JP5883725B2 - Floating body display device - Google Patents

Floating body display device Download PDF

Info

Publication number
JP5883725B2
JP5883725B2 JP2012125592A JP2012125592A JP5883725B2 JP 5883725 B2 JP5883725 B2 JP 5883725B2 JP 2012125592 A JP2012125592 A JP 2012125592A JP 2012125592 A JP2012125592 A JP 2012125592A JP 5883725 B2 JP5883725 B2 JP 5883725B2
Authority
JP
Japan
Prior art keywords
light
display device
floating body
light beam
body display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012125592A
Other languages
Japanese (ja)
Other versions
JP2013250457A (en
Inventor
智生 小堀
智生 小堀
大内 敏
敏 大内
瀬尾 欣穂
欣穂 瀬尾
横山 淳一
淳一 横山
平田 浩二
浩二 平田
池田 英博
英博 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2012125592A priority Critical patent/JP5883725B2/en
Priority to PCT/JP2013/054432 priority patent/WO2013179699A1/en
Publication of JP2013250457A publication Critical patent/JP2013250457A/en
Application granted granted Critical
Publication of JP5883725B2 publication Critical patent/JP5883725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • H04N13/39Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume the picture elements emitting light at places where a pair of light beams intersect in a transparent material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen

Description

本発明は、空間上に立体的に映像を表示可能な表示装置に関する。   The present invention relates to a display device capable of displaying an image three-dimensionally in a space.

従来から、立体的に映像を表示するための技術の検討が為されており、近年の液晶表示技術、プラズマディスプレイ技術等の向上により、高速表示や高精細表示を活用した立体表示手法を使用した表示装置の製品化も進んでいる。   Conventionally, technologies for displaying images in three dimensions have been studied. Due to improvements in liquid crystal display technology and plasma display technology in recent years, a stereoscopic display method utilizing high-speed display and high-definition display has been used. Commercialization of display devices is also progressing.

立体表示手法の具体例としては、例えば特許文献1に記載のように、視差を有する左眼映像および右眼映像を画面上に交互に表示し、例えば液晶シャッタを有するシャッタメガネを、左眼映像が表示されている場合は左側シャッタを開き且つ右側シャッタを閉じ、右眼映像が表示されている場合は右側シャッタを開き且つ左側シャッタを閉じるように制御することで、視聴者に立体映像を知覚させる技術が知られている。   As a specific example of the stereoscopic display method, for example, as described in Patent Document 1, left eye video and right eye video having parallax are alternately displayed on a screen, and shutter glasses having a liquid crystal shutter, for example, are used as left eye video. When the left is displayed, the left shutter is opened and the right shutter is closed, and when the right eye image is displayed, the right shutter is opened and the left shutter is closed. The technology to make it known is known.

さらに,特許文献2に記載のように,観察者と直交する平面反射部との間の空中に,直交する平面反射部を介して観察者と反対側にある対象物の光線情報を導くようにして,立体像を簡便に形成する技術が知れれている。   Further, as described in Patent Document 2, light information of an object on the opposite side of the observer is guided to the air between the observer and the plane reflection section orthogonal to the observer via the plane reflection section orthogonal to the observer. Thus, a technique for easily forming a stereoscopic image is known.

特開2009−232249号公報JP 2009-232249 A 国際公開番号W02009−131128号公報International Publication Number W02009-131128

一般的には立体映像を表示可能な表示装置(すなわち視聴者に立体映像を知覚させることが可能な表示装置)においては、映像の臨場感や迫力を増すために、視聴者に対しより立体感(奥行感や距離感)を知覚させることが好ましい。   In general, in a display device that can display a stereoscopic image (that is, a display device that allows a viewer to perceive a stereoscopic image), in order to increase the realism and power of the image, the viewer is more stereoscopic. It is preferable to perceive (a sense of depth or a sense of distance).

しかしながら、上記特許文献1に開示される従来技術では、右目映像と左目映像を用いて画像領域内で異なる視差を再生して立体感を知覚させるようしているため、視聴者の事を十分配慮した立体映像設定(奥行き方向)や視聴姿勢が必要である。   However, in the prior art disclosed in Patent Document 1 described above, the right-eye video and the left-eye video are used to reproduce different parallaxes in the image area so as to perceive a stereoscopic effect. 3D image setting (depth direction) and viewing posture are required.

また,上記特許文献2に開示される従来技術では、光の拡散方向が表示対象物側と観察者側で反転するため,対象物を反転して知覚したり,観察者が空中で観察出来る範囲が限定されたり,光線連続性を確保する反射体の条件が複雑である等,視聴者に対し十分な立体感を与えることは困難であった。   In the prior art disclosed in Patent Document 2, the light diffusion direction is reversed between the display object side and the observer side, so that the object can be perceived by being reversed or the observer can observe in the air. However, it is difficult to give viewers a sufficient three-dimensional effect, such as being limited, and complicated conditions for reflectors to ensure light continuity.

本発明は、上記従来技術の課題に鑑みて為されたものであり、視聴者が知覚する映像に、スクリーン等の反射物や拡散物の存在を意識せず,また,明暗の精悦度が良く,光の点滅(フリッカー)も少ない高画質な映像を視認でき,更には,周囲からの視認領域を広くすることで,あたかも空中に映像が浮かび上がっている様に観察することが可能な技術を提供するものである。   The present invention has been made in view of the above-described problems of the prior art, and the video perceived by the viewer is unaware of the presence of reflectors and diffusers such as a screen, and the contrast of brightness and darkness is high. A technology that can visually recognize high-quality images with little blinking of light (flicker), and can be observed as if the images are floating in the air by widening the viewing area from the surroundings. Is to provide.

本発明の浮遊体表示装置は、光線の方向や光強度や波長や発光期間の少なくとも何れか1つを制御・駆動する光線制御・駆動手段と,本制御・駆動に応じて複数の光線を出射する光線生成と,を有し,光線生成手段は,出射する複数の光線のそれぞれを,所望の範囲内で少なくとも1回以上,他の光線と交差(交点)するよう配置し,それぞれの交点の位置情報を交点マップとして保持するように構成した。   The floating body display device of the present invention emits a plurality of light beams in accordance with the light control / driving means for controlling / driving at least one of the direction, light intensity, wavelength, and light emission period of light, and the control / driving. The light generation means arranges each of the plurality of emitted light rays so as to intersect (intersection) with other light rays at least once within a desired range, and The position information is held as an intersection map.

そして、光線制御・駆動手段は,交点マップと各交点の光再現情報を得て,光線の方向や光強度や波長や発光期間の少なくとも何れか1つを制御・駆動することを特徴とするものである。さらに,上記所望の範囲内で,1本の光線を少なくとも2本の光線が交差し且つ,それぞれの交点が発光する光再現情報の場合は,光線制御・駆動手段は,それぞれの交点の発光期間を異ならしめるよう制御・駆動するようにしたものである。   The light beam control / drive means obtains the intersection map and the light reproduction information of each intersection, and controls / drives at least one of the direction, light intensity, wavelength, and light emission period of the light beam. It is. Further, in the case of light reproduction information in which at least two light beams intersect with each other within the desired range and the respective intersections emit light, the light beam control / drive means transmits the light emission period of each intersection. Are controlled and driven so as to make them different.

また本発明は、光線生成手段を例えば30Hz以上の高速で振動させ,振動量に応じ、振動量を吸収するように交点マップに対する光再現情報を移動設定することを特徴とするものである。   Further, the present invention is characterized in that the light generation means is vibrated at a high speed of, for example, 30 Hz or more, and the light reproduction information for the intersection map is moved and set so as to absorb the vibration amount according to the vibration amount.

また本発明は、光線生成手段が手振れ等の低速で振動・移動した際に,移動量に応じ、,振動量を吸収するように交点マップに対する光再現情報を移動設定することを特徴とするものである。   Further, the present invention is characterized in that when the light beam generating means vibrates and moves at a low speed such as camera shake, the light reproduction information for the intersection map is moved and set so as to absorb the vibration amount according to the movement amount. It is.

尚,光線数と光点を増した場合であっても,上記同様に処理することを特徴とするものである。   Even when the number of light rays and the number of light spots are increased, the same processing as described above is performed.

本発明によれば、所望の範囲内で交点を成した少なくとも2つの光線がそれぞれ,観察者の右眼と左眼に入る観察条件にあり且つ,両眼の視線が本交点近傍に収束(輻輳)した際には,上記所望の範囲内(空間上)にある光点として知覚するので、視聴者の視聴環境に関係なく、高画質な映像を提供することができる。   According to the present invention, at least two light rays that intersect with each other within a desired range are in an observation condition that enters the right eye and the left eye of the observer, and the line of sight of both eyes converges near the intersection (convergence). ), It is perceived as a light spot within the desired range (on the space), so that a high-quality video can be provided regardless of the viewing environment of the viewer.

本発明の第1実施例に係る表示装置のブロック図である。1 is a block diagram of a display device according to a first embodiment of the present invention. 第1実施例を補足するタイミング図である。It is a timing diagram which supplements 1st Example. 本発明の第1実施例の光線生成部6を説明する図である。It is a figure explaining the light generation part 6 of 1st Example of this invention. 本発明の第1実施例の光線生成部6を説明する図である。It is a figure explaining the light generation part 6 of 1st Example of this invention. 本発明の第1実施例の光線生成部6を説明する図である。It is a figure explaining the light generation part 6 of 1st Example of this invention. 本発明の第1実施例の光線生成部6を説明する図である。It is a figure explaining the light generation part 6 of 1st Example of this invention. 第1実施例の光線生成部6を説明する図である。It is a figure explaining the light generation part 6 of 1st Example. 第1実施例の光線生成部6を説明する図である。It is a figure explaining the light generation part 6 of 1st Example. 第1実施例の光線生成部6を説明する図である。It is a figure explaining the light generation part 6 of 1st Example. 第1実施例の光線生成部6を説明する図である。It is a figure explaining the light generation part 6 of 1st Example. 本発明の第2実施例に係る表示装置のブロック図である。It is a block diagram of the display apparatus which concerns on 2nd Example of this invention. 本発明の第1実施例の光線生成部6を説明する図である。It is a figure explaining the light generation part 6 of 1st Example of this invention. 本発明の第1実施例の光線生成部6を説明するタイミング図である。It is a timing diagram explaining the light generation part 6 of 1st Example of this invention.

以下、本発明の実施形態について添付の図面を用いて説明する。尚、各図または各実施例において、同一の構成、機能または作用を有する要素には同じ番号を付し、重複した説明を省略するものとする。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In each drawing or each embodiment, elements having the same configuration, function, or action are denoted by the same reference numerals, and redundant description is omitted.

まず、本発明の第1実施例に係る表示装置の構成を説明する。図1,3,4は、本発明の第1実施例に係る表示装置であって、浮遊体表示方法による平面(2D)や立体(3D)映像を表示可能な投射型表示装置と,それを観察する観察者との関係をブロック図で示している。   First, the configuration of the display device according to the first embodiment of the present invention will be described. 1, 3 and 4 show a display device according to a first embodiment of the present invention, which is a projection display device capable of displaying a plane (2D) or stereoscopic (3D) image by a floating body display method, and The relationship with the observer to observe is shown with the block diagram.

図1,3,4で,1は2D/3Dの光モデル情報信号,2は光線モデル情報信号,3は光線マップ処理部,4は光線制御・駆動部,5はタイミング生成部,6は光線生成部,7は表示対象領域,8L/Rは観察者8の左眼/右眼,9は光線生成部6と観察者の左眼/右眼8L/Rが特定の位置関係(一般的な成人)にある際の2D/3Dで表示可能領域,10は光線出射部,である。尚,6,7,8,9,10は平面図(側面図)で示したが,光線生成部6は、複数の光線出射部10をアレイ状に配置して構成するものであり,6,7,8,9,10は平面図(側面図)で示したが,光線生成部6の奥行き方向にも光線出射部10を有する。   1, 3, and 4, 1 is a 2D / 3D optical model information signal, 2 is a light model information signal, 3 is a light map processing unit, 4 is a light control / drive unit, 5 is a timing generation unit, and 6 is a light beam. The generation unit 7 is a display target region, 8L / R is the left / right eye of the observer 8, and 9 is a specific positional relationship between the light generation unit 6 and the left / right eye 8L / R of the observer (general An area that can be displayed in 2D / 3D when in an adult), and 10 is a light emitting part. 6, 7, 8, 9, and 10 are shown in a plan view (side view), the light beam generation unit 6 is configured by arranging a plurality of light beam emission units 10 in an array, 7, 8, 9, and 10 are shown in a plan view (side view), but also have a light emitting unit 10 in the depth direction of the light generating unit 6.

図7,9並びに,図8,10は,光線出射部10からの光線出力の1例を示す。図12は複数の光線出射部10からの光線出力の1例を示す。図13は複数の光線出射部10それぞれのタイミング図の1例を示す。但し,光線を表すドットは,ビーム光のラスタスキャン結果の概念図であり,タイミングを表す物では無い。光線出射部10は,複数の光源と方向を制御するレンズでも良く,方向毎に有する複数の光源で構成しても良い。
図9で11は光源駆動部,12は特定の波長を有する光源,13はビーム光とするコリメートレンズ,14はミラー制御・駆動部,15,16は2軸揺動ミラーであり,ミラー15,16を反射したビーム光がラスタスキャンする構成である。図10で17はカップリング部,18は導光路,19は導光路18を加振する加振部,20は加振制御・駆動部であり,ビーム光がラスタスキャンあるいは渦巻きスキャンする構成である。
7 and 9 and FIGS. 8 and 10 show an example of light output from the light emitting unit 10. FIG. 12 shows an example of light output from the plurality of light emitting units 10. FIG. 13 shows an example of a timing diagram for each of the plurality of light emitting units 10. However, the dot representing the light beam is a conceptual diagram of the raster scan result of the beam light, and does not represent the timing. The light emitting unit 10 may be a plurality of light sources and a lens for controlling the direction, or may be composed of a plurality of light sources for each direction.
In FIG. 9, 11 is a light source driving unit, 12 is a light source having a specific wavelength, 13 is a collimating lens for beam light, 14 is a mirror control / driving unit, 15 and 16 are biaxial oscillating mirrors, In this configuration, the beam light reflected from 16 is raster scanned. In FIG. 10, 17 is a coupling unit, 18 is a light guide path, 19 is a vibration unit for vibrating the light guide path 18, and 20 is a vibration control / drive unit. The beam light is configured to perform raster scanning or spiral scanning. .

つぎに、本発明の第1実施例に係る表示装置の動作を説明する。
本実施例に係る表示装置は、ここで,本実施例では,ビーム光且つ,高速で光量変調が容易なレーザ光源を光源に用いて説明する。もちろん,LED光源を,ビーム状に集光させる光学部品や,光量の変調部品とともに用いても良い。
Next, the operation of the display apparatus according to the first embodiment of the present invention will be described.
Here, the display device according to the present embodiment will be described using a laser light source that is a light beam and that can be easily modulated at high speed as a light source. Of course, the LED light source may be used together with an optical component for condensing in a beam shape or a light amount modulation component.

2軸揺動ミラー15,16や加振部19の駆動方式は,電磁誘導,圧電駆動,静電駆動等,ミラーや導光路を揺動するものであれば何れであっても良い。また,説明の為,揺動ミラー6はφL=1.5mmの大きさで,25kHzを共振周期とする1軸方向に揺動(H揺動),揺動ミラー7は60Hzの周期で揺動する構成とし,ミラー駆動部5の60Hz低速揺動信号v_driveと,25kHzの高速揺動信号h_driveで駆動する。尚,揺動角は,本揺動信号の振幅により調整するものである。   The driving method of the biaxial oscillating mirrors 15 and 16 and the excitation unit 19 may be any one that oscillates the mirror and the light guide path, such as electromagnetic induction, piezoelectric driving, and electrostatic driving. For the sake of explanation, the oscillating mirror 6 has a size of φL = 1.5 mm and oscillates in one axial direction having a resonance period of 25 kHz (H oscillation), and the oscillating mirror 7 oscillates at a period of 60 Hz. The mirror drive unit 5 is driven by a 60 Hz low speed swing signal v_drive and a 25 kHz high speed swing signal h_drive. The swing angle is adjusted by the amplitude of this swing signal.

ここで,説明の為,ビームの放射強度がピーク値または光軸上の値の1/e2(13.5 %)と成る所をスポット径(ビーム径)とする一般的な定義にてφ1mm以下の大きさで,表示する映像が所望の解像度を満足するサイズであり,波長λr=640nm,λg=530nm,λb=450nmの可視光とする。   Here, for the sake of explanation, the spot diameter (beam diameter) is generally defined as a spot diameter (beam diameter) where the beam radiation intensity is 1 / e2 (13.5%) of the peak value or value on the optical axis. Now, it is assumed that the image to be displayed has a size that satisfies a desired resolution, and that the visible light has wavelengths λr = 640 nm, λg = 530 nm, and λb = 450 nm.

また,光線生成部6から出射する光線数は光線出射部10の数と動作で定まるが,本発明は個々の光線の制御・駆動方法に関するものであり代表光線を挙げて説明する。もちろん,光線密度や駆動速度により表示品質が定まる。   The number of light beams emitted from the light beam generation unit 6 is determined by the number and operation of the light beam emission units 10. The present invention relates to a method for controlling and driving individual light beams, and will be described with reference to representative light beams. Of course, the display quality is determined by the light density and the driving speed.

光モデル情報信号1は,表示する物体の形状を表す座標情報や光反射・透過情報等の光情報を有する2D/3D表示情報(光モデル情報)であり,例えば,CAD等で生成した立体情報や,或いは2D/3Dカメラや計測器で撮像した立体情報等であり,必要に応じて各種画像処理を施しても良い。   The light model information signal 1 is 2D / 3D display information (light model information) having light information such as coordinate information representing the shape of an object to be displayed and light reflection / transmission information. For example, stereoscopic information generated by CAD or the like. Alternatively, it is stereoscopic information captured by a 2D / 3D camera or a measuring instrument, and various image processing may be performed as necessary.

光線モデル情報信号2は,光線生成部6が発する光線の内,互いに交わる光線の光線番号BM_x,B_xと交点座標(x,y,z)を示す。尚,光線モデル情報信号2の信号形式は,光線単位或いは交点単位等,後段の処理に適したものであれば良い。   The ray model information signal 2 indicates ray numbers BM_x, B_x and intersection coordinates (x, y, z) of rays that intersect with each other among rays emitted by the ray generator 6. The signal format of the light beam model information signal 2 may be any signal format suitable for subsequent processing, such as a light beam unit or an intersection unit.

光線マップ処理部3は,光モデル情報信号1を直接或いは各種補間処理により,光線モデル情報信号2が有する各交点座標と各光線に対する光線情報に分解して,光マトリクス情報信号を生成(マッピング)する。尚,光マトリクス情報信号により定義される光モデルの表示対象となる光線は,1本の光線に対し1個〜複数個の交点座標と強度の情報を有する。   The light ray map processing unit 3 decomposes the light model information signal 1 directly or by various interpolation processes into each intersection coordinate included in the light ray model information signal 2 and light ray information for each light ray, thereby generating (mapping) a light matrix information signal. To do. Note that a light beam to be displayed in the light model defined by the light matrix information signal has one to a plurality of intersection coordinates and intensity information for one light beam.

図1は,光モデル1の表示対象領域7となる光線生成部6が発する光線の内,5本の光線(B_1,2,3,4,5)と3つの交点(1-3,2-3,4-5)を取り上げ,観察者の右眼8Rと左眼8Lに到達する際の状態を示したもので,以下,これで説明する。   FIG. 1 shows five rays (B_1, 2, 3, 4, 5) and three intersections (1-3, 2-, 2) among the rays emitted by the ray generator 6 that becomes the display target region 7 of the light model 1. 3-4-5), and shows the state when the observer reaches the right eye 8R and the left eye 8L, which will be described below.

タイミング生成部5は,例えば図2のタイミング図の関係で垂直・水平同期信号v_sync(例えば60Hz)h_sync(例えば50kHz)とサブフレーム信号t_div(同120Hz)を生成する。ここでは説明のため,フレーム分割数は2分割である。もちろん,光線数や交点数に応じてフレーム速度やフレーム分割数はフリッカー(見かけの光の点滅)を感じない50Hz以上が望ましいが,もちろん増減しても良い。   The timing generation unit 5 generates a vertical / horizontal synchronization signal v_sync (for example, 60 Hz) h_sync (for example, 50 kHz) and a subframe signal t_div (for the same 120 Hz), for example, according to the timing diagram of FIG. Here, for explanation, the number of frame divisions is two. Of course, depending on the number of rays and the number of intersections, the frame speed and the number of frame divisions are preferably 50 Hz or higher so as not to feel flicker (blinking of apparent light), but of course may be increased or decreased.

光線制御・駆動部4は,同期信号v_sync,h_syncとサブフレーム信号t_divを基準に,光マトリクス情報から,対応する光線と交点の発光タイミングを測り,且つ,発光強度を信号振幅で示す駆動信号drv_x(図中drv_1,2,3,4,5)で示す。   The light beam control / driving unit 4 measures the light emission timing of the corresponding light beam and the intersection from the light matrix information on the basis of the synchronization signals v_sync, h_sync and the subframe signal t_div, and the drive signal drv_x indicating the light emission intensity with the signal amplitude (Drv_1, 2, 3, 4, 5 in the figure).

光線生成部6は,drv_xの駆動条件で光線BM_xをそれぞれ発光駆動する。図1に当てはめるとdrv_1〜5の駆動条件で光線B_1〜5をそれぞれ発光駆動する。すなわち,同一交点を表現する2つの光線は,同時が望ましいが視覚の残像・残光残像効果を期待できる時間内である同一のサブフレーム内で時間を異ならしめて(同期或いは非同期)発光駆動するものである。また,同一光線上の異なる交点は時間を異ならしめるべく異なるサブフレームで駆動するものであれば良い。   The light beam generation unit 6 drives the light beam BM_x to emit light under the driving condition of drv_x. When applied to FIG. 1, the light beams B_1 to 5 are driven to emit light under the driving conditions of drv_1 to 5, respectively. That is, two light beams that represent the same intersection point are driven to emit light at different times (synchronous or asynchronous) within the same subframe within the time when visual afterimage and afterimage afterglow effects can be expected, although they are desirable at the same time. It is. Further, different intersections on the same ray may be driven by different subframes so as to make the times different.

図12は説明を簡単にする為,2個の光線出射部10がそれぞれビーム光をラスタスキャンし,サブフレーム内で光線が交わる状態の1例を示す。さらに特定の平面を2面(Subfram1,2)それぞれに発生する交点1−3と2−3の光線状態を示す。光線が交わる所はこの限りで無く,異なる光線間や異なる平面で発生し,且つ個々の交点の発生位置は特定できることから,それぞれの交点位置を交点座標として予め保持するものである。図13は2個の光線出射部10それぞれのラスタスキャンと,上記交点1−3と2−3を成すビーム光の生成位置とタイミングを示す。交点1−3はサブフレーム2(Subfram2)期間の対応するラスタスキャン位置で光線出射部10よりビーム光を出射する。一方,サブフレーム1(Subfram1)期間では交点1−3に限らず,異なる交点のビーム光として出射しても良い。交点2−3も同様である。   FIG. 12 shows an example of a state in which the two light beam emitting units 10 raster scan the beam light and the light beams intersect within the subframe for the sake of simplicity. Furthermore, the light ray state of the intersections 1-3 and 2-3 which generate | occur | produce each 2 planes (Subfram1,2) of a specific plane is shown. The places where the light beams intersect are not limited to this, and the light beams are generated between different light beams or on different planes, and the generation positions of the individual intersection points can be specified. FIG. 13 shows the raster scan of each of the two light emitting sections 10, and the generation position and timing of the beam light forming the intersections 1-3 and 2-3. The intersection 1-3 emits the beam light from the light emitting unit 10 at the raster scan position corresponding to the subframe 2 (Subfram2) period. On the other hand, in the subframe 1 (Subfram1) period, the light beam is not limited to the intersection point 1-3, and may be emitted as beam light at different intersection points. The same applies to the intersection 2-3.

尚,サブフレームは2回と限定し,一本のビーム光で異なる2個の交点を表す場合で示したが,これに限らず,増減いずれも良い。   Note that the subframe is limited to two times, and the case where two different intersections are represented by one light beam is shown, but the present invention is not limited to this, and any increase or decrease may be used.

以上の動作を図示しない光線に対しても同様に行い,入力した光モデル情報を表示対象領域7に表示する。尚,本実施例で説明する表示領域や交点は,平面配置や立体配置のいずれであっても良く,観察者8の主観で判断される。   The above operation is performed in the same manner for a light beam (not shown), and the input light model information is displayed in the display target area 7. It should be noted that the display areas and intersections described in the present embodiment may be either a planar arrangement or a three-dimensional arrangement, and are determined by the subjectivity of the observer 8.

さらに本実施例では,光線生成部6が,外部からの振動や内部振動で微妙に揺れ或いは移動する場合にあっては,揺れ量や移動量xyz_shiftを測り,光線マップ処理部3に戻し,揺れ量や移動量xyz_shift分,光モデル情報を移動させて光線モデルにマッピング処理する振動補正機能を付加し,図示しないシステム制御による状況判断により機能ON/OFF制御する。すなわち,光線生成部6が振動する場合にあっても,表示対象領域7は同一場所を保持する。   Further, in the present embodiment, when the light generation unit 6 is slightly shaken or moved due to external vibration or internal vibration, the amount of movement or movement xyz_shift is measured and returned to the light map processing unit 3 to be shaken. A vibration correction function is added to map the light model information by moving the light model information by the amount and the movement amount xyz_shift, and the function is ON / OFF controlled based on the situation determination by system control (not shown). That is, even when the light beam generation unit 6 vibrates, the display target area 7 holds the same place.

また,図示しないが,光線生成部6を強制的に周期的に加振し,上記振動補正機能を使用することで,光線位置すなわち交点位置が移動することで,見かけ上の交点を増大させ,光モデルの再生精度(解像度)を向上しても良い。   Although not shown in the figure, the light beam generation unit 6 is forcibly periodically excited and the vibration correction function is used to increase the apparent intersection point by moving the light beam position, that is, the intersection point position. The reproduction accuracy (resolution) of the optical model may be improved.

図3と4を用いて上述した実施例の構造寸法や光線の走査角関係の1例を示す。もちろんこの限りでは無い。観察者8の右眼左眼8R/Lは眼幅Δd(=65mm),瞳φI(=φ7mm)で,光線生成部6の一辺の幅W(=283mm),両眼8R/8Lの中心から光線生成部6の中心までL(=300mm),光線生成部6からK(=100mm)に表示対象領域7(40x80x80)の中心を設定する。   3 and 4 show an example of the structural dimensions and the light beam scanning angle relationship of the above-described embodiment. Of course this is not the case. The right eye left eye 8R / L of the observer 8 has an eye width Δd (= 65 mm), a pupil φI (= φ7 mm), a width W (= 283 mm) of one side of the light generation unit 6, and the center of both eyes 8R / 8L. The center of the display target area 7 (40 × 80 × 80) is set to L (= 300 mm) to the center of the light beam generation unit 6 and from the light beam generation unit 6 to K (= 100 mm).

光線生成部6を構成する複数の光線出射部10はそれぞれP=4mm間隔でアレイ状に並べる。それぞれの光線出射部10が発する光線の水平最大角度θH/θVが30度の場合,光線が交点を成した後,それぞれ右眼/左眼8R/8Lに到達できる表示可能領域9は,点画で示した底辺W,高さS1(=約240mm)の三角形の範囲である。尚,光線生成部6に奥行き(図面方向)があれば,形状に則した表示可能領域9の範囲が定まる。図中のBM_1〜4は,光線生成部6の最両端の光線出射部10から眼球に入る光線を表す。表示可能領域9の範囲に再生対象領域7が存在し,光線B_1〜5の5本で3つの交点を表現する。   The plurality of light emitting units 10 constituting the light generating unit 6 are arranged in an array at intervals of P = 4 mm. When the horizontal maximum angle θH / θV of the light beams emitted by the respective light beam emitting units 10 is 30 degrees, the displayable areas 9 that can reach the right eye / left eye 8R / 8L after the light beams intersect each other are point drawings. This is a triangular range with the base W and the height S1 (= about 240 mm) shown. If the light ray generator 6 has a depth (in the drawing direction), the range of the displayable area 9 according to the shape is determined. BM_1 to 4 in the drawing represent light rays that enter the eyeball from the light beam emitting units 10 at the extreme ends of the light beam generation unit 6. A reproduction target area 7 exists in the range of the displayable area 9, and three intersections are expressed by five rays B_1 to B-5.

一方,図4では,観察者8の位置を右に32.5mm移動した際の関係を示す。表示可能領域9からはみ出した再生対象領域7の一部分では,交点の表示が不能すなわち,観察者8が知覚できない領域となる。3つの交点では交点4−5が表示不能で,交点1−3と2−3はそれぞれ光線B_6とB_9で,光線B_7とB_8で表示する。   On the other hand, FIG. 4 shows the relationship when the position of the observer 8 is moved 32.5 mm to the right. In a part of the reproduction target area 7 that protrudes from the displayable area 9, the intersection cannot be displayed, that is, an area that the observer 8 cannot perceive. At the three intersections, the intersection 4-5 cannot be displayed, and the intersections 1-3 and 2-3 are displayed by the rays B_6 and B_9 and the rays B_7 and B_8, respectively.

ここで,光線生成部6の光線出射部10の配置を図5で示すR=300の曲面形状或いは図6で示す傾き形状とすることで,表示可能領域9の拡張による再生対象領域7の確保を図っても良い。図5や6の場合,光線生成部6は幅Wであっても幅W’に拡張した場合と同等な再生可能領域9を確保できる。尚,表示可能領域9の拡張による再生対象領域7の確保ができれば,曲率や傾き角等の形状は何れであっても良い。   Here, the arrangement of the light emitting unit 10 of the light generating unit 6 is set to the curved surface shape of R = 300 shown in FIG. 5 or the inclined shape shown in FIG. You may plan. In the case of FIGS. 5 and 6, the light ray generation unit 6 can secure the reproducible region 9 equivalent to the case where the width W is expanded to the width W ′. As long as the reproduction target area 7 can be secured by expanding the displayable area 9, the shape such as the curvature and the inclination angle may be any.

以上の処理により交点を成した2つの光線がそれぞれ観察者8の右眼/左眼8R/8Lに到達し,両眼の視線が本交点近傍に収束(輻輳)した際には,上記所望の範囲内(空間上)にある光点として知覚する。   When the two light beams forming the intersection by the above processing reach the right eye / left eye 8R / 8L of the observer 8, respectively, and when the line of sight of both eyes converges (converges) near the intersection, the desired Perceived as a light spot within the range (in space).

また,1本の光線に対し複数の交点の光点を独立に再現できるため,解像度感の向上が可能である。また,交点マップが高速で振動することから,交点マップの密度を見かけ上の増大,すなわち解像度感の向上が可能である。また,交点マップが低速で振動・移動した場合であっても、着目する同一の発光点は、移動量に応じて交点マップ上を移動することから、観察者は同一空間上に発光点が固定しているように知覚することが可能である。   In addition, since the light points at a plurality of intersections can be reproduced independently for one light beam, the resolution can be improved. In addition, since the intersection map vibrates at high speed, the density of the intersection map can be apparently increased, that is, the sense of resolution can be improved. Even if the intersection map vibrates and moves at low speed, the same light emitting point of interest moves on the intersection map according to the amount of movement, so the observer can fix the light emitting point in the same space. It is possible to perceive as if

これにより、あたかも何も無い空間上に発光体が浮かび上がっている様に観察することが可能である。また、観察者の見る角度毎に光点を再現するため、動体視野による自然な立体を得ることも可能である。   As a result, it is possible to observe as if the light emitter is floating in an empty space. In addition, since the light spot is reproduced for each angle viewed by the observer, it is also possible to obtain a natural three-dimensional object with a moving object field of view.

以上,同一光線を交点数分,時分割で駆動する場合を示したが,目の残像効果を利用するものであり,点滅周期によっては他の交点に混色することは避けられないが,点滅周期の最適化により混色の低減を図るものである。   In the above, the case where the same ray is driven by the number of intersections in a time-sharing manner is shown, but it uses the afterimage effect of the eye, and depending on the blinking cycle, it is inevitable to mix colors with other intersections, but the blinking cycle The color mixture is reduced by optimizing the color.

また,観察者8は表示対象領域に視点を合わせる事で空中の発光体を知覚する際,視線の先にある光線生成部6表面の各交線出射部10の存在(光)を意識するが,各光線の光強度は自然界の光強度相当であり弱く且つ,両眼8R/8Lの瞳に到達する光線のみ知覚し且つ,様々な交点を再現する為,光モデルの情報は光線生成部6全体に分散,すなわち光線生成部6表面に光モデルの存在は見えにくいランダムな光分布として見える為,空中の発光体の知覚が可能である。   In addition, when the observer 8 perceives an illuminant in the air by aligning the viewpoint with the display target area, the observer 8 is conscious of the presence (light) of each intersection emitting unit 10 on the surface of the light beam generating unit 6 ahead of the line of sight. The light intensity of each light ray is equivalent to the light intensity in the natural world and is weak, and only light rays reaching the pupils of both eyes 8R / 8L are perceived and various intersections are reproduced. Dispersion throughout, that is, the presence of the light model on the surface of the light generation unit 6 appears as a random light distribution that is difficult to see, so that it is possible to perceive light emitters in the air.

尚,光線生成部6における光線出射部10への制御・駆動信号の分配方法や,光線出射部10のサイズや配置関係の1例を示したが、光モデルを再現する為に必要な交点数を確保できる光線を得られるように配置するものであれば,何れでも良い。   Although an example of the control / drive signal distribution method to the light emitting unit 10 in the light generating unit 6 and the size and arrangement relationship of the light emitting unit 10 has been shown, the number of intersections necessary to reproduce the light model Any arrangement may be used as long as it can be arranged so as to obtain a light beam capable of ensuring the above.

光線生成部6は,液晶パネル,米国テキサスインスツルメント社のDMD素子等を用いても良い。光線生成部6の表示面積の拡大や,光線出射部10の放出角度の拡大により,上記同様の処理により視野角を拡大できることは言うまでもない。   The light generation unit 6 may use a liquid crystal panel, a DMD element manufactured by Texas Instruments, Inc., or the like. It goes without saying that the viewing angle can be expanded by the same processing as described above, by expanding the display area of the light beam generating unit 6 and expanding the emission angle of the light beam emitting unit 10.

次に本発明の第2実施例による表示装置を、図11を用いて説明する。
本実施例は、第1の実施例(図1)の表示装置に,複数視点に対する2Dや3Dの静止画や動画の映像情報を持つ入力映像信号videoの入力と,画像処理部20を追加した構成である。
Next, a display device according to a second embodiment of the present invention will be described with reference to FIG.
In this embodiment, an input video signal video having video information of 2D and 3D still images and moving images for a plurality of viewpoints and an image processing unit 20 are added to the display device of the first embodiment (FIG. 1). It is a configuration.

画像処理部20では,入力映像信号videoの複数視点に対する2Dや3Dの静止画や動画の映像情報を視点毎或いは視点間でフレームレート変換、スケーリングや解像度変換等を施し,光モデル情報1に展開する。また光線生成部6における光線出射部10は少なくとも色の3原色R/G/Bで構成するレーザ光源12r,g,bを駆動する。尚,入力映像信号videoは,予め表示対象領域7の形状に合わせた映像情報であっても良い。   The image processing unit 20 performs frame rate conversion, scaling, resolution conversion, etc. for each viewpoint or between viewpoints for 2D or 3D still images and moving image information for a plurality of viewpoints of the input video signal video, and develops them into the optical model information 1 To do. In addition, the light emitting unit 10 in the light generating unit 6 drives laser light sources 12r, g, and b composed of at least three primary colors R / G / B. The input video signal video may be video information that matches the shape of the display target area 7 in advance.

以上,本実施例によれば,観察者8が片眼で観察した場合は,立体視としての知覚が出来ない弊害があるものの,両目で投射映像を視認する際,スクリーン等の反射物や拡散物の存在を意識せず,また,高画質な立体映像を静止画や動画で視認でき,更には,周囲からの視認領域を広くすることで,あたかも空間上に映像が浮かび上がっている様に観察することが可能である。   As described above, according to the present embodiment, when the observer 8 observes with one eye, there is a harmful effect that the viewer cannot perceive stereoscopic vision. It is possible to visually recognize high-quality 3D images with still images and moving images without being conscious of the existence of objects, and to make the image appear in the space by widening the viewing area from the surroundings. It is possible to observe.

本発明によれば、1本の光線に対し複数の交点の光点を独立に再現できるため,解像度感の向上が可能である。また,交点マップが高速で振動することから,交点マップの密度を見かけ上の増大,すなわち解像度感の向上が可能である。   According to the present invention, it is possible to independently reproduce the light points at a plurality of intersections with respect to one light beam, so that the sense of resolution can be improved. In addition, since the intersection map vibrates at high speed, the density of the intersection map can be apparently increased, that is, the sense of resolution can be improved.

また,交点マップが低速で振動・移動した場合であっても、着目する同一の発光点は、移動量に応じて交点マップ上を移動することから、観察者は同一空間上に発光点が固定しているように知覚することが可能である。これにより、あたかも何も無い空間上に発光体が浮かび上がっている様に観察することが可能である。   Even if the intersection map vibrates and moves at low speed, the same light emitting point of interest moves on the intersection map according to the amount of movement, so the observer can fix the light emitting point in the same space. It is possible to perceive as if As a result, it is possible to observe as if the light emitter is floating in an empty space.

また、観察者の見る角度毎に光点を再現するため、動体視野による自然な立体を得ることも可能である。   In addition, since the light spot is reproduced for each angle viewed by the observer, it is also possible to obtain a natural three-dimensional object with a moving object field of view.

1…2D/3Dの光モデル情報信号,2…光線モデル情報信号,3…光線マップ処理部,
4…光線制御・駆動部,5…タイミング生成部,6…光線生成部,7…表示対象領域,
8L/R…観察者8の左眼/右眼,9…表示可能領域,10…光線出射部,
11…光源駆動部,12…特定の波長を有する光源,13…コリメートレンズ,
14…ミラー制御・駆動部,15,16…2軸揺動ミラー,17…カップリング部,
18…導光路,19…加振部,20…加振制御・駆動部
1 ... 2D / 3D light model information signal, 2 ... light model information signal, 3 ... light map processing unit,
4 ... light beam control / drive unit, 5 ... timing generation unit, 6 ... light beam generation unit, 7 ... display target region,
8L / R ... left eye / right eye of observer 8, 9 ... displayable area, 10 ... light emitting part,
DESCRIPTION OF SYMBOLS 11 ... Light source drive part, 12 ... Light source which has specific wavelength, 13 ... Collimating lens,
14 ... Mirror control / drive unit, 15, 16 ... Biaxial oscillating mirror, 17 ... Coupling unit,
18 ... light guide, 19 ... excitation unit, 20 ... excitation control / drive unit

Claims (8)

空間上に映像を表示するための浮遊体表示装置において、
それぞれビーム光をラスタスキャンする第1及び第2の光線生成部と、
映像の表示情報から、光線同士の交点と当該交点の発光強度の情報を有する光マトリクス情報信号を生成する光線マップ処理部と、
水平・垂直同期信号と、映像の1フレームを複数のサブフレームに分割するためのサブフレーム信号を生成するタイミング生成部と、
前記マップ処理部で生成された光マトリクス情報信号と、前記タイミング生成部で生成された水平・垂直同期信号及びサブフレーム信号に基づいて、前記交点で前記発光強度が得られるように前記第1及び第2の光線生成部を駆動するための駆動信号を生成して出力する光線制御・駆動部と、を備え、
前記映像の1フレームが少なくとも第1のサブフレームと第2のサブフレームに分割され、
前記光線制御・駆動部は、前記光マトリクス情報信号に含まれる前記交点の情報に基づいて、前記サブフレーム信号が前記第1のサブフレームを示すときには、空間上の第1の平面に前記第1の光線生成部からのビーム光と前記第2の光線生成部からのビーム光との交点を形成し、前記サブフレーム信号が前記第2のサブフレームを示すときには、前記第1の平面と異なる位置にある第2の平面に前記第1の光線生成部からのビーム光と前記第2の光線生成部からのビーム光との交点を形成するように前記駆動信号を生成する、
ことを特徴とする浮遊体表示装置。
In a floating body display device for displaying images in space,
A first and a second light ray generator for raster scanning the light beam,
A ray map processing unit that generates an optical matrix information signal having information on intersections between rays and light emission intensity at the intersections from display information of the image;
A timing generator for generating a horizontal / vertical synchronization signal and a subframe signal for dividing one frame of video into a plurality of subframes;
Based on the light matrix information signal generated by the map processing unit, and the horizontal / vertical synchronization signal and subframe signal generated by the timing generation unit, the first and second light emission intensities are obtained at the intersections. A light beam control / drive unit that generates and outputs a drive signal for driving the second light beam generation unit, and
One frame of the video is divided into at least a first subframe and a second subframe;
When the subframe signal indicates the first subframe based on the information on the intersection included in the light matrix information signal, the light beam control / drive unit is configured to place the first plane on a first plane in space. Forming an intersection of the beam light from the light beam generation unit and the beam light from the second light beam generation unit, and when the subframe signal indicates the second subframe, a position different from the first plane Generating the drive signal so as to form an intersection of the beam light from the first light beam generation unit and the beam light from the second light beam generation unit in a second plane at
A floating body display device characterized by that.
請求項1に記載の浮遊体表示装置において、
前記映像の表示情報は、表示する物体の形状を表す座標情報及び光反射・透過情報を含む光モデル情報信号と、前記交点の座標と該交点を形成する光線番号を含む光線モデル情報信号を有することを特徴とする浮遊体表示装置。
The floating body display device according to claim 1,
The display information of the image includes a light model information signal including coordinate information representing the shape of an object to be displayed and light reflection / transmission information, and a light beam model information signal including the coordinates of the intersection and a ray number forming the intersection. A floating body display device characterized by that.
請求項1に記載の浮遊体表示装置において、
前記駆動信号の振幅が前記発光強度に基づいていることを特徴とする浮遊体表示装置。
The floating body display device according to claim 1 ,
A floating body display device, wherein the amplitude of the drive signal is based on the emission intensity .
請求項に記載の浮遊体表示装置において,
前記光線生成部は、複数の方向に光線を出射する光線出射部を複数有し、
前記光線出射部がそれぞれ曲面上に配置される構成であることを特徴とする浮遊体表示装置。
The floating body display device according to claim 1 ,
The light beam generation unit has a plurality of light beam emission units for emitting light beams in a plurality of directions,
The floating body display device characterized in that each of the light emitting portions is arranged on a curved surface .
請求項に記載の浮遊体表示装置において、
前記光線生成部は、複数の方向に光線を出射する光線出射部を複数有し、前記光線出射部がそれぞれ折れ平面上に配置される構成であることを特徴とする浮遊体表示装置。
The floating body display device according to claim 1 ,
The floating body display device , wherein the light beam generation unit includes a plurality of light beam emission units that emit light beams in a plurality of directions, and each of the light beam emission units is arranged on a folding plane .
請求項に記載の浮遊体表示装置において、
前記ビーム光はレーザ光源から出射されることを特徴とする浮遊体表示装置。
The floating body display device according to claim 1 ,
The floating body display device, wherein the beam light is emitted from a laser light source .
請求項に記載の浮遊体表示装置において、
前記光線生成部は、前記レーザ光源からのビーム光を揺動ミラーにより反射してラスタスキャンを行うことを特徴とする浮遊体表示装置。
The floating body display device according to claim 6 ,
The floating body display device , wherein the light beam generation unit performs a raster scan by reflecting the beam light from the laser light source by a oscillating mirror .
請求項に記載の浮遊体表示装置において、
前記光線生成部は、前記レーザ光源からのビーム光を導光路に導き、導光路の出射側を可動することでラスタスキャンを行うことを特徴とする浮遊体表示装置。
The floating body display device according to claim 6 ,
The floating body display device , wherein the light beam generation unit performs a raster scan by guiding the light beam from the laser light source to a light guide path and moving an emission side of the light guide path .
JP2012125592A 2012-06-01 2012-06-01 Floating body display device Active JP5883725B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012125592A JP5883725B2 (en) 2012-06-01 2012-06-01 Floating body display device
PCT/JP2013/054432 WO2013179699A1 (en) 2012-06-01 2013-02-22 Floating body display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012125592A JP5883725B2 (en) 2012-06-01 2012-06-01 Floating body display device

Publications (2)

Publication Number Publication Date
JP2013250457A JP2013250457A (en) 2013-12-12
JP5883725B2 true JP5883725B2 (en) 2016-03-15

Family

ID=49672915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125592A Active JP5883725B2 (en) 2012-06-01 2012-06-01 Floating body display device

Country Status (2)

Country Link
JP (1) JP5883725B2 (en)
WO (1) WO2013179699A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140825B2 (en) * 2006-06-28 2013-02-13 国立大学法人大阪大学 3D image playback device
JP4743140B2 (en) * 2007-03-06 2011-08-10 株式会社デンソー Video display device
JP2009265309A (en) * 2008-04-24 2009-11-12 Osaka Univ Three-dimensional image display device

Also Published As

Publication number Publication date
JP2013250457A (en) 2013-12-12
WO2013179699A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
CN108139518B (en) Virtual/augmented reality system with reverse angle diffraction grating
JP2007519958A (en) 3D display
JP5099554B2 (en) 3D display
CN108459455A (en) A kind of projection display system
TW201017219A (en) Spatial image display apparatus
US20110316898A1 (en) Three dimensional image display apparatus
CN103823307A (en) True 3D imaging device and display device
JP4052315B2 (en) Stereoscopic image display device
JP7409641B2 (en) head mounted display
CN108702495B (en) Multi-stripe laser for laser-based projector displays
JP2015031837A (en) Stereoscopic image display device
JP5883725B2 (en) Floating body display device
JP4107102B2 (en) Image display device
JP5398015B2 (en) 3D display and 3D image presentation method
JP6737370B2 (en) Projection device
JP4045432B2 (en) Wavefront curvature modulation device and image display device provided with wavefront curvature modulation device
JP5263244B2 (en) 3D display device
JP2016099477A (en) Projection device, projection method, program, and storage medium
CN114051591A (en) Image rendering using multiple emitter light sources
JPH11103474A (en) Stereoscopic picture display device
CN112970247A (en) System and method for displaying multiple depth-of-field images
JP6107009B2 (en) Screen and image display system
JP2000148063A (en) Three-dimensional display device
JP2021135411A (en) Head-up display
JP2005099425A (en) Three-dimensional display device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5883725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250