された複数の冷却ファンと、前記ブレードサーバと前記複数の冷却ファンを制御するエンクロージャー制御装置とを備え、前記エンクロージャー制御装置は、前記複数のブレードサーバに対して電源装置からの電力供給を制御する電源制御部と、電源オンしている前記ブレードサーバの位置、または、前記エンクロージャー制御装置の位置に基づいて前記複数の冷却ファンを制御する冷却ファン制御部と、前記エンクロージャー制御装置を冷却する位置に配置された少なくとも一つの冷却ファンを動作させつつ、電源オフしている前記ブレードサーバのうち電源オンが指示された数の前記ブレードサーバが仮に電源オンしたと仮定した場合、前記複数の冷却ファンに供給される電力が最小となるように電源オンする前記ブレードサーバを決定するブレードユニット制御部と、を備える。 The present invention has been made to solve the above-described problems, and a blade enclosure according to an aspect of the present invention corresponds to a plurality of blade servers mounted in a housing and one or more of the plurality of blade servers. a plurality of cooling fan disposed in said a enclosure controller for controlling the blade server and the plurality of cooling fans, the enclosure controller, power from the power supply device for the plurality of blades servers A power control unit that controls the supply of power, a cooling fan control unit that controls the plurality of cooling fans based on the position of the blade server that is powered on , or the position of the enclosure control device, and the enclosure control device while operating at least one cooling fan disposed in a position to cool a power on If the power is turned on among the blade server have said blade servers having the indicated is assumed to have the power turned on if the blade power supplied to the plurality of cooling fans are powered on so as to minimize A blade unit control unit for determining a server.

この発明は上述した課題を解決するためになされたもので、本発明の一態様によるプログラムは、コンピュータを筐体内に搭載された複数のブレードサーバに対して電源装置からの電力供給を制御する電源制御手段、前記複数のブレードサーバの一つまたは複数に対応して配置された複数の冷却ファンの少なくとも一つは、前記複数の冷却ファンを制御するエンクロージャー制御装置を冷却する位置に配置されており、電源オンしている前記ブレードサーバの位置、または、前記エンクロージャー制御装置の位置に基づいて前記複数の冷却ファンを制御する冷却ファン制御手段、前記エンクロージャー制御装置を冷却する位置に配置された少なくとも一つの冷却ファンを動作させつつ、電源オフしている前記ブレードサーバのうち電源オンが指示された数の前記ブレードサーバが仮に電源オンしたと仮定した場合、前記複数の冷却ファンに供給される電力が最小となるように電源オンする前記ブレードサーバを決定するブレードユニット制御手段、として機能させるためのプログラムである。 The present invention has been made to solve the problems described above, the program according to an aspect of the present invention, controls the supply of power from the power supply for the plurality of blades servers mounted computers within the housing And at least one of the plurality of cooling fans arranged corresponding to one or more of the plurality of blade servers is arranged at a position for cooling the enclosure control device that controls the plurality of cooling fans. And a cooling fan control means for controlling the plurality of cooling fans based on the position of the blade server that is powered on or the position of the enclosure control device, and is disposed at a position for cooling the enclosure control device while operating at least one cooling fan, the power-on of said blade servers off power If indicated number the blade server is assumed to have the power turned on if the blade unit control means for determining the blade server power supplied to the plurality of cooling fans are powered on so as to minimize function as, It is a program to make it.

本発明によれば、ブレードサーバを冷却するための冷却ファンを効率よく稼動することができる。   According to the present invention, the cooling fan for cooling the blade server can be operated efficiently.

本実施形態に係るブレードエンクロージャーの前面からみた外観の一例を示す図である。It is a figure which shows an example of the external appearance seen from the front surface of the blade enclosure which concerns on this embodiment. 本実施形態に係るブレードエンクロージャーの背面からみた外観の一例を示す図である。It is a figure which shows an example of the external appearance seen from the back surface of the blade enclosure which concerns on this embodiment. 本実施形態に係るブレードエンクロージャー内の上段のブレードサーバ2−1,2−2,・・・2−8と冷却ファンユニット4−1,4−2,・・・,4−4との位置関係を示す図である。Position relationship between upper blade servers 2-1, 2-2 to 2-8 and cooling fan units 4-1, 4-2 to 4-4 in the blade enclosure according to the present embodiment. FIG. 本実施形態に係るブレードエンクロージャー内の下段のブレードサーバ2−9,2−10,・・・2−16と冷却ファンユニット4−5,4−6,・・・,4−8との位置関係を示す図である。Positional relationship between lower blade servers 2-9, 2-10, ... 2-16 and cooling fan units 4-5, 4-6, ..., 4-8 in the blade enclosure according to the present embodiment FIG. 第1実施形態に係るブレードエンクロージャー1の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of blade enclosure 1 concerning a 1st embodiment. 本実施形態に係るエンクロージャー制御装置3の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the enclosure control apparatus 3 which concerns on this embodiment. 本実施形態に係る冷却ファン想定電力算出テーブル331の一例を示す図である。It is a figure which shows an example of the cooling fan assumption electric power calculation table 331 which concerns on this embodiment. 第1実施形態に係るブレードユニット制御部32と負荷分散制御部35による制御フローの一例を示すフローチャートである。3 is a flowchart illustrating an example of a control flow by a blade unit control unit 32 and a load distribution control unit 35 according to the first embodiment. 第2本実施形態に係るエンクロージャー制御装置3による電源オン制御処理の制御フローの一例を示すフローチャートである。It is a flowchart which shows an example of the control flow of the power-on control process by the enclosure control apparatus 3 which concerns on 2nd this embodiment. 本実施形態に係るエンクロージャー制御装置3による電源オフ制御処理の制御フローの一例を示すフローチャートである。It is a flowchart which shows an example of the control flow of the power-off control process by the enclosure control apparatus 3 which concerns on this embodiment. 第2実施形態に係るブレードエンクロージャー102の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the blade enclosure 102 which concerns on 2nd Embodiment. 第2本実施形態に係るエンクロージャー制御装置3による電源オン制御処理の制御フローの一例を示すフローチャートである。It is a flowchart which shows an example of the control flow of the power-on control process by the enclosure control apparatus 3 which concerns on 2nd this embodiment. 第2実施形態に係るエンクロージャー制御装置3による電源オフ制御処理の制御フローの一例を示すフローチャートである。It is a flowchart which shows an example of the control flow of the power-off control process by the enclosure control apparatus 3 which concerns on 2nd Embodiment. 第3実施形態に係るブレードエンクロージャー103の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the blade enclosure 103 which concerns on 3rd Embodiment. 第3本実施形態に係るエンクロージャー制御装置3による電源オン制御処理の制御フローの一例を示すフローチャートである。It is a flowchart which shows an example of the control flow of the power-on control process by the enclosure control apparatus 3 which concerns on 3rd this embodiment. 第3実施形態に係るエンクロージャー制御装置3による電源オフ制御処理の制御フローの一例を示すフローチャートである。It is a flowchart which shows an example of the control flow of the power-off control process by the enclosure control apparatus 3 which concerns on 3rd Embodiment.

[第1実施形態]
本発明の実施形態について図面を参照して詳細に説明する。図1は、本実施形態に係るブレードエンクロージャー1の外観を示す図である。ブレードエンクロージャー1は、複数のブレードサーバや冷却ファンを1つの筐体内に搭載した装置である。
図1には、正面からみたブレードエンクロージャー1の外観を示す。図示の通り、ブレードエンクロージャー1は、筐体内に搭載された複数のブレードサーバ2−n{n=1,2・・・}と、エンクロージャー制御装置3とを備える。本実施形態において、複数のブレードサーバ2−nは、n=16個のブレードサーバ2−1,2−2,・・・,2−16を備える。これらブレードサーバ2−1,2−2,・・・,2−16には、それぞれを識別するための固有のブレードID(=B1,B2,・・・,B16)が割り当てられている。
[First Embodiment]
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating an appearance of a blade enclosure 1 according to the present embodiment. The blade enclosure 1 is a device in which a plurality of blade servers and cooling fans are mounted in one housing.
In FIG. 1, the external appearance of the blade enclosure 1 seen from the front is shown. As illustrated, the blade enclosure 1 includes a plurality of blade servers 2-n {n = 1, 2,...} Mounted in a housing and an enclosure control device 3. In the present embodiment, the plurality of blade servers 2-n includes n = 16 blade servers 2-1, 2-2,. These blade servers 2-1, 2-2,..., 2-16 are assigned unique blade IDs (= B1, B2,..., B16) for identifying each.

図示の通り、ブレードサーバ2−1,2−2,・・・2−16は、整列した状態で並べられており、それぞれの間にはほとんど隙間なく、筐体内に配置されている。ブレードサーバ2−1,2−2,・・・2−16は、それぞれ同一の大きさのボックス形状であり、ブレードサーバ2−1,2−2,・・・2−8が上の段に、ブレードサーバ2−9,2−10,・・・2−16が下の段に、それぞれ並べられている。   As shown in the figure, the blade servers 2-1, 2-2,... 2-16 are arranged in an aligned state, and are arranged in the housing with almost no gap between them. The blade servers 2-1, 2-2,... 2-16 have the same box shape, and the blade servers 2-1, 2-2. Blade servers 2-9, 2-10,... 2-16 are arranged in the lower row.

次に、図2を参照して、本実施形態に係るブレードエンクロージャー1の背面構造について説明する。図2には、背面から見たブレードエンクロージャー1の外観を示す。
図示の通り、ブレードエンクロージャー1は、複数の冷却ファンユニット4−m{m=1,2・・・}を含む。本実施形態において、複数の冷却ファンユニット4−mは、m=8個の冷却ファンユニット4−1,4−2,・・・,4−8を含む。これら冷却ファンユニット4−1,4−2,・・・,4−8には、それぞれを識別するための固有のファンID(=F1,F2,・・・,F8)が割り当てられている。
図示の通り、冷却ファンユニット4−1,4−2,・・・,4−8は、それぞれ、複数の冷却ファンを備える。本実施形態において、冷却ファンユニット4−1,4−2,・・・,4−8は、それぞれ、2つの冷却ファン41,42を備える。
Next, the back structure of the blade enclosure 1 according to the present embodiment will be described with reference to FIG. In FIG. 2, the external appearance of the blade enclosure 1 seen from the back surface is shown.
As illustrated, the blade enclosure 1 includes a plurality of cooling fan units 4-m {m = 1, 2,. In the present embodiment, the plurality of cooling fan units 4-m includes m = 8 cooling fan units 4-1, 4-2,. These cooling fan units 4-1, 4-2,..., 4-8 are assigned unique fan IDs (= F1, F2,..., F8) for identifying each.
As illustrated, each of the cooling fan units 4-1, 4-2, ..., 4-8 includes a plurality of cooling fans. In this embodiment, the cooling fan units 4-1, 4-2,..., 4-8 include two cooling fans 41 and 42, respectively.

また、ブレードサーバ2−1,2−2,・・・2−16と冷却ファンユニット4−1,4−2,・・・,4−8とは、それぞれ、ブレードエンクロージャー1の筐体内において、予め決められた位置関係に基づき、配置されている。この位置関係について、図3、4を参照して説明する。
図3は、ブレードエンクロージャー1を図1の上面から見たときの、上段のブレードサーバ2−1,2−2,・・・2−8と冷却ファンユニット4−1,4−2,・・・,4−4との位置関係を示す図である。なお、図3は、上面から見たときのブレードエンクロージャー1の内部を透過的に示している。
図示の通り、ブレードサーバ2−1,2−2,・・・2−8は、それぞれ平行に配置されており、2つのブレードサーバ2−n、2−n+1に対して、1つの冷却ファンユニット4−mが対応するように配置されている。つまり、冷却ファンユニット4−mは、それぞれ予め決められたブレードサーバ2−nを冷却する位置に配置されている。本実施形態において、冷却ファンユニット4−1は、ブレードサーバ2−1,2−2を冷却する位置に位置されている。冷却ファンユニット4−2は、ブレードサーバ2−3,2−4を冷却する位置に位置されている。冷却ファンユニット4−3は、ブレードサーバ2−5,2−6を冷却する位置に位置されている。冷却ファンユニット4−4は、ブレードサーバ2−7,2−8を冷却する位置に位置されている。
In addition, the blade servers 2-1, 2-2,... 2-16 and the cooling fan units 4-1, 4-2,. They are arranged based on a predetermined positional relationship. This positional relationship will be described with reference to FIGS.
3 shows the blade servers 2-1, 2-2,... 2-8 and the cooling fan units 4-1, 4-2, ... when the blade enclosure 1 is viewed from the top of FIG. -It is a figure which shows the positional relationship with 4-4. FIG. 3 transparently shows the inside of the blade enclosure 1 when viewed from above.
As shown in the figure, the blade servers 2-1, 2-2,... 2-8 are arranged in parallel, and one cooling fan unit is provided for the two blade servers 2-n, 2-n + 1. 4-m is arranged to correspond. That is, the cooling fan unit 4-m is arranged at a position for cooling the blade server 2-n that is determined in advance. In the present embodiment, the cooling fan unit 4-1 is located at a position for cooling the blade servers 2-1, 2-2. The cooling fan unit 4-2 is located at a position for cooling the blade servers 2-3 and 2-4. The cooling fan unit 4-3 is located at a position for cooling the blade servers 2-5 and 2-6. The cooling fan unit 4-4 is located at a position for cooling the blade servers 2-7 and 2-8.

また、図4は、ブレードエンクロージャー1を図1の上面から見たときの、下段のブレードサーバ2−9,2−10,・・・2−16と冷却ファンユニット4−5,4−6,・・・,4−8との位置関係を示す図である。なお、図4は、上面から見たときのブレードエンクロージャー1の内部を透過的に示している。
図示の通り、本実施形態において、冷却ファンユニット4−5は、ブレードサーバ2−9,2−10を冷却する位置に位置されている。冷却ファンユニット4−6は、ブレードサーバ2−11,2−12を冷却する位置に位置されている。冷却ファンユニット4−7は、ブレードサーバ2−13,2−14を冷却する位置に位置されている。冷却ファンユニット4−8は、ブレードサーバ2−15,2−16を冷却する位置に位置されている。
また、エンクロージャー制御装置3は、ブレードサーバ2−11,2−12の下に設置されている。よって、冷却ファンユニット4−6は、ブレードサーバ2−11,2−12とともに、エンクロージャー制御装置3を冷却する位置に位置されている。
4 shows lower blade servers 2-9, 2-10,... 2-16 and cooling fan units 4-5, 4-6 when the blade enclosure 1 is viewed from the upper surface of FIG. .., 4-8 are diagrams showing the positional relationship with 4-8. FIG. 4 transparently shows the inside of the blade enclosure 1 when viewed from above.
As illustrated, in the present embodiment, the cooling fan unit 4-5 is located at a position for cooling the blade servers 2-9 and 2-10. The cooling fan unit 4-6 is located at a position for cooling the blade servers 2-11 and 12-12. The cooling fan unit 4-7 is located at a position for cooling the blade servers 2-13 and 2-14. The cooling fan unit 4-8 is located at a position for cooling the blade servers 2-15 and 2-16.
The enclosure control device 3 is installed under the blade servers 2-11 and 12-12. Therefore, the cooling fan unit 4-6 is located at a position for cooling the enclosure control device 3 together with the blade servers 2-11 and 12-12.

次に、図5を参照して、本実施形態に係るブレードエンクロージャー1の構成の一例について説明する。図5は、本実施形態に係るブレードエンクロージャー1の構成の一例を示すブロック図である。
図5に示す通り、ブレードエンクロージャー1は、上述の構成に加え、電源ユニット5と、負荷分散制御部6とを備える。
エンクロージャー制御装置3は、複数のブレードサーバ2−1,2−2,・・・2−16と、複数の冷却ファンユニット4−1,4−2,・・・,4−8と、電源ユニット5と、負荷分散制御部6と、それぞれ接続されている。
ブレードサーバ2−1,2−2,・・・2−16のそれぞれは、イーサネット(登録商標)等を介して、外部ネットワーク7と接続されている。なお、ブレードサーバ2−1,2−2,・・・2−16と外部ネットワーク7との間には、負荷分散制御部6が接続されている。なお、外部ネットワーク7を介して、外部装置8が接続されている。この外部装置8は、ブレードエンクロージャー1に対して処理を依頼する対象である処理データを、外部ネットワーク7を介して、ブレードエンクロージャー1に送信する。
Next, an example of the configuration of the blade enclosure 1 according to the present embodiment will be described with reference to FIG. FIG. 5 is a block diagram showing an example of the configuration of the blade enclosure 1 according to the present embodiment.
As shown in FIG. 5, the blade enclosure 1 includes a power supply unit 5 and a load distribution control unit 6 in addition to the above-described configuration.
The enclosure control device 3 includes a plurality of blade servers 2-1, 2-2,... 2-16, a plurality of cooling fan units 4-1, 4-2,. 5 and a load distribution control unit 6 are connected to each other.
Each of the blade servers 2-1, 2-2,... 2-16 is connected to the external network 7 via Ethernet (registered trademark) or the like. A load distribution control unit 6 is connected between the blade servers 2-1, 2-2,... 2-16 and the external network 7. An external device 8 is connected via the external network 7. The external device 8 transmits processing data to be processed to the blade enclosure 1 to the blade enclosure 1 via the external network 7.

電源ユニット5は、電源から供給される電力を、ブレードエンクロージャー1に含まれる各構成に対して供給する。なお、電源ユニット5が電力の供給をうける電源は、商用電源であってもよく、電池であってもよい。
負荷分散制御部6は、ブレードエンクロージャー1に対して依頼された処理負荷の大きさを検出する処理負荷検出部61を備える。この負荷分散制御部6は、処理負荷検出部61によって検出された処理負荷の大きさに応じて、電源オンするブレードサーバ2−処理ONの数を算出する。なお、この電源オンするブレードサーバ2−処理ONは、処理負荷の大きさに応じて負荷分散に必要なブレードサーバの数であって、現時点において、電源オンしているブレードサーバ2−現時点ONに限られない。
処理負荷検出部61は、外部装置8からブレードエンクロージャー1に送信される処理データの伝送量を検出し、この処理データの伝送量を示す情報を、処理負荷の大きさを示す情報として取得する。
The power supply unit 5 supplies power supplied from the power supply to each component included in the blade enclosure 1. The power source to which the power supply unit 5 is supplied with power may be a commercial power source or a battery.
The load distribution control unit 6 includes a processing load detection unit 61 that detects the magnitude of the processing load requested to the blade enclosure 1. The load distribution control unit 6 calculates the number of blade servers 2 to be turned on 2-processing ON according to the size of the processing load detected by the processing load detection unit 61. The blade server 2-process ON to be turned on is the number of blade servers necessary for load distribution according to the size of the processing load. Not limited.
The processing load detection unit 61 detects the transmission amount of processing data transmitted from the external device 8 to the blade enclosure 1, and acquires information indicating the transmission amount of processing data as information indicating the size of the processing load.

なお、負荷分散制御部6は、例えば、処理負荷検出部61によって検出された処理負荷の大きさと、予め決められた閾値とを比較して、電源オンするブレードサーバ2−処理ONの数を決定するものであってもよい。
具体的説明すると、電源オンするブレードサーバ2−処理ONの数を決定するための複数の処理データ閾値Th1<Th2<Th3・・・が予め決められている。処理負荷検出部61が検出した処理データのデータ量が処理データ閾値Th1未満であった場合、負荷分散制御部6は、電源オンするブレードサーバ2−処理ONが0台であると判定する。また、処理負荷検出部61が検出した処理データのデータ量が処理データ閾値Th1以上かつTh2未満であった場合、負荷分散制御部6は、電源オンするブレードサーバ2−処理ONが1台であると判定する。同様にして、負荷分散制御部6は、処理負荷検出部61が検出した処理データのデータ量が処理データ閾値Th2以上かつTh3未満であった場合、電源オンするブレードサーバ2−処理ONが2台であると判定する。
For example, the load distribution control unit 6 compares the size of the processing load detected by the processing load detection unit 61 with a predetermined threshold value, and determines the number of blade servers 2 to be turned on 2-processing ON. You may do.
More specifically, a plurality of process data threshold values Th1 <Th2 <Th3... For determining the number of blade servers 2 to be turned on and the number of processes ON are determined in advance. When the data amount of the processing data detected by the processing load detection unit 61 is less than the processing data threshold Th1, the load distribution control unit 6 determines that there are no blade servers 2-processing ON to be powered on. In addition, when the data amount of the processing data detected by the processing load detection unit 61 is equal to or larger than the processing data threshold Th1 and less than Th2, the load distribution control unit 6 has one blade server 2-processing ON to be powered on. Is determined. Similarly, when the amount of processing data detected by the processing load detection unit 61 is not less than the processing data threshold Th2 and less than Th3, the load distribution control unit 6 has two blade servers 2-processing ON to be powered on. It is determined that

次に、図6を参照して、本実施形態に係るエンクロージャー制御装置3の構成の一例について説明する。図6は、本実施形態に係るエンクロージャー制御装置3の構成の一例を示すブロック図である。
図6に示す通り、エンクロージャー制御装置3は、電源制御部31と、ブレードユニット制御部32と、メモリ部33と、冷却ファン制御部34と、を備える。
Next, an example of the configuration of the enclosure control device 3 according to the present embodiment will be described with reference to FIG. FIG. 6 is a block diagram illustrating an example of the configuration of the enclosure control device 3 according to the present embodiment.
As shown in FIG. 6, the enclosure control device 3 includes a power supply control unit 31, a blade unit control unit 32, a memory unit 33, and a cooling fan control unit 34.

電源制御部31は、電源ユニット5と接続され、ブレードサーバ2−1,2−2,・・・2−16のうち、電源オンが指示されたブレードサーバ2−nに対して、電源ユニット5からの電力を供給するよう電源ユニット5を制御する。電源制御部31は、例えば、ブレードユニット制御部34から特定のブレードサーバ2−nを指定して電源オンするように指示された場合、指定されたブレードサーバ2−nに対して電源ユニット5からの電力を供給し、指定されたブレードサーバ2−nの電源をオンするよう制御する。また、電源制御部31は、ブレードユニット制御部34から特定のブレードサーバ2−nを指定して電源オフするように指示された場合、指定されたブレードサーバ2−nに対して電源ユニット5から供給される電力を停止し、指定されたブレードサーバ2−nの電源をオフするよう制御する。
具体的に説明すると、電源制御部31から、ブレードサーバ2−nの個々を示すブレードID(Bn)が指定され、指定されたブレードIDのブレードサーバ2−nの電源をオンする指示を入力した場合、指定されたブレードIDが示すブレードサーバ2−nの電源をオンする。一方、ブレードユニット制御部34からブレードID(Bn)が指定され、指定されたブレードIDのブレードサーバ2−nの電源をオフする指示を入力した場合、指定されたブレードIDのブレードサーバ2−nの電源をオフする。
The power supply control unit 31 is connected to the power supply unit 5 and supplies power supply unit 5 to blade server 2-n instructed to turn on power among blade servers 2-1, 2-2,. The power supply unit 5 is controlled so as to supply the power from. For example, when the power supply control unit 31 is instructed by the blade unit control unit 34 to designate and power on a specific blade server 2-n, the power supply unit 5 sends the power to the designated blade server 2-n. And the specified blade server 2-n is controlled to be turned on. When the power supply control unit 31 is instructed by the blade unit control unit 34 to designate a specific blade server 2-n and turn off the power, the power supply unit 5 sends the designated blade server 2-n to the power supply unit 5. The supplied power is stopped, and the specified blade server 2-n is controlled to be turned off.
More specifically, a blade ID (Bn) indicating each blade server 2-n is designated from the power supply control unit 31, and an instruction to turn on the blade server 2-n with the designated blade ID is input. The blade server 2-n indicated by the specified blade ID is turned on. On the other hand, when a blade ID (Bn) is designated from the blade unit controller 34 and an instruction to turn off the power to the blade server 2-n with the designated blade ID is input, the blade server 2-n with the designated blade ID is input. Turn off the power.

ブレードユニット制御部32は、電源のオン/オフ制御をするブレードサーバ2−nの数と、現時点において電源オンしているブレードサーバ2−nの位置に基づき、冷却ファンユニット4−mに供給される電力が最小となるように、電源のオン/オフ制御をするブレードサーバ2−nを複数のブレードサーバ2−1,2−2,・・・2−16のうちのいずれかにするかを決定する。
なお、ブレードユニット制御部32は、電源をオン制御するブレードサーバ2−nの数が1以上である場合、電源オン制御処理を実行する。
一方、ブレードユニット制御部32は、電源をオフ制御するブレードサーバ2−nの数が1以上である場合、電源オフ制御処理を実行する。
The blade unit controller 32 is supplied to the cooling fan unit 4-m based on the number of blade servers 2-n that perform power on / off control and the position of the blade server 2-n that is currently powered on. Whether the blade server 2-n that performs on / off control of the power supply is one of a plurality of blade servers 2-1, 2-2,. decide.
The blade unit control unit 32 executes the power-on control process when the number of blade servers 2-n whose power is turned on is 1 or more.
On the other hand, when the number of blade servers 2-n that perform power-off control is 1 or more, the blade unit control unit 32 executes power-off control processing.

ここで、電源オン制御処理について具体的に説明すると、ブレードユニット制御部32は、現時点において電源オフしているブレードサーバ2−OFFのうち、電源オンが指示された数の任意のブレードサーバ2−nが電源オンしたと仮定した場合に、冷却ファンユニット4−mに供給される電力(以下、冷却ファン想定電力Wαという)を算出する。なお、ブレードユニット制御部32は、少なくとも現時点において電源オフしているブレードサーバ2−OFFのそれぞれについて、冷却ファン想定電力Wαを算出する。本実施形態において、ブレードユニット制御部32は、全てのブレードサーバ2−1,2−2,・・・2−16について冷却ファン想定電力Wα{n=1〜16}を算出する。
また、ブレードユニット制御部32は、算出した冷却ファン想定電力Wαに基づき、冷却ファン想定電力Wαが最小となる場合に、冷却ファン想定電力Wαを算出した際に電源オンすると仮定したブレードサーバ2−nについて電源オンすることを、電源制御部31に対して指示する。
Here, the power-on control process will be described in detail. The blade unit control unit 32 is an arbitrary number of blade servers 2- that are instructed to be turned on among the blade servers 2-OFF that are currently powered off. when n is assumed and is powered on, the power supplied to the cooling fan unit 4-m (hereinafter, referred to as the cooling fan assumed power Wa n) is calculated. The blade unit control unit 32 calculates the expected cooling fan power Wα n for each of the blade servers 2-OFF that are currently powered off at least. In the present embodiment, the blade unit control unit 32 calculates the expected cooling fan power Wα n {n = 1 to 16} for all the blade servers 2-1, 2-2,.
Furthermore, the blade unit controller 32 based on the calculated cooling fan assumed power Wa n, when the cooling fan assumed power Wa n is minimized, it was assumed that the power-on when calculating the cooling fan assumed power Wa n blades The power supply control unit 31 is instructed to power on the server 2-n.

また、電源オフ制御処理について具体的に説明すると、ブレードユニット制御部32は、現時点において電源オンしているブレードサーバ2−現時点ONのうち、電源オフが指示された数の任意のブレードサーバ2−nが電源オフしたと仮定した場合に、冷却ファンユニット4−mに供給される冷却ファン想定電力Wαを算出する。なお、ブレードユニット制御部32は、少なくとも現時点において電源オンしているブレードサーバ2−現時点ONのそれぞれについて、冷却ファン想定電力Wαを算出する。本実施形態において、ブレードユニット制御部32は、全てのブレードサーバ2−1,2−2,・・・2−16について冷却ファン想定電力Wα{n=1〜16}を算出する。
また、ブレードユニット制御部32は、算出した冷却ファン想定電力Wαに基づき、冷却ファン想定電力Wαが最小となる場合に、冷却ファン想定電力Wαを算出した際に電源オフすると仮定したブレードサーバ2−nについて電源オフすることを、電源制御部31に対して指示する。
Specifically, the power-off control process will be described in detail. The blade unit control unit 32 determines that the blade server 2 that is currently powered on 2-any number of blade servers 2 that are instructed to be powered off among the current ONs. Assuming that n is powered off, the cooling fan assumed power Wα n supplied to the cooling fan unit 4-m is calculated. The blade unit control unit 32 calculates the expected cooling fan power Wα n for each of at least the blade server 2 that is currently powered on and the current time ON. In the present embodiment, the blade unit control unit 32 calculates the expected cooling fan power Wα n {n = 1 to 16} for all the blade servers 2-1, 2-2,.
Furthermore, the blade unit controller 32 based on the calculated cooling fan assumed power Wa n, when the cooling fan assumed power Wa n is minimized, it was assumed that the power off when calculating the cooling fan assumed power Wa n blades The power supply control unit 31 is instructed to power off the server 2-n.

メモリ部33は、エンクロージャー制御装置3の各構成が各種処理を実行するために必要な情報を格納する。このメモリ部33は、例えば、現時点において電源がオンされているブレードサーバ2−現時点ONのブレードIDを示す情報や、冷却ファンユニット4−1,4−2,・・・,4−8が正常に動作できる状態であるか、あるいは、故障等しているため正常に動作できない状態であるかを示す情報等を格納する。また、メモリ部33は、図7に示すような冷却ファン想定電力算出テーブル331を格納する。   The memory unit 33 stores information necessary for each configuration of the enclosure control device 3 to execute various processes. In this memory unit 33, for example, the blade server 2 that is currently powered on 2-information indicating the blade ID that is currently ON, and the cooling fan units 4-1, 4-2,. Information indicating whether it is in a state where it can be operated normally, or in a state where it cannot operate normally because of a failure or the like. Further, the memory unit 33 stores a cooling fan assumed power calculation table 331 as shown in FIG.

この冷却ファン想定電力算出テーブル331の一例を図7に示す。図7に示す通り、冷却ファン想定電力算出テーブル331は、各冷却ファンユニット4−mが冷却する対象として予め決められているブレードサーバ2−nの電源状態(オンあるいはオフか)に応じた冷却ファン電力Wβが規定されている。この冷却ファン電力Wβは、各冷却ファンユニット4−mに供給される電力である。この冷却ファン電力Wβは、各冷却ファンユニット4−mが発生させる風力の大きさを示す値である。冷却ファン電力Wβが大きければ冷却ファンユニット4−mの回転数が多くなり、出力する風量が大きくなる。
具体的には、各冷却ファンユニット4−mが冷却することが予め決められているブレードサーバ2−nの全てが電源オフである場合(図7内では“電源オンブレードサーバなし”と記す)と、各冷却ファンユニット4−mが冷却することが予め決められているブレードサーバ2−nのうち1つが電源オフである場合(図7内では“電源オンブレードサーバ1台”と記す)と、各冷却ファンユニット4−mが冷却することが予め決められているブレードサーバ2−nのうち2つが電源オフである場合(図7内では“電源オンブレードサーバ2台”と記す)と、それぞれの場合の冷却ファン電力Wβとが、それぞれ対応付けられている。冷却ファンユニット4−1,4−2,・・・,4−8は、それぞれ、ブレードサーバ2−1,2−2,・・・2−16のうち予め決められた2つのブレードサーバ2−n、2−n+1を冷却する位置に配置されている。よって、冷却ファン想定電力算出テーブル331に示す通り、1つの冷却ファンユニット4−mが1つのブレードサーバ2−nを冷却するよりも、1つの冷却ファンユニット4−mが2つのブレードサーバ2−n、2−n+1を冷却した方が効率がよい。
An example of the cooling fan assumed power calculation table 331 is shown in FIG. As shown in FIG. 7, the cooling fan assumed power calculation table 331 is a cooling according to the power supply state (on or off) of the blade server 2-n that is determined in advance as a target to be cooled by each cooling fan unit 4-m. fan power Wbeta m is defined. The cooling fan power Wbeta m is the power supplied to the cooling fan unit 4-m. The cooling fan power Wbeta m is a value indicating the magnitude of the wind that the cooling fan unit 4-m is generating. Cooling fan power Wbeta m is increased rotational speed of the greater if the cooling fan unit 4-m, the output to the air volume is increased.
Specifically, when all of the blade servers 2-n for which the cooling fan units 4-m are predetermined to be cooled are powered off (denoted as “no power on blade server” in FIG. 7). And when one of the blade servers 2-n for which each cooling fan unit 4-m is predetermined to cool is powered off (referred to as “one power on blade server” in FIG. 7). When two of the blade servers 2-n that are preliminarily determined to be cooled by each cooling fan unit 4-m are powered off (denoted as “two power-on blade servers” in FIG. 7), each cooling fan power Wbeta m when there is, associated with each. The cooling fan units 4-1, 4-2,..., 4-8 are respectively two blade servers 2-2, which are predetermined among the blade servers 2-1, 2-2,. It arrange | positions in the position which cools n and 2-n + 1. Therefore, as shown in the estimated cooling fan power calculation table 331, rather than one cooling fan unit 4-m cools one blade server 2-n, one cooling fan unit 4-m has two blade servers 2-. It is more efficient to cool n and 2-n + 1.

なお、各冷却ファンユニット4−mが冷却することが予め決められているブレードサーバ2−nの全てが電源オフである場合(“電源オンブレードサーバなし”)において、さらに場合分けされて、それぞれに対応する冷却ファン電力Wβが規定されている。ここでは、冷却ファンユニット4−mがエンクロージャー制御装置3を冷却することが予めきめられていない場合(図7内では“エンクロージャー制御装置なし”と記す)と、冷却ファンユニット4−mがエンクロージャー制御装置3を冷却することが予めきめられている場合(図7内では“エンクロージャー制御装置あり”と記す)と、それぞれの場合の冷却ファン電力Wβとが、それぞれ対応付けられている。
上述の通り、冷却ファンユニット4−6は、ブレードサーバ2−11,2−12に加え、エンクロージャー制御装置3を冷却する位置に配置されている。よって、冷却ファン想定電力算出テーブル331に示す通り、ブレードサーバ2−11,2−12の両方が電源オフである場合であっても、冷却ファンユニット4−6は、エンクロージャー制御装置3を冷却するために駆動している必要がある。よって、冷却する必要があるブレードサーバが増加する場合(つまり、電源オンするブレードサーバ2−nが増える場合)、冷却ファンユニット4−6が冷却することが予め決められているブレードサーバ2−11,2−12の電源をオンする方が効率がよい。一方、冷却する必要があるブレードサーバ2−nが減少する場合(つまり、電源オフするブレードサーバが増える場合)、冷却ファンユニット4−6が冷却することが予め決められているブレードサーバ2−11,2−12以外のブレードサーバ2−1,2−2,・・・,2−10,2−13,・・・,2−16の電源をオフする方が効率がよい。
In addition, when all of the blade servers 2-n in which it is determined in advance that each cooling fan unit 4-m is cooled are powered off (“no power on blade server”), the cases are further divided into cases. cooling fan power Wbeta m are defined corresponding to. Here, when the cooling fan unit 4-m has not previously decided to cool the enclosure control device 3 (indicated as “no enclosure control device” in FIG. 7), the cooling fan unit 4-m controls the enclosure. If cooling the device 3 is determined in advance and (within 7 referred to as "presence enclosure controller"), a cooling fan power Wbeta m in each case have respectively associated.
As described above, the cooling fan unit 4-6 is disposed at a position for cooling the enclosure control device 3 in addition to the blade servers 2-11 and 12-12. Therefore, as shown in the estimated cooling fan power calculation table 331, the cooling fan unit 4-6 cools the enclosure control device 3 even when both of the blade servers 2-11 and 12-12 are powered off. Need to be driven for. Therefore, when the number of blade servers that need to be cooled increases (that is, when the number of blade servers 2-n to be powered on increases), it is determined in advance that the cooling fan unit 4-6 is cooled. , 2-12 is more efficient when the power is turned on. On the other hand, when the number of blade servers 2-n that need to be cooled decreases (that is, when the number of blade servers to be powered off increases), it is determined in advance that the cooling fan unit 4-6 is cooled. , 2-12 other than the blade servers 2-1, 2-2,..., 2-10, 2-13,.

また、冷却ファン想定電力算出テーブル331では、冷却ファンユニット4−mが正常に動作できる状態である場合の冷却ファン電力Wβと、冷却ファン想定電力算出テーブル331が正常に動作できない状態である場合の冷却ファン電力Wβとが、それぞれ規定されている。冷却ファンユニット4−1,4−2,・・・,4−8のうち一台が故障した場合、正常に動作できる状態の冷却ファンユニット4−1,4−2,・・・,4−8の風量を増加させ、ブレードエンクロージャー1の内部温度を下げる必要がある。よって、冷却ファン想定電力算出テーブル331において、正常に動作できない状態である場合の冷却ファン電力Wβの方が、正常に動作できる状態である場合の冷却ファン電力Wβよりも、大きく設定されている。 Further, in the estimated cooling fan power calculation table 331, the cooling fan power Wβ m when the cooling fan unit 4-m is in a normal operating state and the estimated cooling fan power calculation table 331 are not in a normal operating state. a cooling fan power Wbeta m of are defined respectively. When one of the cooling fan units 4-1, 4-2,..., 4-8 fails, the cooling fan units 4-1, 4-2,. It is necessary to increase the air volume of 8 and lower the internal temperature of the blade enclosure 1. Therefore, in the assumed cooling fan power calculation table 331, the cooling fan power Wβ m when it is in a state where it cannot operate normally is set larger than the cooling fan power Wβ m when it is in a state where it can operate normally. Yes.

冷却ファン制御部34は、ブレードユニット制御部32によって電源オンが指示されたブレードサーバ2−1,2−2,・・・2−16に対応する冷却ファンユニット4−1,4−2,・・・,4−8を、決定された冷却ファン電力Wβに従って駆動する。言い換えると、冷却ファン制御部34は、ブレードサーバ2−1,2−2,・・・2−16のうち電源オンしているブレードサーバを示すブレードIDに基づき、電源オンしているブレードサーバを冷却するための冷却ファンユニット4−1,4−2,・・・,4−8を決定する。また、冷却ファン制御部34は、電源オンしているブレードサーバ2−1,2−2,・・・2−16の個数と位置に応じて最適化された冷却ファン電力Wβに従って、決定した冷却ファンユニット4−1,4−2,・・・,4−8を駆動する。
なお、本実施形態において、冷却ファン制御部34は、ブレードユニット制御部32により、電源オンするブレードサーバ2−1,2−2,・・・2−16を決定する際に算出された冷却ファン電力Wβに従って、決定された冷却ファンユニット4−1,4−2,・・・,4−8を駆動する。
本発明はこれに限られず、その一例を、第2、3実施形態において説明する。
The cooling fan control unit 34 includes cooling fan units 4-1, 4-2,... Corresponding to the blade servers 2-1, 2-2,. .., 4-8 are driven according to the determined cooling fan power Wβ m . In other words, the cooling fan control unit 34 selects the blade server that is powered on based on the blade ID that indicates the blade server that is powered on among the blade servers 2-1, 2-2,. The cooling fan units 4-1, 4-2,..., 4-8 for cooling are determined. Further, the cooling fan control unit 34 is determined according to the cooling fan power Wβ m optimized according to the number and position of the blade servers 2-1, 2-2,. The cooling fan units 4-1, 4-2, ..., 4-8 are driven.
In the present embodiment, the cooling fan control unit 34 is calculated by the blade unit control unit 32 when determining the blade servers 2-1, 2-2,. according to the power Wbeta m, the cooling fan unit 4-1 and 4-2 are determined, ..., and drives 4-8.
The present invention is not limited to this, and an example thereof will be described in the second and third embodiments.

負荷分散制御部35は、処理負荷検出部6によって検出された処理負荷の大きさに応じて、ブレードサーバ2−1,2−2,・・・2−16のうち、電源オンするブレードサーバの数を算出する。   The load distribution control unit 35 selects the blade server to be turned on among the blade servers 2-1, 2-2,... 2-16 according to the processing load detected by the processing load detection unit 6. Calculate the number.

次に、図8を参照して、本実施形態に係るブレードユニット制御部32と負荷分散制御部35による制御フローの一例について説明する。図8は、本実施形態に係るブレードユニット制御部32と負荷分散制御部35による制御フローの一例を示すフローチャートである。   Next, an example of a control flow by the blade unit control unit 32 and the load distribution control unit 35 according to the present embodiment will be described with reference to FIG. FIG. 8 is a flowchart illustrating an example of a control flow by the blade unit control unit 32 and the load distribution control unit 35 according to the present embodiment.

(ステップST1)
負荷分散制御部6は、処理負荷検出部61が検出した処理負荷の大きさに基づき、ブレードエンクロージャー1に対する処理依頼があるか否かを判定する。例えば、負荷分散制御部6は、外部ネットワーク7を介して入力する処理データのデータ量と予め決められた閾値とを比較する。そして、負荷分散制御部6は、閾値で規定されるデータ量の範囲に応じて予め決められている数のブレードサーバを、電源オンするブレードサーバ2−処理ONの数として決定する。
そして、負荷分散制御部6は、決定した電源オンするブレードサーバ2−処理ONの数を示す情報を、ブレードエンクロージャー1のブレードユニット制御部32に出力する。
(Step ST1)
The load distribution control unit 6 determines whether there is a processing request for the blade enclosure 1 based on the size of the processing load detected by the processing load detection unit 61. For example, the load distribution control unit 6 compares the data amount of processing data input via the external network 7 with a predetermined threshold value. Then, the load distribution control unit 6 determines the number of blade servers determined in advance according to the range of the data amount specified by the threshold as the number of blade servers 2 to be turned on and processing ON.
Then, the load distribution control unit 6 outputs information indicating the determined number of blade servers 2 to be turned on 2-processing ON to the blade unit control unit 32 of the blade enclosure 1.

(ステップST2)
そして、ブレードユニット制御部32は、電源オンするブレードサーバ2−処理ONを増加させるか否かを判定する。
(ステップST3)
具体的に説明すると、ブレードユニット制御部32は、負荷分散制御部6によって得られた電源オンするブレードサーバ2−処理ONの数と、メモリ部33から読み出した現時点において電源オンしているブレードサーバ2−現時点ONの数とを比較する。
電源オンするブレードサーバ2−処理ONの数が、現時点において電源オンしているブレードサーバ2−現時点ONよりも多い場合、ブレードユニット制御部32は、電源オン制御処理を実行する。
(Step ST2)
Then, the blade unit control unit 32 determines whether or not to increase the blade server 2-processing ON to turn on the power.
(Step ST3)
Specifically, the blade unit control unit 32 includes the blade server 2 to be turned on obtained by the load distribution control unit 6-the number of processing ONs, and the blade server that is currently powered on read from the memory unit 33. 2- Compare the current number of ONs.
When the number of blade servers 2 to be turned on 2-process ON is larger than the number of blade servers 2 to be turned on at the current time than the current time ON, the blade unit control unit 32 executes a power-on control process.

(ステップST4)
また、ブレードユニット制御部32は、電源オフするブレードサーバ2−OFF´を増やすか否かを判定する。
(ステップST5)
具体的に説明すると、ブレードユニット制御部32は、負荷分散制御部6によって得られた電源オンするブレードサーバ2−処理ONの数と、メモリ部33から読み出した現時点において電源オンしているブレードサーバ2−現時点ONの数とを比較する。
電源オンするブレードサーバ2−処理ONの数が、現時点において電源オンしているブレードサーバ2−現時点ONよりも少ない場合、ブレードユニット制御部32は、電源オフ制御処理を実行する。
(Step ST4)
Further, the blade unit control unit 32 determines whether or not to increase the blade server 2-OFF ′ to be powered off.
(Step ST5)
Specifically, the blade unit control unit 32 includes the blade server 2 to be turned on obtained by the load distribution control unit 6-the number of processing ONs, and the blade server that is currently powered on read from the memory unit 33. 2- Compare the current number of ONs.
When the number of blade servers 2 to be turned on 2-processing ON is smaller than the number of blade servers 2 to be turned on at the current time than the current time ON, the blade unit control unit 32 executes a power-off control process.

なお、電源オンするブレードサーバ2−処理ONの数と、現時点において電源オンしているブレードサーバ2−現時点ONの数とが、同一である場合、ブレードユニット制御部32は、処理を終了する。   If the number of blade servers 2 to be turned on 2-processing ON is the same as the number of blade servers 2 to be turned on at the current time 2-currently ON, the blade unit control unit 32 ends the processing.

次に、図9を参照して、本実施形態に係るエンクロージャー制御装置3による電源オン制御処理の制御フローの一例について説明する。図9は、本実施形態に係るエンクロージャー制御装置3による電源オン制御処理の制御フローの一例を示すフローチャートである。なお、ブレードユニット制御部32は、現時点において電源オフしているブレードサーバ2−nが少なくとも1つある場合に限り、以下の処理を実行する。
(ステップST11)
ブレードユニット制御部32は、現時点において電源オンしているブレードサーバ2−現時点ONの数を示す情報をメモリ部33から読み出し、この現時点において電源オンしているブレードサーバ2−現時点ONの数がブレードサーバ2−nの数よりも1台少ない台数であるか否かを判定する。つまり、ブレードユニット制御部32は、現時点において電源オンしているブレードサーバ2−現時点ONの数が、n−1=15台であるか否かを判定する。
Next, an example of a control flow of the power-on control process by the enclosure control device 3 according to the present embodiment will be described with reference to FIG. FIG. 9 is a flowchart illustrating an example of a control flow of power-on control processing by the enclosure control device 3 according to the present embodiment. The blade unit controller 32 executes the following process only when there is at least one blade server 2-n that is currently powered off.
(Step ST11)
The blade unit control unit 32 reads from the memory unit 33 information indicating the number of blade servers 2 that are currently powered on 2 -the current ON state, and the number of blade servers 2 that are currently powered on 2 It is determined whether the number is one less than the number of servers 2-n. That is, the blade unit control unit 32 determines whether or not the number of blade servers 2 that are currently powered on 2—currently ON is n−1 = 15.

(ステップST12)
現時点において電源オンしているブレードサーバ2−現時点ONの数が15台でない場合、ブレードユニット制御部32は、冷却ファン想定電力Wαを算出するブレードサーバのブレードID=B(i)を決定するため、変数i=1を設定する。そして、ブレードユニット制御部32は、設定した変数i=1をメモリ部33に登録する。
なお、本実施形態では、ブレードユニット制御部32が電源オンするブレードサーバ2−nが一台である場合について説明する。つまり、負荷分散制御部6によって得られた電源オンするブレードサーバ2−処理ONの数から、現時点において電源オンしているブレードサーバ2−現時点ONの数を減算した値が1台である場合、ブレードユニット制御部32は、冷却ファン想定電力Wαを算出するブレードサーバのブレードID=Biを決定するため、1つの変数iを設定する。
しかし、本発明はこれに限られず、負荷分散制御部6によって得られた電源オンするブレードサーバ2−処理ONの数から、現時点において電源オンしているブレードサーバ2−現時点ONの数を減算した値が2台以上である場合、台数に応じた変数i,j,k・・を設定する。
(ステップST13)
そして、ブレードユニット制御部32は、メモリ部33を参照して、決定されたブレードID=B1のブレードサーバ2−1の電源がオンであるか否かを判定する。
(Step ST12)
Blade server that is currently powered on 2-If the number of current ONs is not 15, the blade unit control unit 32 determines blade ID = B (i) of the blade server that calculates the estimated cooling fan power Wα n. Therefore, the variable i = 1 is set. Then, the blade unit control unit 32 registers the set variable i = 1 in the memory unit 33.
In the present embodiment, a case where there is one blade server 2-n that is powered on by the blade unit controller 32 will be described. That is, when the value obtained by subtracting the number of blade servers 2 that are currently powered on 2-the current ON from the number of blade servers 2 that are powered on 2-processing ON obtained by the load distribution control unit 6 is one unit, The blade unit control unit 32 sets one variable i in order to determine blade ID = Bi of the blade server for calculating the estimated cooling fan power Wα i .
However, the present invention is not limited to this, and the blade server 2 that is turned on at the current time is subtracted from the number of blade servers 2 that are turned on and the processing ON that is obtained by the load distribution control unit 6. When the value is two or more, variables i, j, k,... According to the number are set.
(Step ST13)
Then, the blade unit control unit 32 refers to the memory unit 33 to determine whether or not the power of the blade server 2-1 with the determined blade ID = B1 is on.

(ステップST14)
決定されたブレードID=B1のブレードサーバ2−1の電源がオフしている場合、ブレードユニット制御部32は、ブレードサーバ2−1の電源がオンされると仮定して、電源オンするブレードサーバ2−処理ONの数と位置関係に応じた冷却ファン想定電力Wαを、メモリ部33内の冷却ファン想定電力算出テーブル331を参照して算出する。そして、ブレードユニット制御部32は、算出した冷却ファン想定電力Wαをメモリ部33に書き込む。
例えば、冷却ファンユニット4−1〜4−8の各ファンに故障はなく、ブレードサーバ2−3の電源のみオンであった場合に、電源オンするブレードサーバ2−処理ONを1台追加する場合について説明する。
この場合、ブレードユニット制御部32は、冷却ファン想定電力算出テーブル331を参照して、以下のようにして、冷却ファン想定電力Wαを算出する。
冷却ファン想定電力Wα
=冷却ファンユニット4−1の冷却ファン電力Wβ=70W
+冷却ファンユニット4−2の冷却ファン電力Wβ=70W
+冷却ファンユニット4−3の冷却ファン電力Wβ=0W
+冷却ファンユニット4−4の冷却ファン電力Wβ=0W
+冷却ファンユニット4−5の冷却ファン電力Wβ=0W
+冷却ファンユニット4−6の冷却ファン電力Wβ=20W
+冷却ファンユニット4−7の冷却ファン電力Wβ=0W
+冷却ファンユニット4−8の冷却ファン電力Wβ=0W
=160W
よって、ブレードユニット制御部32は、算出した冷却ファン想定電力Wα=160Wとメモリ部33に書き込む。
(Step ST14)
When the power of the blade server 2-1 having the determined blade ID = B1 is off, the blade unit control unit 32 assumes that the power of the blade server 2-1 is turned on, and turns on the blade server. 2- Calculate a cooling fan assumed power Wα 1 corresponding to the number of processing ONs and the positional relationship with reference to a cooling fan assumed power calculation table 331 in the memory unit 33. Then, the blade unit control unit 32 writes the calculated estimated cooling fan power Wα 1 in the memory unit 33.
For example, when there is no failure in each fan of the cooling fan units 4-1 to 4-8 and only the blade server 2-3 is powered on, a blade server 2-processing ON to be powered on is added. Will be described.
In this case, the blade unit controller 32 refers to the cooling fan assumed power calculation table 331, as described below, calculates the cooling fan assumed power Wa 1.
Cooling fan assumed power Wα 1
= Cooling fan power of the cooling fan unit 4-1 Wβ 1 = 70 W
+ Cooling fan power Wβ 2 = 70 W of the cooling fan unit 4-2
+ Cooling fan power Wβ 3 = 0W of cooling fan unit 4-3
+ Cooling fan power Wβ 4 of cooling fan unit 4-4 = 0W
+ Cooling fan power Wβ 5 = 0W of cooling fan unit 4-5
+ Cooling fan power Wβ 6 = 20 W of cooling fan unit 4-6
+ Cooling fan power Wβ 7 of cooling fan unit 4-7 = 0W
+ Cooling fan power Wβ 8 of cooling fan unit 4-8 = 0W
= 160W
Therefore, the blade unit control unit 32 writes the calculated estimated cooling fan power Wα 1 = 160 W in the memory unit 33.

(ステップST15)
一方、決定されたブレードID=1のブレードサーバ2−1の電源がオンしている場合、ブレードユニット制御部32は、冷却ファン想定電力Wαの最大合計消費電力よりも大きな値を、冷却ファン想定電力Wαとして算出する。なお、最大合計消費電力とは、全ての冷却ファンユニット4−1,4−2,・・・,4−8を冷却ファン想定電力算出テーブル331に規定されている最大の冷却ファン想定電力Wαで駆動した場合に消費する電力である。
本実施形態において、ブレードユニット制御部32は、冷却ファン想定電力Wαとして、最大合計消費電力150W×8台=1200Wよりも1W大きい1201Wを算出する。そして、ブレードユニット制御部32は、算出した冷却ファン想定電力Wα=1201Wをメモリ部33に書き込む。
(Step ST15)
On the other hand, when the power of the blade server 2-1 with the determined blade ID = 1 is on, the blade unit control unit 32 sets a value larger than the maximum total power consumption of the estimated cooling fan power Wα to the estimated cooling fan. It is calculated as the power Wα 1. Note that the maximum total power consumption is the maximum expected cooling fan power Wα defined in the expected cooling fan power calculation table 331 for all the cooling fan units 4-1, 4-2,. This is the power consumed when driven.
In the present embodiment, the blade unit control unit 32 calculates 1201 W that is 1 W larger than the maximum total power consumption 150 W × 8 units = 1200 W as the estimated cooling fan power Wα 1 . Then, the blade unit control unit 32 writes the calculated estimated cooling fan power Wα 1 = 1201 W in the memory unit 33.

(ステップST16)
次いで、ブレードユニット制御部32は、設定されている変数iの値をi+1に変更し、変更後のiをメモリ部33に登録する。
(ステップST17)
そして、ブレードユニット制御部32は、登録されている変数iが16より大きいか否かを判定する。登録されている変数iが16以下である場合、ブレードユニット制御部32は、ステップST13に戻って処理を繰り返す。つまり、ブレードユニット制御部32は、すべてのブレードサーバ2−1,2−2,・・・2−16についての冷却ファン想定電力Wα〜Wα16を算出する。よって、電源がオフしているブレードサーバ2−nについては、電源がオンしたと仮定した場合の冷却ファン想定電力Wαが算出される。一方、現時点において電源オンしているブレードサーバ2−現時点ONについては、最大合計消費電力よりも大きい値が、冷却ファン想定電力Wαとして算出される。
(Step ST16)
Next, the blade unit control unit 32 changes the value of the set variable i to i + 1 and registers the changed i in the memory unit 33.
(Step ST17)
Then, the blade unit control unit 32 determines whether or not the registered variable i is larger than 16. If the registered variable i is 16 or less, the blade unit control unit 32 returns to step ST13 and repeats the process. That is, the blade unit control unit 32 calculates the expected cooling fan powers Wα 1 to16 for all the blade servers 2-1, 2-2,. Therefore, for the blade server 2-n whose power is off, the expected cooling fan power Wα n when the power is assumed to be on is calculated. On the other hand, for the blade server 2 that is currently powered on 2−currently ON, a value larger than the maximum total power consumption is calculated as the estimated cooling fan power Wα n .

(ステップST18)
次いで、ブレードユニット制御部32は、メモリ部33を参照して、算出した冷却ファン想定電力Wα〜Wα16を読み出し、これらのうち最小値がどれであるかを判定する。そして、ブレードユニット制御部32は、最小となる冷却ファン想定電力Wαに対応するブレードサーバ2−iを、電源オンを指示するブレードサーバ2−制御ONである決定する。
(ステップST19)
ブレードユニット制御部32は、電源オンを指示するブレードサーバ2−制御ONであると決定したブレードサーバ2−iの電源をオンするよう電源制御部31に指示する。
これにより電源制御部31は、ブレードユニット制御部32によって冷却ファンユニット4−1,4−2,・・・,4−8の消費電力の効率が最適化されたブレードサーバ2−1,2−2,・・・2−16の電源をオンすることができる。
(Step ST18)
Next, the blade unit control unit 32 refers to the memory unit 33 and reads the calculated estimated cooling fan powers Wα 1 to16 and determines which of these is the minimum value. Then, the blade unit control unit 32 determines that the blade server 2-i corresponding to the minimum expected cooling fan power Wα i is the blade server 2-control ON instructing to turn on the power.
(Step ST19)
The blade unit control unit 32 instructs the power supply control unit 31 to turn on the blade server 2-i that has been determined to be in the control ON state.
As a result, the power supply control unit 31 uses the blade server control unit 32 to optimize the power consumption efficiency of the cooling fan units 4-1, 4-2,. 2,... 2-16 can be turned on.

(ステップST20)
一方、現時点において電源オンしているブレードサーバ2−現時点ONの数が15台である場合、ブレードユニット制御部32は、1台しか電源オンするブレードサーバ2−nが存在しないと判断する。そして、ブレードユニット制御部32は、メモリ部33を参照して、電源がオフしているブレードサーバ2−nを、電源オンを指示するブレードサーバ2−制御ONであると決定する。
(Step ST20)
On the other hand, if the number of blade servers 2 that are currently powered on 2-15 is currently ON, the blade unit controller 32 determines that there is no blade server 2-n that is powered on only by one. Then, the blade unit control unit 32 refers to the memory unit 33 and determines that the blade server 2-n that is turned off is the blade server 2-control ON that instructs the power-on.

なお、ステップST14において、ブレードユニット制御部32により他の冷却ファン想定電力Wα〜Wα16についても算出すると、以下のような結果となる。
冷却ファン想定電力Wα=160W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=120W
冷却ファン想定電力Wα=160W
冷却ファン想定電力Wα=160W
冷却ファン想定電力Wα=160W
冷却ファン想定電力Wα=160W
冷却ファン想定電力Wα=160W
冷却ファン想定電力Wα10=160W
冷却ファン想定電力Wα11=140W
冷却ファン想定電力Wα12=140W
冷却ファン想定電力Wα13=160W
冷却ファン想定電力Wα14=160W
冷却ファン想定電力Wα15=160W
冷却ファン想定電力Wα16=160W
よって、ブレードユニット制御部32は、ステップST18において、冷却ファン想定電力Wα=120Wが最小であると判定し、ブレードサーバ2−4を、電源オンを指示するブレードサーバ2−制御ONであると決定する。
In addition, when other cooling fan assumption electric power W (alpha) 2- W (alpha) 16 is also calculated by the blade unit control part 32 in step ST14, it will become the following results.
Cooling fan assumed power Wα 2 = 160W
Cooling fan assumed power Wα 3 = 1201W
Cooling fan assumed power Wα 4 = 120W
Cooling fan assumed power Wα 5 = 160 W
Cooling fan assumed power Wα 6 = 160 W
Cooling fan assumed power Wα 7 = 160 W
Cooling fan assumed power Wα 8 = 160W
Cooling fan assumed power Wα 9 = 160W
Cooling fan assumed power Wα 10 = 160 W
Cooling fan assumed power Wα 11 = 140 W
Cooling fan assumed power Wα 12 = 140 W
Cooling fan assumed power Wα 13 = 160 W
Cooling fan assumed power Wα 14 = 160W
Cooling fan assumed power Wα 15 = 160 W
Cooling fan assumed power Wα 16 = 160 W
Therefore, in step ST18, the blade unit control unit 32 determines that the estimated cooling fan power Wα 4 = 120W is the minimum, and determines that the blade server 2-4 is the blade server 2-control ON that instructs the power-on. decide.

次に、図10を参照して、本実施形態に係るエンクロージャー制御装置3による電源オフ制御処理の制御フローの一例について説明する。図10は、本実施形態に係るエンクロージャー制御装置3による電源オフ制御処理の制御フローの一例を示すフローチャートである。なお、ブレードユニット制御部32は、現時点において電源オンしているブレードサーバ2−現時点ONが少なくとも1つある場合に限り、以下の処理を実行する。
(ステップST31)
ブレードユニット制御部32は、現時点において電源オンしているブレードサーバ2−現時点ONの数を示す情報をメモリ部33から読み出し、この現時点において電源オンしているブレードサーバ2−現時点ONの数が1台であるか否かを判定する。
Next, an example of the control flow of the power-off control process by the enclosure control device 3 according to the present embodiment will be described with reference to FIG. FIG. 10 is a flowchart illustrating an example of a control flow of power-off control processing by the enclosure control device 3 according to the present embodiment. The blade unit control unit 32 executes the following processing only when there is at least one blade server 2 that is currently powered on 2 -currently ON.
(Step ST31)
The blade unit control unit 32 reads from the memory unit 33 information indicating the number of blade servers 2 that are currently powered on 2-the current time ON, and the number of blade servers 2 that are currently powered on 2 is 1 It is determined whether it is a table.

(ステップST22)
現時点において電源オンしているブレードサーバ2−現時点ONの数が1台でない場合、つまり、2台以上である場合、ブレードユニット制御部32は、冷却ファン想定電力Wαを算出するブレードサーバのブレードID=Biを決定するため、変数i=1を設定する。そして、ブレードユニット制御部32は、設定した変数i=1をメモリ部33に登録する。
なお、本実施形態では、ブレードユニット制御部32が電源オフするブレードサーバ2−nが一台である場合について説明する。つまり、負荷分散制御部6によって得られた電源オンするブレードサーバ2−処理ONの数から、現時点において電源オンしているブレードサーバ2−現時点ONの数を減算した値が−1台である場合、ブレードユニット制御部32は、冷却ファン想定電力Wαを算出するブレードサーバのブレードID=Biを決定するため、1つの変数iを設定する。
しかし、本発明はこれに限られず、負荷分散制御部6によって得られた電源オンするブレードサーバ2−処理ONの数から、現時点において電源オンしているブレードサーバ2−現時点ONの数を減算した値が−2台以下である場合、台数に応じた変数i,j,k・・を設定する。
(ステップST23)
そして、ブレードユニット制御部32は、メモリ部33を参照して、決定されたブレードID=B1のブレードサーバ2−1の電源がオンであるか否かを判定する。
(Step ST22)
Blade server that is currently powered on 2-If the number of current ONs is not one, that is, two or more, the blade unit controller 32 calculates the blade power of the blade server that calculates the expected cooling fan power Wα i In order to determine ID = Bi, a variable i = 1 is set. Then, the blade unit control unit 32 registers the set variable i = 1 in the memory unit 33.
In the present embodiment, a case will be described in which there is one blade server 2-n that is powered off by the blade unit control unit 32. That is, when the value obtained by subtracting the number of blade servers 2 that are currently powered on 2-the current ON from the number of blade servers 2 that are powered on 2-processing ON obtained by the load distribution control unit 6 is -1 The blade unit control unit 32 sets one variable i in order to determine blade ID = Bi of the blade server for calculating the estimated cooling fan power Wα i .
However, the present invention is not limited to this, and the blade server 2 that is turned on at the current time is subtracted from the number of blade servers 2 that are turned on and the processing ON that is obtained by the load distribution control unit 6. When the value is −2 or less, variables i, j, k,.
(Step ST23)
Then, the blade unit control unit 32 refers to the memory unit 33 to determine whether or not the power of the blade server 2-1 with the determined blade ID = B1 is on.

(ステップST14)
決定されたブレードID=B1のブレードサーバ2−1の電源がオンしている場合、ブレードユニット制御部32は、ブレードサーバ2−1の電源がオフされると仮定して、電源オンするブレードサーバ2−処理ONの数と位置関係に応じた冷却ファン想定電力Wαを、メモリ部33内の冷却ファン想定電力算出テーブル331を参照して算出する。そして、ブレードユニット制御部32は、算出した冷却ファン想定電力Wαをメモリ部33に書き込む。
例えば、冷却ファンユニット4−1〜4−8の各ファンに故障はなく、ブレードサーバ2−11の電源がオンであった場合に、電源オンするブレードサーバ2−処理ONを1台追加する場合について説明する。
この場合、ブレードユニット制御部32は、冷却ファン想定電力算出テーブル331を参照して、以下のようにして、冷却ファン想定電力Wαを算出する。
冷却ファン想定電力Wα
=冷却ファンユニット4−1の冷却ファン電力Wβ=0W
+冷却ファンユニット4−2の冷却ファン電力Wβ=0W
+冷却ファンユニット4−3の冷却ファン電力Wβ=0W
+冷却ファンユニット4−4の冷却ファン電力Wβ=0W
+冷却ファンユニット4−5の冷却ファン電力Wβ=0W
+冷却ファンユニット4−6の冷却ファン電力Wβ=70W
+冷却ファンユニット4−7の冷却ファン電力Wβ=0W
+冷却ファンユニット4−8の冷却ファン電力Wβ=0W
=70W
よって、ブレードユニット制御部32は、算出した冷却ファン想定電力Wα=70Wとメモリ部33に書き込む。
(Step ST14)
When the power of the blade server 2-1 with the determined blade ID = B1 is turned on, the blade unit control unit 32 assumes that the power of the blade server 2-1 is turned off and turns on the blade server. 2- Calculate a cooling fan assumed power Wα 1 corresponding to the number of processing ONs and the positional relationship with reference to a cooling fan assumed power calculation table 331 in the memory unit 33. Then, the blade unit control unit 32 writes the calculated estimated cooling fan power Wα 1 in the memory unit 33.
For example, when there is no failure in each fan of the cooling fan units 4-1 to 4-8 and the blade server 2-11 is powered on, when adding one blade server 2-process ON to be powered on Will be described.
In this case, the blade unit controller 32 refers to the cooling fan assumed power calculation table 331, as described below, calculates the cooling fan assumed power Wa 1.
Cooling fan assumed power Wα 1
= Cooling fan power of the cooling fan unit 4-1 Wβ 1 = 0W
+ Cooling fan power Wβ 2 = 0W of cooling fan unit 4-2
+ Cooling fan power Wβ 3 = 0W of cooling fan unit 4-3
+ Cooling fan power Wβ 4 of cooling fan unit 4-4 = 0W
+ Cooling fan power Wβ 5 = 0W of cooling fan unit 4-5
+ Cooling fan power Wβ 6 = 70 W of the cooling fan unit 4-6
+ Cooling fan power Wβ 7 of cooling fan unit 4-7 = 0W
+ Cooling fan power Wβ 8 of cooling fan unit 4-8 = 0W
= 70W
Therefore, the blade unit control unit 32 writes the calculated estimated cooling fan power Wα 1 = 70 W in the memory unit 33.

(ステップST35)
一方、決定されたブレードID=B1のブレードサーバ2−1の電源がオフしている場合、ブレードユニット制御部32は、冷却ファン想定電力Wαの最大合計消費電力よりも大きな値を、冷却ファン想定電力Wαとして算出する。本実施形態において、ブレードユニット制御部32は、冷却ファン想定電力Wαとして、最大合計消費電力150W×8台=1200Wよりも1W大きい1201Wを算出する。そして、ブレードユニット制御部32は、算出した冷却ファン想定電力Wα=1201Wをメモリ部33に書き込む。
(Step ST35)
On the other hand, when the power of the blade server 2-1 having the determined blade ID = B1 is off, the blade unit control unit 32 sets a value larger than the maximum total power consumption of the estimated cooling fan power Wα n to the cooling fan. It is calculated as the assumed power Wα 1. In the present embodiment, the blade unit control unit 32 calculates 1201 W that is 1 W larger than the maximum total power consumption 150 W × 8 units = 1200 W as the estimated cooling fan power Wα 1 . Then, the blade unit control unit 32 writes the calculated estimated cooling fan power Wα 1 = 1201 W in the memory unit 33.

(ステップST36)
次いで、ブレードユニット制御部32は、設定されている変数iの値をi+1に変更し、変更後のiをメモリ部33に登録する。
(ステップST37)
そして、ブレードユニット制御部32は、登録されている変数iが16より大きいか否かを判定する。登録されている変数iが16以下である場合、ブレードユニット制御部32は、ステップST33に戻って処理を繰り返す。つまり、ブレードユニット制御部32は、すべてのブレードサーバ2−1,2−2,・・・2−16についての冷却ファン想定電力Wα〜Wα16を算出する。よって、電源がオンしているブレードサーバ2−1,2−2,・・・2−16については、電源がオフしたと仮定した場合の冷却ファン想定電力Wαが算出される。一方、現時点において電源オフしているブレードサーバ2−1,2−2,・・・2−16については、最大合計消費電力よりも大きい値が、冷却ファン想定電力Wαとして算出される。
(Step ST36)
Next, the blade unit control unit 32 changes the value of the set variable i to i + 1 and registers the changed i in the memory unit 33.
(Step ST37)
Then, the blade unit control unit 32 determines whether or not the registered variable i is larger than 16. If the registered variable i is 16 or less, the blade unit control unit 32 returns to step ST33 and repeats the process. That is, the blade unit control unit 32 calculates the expected cooling fan powers Wα 1 to16 for all the blade servers 2-1, 2-2,. Therefore, for the blade servers 2-1, 2-2,... 2-16 whose power is on, the expected cooling fan power Wα i when the power is assumed to be off is calculated. On the other hand, for blade servers 2-1, 2-2,... 2-16 that are currently powered off, a value larger than the maximum total power consumption is calculated as the estimated cooling fan power Wα i .

(ステップST38)
次いで、ブレードユニット制御部32は、メモリ部33を参照して、算出した冷却ファン想定電力Wα〜Wα16を読み出し、これらのうち最小値がどれであるかを判定する。そして、ブレードユニット制御部32は、最小となる冷却ファン想定電力Wαに対応するブレードサーバ2−iを、電源オンを指示するブレードサーバ2−制御OFFである決定する。
(ステップST39)
ブレードユニット制御部32は、電源オンを指示するブレードサーバ2−制御OFFであると決定したブレードサーバ2−iの電源をオンするよう電源制御部31に指示する。
これにより電源制御部31は、ブレードユニット制御部32によって冷却ファンユニット4−1,4−2,・・・,4−8の消費電力の効率が最適化されたブレードサーバ2−1,2−2,・・・2−16の電源をオンすることができる。
(Step ST38)
Next, the blade unit control unit 32 refers to the memory unit 33 and reads the calculated estimated cooling fan powers Wα 1 to16 and determines which of these is the minimum value. Then, the blade unit control unit 32 determines that the blade server 2-i corresponding to the minimum expected cooling fan power Wα i is the blade server 2-control OFF instructing to turn on the power.
(Step ST39)
The blade unit control unit 32 instructs the power supply control unit 31 to turn on the power of the blade server 2-i that has been determined to be in the control OFF state.
As a result, the power supply control unit 31 uses the blade server control unit 32 to optimize the power consumption efficiency of the cooling fan units 4-1, 4-2,. 2,... 2-16 can be turned on.

(ステップST40)
一方、現時点において電源オンしているブレードサーバ2−現時点ONの数が1台である場合、ブレードユニット制御部32は、1台しか電源オフするブレードサーバ2−nが存在しないと判断する。そして、ブレードユニット制御部32は、メモリ部33を参照して、電源オンしているブレードサーバ2−nを、電源オフを指示するブレードサーバ2−制御OFFであると決定する。
(Step ST40)
On the other hand, if the number of blade servers 2 that are currently powered on 2 is ON, the blade unit control unit 32 determines that there is no blade server 2-n that is powered off. Then, the blade unit control unit 32 refers to the memory unit 33 and determines that the blade server 2-n that is powered on is the blade server 2-control OFF that instructs the power off.

なお、ステップST34において、ブレードユニット制御部32により他の冷却ファン想定電力Wα〜Wα16についても算出すると、以下のような結果となる。
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα10=1201W
冷却ファン想定電力Wα11=90W
冷却ファン想定電力Wα12=1201W
冷却ファン想定電力Wα13=1201W
冷却ファン想定電力Wα14=1201W
冷却ファン想定電力Wα15=1201W
冷却ファン想定電力Wα16=1201W
よって、ブレードユニット制御部32は、ステップST38において、冷却ファン想定電力Wα=70Wが最小であると判定し、ブレードサーバ2−1を、電源オフを指示するブレードサーバ2−制御OFFであると決定する。
In addition, when other cooling fan assumption electric power W (alpha) 2- W (alpha) 16 is also calculated by the blade unit control part 32 in step ST34, it will become the following results.
Cooling fan assumed power Wα 2 = 1201W
Cooling fan assumed power Wα 3 = 1201W
Cooling fan assumed power Wα 4 = 1201W
Cooling fan assumed power Wα 5 = 1201W
Cooling fan assumed power Wα 6 = 1201W
Cooling fan assumed power Wα 7 = 1201W
Cooling fan assumed power Wα 8 = 1201W
Cooling fan assumed power Wα 9 = 1201W
Cooling fan assumed power Wα 10 = 1201W
Cooling fan assumed power Wα 11 = 90 W
Cooling fan assumed power Wα 12 = 1201W
Cooling fan assumed power Wα 13 = 1120 W
Cooling fan assumed power Wα 14 = 1201W
Cooling fan assumed power Wα 15 = 1201W
Cooling fan assumed power Wα 16 = 1201W
Therefore, in step ST38, the blade unit control unit 32 determines that the estimated cooling fan power Wα 1 = 70 W is the minimum, and determines that the blade server 2-1 is in the blade server 2-control OFF instructing to turn off the power. decide.

また、上述のステップST18あるいはステップST38において、冷却ファン想定電力Wαが最小となるブレードサーバ2−iが、複数あった場合に1台を選出する方法は任意でよく、例えば若番を選択するや、ラウンドロビンで選択するなどがある。 Further, in step ST18 or step ST38 described above, when there are a plurality of blade servers 2-i having the smallest estimated cooling fan power Wα i, a method for selecting one may be arbitrary. For example, a young number is selected. And round-robin selection.

なお、上述の制御フローでは、冷却ファンユニット4−1,4−2,・・・,4−8が故障しているか否かを考慮して冷却ファン想定電力Wαを算出する具体例についての説明を省略した。以下、冷却ファンユニット4−1,4−2,・・・,4−8が正常に動作できる状態であるか否かを考慮して、冷却ファン想定電力Wαを算出する具体例について説明する。
ブレードユニット制御部32は、冷却ファン想定電力Wαを算出する際、メモリ部33を参照して、冷却ファンユニット4−mが正常に動作できる状態であるか、あるいは、故障等しているため正常に動作できない状態であるかを判定する。
メモリ部33に、冷却ファンユニット4−mが正常に動作できる状態であることを示す情報が格納されている場合、ブレードユニット制御部32は、冷却ファン想定電力算出テーブル331の“冷却ファン正常時”を参照して、冷却ファン想定電力Wαを算出する。これについては、上述の制御フローについて説明した。
In the control flow described above, a specific example of calculating the estimated cooling fan power Wα i in consideration of whether or not the cooling fan units 4-1, 4-2,. The explanation was omitted. Hereinafter, a specific example of calculating the estimated cooling fan power Wα i in consideration of whether or not the cooling fan units 4-1, 4-2,..., 4-8 can operate normally will be described. .
The blade unit control unit 32 refers to the memory unit 33 when calculating the estimated cooling fan power Wα i , because the cooling fan unit 4-m is in a state in which it can normally operate or has failed. It is determined whether it is in a state where it cannot operate normally.
When information indicating that the cooling fan unit 4-m is in a state in which the cooling fan unit 4-m can be normally operated is stored in the memory unit 33, the blade unit control unit 32 stores “when cooling fan is normal” in the cooling fan assumed power calculation table 331. ”To calculate the expected cooling fan power Wα i . For this, the above-described control flow has been described.

一方、メモリ部33に、冷却ファンユニット4−mが正常に動作できない状態であることを示す情報が格納されている場合、ブレードユニット制御部32は、冷却ファン想定電力算出テーブル331の“冷却ファン非正常時”を参照して、冷却ファン想定電力Wαを算出する。なお、ここで“冷却ファン非正常時”とは、2つの冷却ファン41、42を含む冷却ファンユニット4−mにおいて、冷却ファン41あるいは42のうちいずれか1つの冷却ファンが故障した場合をいう。また、冷却ファン41、42の両方が故障している場合、この冷却ファンユニット4−mに対応するブレードサーバ2−nの電源をオンにすることができないため、ここでいう“冷却ファン非正常時”には含まれない。
例えば、冷却ファンユニット4−1〜4−6及び4−8の各ファンに故障はないが、冷却ファンユニット4−7は冷却ファン41あるいは42が1台故障しているとする。また、ブレードサーバ2−1〜2−12の電源がオンであった場合に、ブレードサーバ2−nを1台、さらに電源オンするとする。
この場合、ブレードユニット制御部32は、ブレードサーバ2−1,2−2,・・・2−12,2−15,2−16については、冷却ファン想定電力算出テーブル331の“冷却ファン正常時”を参照する。一方、ブレードサーバ2−13,14については、対応する冷却ファンユニット4−7の冷却ファン41あるいは42のいずれか1台が故障しているため、ブレードユニット制御部32は、冷却ファン想定電力算出テーブル331の“冷却ファン非正常時”を参照する。
On the other hand, when the information indicating that the cooling fan unit 4-m cannot operate normally is stored in the memory unit 33, the blade unit control unit 32 displays “cooling fan” in the assumed cooling fan power calculation table 331. With reference to “non-normal”, the estimated cooling fan power Wα i is calculated. Here, “when the cooling fan is not normal” refers to a case where one of the cooling fans 41 or 42 has failed in the cooling fan unit 4-m including the two cooling fans 41 and 42. . Further, when both the cooling fans 41 and 42 are out of order, the blade server 2-n corresponding to the cooling fan unit 4-m cannot be turned on. It is not included in “time”.
For example, it is assumed that each of the fans of the cooling fan units 4-1 to 4-6 and 4-8 has no failure, but one cooling fan 41 or 42 has failed in the cooling fan unit 4-7. Further, when the blade servers 2-1 to 2-12 are powered on, it is assumed that one blade server 2-n is further powered on.
In this case, for the blade servers 2-1, 2-2,... 2-12, 2-15, and 2-16, the blade unit control unit 32 Refer to. On the other hand, for the blade servers 2-13 and 14, since one of the cooling fans 41 or 42 of the corresponding cooling fan unit 4-7 has failed, the blade unit control unit 32 calculates the expected cooling fan power. Refer to “cooling fan non-normal” in table 331.

よって、ブレードユニット制御部32は、以下の通り示す冷却ファン想定電力Wαを算出する。
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα=1201W
冷却ファン想定電力Wα10=1201W
冷却ファン想定電力Wα11=1201W
冷却ファン想定電力Wα12=1201W
冷却ファン想定電力Wα13=100W
冷却ファン想定電力Wα14=100W
冷却ファン想定電力Wα15=70W
冷却ファン想定電力Wα16=70W
従って、ブレードユニット制御部32は、ステップST38において、冷却ファン想定電力Wα15,Wα16=70Wが最小であると判定し、ブレードサーバ2−15あるいはブレードサーバ2−16を、電源オンを指示するブレードサーバ2−制御ONであると決定する。
Therefore, the blade unit controller 32 calculates the expected cooling fan power Wα i as follows.
Cooling fan assumed power Wα 2 = 1201W
Cooling fan assumed power Wα 3 = 1201W
Cooling fan assumed power Wα 4 = 1201W
Cooling fan assumed power Wα 5 = 1201W
Cooling fan assumed power Wα 6 = 1201W
Cooling fan assumed power Wα 7 = 1201W
Cooling fan assumed power Wα 8 = 1201W
Cooling fan assumed power Wα 9 = 1201W
Cooling fan assumed power Wα 10 = 1201W
Cooling fan assumed power Wα 11 = 1120 W
Cooling fan assumed power Wα 12 = 1201W
Cooling fan assumed power Wα 13 = 100 W
Cooling fan assumed power Wα 14 = 100 W
Cooling fan assumed power Wα 15 = 70 W
Cooling fan assumed power Wα 16 = 70 W
Accordingly, the blade unit control unit 32 determines in step ST38 that the estimated cooling fan powers Wα 15 and Wα 16 = 70 W are minimum, and instructs the blade server 2-15 or the blade server 2-16 to turn on the power. Blade server 2—Determines that control is ON.

本実施形態に係るブレードエンクロージャー1では、エンクロージャー制御装置3はブレードサーバ2−1〜2−16よりは発熱量が小さいものの冷却する必要がある。よって、エンクロージャー制御装置3の冷却も担う冷却ファンユニット4−6は、ブレードサーバ2−11〜2−12の電源がオフの場合でも冷却ファン41,42を低回転で動作させる必要がある。
また、ブレードサーバ2−11〜2−12が1台でも稼動している場合、その排熱で十分に冷却ができるためエンクロージャー制御装置3があることによる冷却ファンユニット4−6の消費電力増分はないものとする。
さらに、冷却ファンユニット4−1〜4−8内の2個の冷却ファン41,42の内の1個が故障した場合は、残りの1個で2個分の風量を確保するために、冷却ファンが高速回転となり正常時の2倍以上の電力を必要とするようになる。このため、冷却ファンが2台共に正常時と比較して1個故障時は冷却ファンユニット4−1〜4−8の消費電力は高くなる。
In the blade enclosure 1 according to the present embodiment, the enclosure control device 3 needs to be cooled although its calorific value is smaller than that of the blade servers 2-1 to 2-16. Therefore, the cooling fan unit 4-6 that also cools the enclosure control device 3 needs to operate the cooling fans 41 and 42 at a low speed even when the blade servers 2-11 to 2-12 are powered off.
In addition, when even one blade server 2-11 to 2-12 is operating, it is possible to sufficiently cool with the exhaust heat, so the increase in power consumption of the cooling fan unit 4-6 due to the presence of the enclosure control device 3 is Make it not exist.
Furthermore, when one of the two cooling fans 41 and 42 in the cooling fan units 4-1 to 4-8 fails, the remaining one cools down in order to secure the air volume for two. The fan rotates at a high speed and requires more than twice the normal power. For this reason, the power consumption of the cooling fan units 4-1 to 4-8 is higher when one of the two cooling fans is out of order than when normal.

このように、ブレードサーバ2−1,2−2,・・・2−16とエンクロージャー制御装置3との位置関係、現時点において電源オンしているブレードサーバ2−現時点ONの数や位置に応じて、電源をオン/オフ制御するブレードサーバ2−1,2−2,・・・2−16を決定することにより、冷却ファンユニット4−1,4−2,・・・,4−8が消費する消費電力を最小限に抑えることができる。   As described above, according to the positional relationship between the blade servers 2-1, 2-2,... 2-16 and the enclosure control device 3, the blade server that is currently powered on 2—the number and position of the current ON By determining the blade servers 2-1, 2-2,..., 2-16 that control power on / off, the cooling fan units 4-1, 4-2,. Power consumption can be minimized.

[第2実施形態]
次に、本発明に係る他の実施形態について説明する。
図11は、本実施形態に係るブレードエンクロージャー102の構成の一例を示すブロック図である。
図11に示す通り、ブレードエンクロージャー102は、複数のブレードサーバ2−1,2−2,・・・2−16と、複数の冷却ファンユニット4−1,4−2,・・・,4−8と、エンクロージャー制御装置3と、電源ユニット5と、負荷分散制御部6、複数の電流計9−1,9−2,・・・,9−8とを備える。なお、上述の実施形態と同様の構成を有する構成部については、同一の符号を付して、詳細な説明は省略する。
電流計9−1,9−2,・・・,9−8は、冷却ファンユニット4−1,4−2,・・・,4−8と電源ユニット5との間に接続されている。この電流計9−1,9−2,・・・,9−8は、電源ユニット5から冷却ファンユニット4−1,4−2,・・・,4−8のそれぞれに供給される電力の電流値I〜Iを計測する。
[Second Embodiment]
Next, another embodiment according to the present invention will be described.
FIG. 11 is a block diagram showing an example of the configuration of the blade enclosure 102 according to the present embodiment.
As shown in FIG. 11, the blade enclosure 102 includes a plurality of blade servers 2-1, 2-2,... 2-16 and a plurality of cooling fan units 4-1, 4-2,. 8, an enclosure control device 3, a power supply unit 5, a load distribution control unit 6, and a plurality of ammeters 9-1, 9-2,. In addition, about the structure part which has the structure similar to the above-mentioned embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
The ammeters 9-1, 9-2,..., 9-8 are connected between the cooling fan units 4-1, 4-2,. The ammeters 9-1, 9-2,..., 9-8 are for the electric power supplied from the power supply unit 5 to the cooling fan units 4-1, 4-2,. Current values I 1 to I 8 are measured.

次に、図12を参照して、本実施形態に係るエンクロージャー制御装置3による電源オン制御処理の制御フローの一例について説明する。図9は、本実施形態に係るエンクロージャー制御装置3による電源オン制御処理の制御フローの一例を示すフローチャートである。なお、この制御フローは、図9に示す制御フローのステップST14の部分がおおきく異なるため、その部分について以下説明し、他の部分の説明は同一の符号を付して省略する。   Next, an example of a control flow of the power-on control process by the enclosure control device 3 according to the present embodiment will be described with reference to FIG. FIG. 9 is a flowchart illustrating an example of a control flow of power-on control processing by the enclosure control device 3 according to the present embodiment. In addition, since this control flow differs greatly in the part of step ST14 of the control flow shown in FIG. 9, the part will be described below, and the description of other parts will be omitted with the same reference numerals.

(ステップST1401)
ブレードID=B1のブレードサーバ2−1の電源がオフしている場合、ブレードユニット制御部32は、ブレードサーバ2−1の電源がオンされると仮定して、電源オンするブレードサーバ2−処理ONの数と位置関係に応じた回転数Rを、メモリ部33内のデータを参照して算出する。なお、このとき参照するデータは、冷却ファン想定電力算出テーブル331において定義されているように、ブレードサーバ2−1,2−2,・・・2−16と冷却ファンユニット4−1,4−2,・・・,4−8との位置関係、および、エンクロージャー制御装置3と冷却ファンユニット4−1,4−2,・・・,4−8との位置関係に応じて、冷却ファンユニット4−1,4−2,・・・,4−8から発生させる必要がある風力を発生させるためのモーターの回転数として予め決められている回転数Rである。
(Step ST1401)
When the blade server 2-1 with the blade ID = B1 is turned off, the blade unit control unit 32 assumes that the blade server 2-1 is turned on and turns on the blade server 2-process. The rotational speed R 1 corresponding to the number of ONs and the positional relationship is calculated with reference to the data in the memory unit 33. Note that the data referred to at this time is the blade servers 2-1, 2-2,... 2-16 and the cooling fan units 4-1, 4-, as defined in the cooling fan assumed power calculation table 331. , 4-8, and the cooling fan unit according to the positional relationship between the enclosure control device 3 and the cooling fan units 4-1, 4-2,. 4, 4-2,..., 4-8, which is a rotational speed R i determined in advance as the rotational speed of the motor for generating the wind power that needs to be generated.

この場合、回転数Rは、以下の事情を考慮して作成される。
エンクロージャー制御装置3はブレードサーバ2−1〜2−16よりは発熱量が小さいものの冷却する必要がある。よって、エンクロージャー制御装置3の冷却も担う冷却ファンユニット4−6は、ブレードサーバ2−11〜2−12の電源がオフの場合でも冷却ファン41,42を低回転で動作させる必要がある。よって、エンクロージャー制御装置3を冷却するための冷却ファンユニット4−6は、冷却対象のブレードサーバ2−11,2−12が電源オンでない場合であっても、少ない回転数で回転させる必要がある。
また、ブレードサーバ2−11〜2−12が1台でも稼動している場合、その排熱で十分に冷却ができるためエンクロージャー制御装置3があることによる冷却ファンユニット4−6の回転数の増分はないものとする。
さらに、冷却ファンユニット4−1〜4−8のそれぞれに含まれ2個の冷却ファン41,42の内の1個が故障した場合は、残りの1個で2個分の風量を確保するために、冷却ファンが高速回転となり正常時の2倍以上の駆動力(回転数)を必要とするようになる。このため、冷却ファンが2台共に正常時と比較して1個故障時は冷却ファンユニット4−1〜4−8の回転数は大きくなる。
In this case, the rotational speed R i is created in consideration of the following circumstances.
The enclosure control device 3 needs to be cooled although its calorific value is smaller than that of the blade servers 2-1 to 2-16. Therefore, the cooling fan unit 4-6 that also cools the enclosure control device 3 needs to operate the cooling fans 41 and 42 at a low speed even when the blade servers 2-11 to 2-12 are powered off. Therefore, the cooling fan unit 4-6 for cooling the enclosure control device 3 needs to be rotated at a small number of rotations even when the blade servers 2-11 and 12-12 to be cooled are not powered on. .
Further, when even one blade server 2-11 to 2-12 is operating, the exhaust heat can be sufficiently cooled, so that the number of rotations of the cooling fan unit 4-6 is increased due to the presence of the enclosure control device 3. Shall not.
Furthermore, when one of the two cooling fans 41 and 42 included in each of the cooling fan units 4-1 to 4-8 fails, the remaining one will secure the air volume for two. In addition, the cooling fan rotates at a high speed and requires a driving force (number of rotations) that is at least twice that of normal operation. For this reason, the number of rotations of the cooling fan units 4-1 to 4-8 is larger when one of the two cooling fans is out of order than when normal.

そして、ブレードユニット制御部32は、決定した回転数Rで、冷却ファンユニット4−1〜4−8を回転させる。つまり、ブレードユニット制御部32は、ブレードID=Biのブレードサーバ2−1,2−2,・・・2−16に対応する冷却ファンユニット4−1,4−2,・・・,4−8の回転数のみ、ブレードID=Biのブレードサーバ2−1,2−2,・・・2−16をオンしたと仮定した場合の回転数Rを変更する。なお、このとき、ブレードサーバ2−1,2−2,・・・2−16の電源はオンしない。 Then, the blade unit control section 32 at the determined rotation speed R i, rotates the cooling fan unit 4-1 to 4-8. That is, the blade unit control unit 32 performs cooling fan units 4-1, 4-2,..., 4- corresponding to the blade servers 2-1, 2-2,. Only the rotation number of 8 changes the rotation number R i when it is assumed that the blade servers 2-1, 2-2,. At this time, the blade servers 2-1, 2-2,... 2-16 are not turned on.

(ステップST1402)
次いで、電流計9−1,9−2,・・・,9−8は、冷却ファンユニット4−1,4−2,・・・,4−8に供給される電流値I〜Iを計測する。そして、電流計9−1,9−2,・・・,9−8は、計測したI〜Iを示す情報を、ブレードユニット制御部32に出力する。ブレードユニット制御部32は、このI〜Iを示す情報に基づき、冷却ファンユニット4−iが消費した消費電力量Wγを算出する。なお、1つの冷却ファンユニット4−mには、2つのブレードサーバ2−n、2−n+1が対応しているため、各ブレードサーバ2−n、2−n+1のそれぞれに対応する消費電力量Wγを2つ算出する。よって、ブレードユニット制御部32は、合計16個の消費電力量Wγ〜Wγを算出する。
(Step ST1402)
Then, the ammeters 9-1, 9-2,..., 9-8 are current values I 1 to I 8 supplied to the cooling fan units 4-1, 4-2,. Measure. The ammeters 9-1, 9-2,..., 9-8 output information indicating the measured I 1 to I 8 to the blade unit control unit 32. The blade unit controller 32 calculates the power consumption Wγ i consumed by the cooling fan unit 4-i based on the information indicating I 1 to I 8 . Since one cooling fan unit 4-m corresponds to two blade servers 2-n and 2-n + 1, the power consumption Wγ corresponding to each blade server 2-n and 2-n + 1. Two m are calculated. Therefore, the blade unit controller 32 calculates a total of 16 power consumption amounts Wγ 1 to8 .

(ステップST1403)
そして、ブレードユニット制御部32は、ステップST1401において変更したブレードID=Biのブレードサーバ2−1,2−2,・・・2−16に対応する冷却ファンユニット4−1,4−2,・・・,4−8の回転数Rを元にもどす。
(Step ST1403)
The blade unit control unit 32 then cools the cooling fan units 4-1, 4-2,... Corresponding to the blade servers 2-1, 2-2,. ..., returned on the basis of the number of revolutions R i of 4-8.

このようにして、ブレードユニット制御部32は、全てのブレードサーバ2−1,2−2,・・・2−16について、現時点において電源オンしていないブレードサーバ2−nについては仮に電源オンした場合に冷却ファンユニット4−1,4−2,・・・,4−8が消費する消費電力量Wγ〜Wγを算出する。一方、現時点において電源オンしているブレードサーバ2−nについては、現状の回転数Rで回転する冷却ファンユニット4−1,4−2,・・・,4−8が消費する消費電力量Wγ〜Wγを算出する。
そして、ステップST18において、これら消費電力量Wγ〜Wγのうち、これらのうち最小値がどれであるかを判定する。そして、ブレードユニット制御部32は、最小となる消費電力量Wγに対応するブレードサーバ2−iを、電源オンを指示するブレードサーバ2−制御ONである決定する。
次いで、ブレードユニット制御部32は、電源オンを指示するブレードサーバ2−制御ONであると決定したブレードサーバ2−iの電源をオンするよう電源制御部31に指示する。
In this way, the blade unit control unit 32 temporarily turns on the blade server 2-n that is not currently turned on for all the blade servers 2-1, 2-2, ... 2-16. In this case, the power consumption amounts Wγ 1 to8 consumed by the cooling fan units 4-1, 4-2,. On the other hand, the blade server 2-n that are powered on at the present time, the power consumption cooling fan unit 4-1 and 4-2 which rotates at a rotational speed R i of current, ..., is 4-8 consume Wγ 1 to8 are calculated.
In step ST18, it is determined which of these power consumption amounts Wγ 1 to8 has the minimum value. Then, the blade unit controller 32 determines that the blade server 2-i corresponding to the minimum power consumption Wγ i is the blade server 2-control ON instructing to turn on the power.
Next, the blade unit control unit 32 instructs the power supply control unit 31 to turn on the blade server 2-i that has been determined to be the blade server 2-control ON that instructs the power-on.

これにより電源制御部31は、ブレードユニット制御部32によって冷却ファンユニット4−1,4−2,・・・,4−8の消費電力の効率が最適化されたブレードサーバ2−1,2−2,・・・2−16の電源をオンすることができる。
また、動的に冷却ファンユニット4−1〜4−8の消費電力を計測するため、冷却ファンユニット4−1〜4−8の個体差も考慮に入れた最適構成をとることができるようになる。
As a result, the power supply control unit 31 uses the blade server control unit 32 to optimize the power consumption efficiency of the cooling fan units 4-1, 4-2,. 2,... 2-16 can be turned on.
In addition, since the power consumption of the cooling fan units 4-1 to 4-8 is dynamically measured, an optimum configuration can be taken in consideration of individual differences of the cooling fan units 4-1 to 4-8. Become.

次に、図13を参照して、本実施形態に係るエンクロージャー制御装置3による電源オフ制御処理の制御フローの一例について説明する。図10は、本実施形態に係るエンクロージャー制御装置3による電源オフ制御処理の制御フローの一例を示すフローチャートである。なお、この制御フローは、図10に示す制御フローのステップST34の部分が大きく異なるため、その部分について以下説明し、他の部分の説明は同一の符号を付して省略する。   Next, an example of a control flow of power-off control processing by the enclosure control device 3 according to the present embodiment will be described with reference to FIG. FIG. 10 is a flowchart illustrating an example of a control flow of power-off control processing by the enclosure control device 3 according to the present embodiment. In addition, since this control flow differs greatly in the part of step ST34 of the control flow shown in FIG. 10, the part is demonstrated below and description of another part is attached | subjected and abbreviate | omitted.

(ステップST3401)
ブレードID=B1のブレードサーバ2−1の電源がオンしている場合、ブレードユニット制御部32は、ブレードサーバ2−1の電源がオフされると仮定した場合に電源がオンしているブレードサーバ2−nの数と位置関係に応じた回転数Rを、メモリ部33内のデータを参照して算出する。なお、このとき参照するデータは、冷却ファン想定電力算出テーブル331において定義されているように、ブレードサーバ2−1,2−2,・・・2−16と冷却ファンユニット4−1,4−2,・・・,4−8との位置関係、および、エンクロージャー制御装置3と冷却ファンユニット4−1,4−2,・・・,4−8との位置関係に応じて、冷却ファンユニット4−1,4−2,・・・,4−8から発生させる必要がある風力を発生させるためのモーターの回転数として予め決められている回転数Rである。
この場合、回転数Rは、上述の事情を考慮して作成される。
(Step ST3401)
When the blade server 2-1 with the blade ID = B1 is turned on, the blade unit control unit 32 assumes that the blade server 2-1 is turned off, and the blade server is turned on. The number of revolutions R 1 corresponding to the number of 2-n and the positional relationship is calculated with reference to the data in the memory unit 33. Note that the data referred to at this time is the blade servers 2-1, 2-2,... 2-16 and the cooling fan units 4-1, 4-, as defined in the cooling fan assumed power calculation table 331. , 4-8, and the cooling fan unit according to the positional relationship between the enclosure control device 3 and the cooling fan units 4-1, 4-2,. 4, 4-2,..., 4-8, which is a rotational speed R i determined in advance as the rotational speed of the motor for generating the wind power that needs to be generated.
In this case, the rotational speed R i is created in consideration of the above-described circumstances.

そして、ブレードユニット制御部32は、決定した回転数Rで、冷却ファンユニット4−1〜4−8を回転させる。つまり、ブレードユニット制御部32は、ブレードID=Biのブレードサーバ2−1,2−2,・・・2−16に対応する冷却ファンユニット4−1,4−2,・・・,4−8の回転数のみ、ブレードID=Biのブレードサーバ2−1,2−2,・・・2−16をオフしたと仮定した場合の回転数Rを変更する。なお、このとき、ブレードサーバ2−1,2−2,・・・2−16の電源はオンしない。 Then, the blade unit control section 32 at the determined rotation speed R i, rotates the cooling fan unit 4-1 to 4-8. That is, the blade unit control unit 32 performs cooling fan units 4-1, 4-2,..., 4- corresponding to the blade servers 2-1, 2-2,. rotational speed of only 8, blade servers 2-1 and 2-2 of the blade ID = Bi, changing the rotational speed R i on the assumption that the off ... 2-16. At this time, the blade servers 2-1, 2-2,... 2-16 are not turned on.

(ステップST3402)
次いで、電流計9−1,9−2,・・・,9−8は、冷却ファンユニット4−1,4−2,・・・,4−8に供給される電流値I〜Iを計測する。そして、電流計9−1,9−2,・・・,9−8は、計測したI〜Iを示す情報を、ブレードユニット制御部32に出力する。ブレードユニット制御部32は、このI〜Iを示す情報に基づき、冷却ファンユニット4−iが消費した消費電力量Wγを算出する。なお、1つの冷却ファンユニット4−mには、2つのブレードサーバ2−n、2−n+1が対応しているため、各ブレードサーバ2−n、2−n+1のそれぞれに対応する消費電力量Wγを2つ算出する。よって、ブレードユニット制御部32は、合計16個の消費電力量Wγ〜Wγを算出する。
(Step ST3402)
Then, the ammeters 9-1, 9-2,..., 9-8 are current values I 1 to I 8 supplied to the cooling fan units 4-1, 4-2,. Measure. The ammeters 9-1, 9-2,..., 9-8 output information indicating the measured I 1 to I 8 to the blade unit control unit 32. The blade unit controller 32 calculates the power consumption Wγ i consumed by the cooling fan unit 4-i based on the information indicating I 1 to I 8 . Since one cooling fan unit 4-m corresponds to two blade servers 2-n and 2-n + 1, the power consumption Wγ corresponding to each blade server 2-n and 2-n + 1. Two m are calculated. Therefore, the blade unit controller 32 calculates a total of 16 power consumption amounts Wγ 1 to8 .

(ステップST3403)
そして、ブレードユニット制御部32は、ステップST3401において変更したブレードID=Biのブレードサーバ2−1,2−2,・・・2−16に対応する冷却ファンユニット4−1,4−2,・・・,4−8の回転数Rを元にもどす。
(Step ST3403)
The blade unit control unit 32 then cools the cooling fan units 4-1, 4-2,... Corresponding to the blade servers 2-1, 2-2,. ..., returned on the basis of the number of revolutions R i of 4-8.

このようにして、ブレードユニット制御部32は、全てのブレードサーバ2−1,2−2,・・・2−16について、現時点において電源オンしているブレードサーバ2−nについては仮に電源オフした場合に冷却ファンユニット4−1,4−2,・・・,4−8が消費する消費電力量Wγ〜Wγを算出する。一方、現時点において電源オンしていないブレードサーバ2−nについては、現時点において回転している冷却ファンユニット4−1,4−2,・・・,4−8が消費する消費電力量Wγ〜Wγを算出する。
そして、ステップST18において、これら消費電力量Wγ〜Wγのうち、これらのうち最小値がどれであるかを判定する。そして、ブレードユニット制御部32は、最小となる消費電力量Wγに対応するブレードサーバ2−iを、電源オンを指示するブレードサーバ2−制御ONである決定する。
次いで、ブレードユニット制御部32は、電源オフを指示するブレードサーバ2−制御OFFであると決定したブレードサーバ2−iの電源をオフするよう電源制御部31に指示する。
In this way, the blade unit control unit 32 temporarily turns off the power of all blade servers 2-1, 2-2,... In this case, the power consumption amounts Wγ 1 to8 consumed by the cooling fan units 4-1, 4-2,. On the other hand, for the blade server 2-n that is not currently powered on, the power consumption Wγ 1 to be consumed by the cooling fan units 4-1, 4-2,. Wγ 8 is calculated.
In step ST18, it is determined which of these power consumption amounts Wγ 1 to8 has the minimum value. Then, the blade unit controller 32 determines that the blade server 2-i corresponding to the minimum power consumption Wγ i is the blade server 2-control ON instructing to turn on the power.
Next, the blade unit control unit 32 instructs the power supply control unit 31 to turn off the power of the blade server 2-i that has been determined to be in the control-off state.

これにより電源制御部31は、ブレードユニット制御部32によって冷却ファンユニット4−1,4−2,・・・,4−8の消費電力の効率が最適化されたブレードサーバ2−1,2−2,・・・2−16の電源をオフすることができる。
また、動的に冷却ファンユニット4−1〜4−8の消費電力を計測するため、冷却ファンユニット4−1〜4−8の個体差も考慮に入れた最適構成をとることができるようになる。
As a result, the power supply control unit 31 uses the blade server control unit 32 to optimize the power consumption efficiency of the cooling fan units 4-1, 4-2,. 2... 2-16 can be turned off.
In addition, since the power consumption of the cooling fan units 4-1 to 4-8 is dynamically measured, an optimum configuration can be taken in consideration of individual differences of the cooling fan units 4-1 to 4-8. Become.

[第3実施形態]
次に、本発明に係る他の実施形態について説明する。
図14は、本実施形態に係るブレードエンクロージャー103の構成の一例を示すブロック図である。
図14に示す通り、ブレードエンクロージャー103は、複数のブレードサーバ2−1,2−2,・・・2−16と、複数の冷却ファンユニット4−1,4−2,・・・,4−8と、エンクロージャー制御装置3と、電源ユニット51と、負荷分散制御部6と、を備える。なお、上述の実施形態と同様の構成を有する構成部については、同一の符号を付して、詳細な説明は省略する。
本実施形態に係る電源ユニット51は、ブレードエンクロージャー103に含まれる全ての構成が消費する消費電力量Wδを検出する電力量センサ52を備える。つまり、電力量センサ52は、電源ユニット5から、負荷分散制御部6とブレードサーバ2−1,2−2,・・・2−16と冷却ファンユニット4−1,4−2,・・・,4−8とに供給される消費電力Wδを計測する。
[Third Embodiment]
Next, another embodiment according to the present invention will be described.
FIG. 14 is a block diagram illustrating an example of the configuration of the blade enclosure 103 according to the present embodiment.
As shown in FIG. 14, the blade enclosure 103 includes a plurality of blade servers 2-1, 2-2,... 2-16 and a plurality of cooling fan units 4-1, 4-2,. 8, an enclosure control device 3, a power supply unit 51, and a load distribution control unit 6. In addition, about the structure part which has the structure similar to the above-mentioned embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
Power supply unit 51 according to the present embodiment includes a power amount sensor 52 for detecting the power consumption Wderuta n where all the elements included in the blade enclosure 103 consumes. That is, the electric energy sensor 52 is connected to the load distribution control unit 6, the blade servers 2-1, 2-2,... 2-16, and the cooling fan units 4-1, 4-2,. measures the power consumption Wderuta n supplied to the 4-8.

次に、図15を参照して、本実施形態に係るエンクロージャー制御装置3による電源オン制御処理の制御フローの一例について説明する。図15は、本実施形態に係るエンクロージャー制御装置3による電源オン制御処理の制御フローの一例を示すフローチャートである。なお、この制御フローは、図9に示す制御フローのステップST14の部分が大きく異なるため、その部分について以下説明し、他の部分の説明は同一の符号を付して省略する。   Next, an example of a control flow of power-on control processing by the enclosure control device 3 according to the present embodiment will be described with reference to FIG. FIG. 15 is a flowchart illustrating an example of a control flow of power-on control processing by the enclosure control device 3 according to the present embodiment. In addition, since this control flow differs greatly in step ST14 of the control flow shown in FIG. 9, this portion will be described below, and description of other portions will be omitted with the same reference numerals.

(ステップST1411)
ブレードID=B1のブレードサーバ2−1の電源がオフしている場合、ブレードユニット制御部32は、ブレードサーバ2−1の電源がオンされると仮定して、電源オンするブレードサーバ2−処理ONの数と位置関係に応じた回転数Rを、メモリ部33内のデータを参照して算出する。なお、このとき参照するデータは、冷却ファン想定電力算出テーブル331において定義されているように、ブレードサーバ2−1,2−2,・・・2−16と冷却ファンユニット4−1,4−2,・・・,4−8との位置関係、および、エンクロージャー制御装置3と冷却ファンユニット4−1,4−2,・・・,4−8との位置関係に応じて、冷却ファンユニット4−1,4−2,・・・,4−8から発生させる必要がある風力を発生させるためのモーターの回転数として予め決められている回転数Rである。
この場合、回転数Rは、上述のような事情を考慮して作成される。
(Step ST1411)
When the blade server 2-1 with the blade ID = B1 is turned off, the blade unit control unit 32 assumes that the blade server 2-1 is turned on and turns on the blade server 2-process. The rotational speed R 1 corresponding to the number of ONs and the positional relationship is calculated with reference to the data in the memory unit 33. Note that the data referred to at this time is the blade servers 2-1, 2-2,... 2-16 and the cooling fan units 4-1, 4-, as defined in the cooling fan assumed power calculation table 331. , 4-8, and the cooling fan unit according to the positional relationship between the enclosure control device 3 and the cooling fan units 4-1, 4-2,. 4, 4-2,..., 4-8, which is a rotational speed R i determined in advance as the rotational speed of the motor for generating the wind power that needs to be generated.
In this case, the rotational speed R i is created in consideration of the above situation.

そして、ブレードユニット制御部32は、決定した回転数Rで、冷却ファンユニット4−1〜4−8を回転させる。つまり、ブレードユニット制御部32は、ブレードID=Biのブレードサーバ2−1,2−2,・・・2−16に対応する冷却ファンユニット4−1,4−2,・・・,4−8の回転数のみ、ブレードID=Biのブレードサーバ2−1,2−2,・・・2−16をオンしたと仮定した場合の回転数Rを変更する。なお、このとき、ブレードサーバ2−1,2−2,・・・2−16の電源はオンしない。 Then, the blade unit control section 32 at the determined rotation speed R i, rotates the cooling fan unit 4-1 to 4-8. That is, the blade unit control unit 32 performs cooling fan units 4-1, 4-2,..., 4- corresponding to the blade servers 2-1, 2-2,. Only the rotation number of 8 changes the rotation number R i when it is assumed that the blade servers 2-1, 2-2,. At this time, the blade servers 2-1, 2-2,... 2-16 are not turned on.

(ステップST1412)
次いで、電力量センサ10は、ブレードエンクロージャー103において消費される消費電力Wδを計測する。そして、電力量センサ10は、計測した消費電力Wδを示す情報を、ブレードユニット制御部32に出力する。
(Step ST1412)
Next, the electric energy sensor 10 measures the power consumption Wδ i consumed in the blade enclosure 103. Then, the electric energy sensor 10 outputs information indicating the measured power consumption Wδ i to the blade unit controller 32.

(ステップST1413)
そして、ブレードユニット制御部32は、ステップST1411において変更したブレードID=Biのブレードサーバ2−1,2−2,・・・2−16に対応する冷却ファンユニット4−1,4−2,・・・,4−8の回転数Rを元にもどす。
(Step ST1413)
The blade unit control unit 32 then cools the cooling fan units 4-1, 4-2,... Corresponding to the blade servers 2-1, 2-2,. ..., returned on the basis of the number of revolutions R i of 4-8.

このようにして、ブレードユニット制御部32は、全てのブレードサーバ2−1,2−2,・・・2−16について、現時点において電源オンしていないブレードサーバ2−inについては仮に電源オンした場合にブレードエンクロージャー103において消費される消費電力Wδの計測結果を得る。一方、現時点において電源オンしているブレードサーバ2−iについては、現状の回転数で回転する冷却ファンユニット4−mが消費する消費電力と、現時点において電源オンしているブレードサーバ2−nが消費する消費電力と、負荷分散制御部6が消費する消費電力との合計値である消費電力Wδの計測結果を得る。
そして、ステップST18において、これら消費電力Wδ〜Wδのうち、これらのうち最小値がどれであるかを判定する。そして、ブレードユニット制御部32は、最小となる消費電力Wδに対応するブレードサーバ2−iを、電源オンを指示するブレードサーバ2−制御ONである決定する。
次いで、ブレードユニット制御部32は、電源オンを指示するブレードサーバ2−制御ONであると決定したブレードサーバ2−iの電源をオンするよう電源制御部31に指示する。
In this way, the blade unit controller 32 temporarily turns on the blade server 2-in that is not currently powered on for all the blade servers 2-1, 2-2, ... 2-16. In this case, a measurement result of the power consumption Wδ i consumed in the blade enclosure 103 is obtained. On the other hand, for the blade server 2-i that is currently powered on, the power consumption consumed by the cooling fan unit 4-m that rotates at the current rotational speed and the blade server 2-n that is currently powered on A measurement result of the power consumption Wδ i that is the total value of the power consumption consumed and the power consumed by the load distribution control unit 6 is obtained.
Then, in step ST18, it is determined which of these power consumptions Wδ 1 to8 has the minimum value. Then, the blade unit control unit 32 determines that the blade server 2-i corresponding to the minimum power consumption Wδ i is the blade server 2-control ON instructing power-on.
Next, the blade unit control unit 32 instructs the power supply control unit 31 to turn on the blade server 2-i that has been determined to be the blade server 2-control ON that instructs the power-on.

なお、ステップST15において、決定されたブレードID=iのブレードサーバ2−iの電源がオンしている場合、ブレードユニット制御部32は、ブレードエンクロージャー103において消費される消費電力Wδの最大合計消費電力よりも大きな値を、消費電力Wδとして算出する。なお、最大合計消費電力とは、ブレードエンクロージャー103の全ての構成を動作させた際に消費する電力量の最大値である。つまり、最大消費電力とは、全ての冷却ファンユニット4−1,4−2,・・・,4−8を冷却ファン想定電力算出テーブル331に規定されている最大の冷却ファン想定電力Wαで駆動した場合に消費する電力と、全てのブレードサーバ2−1,2−2,・・・2−16の電源をオンにした場合に消費する電力と、負荷分散制御部6が消費する電力との合計である。
本実施形態において、ブレードユニット制御部32は、消費電力Wδとして、ブレードエンクロージャー103が消費する最大合計消費電力10000Wよりも1W大きい10001Wを算出する。そして、ブレードユニット制御部32は、算出した消費電力Wδ=10001Wをメモリ部33に書き込む。
When the power of the blade server 2-i with the determined blade ID = i is turned on in step ST15, the blade unit control unit 32 determines the maximum total power consumption of the power consumption Wδ consumed in the blade enclosure 103. A larger value is calculated as the power consumption Wδ i . The maximum total power consumption is the maximum value of the amount of power consumed when all the configurations of the blade enclosure 103 are operated. That is, the maximum power consumption means that all the cooling fan units 4-1, 4-2,..., 4-8 are driven with the maximum expected cooling fan power Wα defined in the expected cooling fan power calculation table 331. , Power consumed when all the blade servers 2-1, 2-2,... 2-16 are turned on, and power consumed by the load distribution control unit 6. Total.
In the present embodiment, the blade unit control unit 32 calculates 10001 W that is 1 W larger than the maximum total power consumption 10000 W consumed by the blade enclosure 103 as the power consumption Wδ i . Then, the blade unit control unit 32 writes the calculated power consumption Wδ i = 1001W in the memory unit 33.

これにより電源制御部31は、ブレードユニット制御部32によって冷却ファンユニット4−1,4−2,・・・,4−8の消費電力の効率が最適化されたブレードサーバ2−1,2−2,・・・2−16の電源をオンすることができる。
また、動的に冷却ファンユニット4−1〜4−8の消費電力を計測するため、冷却ファンユニット4−1〜4−8の個体差も考慮に入れた最適構成をとることができるようになる。
As a result, the power supply control unit 31 uses the blade server control unit 32 to optimize the power consumption efficiency of the cooling fan units 4-1, 4-2,. 2,... 2-16 can be turned on.
In addition, since the power consumption of the cooling fan units 4-1 to 4-8 is dynamically measured, an optimum configuration can be taken in consideration of individual differences of the cooling fan units 4-1 to 4-8. Become.

次に、図16を参照して、本実施形態に係るエンクロージャー制御装置3による電源オフ制御処理の制御フローの一例について説明する。図10は、本実施形態に係るエンクロージャー制御装置3による電源オフ制御処理の制御フローの一例を示すフローチャートである。なお、この制御フローは、図10に示す制御フローのステップST34の部分が大きく異なるため、その部分について以下説明し、他の部分の説明は同一の符号を付して省略する。   Next, an example of a control flow of power-off control processing by the enclosure control device 3 according to the present embodiment will be described with reference to FIG. FIG. 10 is a flowchart illustrating an example of a control flow of power-off control processing by the enclosure control device 3 according to the present embodiment. In addition, since this control flow differs greatly in the part of step ST34 of the control flow shown in FIG. 10, the part is demonstrated below and description of another part is attached | subjected and abbreviate | omitted.

(ステップST3411)
ブレードID=B1のブレードサーバ2−1の電源がオンしている場合、ブレードユニット制御部32は、ブレードサーバ2−1の電源がオフされると仮定した場合に電源がオンしているブレードサーバ2−nの数と位置関係に応じた回転数Rを、メモリ部33内のデータを参照して算出する。なお、このとき参照するデータは、冷却ファン想定電力算出テーブル331において定義されているように、ブレードサーバ2−1,2−2,・・・2−16と冷却ファンユニット4−1,4−2,・・・,4−8との位置関係、および、エンクロージャー制御装置3と冷却ファンユニット4−1,4−2,・・・,4−8との位置関係に応じて、冷却ファンユニット4−1,4−2,・・・,4−8から発生させる必要がある風力を発生させるためのモーターの回転数として予め決められている回転数Rである。
この場合、回転数Rは、上述のような事情を考慮して作成される。
(Step ST3411)
When the blade server 2-1 with the blade ID = B1 is turned on, the blade unit control unit 32 assumes that the blade server 2-1 is turned off, and the blade server is turned on. The number of revolutions R 1 corresponding to the number of 2-n and the positional relationship is calculated with reference to the data in the memory unit 33. Note that the data referred to at this time is the blade servers 2-1, 2-2,... 2-16 and the cooling fan units 4-1, 4-, as defined in the cooling fan assumed power calculation table 331. , 4-8, and the cooling fan unit according to the positional relationship between the enclosure control device 3 and the cooling fan units 4-1, 4-2,. 4, 4-2,..., 4-8, which is a rotational speed R i determined in advance as the rotational speed of the motor for generating the wind power that needs to be generated.
In this case, the rotational speed R i is created in consideration of the above situation.

そして、ブレードユニット制御部32は、決定した回転数Rで、冷却ファンユニット4−iを回転させる。つまり、ブレードユニット制御部32は、ブレードID=Biのブレードサーバ2−1,2−2,・・・2−16に対応する冷却ファンユニット4−1,4−2,・・・,4−8の回転数のみ、ブレードID=Biのブレードサーバ2−1,2−2,・・・2−16をオフしたと仮定した場合の回転数Rを変更する。なお、このとき、ブレードサーバ2−1,2−2,・・・2−16の電源はオンしない。 Then, the blade unit control section 32 at the determined rotation speed R i, rotates the cooling fan unit 4-i. That is, the blade unit control unit 32 performs cooling fan units 4-1, 4-2,..., 4- corresponding to the blade servers 2-1, 2-2,. rotational speed of only 8, blade servers 2-1 and 2-2 of the blade ID = Bi, changing the rotational speed R i on the assumption that the off ... 2-16. At this time, the blade servers 2-1, 2-2,... 2-16 are not turned on.

(ステップST3412)
次いで、電力量センサ10は、ブレードエンクロージャー103において消費される消費電力Wδを計測する。そして、電力量センサ10は、計測した消費電力Wδを示す情報を、ブレードユニット制御部32に出力する。
(Step ST3412)
Next, the electric energy sensor 10 measures the power consumption Wδ i consumed in the blade enclosure 103. Then, the electric energy sensor 10 outputs information indicating the measured power consumption Wδ i to the blade unit controller 32.

(ステップST3413)
そして、ブレードユニット制御部32は、ステップST3411において変更したブレードID=Biのブレードサーバ2−1,2−2,・・・2−16に対応する冷却ファンユニット4−1,4−2,・・・,4−8の回転数Rを元にもどす。
(Step ST3413)
The blade unit control unit 32 then cools the cooling fan units 4-1, 4-2,... Corresponding to the blade servers 2-1, 2-2,. ..., returned on the basis of the number of revolutions R i of 4-8.

このようにして、ブレードユニット制御部32は、全てのブレードサーバ2−1,2−2,・・・2−16について、現時点において電源オンしているブレードサーバ2−iについては仮に電源オフした場合にブレードエンクロージャー103において消費される消費電力Wδの計測結果を得る。一方、現時点において電源オンしていないブレードサーバ2−iについては、現時点において回転している冷却ファンユニット4−mが消費する消費電力と、現時点において電源オンしているブレードサーバ2−nが消費する消費電力と、負荷分散制御部6が消費する消費電力との合計値である消費電力Wδの計測結果を得る。
そして、ステップST18において、これら消費電力Wδのうち、これらのうち最小値がどれであるかを判定する。そして、ブレードユニット制御部32は、最小となる消費電力Wδに対応するブレードサーバ2−iを、電源オンを指示するブレードサーバ2−制御ONである決定する。
次いで、ブレードユニット制御部32は、電源オフを指示するブレードサーバ2−制御OFFであると決定したブレードサーバ2−iの電源をオフするよう電源制御部31に指示する。
In this way, the blade unit control unit 32 temporarily turns off the power of all blade servers 2-1, 2-2,... In this case, a measurement result of the power consumption Wδ i consumed in the blade enclosure 103 is obtained. On the other hand, for the blade server 2-i that is not currently powered on, the power consumed by the currently rotating cooling fan unit 4-m and the blade server 2-n that is currently powered on are consumed. The measurement result of the power consumption Wδ i which is the total value of the power consumption to be consumed and the power consumption consumed by the load distribution control unit 6 is obtained.
In step ST18, it is determined which of these power consumptions Wδ i is the minimum value. Then, the blade unit control unit 32 determines that the blade server 2-i corresponding to the minimum power consumption Wδ i is the blade server 2-control ON instructing power-on.
Next, the blade unit control unit 32 instructs the power supply control unit 31 to turn off the power of the blade server 2-i that has been determined to be in the control-off state.

なお、ステップST35において、決定されたブレードID=iのブレードサーバ2−iの電源がオフしている場合、ブレードユニット制御部32は、ブレードエンクロージャー103において消費される消費電力Wδの最大合計消費電力よりも大きな値を、消費電力Wδとして算出する。なお、最大合計消費電力とは、ブレードエンクロージャー103の全ての構成を動作させた際に消費する電力量の最大値である。つまり、最大消費電力とは、全ての冷却ファンユニット4−1,4−2,・・・,4−8を冷却ファン想定電力算出テーブル331に規定されている最大の冷却ファン想定電力Wαで駆動した場合に消費する電力と、全てのブレードサーバ2−1,2−2,・・・2−16の電源をオンにした場合に消費する電力と、負荷分散制御部6が消費する電力との合計である。
本実施形態において、ブレードユニット制御部32は、消費電力Wδとして、ブレードエンクロージャー103が消費する最大合計消費電力10000Wよりも1W大きい10001Wを算出する。そして、ブレードユニット制御部32は、算出した消費電力Wδ=10001Wをメモリ部33に書き込む。
If the blade server 2-i with the determined blade ID = i is turned off in step ST35, the blade unit control unit 32 determines the maximum total power consumption of the power consumption Wδ consumed in the blade enclosure 103. A larger value is calculated as the power consumption Wδ i . The maximum total power consumption is the maximum value of the amount of power consumed when all the configurations of the blade enclosure 103 are operated. That is, the maximum power consumption means that all the cooling fan units 4-1, 4-2,..., 4-8 are driven with the maximum expected cooling fan power Wα defined in the expected cooling fan power calculation table 331. , Power consumed when all the blade servers 2-1, 2-2,... 2-16 are turned on, and power consumed by the load distribution control unit 6. Total.
In the present embodiment, the blade unit control unit 32 calculates 10001 W that is 1 W larger than the maximum total power consumption 10000 W consumed by the blade enclosure 103 as the power consumption Wδ i . Then, the blade unit control unit 32 writes the calculated power consumption Wδ i = 1001W in the memory unit 33.

これにより電源制御部31は、ブレードユニット制御部32によって冷却ファンユニット4−1,4−2,・・・,4−8の消費電力の効率が最適化されたブレードサーバ2−1,2−2,・・・2−16の電源をオフすることができる。
また、動的に冷却ファンユニット4−1〜4−8の消費電力を計測するため、冷却ファンユニット4−1〜4−8の個体差も考慮に入れた最適構成をとることができるようになる。
As a result, the power supply control unit 31 uses the blade server control unit 32 to optimize the power consumption efficiency of the cooling fan units 4-1, 4-2,. 2... 2-16 can be turned off.
In addition, since the power consumption of the cooling fan units 4-1 to 4-8 is dynamically measured, an optimum configuration can be taken in consideration of individual differences of the cooling fan units 4-1 to 4-8. Become.

上述の実施形態において説明したとおり、処理負荷の大きさに応じてブレードサーバ2−nの電源のオン/オフ制御を行う場合に、ブレードエンクロージャー1の各ブレードサーバ2−nと冷却ファンユニット4−mの位置関係を考慮した上で、冷却ファンユニット4−mの冷却効率が最適となるようなブレードサーバ2−nを選択して電源のオン/オフ制御を行うようにする。これにより、単純に若番などのブレードサーバを選択するのと比べて、冷却ファンユニットの消費電力を削減することができる。   As described in the above-described embodiment, when the power on / off control of the blade server 2-n is performed according to the processing load, each blade server 2-n of the blade enclosure 1 and the cooling fan unit 4- In consideration of the positional relationship of m, the blade server 2-n that optimizes the cooling efficiency of the cooling fan unit 4-m is selected to perform power on / off control. As a result, the power consumption of the cooling fan unit can be reduced compared to simply selecting a blade server such as a young one.

また、本実施の形態のブレードエンクロージャー1、102、103は、内部にコンピュータシステムを有している。そして、動作の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータシステムが読み出して実行することによって、上記処理が行われる。ここでいう「コンピュータシステム」とは、CPU及び各種メモリやOS、周辺機器等のハードウェアを含むものである。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
Further, the blade enclosures 1, 102, 103 of the present embodiment have a computer system therein. The process of operation is stored in a computer-readable recording medium in the form of a program, and the above-described processing is performed by the computer system reading and executing this program. The “computer system” herein includes a CPU, various memories, an OS, and hardware such as peripheral devices.
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.

また、各ステップを実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、また、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、検出対象物の形状情報の推定値を算出する処理を行ってもよい。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
In addition, a program for realizing each step is recorded on a computer-readable recording medium, and a program for realizing this function is recorded on a computer-readable recording medium and recorded on the recording medium. The computer program may be read by the computer system and executed to calculate the estimated value of the shape information of the detection target.
The “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.

さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムに既に記録されているプログラムとの組合せで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
Further, the “computer-readable recording medium” means a volatile memory (for example, DRAM (Dynamic DRAM) in a computer system that becomes a server or a client when a program is transmitted through a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc., which hold programs for a certain period of time.
The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

1…ブレードエンクロージャー、2−n…ブレードサーバ、3…エンクロージャー制御装置、4−m…冷却ファンユニット、5…電源ユニット、6…負荷分散制御部、7…外部ネットワーク、8…外部装置、31…電源制御部、32…ブレードユニット制御部、33…メモリ部、34…冷却ファン制御部   DESCRIPTION OF SYMBOLS 1 ... Blade enclosure, 2-n ... Blade server, 3 ... Enclosure control device, 4-m ... Cooling fan unit, 5 ... Power supply unit, 6 ... Load distribution control part, 7 ... External network, 8 ... External device, 31 ... Power source control unit, 32 ... blade unit control unit, 33 ... memory unit, 34 ... cooling fan control unit

Claims (7)

筐体内に搭載された複数のブレードサーバに対して電源装置からの電力供給を制御する電源制御部と、
前記複数のブレードサーバの一つまたは複数に対応して配置された複数の冷却ファンの少なくとも一つは、自装置を冷却する位置に配置されており、電源オンしている前記ブレードサーバの位置、または、自装置の位置に基づいて前記複数の冷却ファンを制御する冷却ファン制御部と、
自装置を冷却する位置に配置された少なくとも一つの冷却ファンを動作させつつ、電源オフしている前記ブレードサーバのうち電源オンが指示された数の前記ブレードサーバが仮に電源オンしたと仮定した場合、前記複数の冷却ファンに供給される電力が最小となるように電源オンする前記ブレードサーバを決定するブレードユニット制御部と、
を備えることを特徴とするエンクロージャー制御装置。
A power control unit for controlling the supply of power from the power supply for the plurality of blades servers mounted in the housing,
At least one of the plurality of cooling fans arranged corresponding to one or more of the plurality of blade servers is arranged at a position for cooling the own apparatus, and the position of the blade server that is powered on , Alternatively, a cooling fan control unit that controls the plurality of cooling fans based on the position of the own device ;
When it is assumed that the number of blade servers that are instructed to be turned on among the blade servers that are powered off are temporarily turned on while operating at least one cooling fan arranged at a position to cool the own device A blade unit controller that determines the blade server to be powered on so that the power supplied to the plurality of cooling fans is minimized;
An enclosure control device comprising:
前記ブレードユニット制御部は、
自装置を冷却する位置に配置された少なくとも一つの冷却ファンを動作させつつ、電源オンしている前記ブレードサーバのうち電源オフが指示された数の前記ブレードサーバが仮に電源オフしたと仮定した場合に、前記複数の冷却ファンに供給される電力が最小となるように電源オフする前記ブレードサーバを決定することを特徴とする請求項1に記載のエンクロージャー制御装置。
The blade unit controller is
When it is assumed that the number of blade servers that are instructed to be turned off among the blade servers that are powered on are temporarily turned off while operating at least one cooling fan arranged at a position to cool the own device The enclosure control device according to claim 1, wherein the blade server to be powered off is determined so that power supplied to the plurality of cooling fans is minimized.
前記ブレードユニット制御部は、
前記冷却ファンが冷却する対象として予め決められているブレードサーバの電源状態と、当該ブレードサーバの電源状態に応じて予め決められている前記冷却ファンの消費電力である冷却ファン想定電力とを対応付けたテーブルを参照して、前記冷却ファンに供給される電力を算出することを特徴とする請求項1あるいは2に記載のエンクロージャー制御装置。
The blade unit controller is
Associating the power state of the blade server, which is predetermined as a target to be cooled by the cooling fan, with the expected power of the cooling fan, which is the power consumption of the cooling fan, which is predetermined according to the power state of the blade server The enclosure control device according to claim 1, wherein the power supplied to the cooling fan is calculated with reference to the table.
前記冷却ファン制御部は、
電源オンしていない前記ブレードサーバのうち電源オンが指示された数の前記ブレードサーバが仮に電源オンしたと仮定した場合に、電源オンしている前記ブレードサーバの位置に応じて予め決められた前記冷却ファンに予め決められた風量を発生させるように前記冷却ファンを制御し、
前記ブレードユニット制御部は、
前記電源装置から前記冷却ファンに供給される電力値を計測し、計測結果に基づき、前記冷却ファンが消費する消費電力を算出することを特徴とする請求項1から3のうちいずれか一項に記載のエンクロージャー制御装置。
The cooling fan controller is
Assuming that the number of blade servers that are instructed to be turned on among the blade servers that are not turned on are temporarily turned on, the predetermined number is determined according to the position of the blade server that is turned on. Controlling the cooling fan to generate a predetermined air volume in the cooling fan;
The blade unit controller is
The power value supplied to the cooling fan from the power supply device is measured, and the power consumption consumed by the cooling fan is calculated based on the measurement result. The enclosure controller described.
前記複数のブレードサーバにより実行される処理負荷の大きさに基づき、電源オンする前記ブレードサーバの数を算出する負荷分散制御部をさらに備え、
前記ブレードユニット制御部は、
前記負荷分散制御部によって算出された前記電源オンする前記ブレードサーバの数に応じて、少なくとも電源オンしていない前記ブレードサーバの電源を仮にオンした場合の全てのパターンについて、前記冷却ファンに供給される電力を求め、当該求めた電力が最小となる場合に、電源を仮にオンしたと仮定した前記ブレードサーバを、前記電源をオンする前記ブレードサーバと決定することを特徴とする請求項1から3のうちいずれか一項に記載のエンクロージャー制御装置。
A load distribution control unit that calculates the number of blade servers to be powered on based on the size of the processing load executed by the plurality of blade servers;
The blade unit controller is
In accordance with the number of blade servers to be powered on calculated by the load distribution control unit, at least all patterns when the power of the blade servers that are not powered on are temporarily turned on are supplied to the cooling fan. The blade server that is assumed to be powered on when the obtained power is minimum is determined as the blade server that turns on the power. The enclosure control apparatus as described in any one of these.
筐体内に搭載された複数のブレードサーバと、
前記複数のブレードサーバの一つまたは複数に対応して配置された複数の冷却ファンと、
前記ブレードサーバと前記複数の冷却ファンを制御するエンクロージャー制御装置とを備え、
前記エンクロージャー制御装置は、
前記複数のブレードサーバに対して電源装置からの電力供給を制御する電源制御部と、
電源オンしている前記ブレードサーバの位置、または、当該エンクロージャー制御装置の位置に基づいて前記複数の冷却ファンを制御する冷却ファン制御部と、
当該エンクロージャー制御装置を冷却する位置に配置された少なくとも一つの冷却ファンを動作させつつ、電源オフしている前記ブレードサーバのうち電源オンが指示された数の前記ブレードサーバが仮に電源オンしたと仮定した場合、前記複数の冷却ファンに供給される電力が最小となるように電源オンする前記ブレードサーバを決定するブレードユニット制御部と、
を備えることを特徴とするブレードエンクロージャー。
Multiple blade servers mounted in the chassis;
A plurality of cooling fans arranged corresponding to one or more of the plurality of blade servers;
An enclosure controller that controls the blade server and the plurality of cooling fans;
The enclosure controller is
A power control unit for controlling the supply of power from the power supply for the plurality of blades servers,
A cooling fan control unit that controls the plurality of cooling fans based on the position of the blade server that is powered on or the position of the enclosure control device ;
It is assumed that the number of blade servers that are instructed to be turned on among the blade servers that are powered off are temporarily turned on while operating at least one cooling fan arranged at a position for cooling the enclosure control device. A blade unit controller that determines the blade server to be turned on so that the power supplied to the plurality of cooling fans is minimized,
Blade enclosure characterized by comprising.
コンピュータを
筐体内に搭載された複数のブレードサーバに対して電源装置からの電力供給を制御する電源制御手段、
前記複数のブレードサーバの一つまたは複数に対応して配置された複数の冷却ファンの少なくとも一つは、前記複数の冷却ファンを制御するエンクロージャー制御装置を冷却する位置に配置されており、電源オンしている前記ブレードサーバの位置、または、前記エンクロージャー制御装置の位置に基づいて前記複数の冷却ファンを制御する冷却ファン制御手段、
前記エンクロージャー制御装置を冷却する位置に配置された少なくとも一つの冷却ファンを動作させつつ、電源オフしている前記ブレードサーバのうち電源オンが指示された数の前記ブレードサーバが仮に電源オンしたと仮定した場合、前記複数の冷却ファンに供給される電力が最小となるように電源オンする前記ブレードサーバを決定するブレードユニット制御手段、
として機能させるためのプログラム。
Power supply control means for a computer to a plurality of blades servers mounted in the housing for controlling the supply of power from the power supply,
At least one of the plurality of cooling fans arranged corresponding to one or more of the plurality of blade servers is arranged at a position for cooling the enclosure control device that controls the plurality of cooling fans, and is turned on. Cooling fan control means for controlling the plurality of cooling fans based on the position of the blade server or the position of the enclosure control device ,
Assuming that the number of blade servers instructed to be turned on among the blade servers that are powered off are temporarily turned on while operating at least one cooling fan disposed at a position for cooling the enclosure control device. A blade unit control means for determining the blade server to be turned on so that the power supplied to the plurality of cooling fans is minimized.
Program to function as.
JP2011164089A 2011-07-27 2011-07-27 Enclosure controller, blade enclosure, and program Expired - Fee Related JP5884327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164089A JP5884327B2 (en) 2011-07-27 2011-07-27 Enclosure controller, blade enclosure, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164089A JP5884327B2 (en) 2011-07-27 2011-07-27 Enclosure controller, blade enclosure, and program

Publications (2)

Publication Number Publication Date
JP2013029915A JP2013029915A (en) 2013-02-07
JP5884327B2 true JP5884327B2 (en) 2016-03-15

Family

ID=47786921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164089A Expired - Fee Related JP5884327B2 (en) 2011-07-27 2011-07-27 Enclosure controller, blade enclosure, and program

Country Status (1)

Country Link
JP (1) JP5884327B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511883B2 (en) * 2015-03-16 2019-05-15 富士通株式会社 Communication apparatus and fan control method
JP6202124B2 (en) 2016-03-23 2017-09-27 日本電気株式会社 Server device, server control method, program
JP6191718B1 (en) 2016-03-23 2017-09-06 日本電気株式会社 Server device, server control method, program
CN109739317B (en) * 2019-01-25 2020-11-20 南阳理工学院 Combined computer mainframe with all-dimensional heat dissipation capability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853344B2 (en) * 2007-03-22 2012-01-11 日本電気株式会社 Fan rotation control method, fan rotation control system, and fan rotation control program
JP2011066366A (en) * 2009-09-18 2011-03-31 Hitachi Cable Ltd Electric apparatus, and method of controlling rotation number of cooling fan
JP5180172B2 (en) * 2009-09-29 2013-04-10 三菱電機株式会社 Air conditioning system
WO2011046067A1 (en) * 2009-10-16 2011-04-21 日本電気株式会社 Device selection system, device selection method, and program for device selection

Also Published As

Publication number Publication date
JP2013029915A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
TWI515549B (en) Method for providing over-temperature protection of a target device, apparatus for providing over-temperature protection, and information processing system thereof
JP5177896B2 (en) Fan dynamic rotational speed control device, fan dynamic rotational speed control method, and fan dynamic rotational speed control program
JP4853344B2 (en) Fan rotation control method, fan rotation control system, and fan rotation control program
Brown et al. Toward energy-efficient computing
US20060266510A1 (en) Information processing apparatus and a method of controlling the same
JP5800023B2 (en) COOLING SYSTEM, COOLING METHOD, AND COOLING CONTROL PROGRAM
JP5884327B2 (en) Enclosure controller, blade enclosure, and program
US20080313492A1 (en) Adjusting a Cooling Device and a Server in Response to a Thermal Event
JP6428338B2 (en) Power supply control device and power supply control program
US20110228471A1 (en) Fan control system and method
US20120323400A1 (en) Optimized temperature-driven device cooling
US20080306635A1 (en) Method of optimizing air mover performance characteristics to minimize temperature variations in a computing system enclosure
US20070046230A1 (en) Information processing apparatus and fan control method
JP6073615B2 (en) COOLING DEVICE, ELECTRONIC DEVICE, COOLING METHOD, AND COOLING PROGRAM
US8963465B2 (en) Multi-pressure-quantity fan control system and computer system having the same
JP2012177968A (en) Electrical device
US10475485B2 (en) Systems and methods for power and thermal throttling of memory devices via capacity reduction
US20170099748A1 (en) Rotation control method, information processing device, and non-transitory computer-readable recording medium storing rotation control program
BR112015026436A2 (en) terminal control system
US9823636B2 (en) Systems and methods for parallel feedback temperature control
US9854716B2 (en) System and method of controlling an air mover
TWI426182B (en) System and method for controlling fans
JP6403182B2 (en) Electronic device, cooling method and program
US20070113107A1 (en) Control device
JP2012027655A (en) Information processor and power-saving memory management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5884327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees