JP5883229B2 - Method for producing ultra-fine porous tube - Google Patents

Method for producing ultra-fine porous tube Download PDF

Info

Publication number
JP5883229B2
JP5883229B2 JP2011054771A JP2011054771A JP5883229B2 JP 5883229 B2 JP5883229 B2 JP 5883229B2 JP 2011054771 A JP2011054771 A JP 2011054771A JP 2011054771 A JP2011054771 A JP 2011054771A JP 5883229 B2 JP5883229 B2 JP 5883229B2
Authority
JP
Japan
Prior art keywords
resin
outer diameter
porous tube
tube
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011054771A
Other languages
Japanese (ja)
Other versions
JP2012189173A (en
Inventor
田中 晴士
晴士 田中
松野 繁宏
繁宏 松野
賢 原田
賢 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2011054771A priority Critical patent/JP5883229B2/en
Publication of JP2012189173A publication Critical patent/JP2012189173A/en
Application granted granted Critical
Publication of JP5883229B2 publication Critical patent/JP5883229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、極細多孔チューブ及びその製造方法に関し、特に安定した外径精度が得られる極細多孔チューブ及びその製造方法に関するものである。   The present invention relates to an ultrafine porous tube and a method for producing the same, and more particularly to an ultrafine porous tube capable of obtaining stable outer diameter accuracy and a method for producing the same.

特許文献1には、内環状部と、該内環状部の外周に沿って略等間隔で放射状に延設された複数のリブ部と、前記複数のリブ部を連結する外環状部と、を備え、前記内環状部と前記リブ部と前記外環状部とにより中空部が形成され、前記内環状部と前記外環状部とが、縦断面視、同心的に配置された断面が蓮根状の多孔チューブとその製造方法が提案されている。   Patent Document 1 includes an inner annular portion, a plurality of rib portions extending radially at substantially equal intervals along the outer periphery of the inner annular portion, and an outer annular portion connecting the plurality of rib portions. A hollow portion is formed by the inner annular portion, the rib portion, and the outer annular portion, and the inner annular portion and the outer annular portion have a lotus root-like cross-section in a longitudinal sectional view. A perforated tube and a method for producing the same have been proposed.

特開2009−97580号公報JP 2009-97580 A

しかしながら、この特許文献1に記載の製造方法では、見なし外径平均値が0.5mm以下の極細多孔チューブを安定して製造することはできず、特に、長手方向に外径精度の良い極細多孔チューブは得られていなかった。すなわち、0.5mm未満の極細多孔チューブを製造する場合、常温の大気下に溶融押出し、冷却を行うと、樹脂の冷却固化が早いため、安定して外径精度が得られなかった。また、目標とする外径まで細くすることができないという問題があった。   However, in the manufacturing method described in Patent Document 1, it is not possible to stably manufacture an ultrafine porous tube having a mean outer diameter of 0.5 mm or less, and in particular, an ultrafine porous with a good outer diameter accuracy in the longitudinal direction. The tube was not obtained. That is, when producing an ultra-fine porous tube of less than 0.5 mm, when melt-extruded in a normal temperature atmosphere and cooled, the resin is rapidly solidified by cooling, and the outer diameter accuracy cannot be stably obtained. In addition, there is a problem that the target outer diameter cannot be reduced.

そこで、本発明者らは、外径精度に優れた極細多孔チューブを安定して製造する方法を鋭意検討した結果、所定形状のダイスから垂直下方に溶融押出をし、冷却時に加熱冷却をすることによって、長手方向の安定性と断面形状精度を向上できることを知得して本願発明を完成した。
上記課題を解決するため、本発明は、下記の〔1〕〜〔9〕を提供する。
〔1〕熱可塑性樹脂からなり、横断面が略円形状、多角形状、又は楕円形状で、見なし外径平均値が0.5mm以下、長手方向に2個以上の連続する中空部を有する極細多孔チューブであって、長手方向の見なし外径変動率が2%以下である、ことを特徴とする極細多孔チューブ。
〔2〕前記横断面が略円形状で、長手方向の見なし外径変動率が2%以下で、真円率が90%以上である前記〔1〕に記載の極細多孔チューブ。
〔3〕前記横断面が、中央の空間部とこれを囲む内環状部と、前記内環状部から放射状に延びる複数のリブ部と、前記リブ部の外端間を連結する外環状部とを備え、前記内,外環状部とリブ部とで囲まれた複数の中空部を有する断面蓮根状形状である前記〔1〕又は〔2〕に記載の極細多孔チューブ。
〔4〕前記横断面が、中央に樹脂が充実した芯部を有し、該芯部の周囲に複数の中空部を有する前記〔1〕〜〔3〕のいずれかに記載の極細多孔チューブ。
〔5〕中央の空間部に画像伝送用、又は高速信号伝送用の光ファイバ、あるいは抗張力体線状物を備える前記〔3〕に記載の極細多孔チューブ。
〔6〕前記〔1〕〜〔4〕に記載の極細多孔チューブを製造するに際して、所望の断面形状の極細多孔チューブを得るべく設計され、中空部を形成するダイス相当部分に中空部形成用内圧調整エアーの導入用の貫通孔を設けたダイスを用い、内圧調整用エアーを中空部内に導入しつつ、極細多孔チューブの樹脂部を形成するためのダイス孔部から溶融した樹脂を垂直下方に押出し、冷却工程を経て引き取る製造方法であって、
該製造方法は以下の(1)〜(2)の工程を有することを特徴とする極細多孔チューブの製造方法。
(1)ダイス直下に、40℃以上で樹脂部を形成する樹脂の融点近傍未満に加熱した加熱筒中で押出成形物を引き落とす徐冷工程、
(2)次いで、室温付近の空冷ゾーンを少なくとも1段階以上設け、空冷しつつ通過させ樹脂部を室温付近まで冷却するか、又は空冷ゾーンの後、さらに必要に応じて水冷し室温付近まで押出成形物を冷却する冷却工程。
〔7〕前記〔5〕に記載の極細多孔チューブを製造するに際して、中央に極細線状物を導入するための導入孔を有し、所望の形状の極細多孔チューブを得るべく設計され、中空部を形成するダイス相当部分に中空部形成用内圧調整エアーの導入用の貫通孔を設けたダイスを用い、内圧調整用エアーを中空部内に導入しつつ、前記導入孔に極細線状物を挿入し、この周囲に極細多孔チューブの樹脂部を形成するためのダイス孔部から溶融した樹脂を垂直下方に押出して、複数の中空部を有する樹脂部で被覆しつつ引き取る製造方法であって、
該製造方法は以下の(1)及び(2)の工程を有することを特徴とする極細多孔チューブの製造方法。
(1)ダイス直下に、40℃以上で樹脂部を形成する樹脂の融点近傍未満に加熱した加熱筒中で押出成形物を引き落とす徐冷工程、
(2)次いで、室温付近の空冷ゾーンを少なくとも1段階以上設け、空冷しつつ通過させ樹脂部を室温付近まで冷却するか、又は空冷ゾーンの後、さらに必要に応じて水冷し室温付近まで押出成形物を冷却する冷却工程。
〔8〕前記〔4〕に記載の極細多孔チューブを用いた極細多孔脱気チューブであって、熱可塑性樹脂がフッ素樹脂、ポリオレフィン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、及び塩化ビニル樹脂から選択される1種の熱可塑性樹脂からなり、中央に樹脂が充実した芯部を有する、外環状部の見なし外径平均値が0.5mm以下、長手方向の見なし外径変動率が2%以下としてなる、ことを特徴とする極細多孔脱気チューブ。
〔9〕前記〔3〕に記載の極細多孔チューブを用いた極細多孔医療用チューブであって、中央の中空部に石英、又はプラスチックからなる極細光ファイバを備え、見なし外径平均値が0.5mm以下で長手方向の見なし外径変動率が2%以下としてなる、ことを特徴とする極細多孔医療用チューブ。
Therefore, as a result of intensive studies on a method for stably producing an ultrafine porous tube having excellent outer diameter accuracy, the present inventors have performed melt extrusion from a die having a predetermined shape vertically downward, and heating and cooling during cooling. Thus, it was learned that the stability in the longitudinal direction and the cross-sectional shape accuracy can be improved, and the present invention has been completed.
In order to solve the above problems, the present invention provides the following [1] to [9].
[1] An ultrafine porous material made of a thermoplastic resin having a substantially circular, polygonal, or elliptical cross section, an assumed outer diameter average value of 0.5 mm or less, and two or more continuous hollow portions in the longitudinal direction. An ultra-fine porous tube, characterized in that the assumed outside diameter variation rate in the longitudinal direction is 2% or less.
[2] The ultra-fine porous tube according to [1], wherein the cross section is substantially circular, the assumed outer diameter variation rate in the longitudinal direction is 2% or less, and the roundness is 90% or more.
[3] The transverse section includes a central space portion, an inner annular portion surrounding the central space portion, a plurality of rib portions extending radially from the inner annular portion, and an outer annular portion connecting between outer ends of the rib portions. The microporous tube according to [1] or [2], which has a plurality of hollow portions surrounded by the inner and outer annular portions and the rib portions.
[4] The microporous tube according to any one of [1] to [3], wherein the cross section includes a core portion filled with resin at the center and a plurality of hollow portions around the core portion.
[5] The ultrafine porous tube according to [3], wherein an optical fiber for image transmission or high-speed signal transmission, or a tensile body linear object is provided in a central space.
[6] When manufacturing the ultrafine porous tube according to the above [1] to [4], the internal pressure for forming the hollow portion is designed to obtain the ultrafine porous tube having a desired cross-sectional shape and the die corresponding portion forming the hollow portion. Using a die with a through hole for introducing adjustment air, while introducing the air for adjusting the internal pressure into the hollow part, the molten resin is extruded vertically downward from the die hole part for forming the resin part of the microporous tube. , A manufacturing method that takes over the cooling process,
The production method includes the following steps (1) to (2): A method for producing an ultrafine porous tube.
(1) A slow cooling step of pulling down the extruded product in a heated cylinder heated to a temperature below 40 ° C. or more and less than the vicinity of the melting point of the resin that forms the resin part immediately below the die,
(2) Next, at least one stage of air cooling zone near room temperature is provided, and the resin part is cooled to near room temperature by passing it through air cooling, or it is further cooled with water as needed and extruded to near room temperature. A cooling process that cools things.
[7] When manufacturing the ultrafine porous tube according to [5], the hollow portion is designed to obtain an ultrafine porous tube having a desired shape, having an introduction hole for introducing an ultrafine wire in the center. Using a die provided with a through hole for introducing the internal pressure adjusting air for forming the hollow part in the part corresponding to the die forming the inner diameter, while inserting the air for adjusting the internal pressure into the hollow part, an extra fine wire was inserted into the introducing hole. In this manufacturing method, the resin melted from the die hole portion for forming the resin portion of the microporous tube around the periphery is extruded vertically downward and is covered with the resin portion having a plurality of hollow portions,
The production method includes the following steps (1) and (2): A method for producing an ultrafine porous tube.
(1) A slow cooling step of pulling down the extruded product in a heated cylinder heated to a temperature below 40 ° C. or more and less than the vicinity of the melting point of the resin that forms the resin part immediately below the die,
(2) Next, at least one stage of air cooling zone near room temperature is provided, and the resin part is cooled to near room temperature by passing it through air cooling, or it is further cooled with water as needed and extruded to near room temperature. A cooling process that cools things.
[8] An ultrafine porous deaeration tube using the ultrafine porous tube according to [4], wherein the thermoplastic resin is a fluororesin, polyolefin resin, polyimide resin, polyamide resin, polyester resin, polystyrene resin, and vinyl chloride. It consists of one kind of thermoplastic resin selected from resins, has a core part filled with resin at the center, the assumed outer diameter average value of the outer annular part is 0.5 mm or less, and the assumed outside diameter fluctuation rate in the longitudinal direction is 2 % Ultra-fine porous deaeration tube, characterized by
[9] An ultra-fine porous medical tube using the ultra-fine porous tube according to [3], wherein an ultra-fine optical fiber made of quartz or plastic is provided in a central hollow portion, and a mean outer diameter is assumed to be 0. An ultra-fine porous medical tube, characterized in that it assumes a longitudinal outer diameter variation rate of 2% or less at 5 mm or less.

本発明によれば、熱可塑性樹脂からなる見なし外径平均値が0.5mm以下、長手方向に2個以上の連続する中空部を有する極細多孔チューブであって、長手方向の見なし外径変動率が2%以下で、外径精度が良好なので、精密なモジュール加工が容易であり、軽量薄肉が要求される機器等へ利用できる。
円形断面の場合は、真円率が高いので、特にモジュール等の端末加工が容易である。
中央を空間としたり、芯部としたりできるので、要求されるチューブの空隙率や引張強度等の要求性能に容易に対応できる。
また、中央の空間部に光ファイバや抗張力体線状物を挿入して、機能性を有する極細多孔チューブとすることができる。
本発明の極細多孔チューブの製造方法は、見なし外径平均値が0.5mm以下の極細多孔チューブを、低い見なし外径変動率で、長手方向に安定して製造することができる。
According to the present invention, it is an ultrafine porous tube having an assumed outer diameter average value of 0.5 mm or less made of a thermoplastic resin and having two or more continuous hollow portions in the longitudinal direction, and the assumed outer diameter variation rate in the longitudinal direction. Is 2% or less, and the outer diameter accuracy is good. Therefore, precise module processing is easy, and it can be used for equipment that requires lightweight and thin wall.
In the case of a circular cross section, since the roundness is high, the end processing of a module or the like is particularly easy.
Since the center can be a space or a core, the required performance such as the required porosity and tensile strength of the tube can be easily met.
Moreover, it can be set as a very fine porous tube which has functionality by inserting an optical fiber and a tensile-strength body linear object in the center space part.
The method for producing an ultrafine porous tube of the present invention can produce an ultrafine porous tube having an assumed outside diameter average value of 0.5 mm or less stably in the longitudinal direction with a low assumed outside diameter variation rate.

(A)〜(F)本発明に係る種々の断面形状の例を示す極細多孔チューブの断面図である。(A)-(F) It is sectional drawing of the ultra-fine porous tube which shows the example of the various cross-sectional shape which concerns on this invention. 図1(A)〜(D)の断面形状の極細多孔チューブを得るために使用されるダイスを開孔側から見た平面図である。It is the top view which looked at the die | dye used in order to obtain the microporous tube of the cross-sectional shape of FIG. 1 (A)-(D) from the opening side. 本発明に係る極細多孔チューブの製造方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the manufacturing method of the microporous tube which concerns on this invention.

以下、本発明の好適な実施形態について説明する。なお、添付図面に示された各実施形態は、本発明に係わる代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   Hereinafter, preferred embodiments of the present invention will be described. Each embodiment shown in the accompanying drawings shows an example of a typical embodiment according to the present invention, and the scope of the present invention is not interpreted narrowly.

図1は、本発明に係る極細多孔チューブの長手方向断面の実施例を示し、同図(A)に示す極細多孔チューブ1Aは、外環状部1aとリブ部2aに囲まれた2個の中空部3aを有し、同図(B)に示す極細多孔チューブ1Bは3個の中空部3bを有している。また、図1(C)に示す極細多孔チューブ1Cは、外環状部1cと内環状部4c間を6本のリブ部2cで6分割された6つの中空部3cと中央の空間部5cを有している。 一方、図1(D)に示す極細多孔チューブ1Dは、中央に樹脂が充実した芯部6dを有し、その外周に6つの中空部3dを有している。
本発明において、極細多孔チューブのサイズや、中空部の数は本発明の効果が得られる範囲内において目的に応じて適宜選定可能である。
また、図1(A)〜(E)では円形断面を示しているが、略円形や図1(F)のように6角形等の略多角形状であってもよいが、外環状部1の見なし外径平均値は0.5mm以下としている。
本発明に係る極細多孔チューブ1(例えば、1A〜1F)は、側圧特性や曲げ特性等の機械的特性や、極細多孔チューブ構造の真円性あるいは正多角形性を、より良好に保つために、リブ部2を3本以上とすることが望ましい。リブの数が3本未満では、例えば、脱気用極細多孔チューブとして使用した場合、中空部に通液して脱気する際に、圧力差による変形が大きくなり、一方、リブ数が多いと空隙率が小さくなるので、4〜6個が好ましい。特に6個(断面略6角形)の場合、極細多孔チューブをモジュール化したときの端末部を6角ハニカム構造に最密充填することができるため好適である。
本発明において、見なし外径平均値とは、後述する測定方法により測定した外径の平均値を言う。
見なし外径平均値を0.5mm以下とすることによって、実用レベルにおいても優れた特性を有する極細多孔チューブとすることができる。
FIG. 1 shows an embodiment of a longitudinal cross section of an ultrafine porous tube according to the present invention, and the ultrafine porous tube 1A shown in FIG. 1 (A) has two hollows surrounded by an outer annular portion 1a and a rib portion 2a. An ultrafine porous tube 1B having a portion 3a and having three hollow portions 3b shown in FIG. In addition, an ultra-fine porous tube 1C shown in FIG. 1C has six hollow portions 3c divided into six rib portions 2c between an outer annular portion 1c and an inner annular portion 4c and a central space portion 5c. doing. On the other hand, the microporous tube 1D shown in FIG. 1 (D) has a core portion 6d filled with resin at the center and six hollow portions 3d on the outer periphery thereof.
In the present invention, the size of the ultrafine porous tube and the number of hollow portions can be appropriately selected according to the purpose within the range where the effects of the present invention can be obtained.
1A to 1E show a circular cross section, it may be a substantially circular shape or a substantially polygonal shape such as a hexagon as shown in FIG. The assumed outer diameter average value is 0.5 mm or less.
The ultra fine porous tube 1 (for example, 1A to 1F) according to the present invention is to maintain better mechanical characteristics such as lateral pressure characteristics and bending characteristics, and the roundness or regular polygonality of the ultra fine porous tube structure. It is desirable that the number of the rib portions 2 be three or more. When the number of ribs is less than 3, for example, when used as an ultrafine porous tube for degassing, when the liquid is passed through the hollow portion and degassed, deformation due to the pressure difference becomes large, whereas on the other hand, Since the porosity is small, 4 to 6 is preferable. In particular, the case of six pieces (substantially hexagonal in cross section) is preferable because the terminal portion when the ultra-fine porous tube is modularized can be closely packed into the hexagonal honeycomb structure.
In the present invention, the deemed outer diameter average value means an average value of outer diameters measured by a measuring method described later.
By setting the assumed outside diameter average value to 0.5 mm or less, an ultrafine porous tube having excellent characteristics even at a practical level can be obtained.

外環状部1(1a〜1f)、リブ部2(2a〜2f)、内環状部4(4c、4e、4f)、芯部6(6d)は、熱可塑性樹脂の溶融押出成形により一体に形成される。   The outer annular portion 1 (1a to 1f), the rib portion 2 (2a to 2f), the inner annular portion 4 (4c, 4e, 4f), and the core portion 6 (6d) are integrally formed by melt extrusion molding of a thermoplastic resin. Is done.

本発明の極細多孔チューブに用いられる熱可塑性樹脂は、溶融押出が可能であれば特に限定されないが、例えば、PFA等のフッ素樹脂、ポリオレフィン樹脂、環状ポリオレフィン(APO)樹脂、シンジオタクチックポリスチレン(SPS)樹脂、ポリメチルペンテン(TPX)樹脂、ポリエチレンナフタレート(PEN)樹脂等を用いることができる。
特に、空間部に液体を流しその液体に溶存する気体を除去するための脱気チューブとして用いる場合には、フッ素樹脂、ポリオレフィン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、及び塩化ビニル樹脂から選択される1種の熱可塑性樹脂が用いられる。
これらの熱可塑性樹脂は、気体透過性で液体不透過性の特徴を有している。
The thermoplastic resin used in the ultrafine porous tube of the present invention is not particularly limited as long as it can be melt-extruded. For example, fluorine resin such as PFA, polyolefin resin, cyclic polyolefin (APO) resin, syndiotactic polystyrene (SPS) ) Resin, polymethylpentene (TPX) resin, polyethylene naphthalate (PEN) resin, and the like.
In particular, when used as a deaeration tube for flowing a liquid into a space and removing a gas dissolved in the liquid, a fluororesin, a polyolefin resin, a polyimide resin, a polyamide resin, a polyester resin, a polystyrene resin, and a vinyl chloride resin One kind of thermoplastic resin selected from is used.
These thermoplastic resins have gas-permeable and liquid-impermeable characteristics.

本発明に係る極細多孔チューブは、長手方向の見なし外径変動率(CV値)を2%以下としている。本発明において、見なし外径変動率とは、連続製造しながら、得られた極細多孔チューブについて、中心軸の周囲±90°の角度を10秒間で往復回転する揺動式のレーザー外径測定器を使用し、40秒間を、毎秒50回の測定速度で外径を計測し、その1秒間に計測した外径(測定数:50)の平均値を見なし外径とする。
更に40秒間連続計測し、見なし外径の平均値とその標準偏差を求め、この見なし外径標準偏差を見なし外径平均値で除した値(変動係数)を%(変動率=CV値)で表示したものである。
見なし外径変動率が2%を超えると、寸法精度が要求される端末の加工性の観点から好ましくない。
In the microporous tube according to the present invention, the assumed outside diameter variation rate (CV value) in the longitudinal direction is set to 2% or less. In the present invention, the assumed outer diameter fluctuation rate is an oscillating laser outer diameter measuring device that reciprocally rotates an angle of ± 90 ° around the central axis in 10 seconds with respect to the obtained ultrafine porous tube while continuously manufacturing. The outer diameter is measured at a measurement speed of 50 times per second for 40 seconds, and the average value of the outer diameters (number of measurements: 50) measured for 1 second is not taken as the outer diameter.
Further, continuously measure for 40 seconds, obtain the average value of the assumed outside diameter and its standard deviation, and do not look at this deemed outside diameter standard deviation and divide by the outside diameter average value (variation coefficient) in% (variation rate = CV value). It is displayed.
When the assumed outside diameter fluctuation rate exceeds 2%, it is not preferable from the viewpoint of the workability of the terminal where dimensional accuracy is required.

また、本発明に係る極細多孔チューブは、断面が略円形状の極細多孔チューブでは、真円率を90%以上とすることが好ましい。本発明において、真円率は、図1において外環状部1の最長径をa、最短径をb、平均外径をc(c=(a+b)/2)とした場合、下記数式で示される値であり、どれだけ極細多孔チューブが真円に近いかを示す。
真円率=(1−(a−b)/c)×100
In the ultra fine porous tube according to the present invention, the roundness is preferably 90% or more in the case of the ultra fine porous tube having a substantially circular cross section. In the present invention, the roundness is expressed by the following formula when the longest diameter of the outer annular portion 1 is a, the shortest diameter is b, and the average outer diameter is c (c = (a + b) / 2) in FIG. This value indicates how close the microporous tube is to a perfect circle.
Roundness ratio = (1− (a−b) / c) × 100

本発明では図1(E)の如く、中央の空間部に光ファイバ或いは抗張力体線状物を備えた極細多孔チューブも提供する。
空間部に用いられる光ファイバとしては、石英又はプラスチックの光ファイバであって、外径が250μm以下のものが挙げられる。
また、抗張力体線状物としては、アラミド繊維、延伸ポリエステルモノフィラメント、ピアノ線等の鋼線等、引張力等の外力に対して充分耐え得る高強度の線材が望ましく、引張強度が0.4GPa以上のものが特に好ましい。
In the present invention, as shown in FIG. 1 (E), an ultrafine porous tube provided with an optical fiber or a tensile body linear object in the central space is also provided.
Examples of the optical fiber used in the space include quartz or plastic optical fibers having an outer diameter of 250 μm or less.
Further, as the tensile body linear material, a high-strength wire material that can sufficiently withstand external force such as tensile force such as aramid fiber, stretched polyester monofilament, piano wire, etc. is desirable, and the tensile strength is 0.4 GPa or more. Are particularly preferred.

また、極細多孔チューブ1の中空率については限定されず、適宜好適な中空率とすることができる。本発明に係る極細多孔チューブ1では、チューブ内の単位時間あたりの流体輸送量を低下させずにすみ、かつ圧力損失が大きくなって材質を高圧対応とすることも不要とできる。また、キンク等の発生も防止できる。本発明によれば、高い中空率を有しながらキンク等にも優れた極細多孔チューブとすることができる。この中空率とは、極細多孔チューブ1の断面積(外環状部1、リブ部2、内環状部4、光ファイバ又は抗張力体線状物と中空部3の各断面積の総和)に対する、極細多孔チューブ1の中空部3の断面積の割合をいう。中空率として30〜60%が好ましい。   Moreover, it does not limit about the hollow rate of the microporous tube 1, It can be set as a suitable hollow rate suitably. In the microporous tube 1 according to the present invention, it is not necessary to reduce the amount of fluid transport per unit time in the tube, and the pressure loss is increased so that it is not necessary to make the material compatible with high pressure. In addition, the occurrence of kinks or the like can be prevented. According to the present invention, an ultrafine porous tube excellent in kink and the like while having a high hollow ratio can be obtained. This hollow ratio is very fine with respect to the cross-sectional area of the ultra-fine porous tube 1 (the total of the cross-sectional areas of the outer annular portion 1, the rib portion 2, the inner annular portion 4, the optical fiber or the tensile body linear object and the hollow portion 3). The ratio of the cross-sectional area of the hollow part 3 of the porous tube 1 is said. The hollowness is preferably 30 to 60%.

本発明に係る極細多孔チューブの製造方法の第1態様は、所望の断面形状の極細多孔チューブを得るべく設計され、中空部を形成するダイス相当部分に中空部形成用内圧調整エアーの導入用の貫通孔を設けたダイスを用い、内圧調整用エアーを中空部内に導入しつつ、極細多孔チューブの樹脂部を形成するためのダイス孔部から溶融した樹脂を垂直下方に押出し、冷却工程を経て引き取る極細多孔チューブの製造方法であり、(1)ダイス直下に、40℃以上で樹脂部を形成する樹脂の融点近傍未満に加熱した加熱筒中で押出成形物をドラフトする徐冷工程と、(2)次いで、室温付近の空冷ゾーンを少なくとも1段階以上設け、空冷しつつ通過させ樹脂部を室温付近まで冷却するか、又は空冷ゾーンの後、さらに必要に応じて水冷し室温付近まで押出成形物を冷却する冷却工程を有している。   The first aspect of the method for producing an ultrafine porous tube according to the present invention is designed to obtain an ultrafine porous tube having a desired cross-sectional shape, and is used for introducing internal pressure adjusting air for forming a hollow portion into a portion corresponding to a die forming the hollow portion. Using a die provided with a through-hole, while introducing air for adjusting internal pressure into the hollow portion, the molten resin is extruded vertically downward from the die hole portion for forming the resin portion of the ultra-fine porous tube, and taken through a cooling step. (1) A slow cooling step in which an extruded product is drafted in a heated cylinder heated immediately below the die and below the vicinity of the melting point of the resin that forms the resin part at 40 ° C. or higher, and (2) Next, at least one stage of air-cooling zone near room temperature is provided, and the resin part is cooled to near room temperature by passing through air-cooling, or water-cooled as necessary after the air-cooling zone, near room temperature. A cooling step of cooling the extruded product until

本発明に係る極細多孔チューブの製造方法の第2態様では、中央部分に極細線状物を導入するための導入孔を有しているダイスを使用する他は、第1態様と同じである。   The second aspect of the method for producing an ultrafine porous tube according to the present invention is the same as the first aspect except that a die having an introduction hole for introducing an ultrafine wire into the central portion is used.

本発明に係る極細多孔チューブの製造方法の第1態様に用いられるダイスは、溶融樹脂の吐出面側から見た平面図が図2(A)〜(D)に示すような開孔部を有するものが使用される。図2(A)〜(D)に示す孔部形状のダイスは、図1(A)〜(D)に断面を示す極細多孔チューブに対応している。また、中央に光ファイバや抗張力体線状物を備える製造方法の第2態様においては、図2(C)に示す孔部形状のダイスが用いられる。
図2において、符号の添え字a〜dは、ダイス孔部10(A)〜(D)に対応した部位であることを意味している。
各ダイス孔部10は、外環状部孔11、リブ部孔12、中空部形成ブロック13、内環状部孔14、導入孔15、中央芯部孔17、内圧調整エアー導入用貫通孔20を適宜有している。
The die used in the first aspect of the method for producing an ultrafine porous tube according to the present invention has an opening as shown in FIGS. 2 (A) to (D) as viewed from the molten resin discharge surface side. Things are used. 2A to 2D correspond to the microporous tube whose cross section is shown in FIGS. Moreover, in the second aspect of the manufacturing method including an optical fiber or a tensile body linear object in the center, a hole-shaped die shown in FIG. 2 (C) is used.
In FIG. 2, the suffixes a to d of the symbols mean portions corresponding to the die holes 10 (A) to (D).
Each die hole portion 10 includes an outer annular portion hole 11, a rib portion hole 12, a hollow portion forming block 13, an inner annular portion hole 14, an introduction hole 15, a central core portion hole 17, and an internal pressure adjusting air introduction through-hole 20. Have.

図3は、本発明に係る極細多孔チューブの製造方法の一例を示す概念図である。符号Sは、本発明に係る極細多孔チューブの製造装置(以下、「製造装置」という場合がある。)を示している。この製造装置Sは、溶融押出機のクロスヘッド30に、所望の断面形状の極細多孔チューブを得るべく設計された中空部を有するダイス10が取着され、該ダイスの開孔部から溶融状の熱可塑性樹脂が溶融成形体1'として押出され、加熱手段を備えた加熱筒40に導入される。
加熱筒40は、溶融成形体1'が外気により急冷されるのを防せぎ、好適な温度条件で所望の外径に細径化するためのドラフトゾーンの機能を果たすものであり、筒内温度を、40℃以上で、用いられる熱可塑性樹脂の融点近傍未満に制御されている。該加熱筒40中で引き落とされ徐冷された成形体は、さらに、空冷ゾーン50により空冷された後、非接触温度計55で表面温度を計測して、さらに、冷却が必要であれば、水冷却槽60に導入して水冷却される。冷却された成形物は、ターンシーブ70で方向転換され、ネルソンローラー90を経て、揺動式外径測定器95により外径を連続的に測定されて、ボビンに巻取られる(図示省略)。なお、水冷却槽60で水冷却する場合は、水冷却槽60から漏洩した水は、受水槽80にて処理される。
FIG. 3 is a conceptual diagram showing an example of a method for producing an ultrafine porous tube according to the present invention. Reference symbol S indicates an apparatus for manufacturing an ultra-fine porous tube according to the present invention (hereinafter also referred to as “manufacturing apparatus”). In this manufacturing apparatus S, a die 10 having a hollow portion designed to obtain an ultrafine porous tube having a desired cross-sectional shape is attached to a crosshead 30 of a melt extruder, and a molten state is formed from an opening portion of the die. A thermoplastic resin is extruded as a melt-formed body 1 ′ and introduced into a heating cylinder 40 provided with heating means.
The heating cylinder 40 functions as a draft zone for preventing the melt-formed body 1 'from being rapidly cooled by the outside air and reducing the diameter to a desired outer diameter under suitable temperature conditions. Is controlled at 40 ° C. or higher and below the melting point of the thermoplastic resin used. The molded body drawn down and gradually cooled in the heating cylinder 40 is further air-cooled by the air-cooling zone 50, and then the surface temperature is measured by a non-contact thermometer 55. It introduces into the cooling tank 60 and is water-cooled. The cooled molded product is redirected by a turn sheave 70, passed through a Nelson roller 90, continuously measured by an oscillating outer diameter measuring device 95, and wound around a bobbin (not shown). In addition, when water cooling is performed in the water cooling tank 60, the water leaked from the water cooling tank 60 is processed in the water receiving tank 80.

一方、中央の空間部に光ファイバあるいは抗張力体線状物を備えた第2の態様の極細多孔チューブの製造方法では、図3において、ボビン25に巻取られた光ファイバあるいは抗張力体線状物を、ガイドローラー26を介して連続的に供給し、これをクロスヘッド30に取付けられた、例えば図2に示す孔部形状のダイス10Cの導入孔15cに導き、ダイスの開孔部から溶融状の熱可塑性樹脂が光ファイバあるいは抗張力体線状物を被覆するように押出され、以下、前記同様に溶融成形体1'として加熱手段を備えた加熱筒40に導入される。
以後の工程は前記と同様である。
On the other hand, in the manufacturing method of the microporous tube according to the second aspect in which the optical fiber or the tensile body linear object is provided in the central space, the optical fiber or the tensile body linear object wound around the bobbin 25 in FIG. Is continuously supplied via the guide roller 26, and this is guided to the introduction hole 15c of the die 10C having a hole shape shown in FIG. 2, for example, attached to the cross head 30, and melted from the opening portion of the die. The thermoplastic resin is extruded so as to cover the optical fiber or the tensile body linear material, and then introduced into the heating cylinder 40 provided with heating means as the melt-formed body 1 ′ in the same manner as described above.
The subsequent steps are the same as described above.

加熱筒40(ドラフトゾーン)は、ダイス10から引き落とされた溶融成形体1'を形成する樹脂を加熱する。加熱温度は、樹脂の種類や極細多孔チューブの外径等に応じて適宜設定することができ、例えば(その樹脂の融点+10℃)未満〜40℃以上で加熱することができる。かかる温度の加熱筒40に樹脂を通過させることで、細径であっても優れた真円性を有する極細多孔チューブ1とすることができる。ダイス孔部10から押出された溶融樹脂の熱容量が小さくても、この加熱筒40を通過させることで、溶融樹脂の急速な冷却固化を防止できる。なお、樹脂融点の測定は、ASTM D4591によって測定することができる。そして、加熱筒40の構造や加熱方法は限定されないが、好適には、高周波加熱や遠赤外線加熱によることが望ましい。   The heating cylinder 40 (draft zone) heats the resin that forms the melt-formed body 1 ′ drawn down from the die 10. The heating temperature can be appropriately set according to the type of resin, the outer diameter of the microporous tube, and the like, and for example, the heating can be performed at a temperature lower than (the melting point of the resin + 10 ° C.) to 40 ° C. By passing the resin through the heating cylinder 40 having such a temperature, the microporous tube 1 having excellent roundness can be obtained even if the diameter is small. Even if the heat capacity of the molten resin extruded from the die hole portion 10 is small, rapid cooling and solidification of the molten resin can be prevented by passing the heating cylinder 40. The resin melting point can be measured according to ASTM D4591. And although the structure and heating method of the heating cylinder 40 are not limited, it is preferable to use high-frequency heating or far-infrared heating.

空冷部50は、極細多孔チューブ1を形成する樹脂を、室温近傍で空冷により徐冷する。加熱筒40の後に空冷部50を設けることで、極細多孔チューブ1を形成する樹脂が一気に冷却固化するのを防止できる。空冷部50の温度は、室温近傍であればよいが、より具体的には15℃〜40℃であることが望ましく、更に好ましくは、25℃〜35℃とすることが望ましい。なお、空冷部50の長さ(空冷ゾーン)を調節することで、溶融樹脂を目的の温度とすることができる。   The air cooling unit 50 gradually cools the resin forming the microporous tube 1 by air cooling in the vicinity of room temperature. By providing the air cooling part 50 after the heating cylinder 40, it is possible to prevent the resin forming the ultrafine porous tube 1 from being cooled and solidified at once. Although the temperature of the air cooling part 50 should just be room temperature vicinity, it is desirable that it is 15 to 40 degreeC more specifically, It is desirable to set it as 25 to 35 degreeC more preferably. In addition, the molten resin can be made into the target temperature by adjusting the length (air cooling zone) of the air cooling unit 50.

水冷却槽60は、空冷部50を通過した成形体を水冷する。これにより、極細多孔チューブを形成する樹脂を完全に冷却固化させることができる。水冷却槽60は、本発明において必ずしも必須ではないが、空冷部50(や風冷部)に加えて備えることが望ましい。極細径な多孔チューブであれば、前述の空冷や風冷によって極細多孔チューブを形成する樹脂の温度を室温付近にまで下げることができるが、水冷を行うことによって製造速度が高速であっても真円性が高い極細多孔チューブを得ることができる。特に、引き出し速度が30m/分以上であっても、真円性の高い極細多孔チューブを好適に得ることができる。   The water cooling tank 60 water-cools the molded body that has passed through the air cooling unit 50. Thereby, the resin forming the ultrafine porous tube can be completely cooled and solidified. Although the water cooling tank 60 is not necessarily essential in the present invention, it is desirable to provide the water cooling tank 60 in addition to the air cooling unit 50 (or the air cooling unit). If it is an ultrafine porous tube, the temperature of the resin forming the ultrafine porous tube can be lowered to near room temperature by air cooling or air cooling as described above, but it is true even if the production rate is high by performing water cooling. An ultrafine porous tube with high circularity can be obtained. In particular, even when the drawing speed is 30 m / min or more, an ultrafine porous tube having high roundness can be suitably obtained.

また、得られた極細多孔チューブ1の最大外径と最小外径を測定し、最大外径と最小外径の差が最小となるように、加熱筒40や空冷部50等の夫々の条件を制御することが望ましい。   In addition, the maximum outer diameter and the minimum outer diameter of the obtained ultrafine porous tube 1 are measured, and the respective conditions of the heating cylinder 40 and the air cooling unit 50 are set so that the difference between the maximum outer diameter and the minimum outer diameter is minimized. It is desirable to control.

この最大外径と最小外径の測定は、揺動式外径測定器95によって測定できる。揺動式外径測定器95は、連続あるいは間欠的に極細多孔チューブ1の外径測定が可能であり、測定器自身を±90°往復揺動回転させつつ測定し、オンライン上で極細多孔チューブ1の全周方向で外径の測定が可能である。なお、本発明では測定器の種類は限定されず、適宜好適な測定器、測定方法によって測定することができる。   The measurement of the maximum outer diameter and the minimum outer diameter can be performed by a swinging outer diameter measuring instrument 95. The oscillating type outer diameter measuring device 95 can measure the outer diameter of the microporous tube 1 continuously or intermittently. The oscillating outer diameter measuring device 95 measures the measuring device itself while reciprocating and rotating ± 90 °, and the microporous tube is online. The outer diameter can be measured in the entire circumferential direction. In the present invention, the type of measuring instrument is not limited, and the measuring instrument can be appropriately measured by a suitable measuring instrument and measuring method.

加熱筒40については、その加熱温度と加熱時間の少なくともいずれか一つを制御することができる。加熱筒40内の雰囲気温度や筒の長さ(ゾーン長)等を調節することで可能となる。更には、加熱筒40の加熱のタイミングを制御することもできる。例えば、製造装置Sであれば、レール(図示省略)上で適宜移動可能な構造として、これによってクロスヘッドダイ30のダイス孔部10から押出された溶融樹脂をどのタイミングで加熱するかを制御することができる。温度が低かったり加熱筒が短すぎると、中空部の外環が膨らみ花びら状になりやすく、加熱筒の温度が高すぎたり加熱筒が長すぎると、中空部の外環が凹みリブ部を頂点とした多角形状に潰れてしまいやすい。これらの条件は、成形速度や、非接触温度計55によって測定された温度や、極細多孔チューブ1の大きさや形状等を考慮して決定することができる。   About the heating cylinder 40, at least any one of the heating temperature and the heating time can be controlled. This can be achieved by adjusting the atmospheric temperature in the heating cylinder 40, the length of the cylinder (zone length), and the like. Furthermore, the heating timing of the heating cylinder 40 can be controlled. For example, in the case of the manufacturing apparatus S, as a structure that can be appropriately moved on a rail (not shown), the timing at which the molten resin extruded from the die hole portion 10 of the crosshead die 30 is heated is controlled. be able to. If the temperature is too low or the heating cylinder is too short, the outer ring of the hollow part tends to swell and form petals, and if the temperature of the heating cylinder is too high or the heating cylinder is too long, the outer ring of the hollow part is recessed and the rib part is apex. It tends to collapse into a polygonal shape. These conditions can be determined in consideration of the molding speed, the temperature measured by the non-contact thermometer 55, the size and shape of the microporous tube 1, and the like.

空冷部50については、その雰囲気温度や空冷部の長さ(ゾーン長)等を調節することで、空冷条件(空冷温度や空冷時間)を制御することができる。更に、空冷部55の空冷のタイミングを制御することが望ましく、例えば、製造装置Sであれば、レール(図示省略)上で適宜移動可能な構造として、レール上を適宜に移動させることで制御することができる。   About the air-cooling part 50, air-cooling conditions (air-cooling temperature and air-cooling time) can be controlled by adjusting the atmospheric temperature, the length (zone length) of an air-cooling part, etc. Further, it is desirable to control the air cooling timing of the air cooling unit 55. For example, in the case of the manufacturing apparatus S, the structure is movable as appropriate on the rail (not shown). be able to.

また、加熱筒40や空冷部50等について、製造開始時は、揺動式外径測定器95の測定結果に基づいて最適な配置位置(配置間隔)を検出すべく、レール上を移動させ、最適な配置位置が決まった後は夫々の最適な配置位置(配置間隔)に固定させることもできる。   In addition, at the start of manufacturing the heating cylinder 40, the air cooling unit 50, etc., on the rail in order to detect the optimal arrangement position (arrangement interval) based on the measurement result of the swinging outer diameter measuring device 95, After the optimum arrangement position is determined, it can be fixed to each optimum arrangement position (arrangement interval).

以下、実施例をあげて本発明を詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to a following example.

本発明において、面積引落とし倍率、真円率、見なし外径変動率は、以下に記載の方法で測定した。
(1)面積引落し倍率
面積引落とし倍率(%)=(ダイス孔部の外環状部の外径)2/(極細多孔チューブの外径)2
(2)極細多孔チューブの真円率
真円率は、図1において外環状部14の最長径をa、最短径をb、平均外径をc(c=(a+b)/2)とした場合、下記数式で示される値であり、どれだけ極細多孔チューブが真円に近いかを示す。
真円率(%)=(1−(a−b)/c)×100
(3)見なし外径変動率(CV値)
連続製造しながら、得られた極細多孔チューブについて、中心軸の周囲±90°の角度を10秒間で往復回転する揺動式のレーザー外径測定器(LDM−903M、タキカワエンジニアリング(株)製)を使用し、40秒間を、毎秒50回の測定速度で外径を計測し、その1秒間に計測した外径(測定数:50)の平均値を見なし外径とする。更に40秒間連続計測し、見なし外径の平均値とその標準偏差を求め、この見なし外径標準偏差を見なし外径平均値で除した値(変動係数)を%で表示し、見なし外径変動率(=CV値)とした。
上記における表現の定義を下記に示す。
外径:ある時点の1点の外径計測値
見なし外径:外径を50点/秒の速度で1秒間計測した値の平均値(50点の計測平均 値)
見なし外径平均値:40秒間での見なし外径の平均値
見なし外径標準偏差:40秒間での見なし外径の標準偏差
見なし外径変動率(CV値)(%)=見なし外径標準偏差/見なし外径平均値×100
なお、極細多孔チューブが略多角形の断面形状である場合は、対角線の最長部を円の直径と見なして、見なし外径変動率を評価した。具体的には揺動式のレーザー外径測定器で計測した値が最大値を示す回転位置で揺動を停止させ(即ちこの位置での計測が略多角形の対角線の最長部である)、その他は前記の方法と同一の方法で、40秒間を、毎秒50回の測定速度でこの対角線長さを計測し、その1秒間に計測した長さ(測定数:50)の平均値を見なし外径とし、更に同様に40秒間連続計測し、見なし外径の平均値とその標準偏差を求め、この見なし外径の標準偏差を見なし外径の平均値で除した値(変動係数)を%で表示し、見なし外径変動率(=CV値)とした。
In the present invention, the area withdrawal magnification, the roundness, and the assumed outside diameter fluctuation rate were measured by the methods described below.
(1) Area withdrawal magnification Area withdrawal magnification (%) = (Outer diameter of outer annular part of die hole part) 2 / (Outer diameter of extra-fine porous tube) 2
(2) Roundness of microporous tube The roundness is calculated when the longest diameter of the outer annular portion 14 is a, the shortest diameter is b, and the average outer diameter is c (c = (a + b) / 2) in FIG. , Which is a value represented by the following mathematical expression, indicating how close the microporous tube is to a perfect circle.
Roundness (%) = (1− (a−b) / c) × 100
(3) Deemed outer diameter fluctuation rate (CV value)
An oscillating laser outer diameter measuring instrument (LDM-903M, manufactured by Takikawa Engineering Co., Ltd.) that rotates the reciprocating angle of ± 90 ° around the central axis in 10 seconds while continuously manufacturing the obtained microporous tube. ), The outer diameter is measured at a measurement speed of 50 times per second for 40 seconds, and the average value of the outer diameters (number of measurements: 50) measured for 1 second is not regarded as the outer diameter. Further, continuously measure for 40 seconds, obtain the average value of the assumed outside diameter and its standard deviation, display the value (variation coefficient) divided by the outside diameter average value without looking at this deemed outside diameter standard deviation, and display the outside diameter fluctuation as a percentage. Rate (= CV value).
The definition of expression in the above is shown below.
Outer diameter: Measured value of outer diameter at one point at a certain point of time Deemed outer diameter: Average value of values obtained by measuring the outer diameter at a speed of 50 points / second for 1 second (measured average value of 50 points)
Average value of assumed outer diameter: Average value of assumed outer diameter in 40 seconds Considered outer diameter standard deviation: Standard deviation of assumed outer diameter in 40 seconds Considered outer diameter fluctuation rate (CV value) (%) = Considered outer diameter standard deviation / Deemed outer diameter average value × 100
When the ultrafine porous tube has a substantially polygonal cross-sectional shape, the longest portion of the diagonal line is regarded as the diameter of the circle, and the outside diameter variation rate is evaluated. Specifically, the oscillation is stopped at the rotational position where the value measured by the oscillation type laser outer diameter measuring device shows the maximum value (that is, the measurement at this position is the longest part of the diagonal of the polygon). The other methods are the same as described above, and the diagonal length is measured for 40 seconds at a measurement speed of 50 times per second, and the average value of the lengths (number of measurements: 50) measured in that second is ignored. Similarly, measure continuously for 40 seconds, find the average value of the assumed outside diameter and its standard deviation, and find the standard deviation of the assumed outside diameter without dividing the average value of the outside diameter (coefficient of variation) in%. Displayed and considered as the outside diameter variation rate (= CV value).

実施例1
図3に示す装置Sにおいて、図2(C)に示す孔部形状のダイス10Cを用いて、図1(C)に示す断面を有し、外径0.5mm、6個のリブ2c及び内環状部4cにより6個の扇状中空部3cと中央の中空部5cを有する蓮根形状の極細多孔チューブをペルフルオロアルコキシフッ素(PFA)樹脂(三井デュポンフロロケミカル(株)、420HPJ、融点:305℃)で作製した。溶融したPFAを、図2(C)に示す孔部形状のダイス10Cから350℃で押出し成形することによって極細多孔チューブを得た。その際の条件は以下のようにして試作を行なった。
線速度は30m/分、加熱筒長は250mm、筒内加熱温度90℃、外気温度は19℃、面積引き落とし倍率は280倍で行った。
得られた極細多孔チューブの見なし外径平均値は0.50mm、見なし外径標準偏差は0.0070mm、見なし外径変動率は1.40%、真円率96%であった。
Example 1
In the apparatus S shown in FIG. 3, using the hole-shaped die 10C shown in FIG. 2C, the cross section shown in FIG. 1C has the outer diameter of 0.5 mm, the six ribs 2c and the inner A lotus root-shaped ultrafine porous tube having six fan-shaped hollow portions 3c and a central hollow portion 5c by an annular portion 4c is made of perfluoroalkoxy fluorine (PFA) resin (Mitsui Dupont Fluorochemical Co., Ltd., 420 HPJ, melting point: 305 ° C.). Produced. The melted PFA was extruded from a hole-shaped die 10C shown in FIG. 2C at 350 ° C. to obtain an ultrafine porous tube. The prototype was manufactured as follows.
The linear velocity was 30 m / min, the heating cylinder length was 250 mm, the in-cylinder heating temperature was 90 ° C., the outside air temperature was 19 ° C., and the area withdrawal magnification was 280 times.
The obtained ultrafine porous tube had an assumed outside diameter average value of 0.50 mm, an assumed outside diameter standard deviation of 0.0070 mm, an assumed outside diameter variation rate of 1.40%, and a roundness of 96%.

実施例2
実施例1と同じ孔部形状のダイス10Cを用い、各空気孔20c及び15cから圧縮エアー(圧力0.05kg/cm2)を導入し、実施例1と同じPFA製で、断面が図1(C)の極細多孔チューブを作製した。その際の条件は、線速度は30m/分、加熱筒長は250mm、筒内加熱温度210℃、外気温度は20℃、面積引き落とし倍率は772倍で行った。
得られた極細多孔チューブの見なし外径平均値は0.20mm、見なし外径標準偏差は0.0030mm、見なし外径変動率は1.50%、真円率95%であった。
Example 2
Using a die 10C having the same hole shape as in Example 1, compressed air (pressure 0.05 kg / cm 2 ) was introduced from each of the air holes 20c and 15c, and the product was made of the same PFA as in Example 1 and the cross section was as shown in FIG. The ultrafine porous tube C) was produced. In this case, the linear velocity was 30 m / min, the heating cylinder length was 250 mm, the in-cylinder heating temperature was 210 ° C., the outside air temperature was 20 ° C., and the area withdrawal ratio was 772 times.
The obtained ultrafine porous tube had an assumed outer diameter average value of 0.20 mm, an assumed outer diameter standard deviation of 0.0030 mm, an assumed outer diameter fluctuation rate of 1.50%, and a roundness of 95%.

実施例3
図3に示す装置を用いて、図1(A)に示す断面で外径0.4mm、2個の中空部3aを有し、実施例1と同じPFA製の、極細多孔チューブ1Aを作製した。溶融したPFA樹脂を、図2(A)に示す孔部形状のダイス10Aから押出し成形することによって極細多孔チューブを得た。その際の条件は、線速度は30m/分、加熱筒長は250mm、筒内加熱温度110℃、外気温度は20℃、空気孔20aに圧縮エアー(圧力0.05kg/cm2)を導入しながら、面積引き落とし倍率は437倍で行った。
得られた極細多孔チューブの見なし外径平均値は0.40mm、見なし外径標準偏差は0.0060mm、見なし外径変動率は1.50%、真円率96%であった。
Example 3
Using the apparatus shown in FIG. 3, an ultrafine porous tube 1A made of the same PFA as in Example 1 having an outer diameter of 0.4 mm and two hollow portions 3a in the cross section shown in FIG. . The melted PFA resin was extruded from a hole-shaped die 10A shown in FIG. 2 (A) to obtain an ultrafine porous tube. In this case, the linear velocity is 30 m / min, the heating cylinder length is 250 mm, the in-cylinder heating temperature is 110 ° C., the outside air temperature is 20 ° C., and compressed air (pressure 0.05 kg / cm 2 ) is introduced into the air hole 20a. However, the area withdrawal magnification was 437 times.
The obtained ultrafine porous tube had an assumed outside diameter average value of 0.40 mm, an assumed outside diameter standard deviation of 0.0060 mm, an assumed outside diameter fluctuation rate of 1.50%, and a roundness of 96%.

実施例4
図3に示す装置を用いて、図1(B)に示す断面で、外径0.3mm、3個の中空部3bを有するPFA製の極細多孔チューブを作製した。
溶融した実施例1と同じPFA樹脂を、図2に示す孔部形状のダイス10Bから押出し成形することによって極細多孔チューブを得た。その際の条件は、線速度は30m/分、加熱筒長は250mm、筒内加熱温度150℃、外気温度は20℃、面積引き落とし倍率は776倍で行った。
得られた極細多孔チューブの見なし外径平均値は0.30mm、見なし外径標準偏差は0.0050mm、見なし外径変動率は1.67%、真円率95%であった。
Example 4
Using the apparatus shown in FIG. 3, an ultrafine porous tube made of PFA having an outer diameter of 0.3 mm and three hollow portions 3b in the cross section shown in FIG. 1B was produced.
The melted PFA resin as in Example 1 was extruded from a hole-shaped die 10B shown in FIG. 2 to obtain an ultrafine porous tube. In this case, the linear velocity was 30 m / min, the heating cylinder length was 250 mm, the in-cylinder heating temperature was 150 ° C., the outside air temperature was 20 ° C., and the area withdrawal ratio was 776 times.
The obtained ultrafine porous tube had an assumed outside diameter average value of 0.30 mm, an assumed outside diameter standard deviation of 0.0050 mm, an assumed outside diameter variation rate of 1.67%, and a roundness rate of 95%.

実施例5
実施例1においてPFA樹脂をポリプロピレン(PP)樹脂(プライムポリマー(株)、J106MG、融点160℃)に変更して図1(C)に示す断面の極細多孔チューブを作製した。溶融したPP樹脂を、図2(C)に示す孔部形状のダイス10Cから押出し成形することによって極細多孔チューブを得た。その際の条件は、線速度は30m/分、加熱筒長は250mm、筒内加熱温度45℃、外気温度は19℃、面積引き落とし倍率は280倍で行った。
得られた極細多孔チューブの見なし外径平均値は0.50mm、見なし外径標準偏差は0.0070mm、見なし外径変動率は1.40%、真円率96%であった。
Example 5
In Example 1, the PFA resin was changed to a polypropylene (PP) resin (Prime Polymer Co., Ltd., J106MG, melting point 160 ° C.) to produce an ultrafine porous tube having a cross section shown in FIG. The melted PP resin was extruded from a hole-shaped die 10C shown in FIG. 2C to obtain an ultrafine porous tube. The conditions at that time were as follows: the linear velocity was 30 m / min, the heating cylinder length was 250 mm, the in-cylinder heating temperature was 45 ° C., the outside air temperature was 19 ° C., and the area withdrawal ratio was 280 times.
The obtained ultrafine porous tube had an assumed outside diameter average value of 0.50 mm, an assumed outside diameter standard deviation of 0.0070 mm, an assumed outside diameter variation rate of 1.40%, and a roundness of 96%.

実施例6
実施例1においてPFA樹脂をポリメタクリル酸メチル(PMMA)樹脂((株)クラレ、パラペットGF)に変更して、図1(C)に示す断面の極細多孔チューブを作製した。
溶融したPMMA樹脂を、図2(C)に示す孔部形状のダイス10Cから押出し成形することによって極細多孔チューブを得た。その際の条件は、線速度は30m/分、加熱筒長は250mm、筒内加熱温度50℃、外気温度は19℃、面積引き落とし倍率は280倍で行った。
得られた極細多孔チューブの見なし外径平均値は0.50mm、見なし外径標準偏差は0.0070mm、見なし外径変動率(%)は1.40%、真円率96%であった。
Example 6
In Example 1, the PFA resin was changed to a polymethyl methacrylate (PMMA) resin (Kuraray Co., Ltd., Parapet GF) to produce a microporous tube having a cross section shown in FIG.
The molten PMMA resin was extruded from a hole-shaped die 10C shown in FIG. 2 (C) to obtain an ultrafine porous tube. The conditions at that time were as follows: the linear velocity was 30 m / min, the heating cylinder length was 250 mm, the in-cylinder heating temperature was 50 ° C., the outside air temperature was 19 ° C., and the area withdrawal ratio was 280 times.
The obtained ultrafine porous tube had an assumed outside diameter average value of 0.50 mm, an assumed outside diameter standard deviation of 0.0070 mm, an assumed outside diameter variation rate (%) of 1.40%, and a roundness ratio of 96%.

比較例1
実施例1において、加熱筒は使用せず、線速度は30m/分、外気温度は19℃で、外気の雰囲気温度で冷却した。面積引き落とし倍率は280倍で行った。
得られた極細多孔チューブの見なし外径平均値は0.50mm、見なし外径標準偏差は0.0132、見なし外径変動率(%)は2.64%、真円率は84%であった。引き落しが安定せず外径変動が大きくなった。
Comparative Example 1
In Example 1, a heating cylinder was not used, the linear velocity was 30 m / min, the outside air temperature was 19 ° C., and cooling was performed at the ambient temperature of the outside air. The area withdrawal magnification was 280 times.
The obtained ultrafine porous tube had an assumed outside diameter average value of 0.50 mm, an assumed outside diameter standard deviation of 0.0132, an assumed outside diameter fluctuation rate (%) of 2.64%, and a roundness ratio of 84%. . The withdrawal was not stable, and the outer diameter fluctuation increased.

比較例2
実施例2において、加熱筒は使用せず、線速度は30m/分、外気温度は20℃で、外気の雰囲気温度で冷却した。空気孔に圧縮エアー(圧力0.05kg/cm2)を導入しながら、面積引き落とし倍率は772倍目標で行った。
得られた極細多孔チューブの見なし外径平均値は0.35mm、見なし外径標準偏差は0.0200mm、見なし外径変動率は5.71%であり、製品外径を目標とする0.2mm径まで細くすることができなかった。
Comparative Example 2
In Example 2, a heating cylinder was not used, the linear velocity was 30 m / min, the outside air temperature was 20 ° C., and cooling was performed at the ambient temperature of the outside air. While introducing compressed air (pressure 0.05 kg / cm 2 ) into the air holes, the area withdrawal magnification was set at 772 target.
The assumed outside diameter average value of the obtained microporous tube was 0.35 mm, the outside diameter standard deviation was 0.0200 mm, the outside diameter fluctuation rate was 5.71%, and the product outside diameter was set to 0.2 mm. The diameter could not be reduced.

比較例3
実施例2において、線速度は30m/分、加熱筒長は250mm、外気温度は20℃、筒内加熱温度330℃、空気孔に圧縮エアー(圧力0.05kg/cm2)を導入しながら、面積引き落とし倍率は772倍目標で行った。
得られた極細多孔チューブの平均外径は0.20mmと目標とする径まで引き落とす事が出来たが、外径が安定しなかった。見なし外径標準偏差は0.0100mm、見なし外径変動率は5.00%となった。筒内加熱温度をPFA樹脂の融点305℃以上としたため安定しなかったと思われる。
Comparative Example 3
In Example 2, the linear velocity is 30 m / min, the heating cylinder length is 250 mm, the outside air temperature is 20 ° C., the in-cylinder heating temperature is 330 ° C., and while introducing compressed air (pressure 0.05 kg / cm 2 ) into the air hole, The area withdrawal magnification was 772 times the target.
Although the average outer diameter of the obtained ultrafine porous tube was 0.20 mm and could be pulled down to the target diameter, the outer diameter was not stable. The assumed outside diameter standard deviation was 0.0100 mm, and the assumed outside diameter variation rate was 5.00%. It seems that the in-cylinder heating temperature was not stable because the melting point of the PFA resin was 305 ° C. or higher.

実施例7
外径0.5mmで、6個のリブを有する図1(D)に示す断面の四フッ化エチレン・六フッ化プロピレン共重合体(FEP)樹脂(三井・デュポンフロロケミカル(株)、TE9494、融点260℃)製の極細多孔チューブを作製した。溶融したFEP樹脂を、図2(D)に示す孔部形状のダイス10Dから押出し成形することによって極細多孔チューブを得た。その際の条件は、線速度は30m/分、加熱筒長は250mm、筒内加熱温度90℃、外気温度は20℃、面積引き落とし倍率は280倍で行った。
得られたチューブの見なし外径平均値は0.50mm、中央の充実部の外径は0.25mm、見なし外径標準偏差は0.0070mm、見なし外径変動率は1.40%、真円率96%であった。
Example 7
A cross section shown in FIG. 1 (D) having an outer diameter of 0.5 mm and having 6 ribs, a tetrafluoroethylene / hexafluoropropylene copolymer (FEP) resin (Mitsui / DuPont Fluorochemical Co., Ltd., TE 9494, An ultrafine porous tube having a melting point of 260 ° C. was produced. The melted FEP resin was extruded from a hole-shaped die 10D shown in FIG. 2D to obtain an ultrafine porous tube. In this case, the linear velocity was 30 m / min, the heating cylinder length was 250 mm, the in-cylinder heating temperature was 90 ° C., the outside air temperature was 20 ° C., and the area withdrawal ratio was 280 times.
The obtained tube has an assumed outside diameter average value of 0.50 mm, the outside diameter of the central solid portion is 0.25 mm, the outside diameter standard deviation is 0.0070 mm, the outside diameter fluctuation rate is 1.40%, a perfect circle The rate was 96%.

実施例8
中央に外径0.25mmのシングルモードの石英光ファイバを備えた、図1(E)に断面を示す実施例1と同じPFA樹脂製の、極細医療用多孔チューブを作製した。
図3において、ドラム25からシングルモードの石英光ファイバを、ガイドローラー26介して、クロスヘッド部30に取り付けられた、図2(C)に示す孔部形状のダイス10Cの導入孔15cに挿通し、これを連続的に下方に引き取りながら、その外周にPFA樹脂を350℃で押出して被覆した。
線速度は30m/分、加熱筒長は250mm、筒内加熱温度90℃、外気温度は20℃、面積引き落とし倍率は437倍で行った。
得られた石英光ファイバ入り極細多孔チューブの見なし外径平均値は0.40mm、見なし外径標準偏差は0.0017mm、見なし外径変動率は0.43%、真円率96%であった。
Example 8
An ultrafine medical porous tube made of the same PFA resin as in Example 1 whose cross section is shown in FIG. 1 (E) and having a single mode quartz optical fiber having an outer diameter of 0.25 mm in the center was prepared.
In FIG. 3, a single-mode quartz optical fiber is inserted from the drum 25 through the guide roller 26 into the introduction hole 15c of the hole-shaped die 10C shown in FIG. While continuously pulling it down, the outer periphery was coated with PFA resin extruded at 350 ° C.
The linear velocity was 30 m / min, the heating cylinder length was 250 mm, the in-cylinder heating temperature was 90 ° C., the outside air temperature was 20 ° C., and the area withdrawal magnification was 437 times.
The obtained ultrafine porous tube containing quartz optical fiber had an assumed outside diameter average value of 0.40 mm, an assumed outside diameter standard deviation of 0.0017 mm, an assumed outside diameter variation rate of 0.43%, and a roundness rate of 96%. .

実施例9
図3に示す装置を用いて、外径0.5mm、6個のリブを有する図1(F)に示す断面のポリメチルペンテン樹脂(PMP樹脂;三井化学(株)、TPX、RT18、融点:237℃)製の極細多孔チューブを作製した。溶融したPMP樹脂を、図2(C)に示す孔部形状のダイス10Cから押出し成形することによって極細多孔チューブを得た。その際の条件は、線速度は30m/分、加熱筒長は250mm、筒内加熱温度200℃、外気温度は19℃、面積引き落とし倍率は280倍で行った。
得られた極細多孔チューブはリブ部を頂点とする略6角形状を呈していた。リブ部の外径を外径として、見なし外径平均値は0.50mm、見なし外径標準偏差は0.0070mm、見なし外径変動率は1.40%であった。また本実施例の断面形状は円形ではなく略6角形であり、真円率を評価するのは適切ではないが、本発明における定義に従って、真円率90%であった。
6角形状になった原因は、筒内加熱温度をPMPの融点(237℃)に近い高温に設定したため冷却不足となり、リブを頂点とし、外環状部が内側に入り込み、6角形状となったものと考えられる。
Example 9
Using the apparatus shown in FIG. 3, the polymethylpentene resin (PMP resin; Mitsui Chemicals, TPX, RT18, melting point) having a cross section shown in FIG. 1 (F) having an outer diameter of 0.5 mm and six ribs: An ultrafine porous tube made at 237 ° C. was produced. The melted PMP resin was extruded from a hole-shaped die 10C shown in FIG. 2C to obtain an ultrafine porous tube. In this case, the linear velocity was 30 m / min, the heating cylinder length was 250 mm, the in-cylinder heating temperature was 200 ° C., the outside air temperature was 19 ° C., and the area withdrawal ratio was 280 times.
The obtained ultra-fine porous tube had a substantially hexagonal shape with the rib portion at the top. The outside diameter of the rib portion was taken as the outside diameter, the assumed outside diameter average value was 0.50 mm, the outside diameter standard deviation was 0.0070 mm, and the outside diameter fluctuation rate was 1.40%. In addition, the cross-sectional shape of this example is not a circle but a substantially hexagon, and it is not appropriate to evaluate the roundness, but the roundness was 90% according to the definition in the present invention.
The reason for the hexagonal shape was that the in-cylinder heating temperature was set to a high temperature close to the melting point (237 ° C.) of PMP, so that cooling was insufficient, the rib was the apex, and the outer annular part entered the inside, resulting in a hexagonal shape. It is considered a thing.

以上の実施例、比較例の結果をまとめて表1及び表2に示す。

Figure 0005883229
The results of the above examples and comparative examples are summarized in Table 1 and Table 2.
Figure 0005883229

Figure 0005883229
Figure 0005883229

以上の様な本発明の極細多孔チューブは、種々の用途において、機能的に改良されたチューブとして、例えば、以下に示す様な(1)脱気チューブ、(2)医療用チューブ、(3)その他、精密分析用などの極細多孔チューブとして有効に利用できる。   The ultrafine porous tube of the present invention as described above can be used as a functionally improved tube in various applications, for example, as shown below: (1) Deaeration tube, (2) Medical tube, (3) In addition, it can be effectively used as an ultrafine porous tube for precision analysis.

(1)脱気チューブ
例えば、液体クロマトグラフなどでは、試薬液(溶媒やサンプル液等)中に溶け込んでいる気体を移送中に除去する(脱気する)必要がある。各種理化学・分析機器や製薬,半導体,液晶等を含む各種の生産プロセス設備等において、液体(被脱気液体)から溶存気体を除去するのに真空脱気装置が使用される。
脱気装置には上記サンプル液や溶媒,緩衝液等と接触する部分に、気体のみを通し液体の透過を阻止するフッ素樹脂などを使用した極細脱気用チューブが使用される。
この種の真空脱気装置の脱気効率を向上させるためには、気体成分の拡散効率を上げる必要がある。気体拡散は拡散方程式に従うため、拡散移動距離が短い程、指数関数的に効率が向上する。つまり、脱気用チューブ内を通過する被脱気液体を脱気用チューブの中心部よりも膜面(チューブの内周面)にできるだけ近い位置を移動させることが好ましい。
本発明の極細多孔チューブは、中心に充実部ないし中空部を有し、その外周に被脱気液体の通過が可能な中空部を配しているので、当該中空部の被脱気液体は効率よく脱気される。
(1) Degassing tube For example, in a liquid chromatograph or the like, it is necessary to remove (degas) the gas dissolved in the reagent solution (solvent, sample solution, etc.) during transfer. A vacuum deaerator is used to remove dissolved gas from a liquid (liquid to be deaerated) in various physics / analysis equipment and various production process facilities including pharmaceuticals, semiconductors, liquid crystals and the like.
In the deaeration device, an ultrafine deaeration tube using a fluororesin or the like that passes only gas and blocks the permeation of the liquid is used at a portion in contact with the sample solution, solvent, buffer solution or the like.
In order to improve the degassing efficiency of this type of vacuum degassing apparatus, it is necessary to increase the diffusion efficiency of the gas component. Since gas diffusion follows the diffusion equation, the efficiency increases exponentially as the diffusion movement distance is shorter. That is, it is preferable to move the degassed liquid passing through the degassing tube to a position as close as possible to the membrane surface (inner peripheral surface of the tube) rather than the central portion of the degassing tube.
Since the microporous tube of the present invention has a solid part or a hollow part at the center and a hollow part through which the degassed liquid can pass is arranged on the outer periphery thereof, the degassed liquid in the hollow part is efficient. Well deaerated.

(2)医療用チューブ
マウスによる臨床実験用カテーテルでは非常に細いカテーテルが使用されている。人体においても血管内に挿入する血管造影用カテーテルでは、非常に細いものが要求されている。また、極細径の石英光ファイバを配置し、センサー機能を持たせると同時に、患部の治療も同時に行う事が可能なカテーテルも研究されている。光ファイバセンサーの径は0.25mm以下であり、カテーテルの外径は0.6mm以下が要求されている。
本発明の極細多孔チューブの場合、複数の中空部には、他の信号線(銅線など)を導入することもできる。また、薬剤を投与するための空間とすることもできる。つまり、中央に光ファイバを備え、その周囲の複数の空間に信号線を後入れし、薬剤を別の空間から注入する患部検査、治療を同時に行うことができる極細カテーテルとして使用する事が可能である。
(2) Medical tube A very thin catheter is used as a catheter for clinical experiments using mice. An angiography catheter that is inserted into a blood vessel in the human body is also required to be very thin. In addition, a catheter capable of providing a sensor function while arranging an ultrafine silica optical fiber and simultaneously treating an affected area has been studied. The diameter of the optical fiber sensor is 0.25 mm or less, and the outer diameter of the catheter is required to be 0.6 mm or less.
In the case of the microporous tube of the present invention, other signal lines (such as copper wires) can be introduced into the plurality of hollow portions. Moreover, it can also be set as the space for administering a chemical | medical agent. In other words, it is possible to use it as an ultra-thin catheter with an optical fiber in the center, and signal lines can be inserted into multiple spaces around it, and the affected area can be inspected and treated at the same time. is there.

(3)その他、精密分析用など
ライフサイエンスやメディカル分野の分析技術においては、サンプル溶液の高速微量送液に係わる技術が重要な要素技術になる場合がある。ナノリッターレベル或いは、更に、フェムトリッターレベルの送液が要求されている。
質量分析装置やDNAマイクロアレイなど、環境・バイオサンプルを多数網羅的に分析する技術が成熟しつつあるが、現在実用化されている送液方法は、1つの空間を有する1本のキャピラリーを使用する方法であり、複数の送液をしたい時には複数本使用しないといけないし、送液システムも各々必要になる。分析すべき検体が非常に多い場合など、分析系が非常に複雑になる。本発明の極細多孔チューブを使用し、各々の孔部にそれぞれ別の液を送液するシステムとすることで、分析系を単純化できる可能性がある。
(3) In addition, for analysis technology in the life science and medical fields, such as for precision analysis, technology related to high-speed microfeeding of sample solutions may become an important elemental technology. There is a demand for liquid feeding at the nanoliter level or even at the femtritor level.
Technologies for exhaustively analyzing a large number of environmental and biosamples, such as mass spectrometers and DNA microarrays, are maturing, but currently used liquid feeding methods use a single capillary with a single space. This is a method, and when a plurality of liquid delivery is desired, a plurality of liquid delivery systems must be used, and a liquid delivery system is also required. The analysis system becomes very complicated, for example, when there are a large number of samples to be analyzed. There is a possibility that the analysis system can be simplified by using the ultrafine porous tube of the present invention and using a system in which different liquids are sent to the respective holes.

微小な二流体ノズル、エレクトロスプレーノズル
中央を飛ばしたい液の送液に、周囲をガス流路とすると極細二流体ノズルとして使用できる。タンパク質の質量分析等でエレクトロスプレー現象を応用し、微量な試料を検出部に飛ばして送る方法があるが、ガスはネペライザーガスと言われている。送液部はガラスキャピラリーが使用されており、極細多孔チューブの中央空間にキャピラリーを挿入したものとすることで、ガスの方向性を保てるので、液(霧状)の拡散、広がりを防止でき、確実にターゲット部に微量の試料を供給できる。
Small two-fluid nozzle, electrospray nozzle When the center is a gas flow path, it can be used as an ultra-fine two-fluid nozzle for feeding liquid that wants to fly in the center. There is a method of applying the electrospray phenomenon in mass spectrometry of proteins, etc., and sending a very small amount of sample to the detection part, but the gas is said to be nepelizer gas. A glass capillary is used for the liquid feeding part, and by inserting the capillary in the central space of the ultrafine porous tube, the direction of the gas can be maintained, so that the liquid (mist) can be prevented from spreading and spreading, A small amount of sample can be reliably supplied to the target portion.

本発明の極細多孔チューブの製造方法は、上記の有用な極細多孔チューブを安定して精度よく連続生産する方法として有効に利用できる。   The method for producing an ultrafine porous tube of the present invention can be effectively used as a method for continuously producing the above useful ultrafine porous tube stably and accurately.

1、1A〜1F 極細多孔チューブ
1a〜1f 外環状部
2、2a〜2f リブ部
3、3a〜3f 中空部
4、4c、4e、4f 内環状部
5c、5f 中央空間部
5e 光ファイバ
6d 充実部
10、10A〜10D ダイス孔部形状
11、11a〜11d 外環状孔
12、12a〜12d リブ部孔
13、13a〜13d 中空部形成領域
14、14c 内環状孔
15、15c 光ファイバ、抗張力体線状物導入パイプ
17、17d 中央部樹脂充実部孔
20、20a〜20d 中空部形成用内圧調整エアーの導入孔
25 光ファイバ、抗張力体線状物の巻取ボビン
26 ガイドローラー
30 クロスヘッドダイス
40 加熱筒
50 空冷部
55 非接触温度計
60 水冷却槽
70 ターンシーブ
80 受水槽
90 ネルソンローラー(引取機)
95 揺動式外径測定器
S 製造装置
DESCRIPTION OF SYMBOLS 1, 1A-1F Extra-fine porous tube 1a-1f Outer annular part 2, 2a-2f Rib part 3, 3a-3f Hollow part 4, 4c, 4e, 4f Inner annular part 5c, 5f Central space part 5e Optical fiber 6d Solid part 10, 10A-10D Die hole shape 11, 11a-11d Outer annular hole 12, 12a-12d Rib hole 13, 13a-13d Hollow part forming region 14, 14c Inner annular hole 15, 15c Optical fiber, tensile strength linear Material introduction pipes 17 and 17d Central resin enhancement part holes 20 and 20a to 20d Internal pressure adjusting air introduction hole 25 for forming hollow part Optical fiber, tensile body winding bobbin 26 Guide roller 30 Crosshead die 40 Heating cylinder 50 Air cooling section 55 Non-contact thermometer 60 Water cooling tank 70 Turn sheave 80 Receiving tank 90 Nelson roller (take-up machine)
95 Oscillating outer diameter measuring instrument S Manufacturing equipment

Claims (4)

熱可塑性樹脂からなり、横断面の外形が略円形状、多角形状、又は楕円形状で、見なし外径平均値が0.5mm以下、長手方向に2個以上の連続する中空部を有し、長手方向の見なし外径変動率が2%以下、真円率が90%以上である極細多孔チューブを製造するに際して、所望の断面形状の極細多孔チューブを得るべく設計され、中空部を形成するダイス相当部分に中空部形成用内圧調整エアーの導入用の貫通孔を設けたダイスを用い、内圧調整用エアーを中空部内に導入しつつ、極細多孔チューブの樹脂部を形成するためのダイス孔部から溶融した樹脂を垂直下方に押出し、冷却工程を経て引き取る製造方法であって、
該製造方法は以下の(1)〜(2)の工程を有することを特徴とする極細多孔チューブの製造方法。
(1)ダイスに接触し、40℃以上で樹脂部を形成する樹脂の融点近傍未満の温度に加熱した加熱筒中で、押出成形物を加熱冷却しつつ以下に定義する面積引落とし倍率280〜776倍で引き落とす徐冷工程、
(2)次いで、室温付近の空冷ゾーンを少なくとも1段階以上設け、空冷しつつ通過させ樹脂部を室温付近まで冷却するか、又は空冷ゾーンの後、さらに必要に応じて水冷し室温付近まで押出成形物を冷却する冷却工程。
〔 面積引落とし倍率:面積引落とし倍率(倍)=(ダイス孔部の外環状部の外径)2/(極細多孔チューブの外径)2
It is made of a thermoplastic resin, and the outer shape of the cross section is substantially circular, polygonal, or elliptical, the assumed outer diameter average value is 0.5 mm or less, and has two or more continuous hollow portions in the longitudinal direction. Designed to obtain an ultrafine porous tube with a desired cross-sectional shape when producing an ultrafine porous tube with a directionally assumed outer diameter fluctuation rate of 2% or less and a roundness of 90% or more. Using a die provided with a through hole for introducing the internal pressure adjusting air for forming the hollow part in the part, melting from the die hole part for forming the resin part of the microporous tube while introducing the internal pressure adjusting air into the hollow part Extruding the resin vertically downward, taking a cooling step, a manufacturing method,
The production method includes the following steps (1) to (2): A method for producing an ultrafine porous tube.
(1) Area reduction ratio 280 to 776 defined below while heating and cooling the extruded product in a heating cylinder that is in contact with the die and heated to a temperature below the melting point of the resin that forms the resin part at 40 ° C. or higher. An annealing process that is pulled down
(2) Next, at least one stage of air cooling zone near room temperature is provided, and the resin part is cooled to near room temperature by passing it through air cooling, or it is further cooled with water as needed and extruded to near room temperature. A cooling process that cools things.
[Area withdrawal magnification: Area withdrawal magnification (times) = (outer diameter of outer annular portion of die hole portion) 2 / (outer diameter of microporous tube) 2 ]
前記横断面が、中央の空間部とこれを囲む内環状部と、前記内環状部から放射状に延びる複数のリブ部と、前記リブ部の外端間を連結する外環状部とを備え、前記内,外環状部とリブ部とで囲まれた複数の中空部を有する断面蓮根状形状である請求項1に記載の極細多孔チューブの製造方法。   The transverse section includes a central space portion, an inner annular portion surrounding the central space portion, a plurality of rib portions extending radially from the inner annular portion, and an outer annular portion connecting between outer ends of the rib portions, 2. The method for producing an ultrafine porous tube according to claim 1, wherein the microporous tube has a cross-sectional lotus root shape having a plurality of hollow portions surrounded by inner and outer annular portions and rib portions. 熱可塑性樹脂からなり、横断面が、中央の空間部とこれを囲む内環状部と、前記内環状部から放射状に延びる複数のリブ部と、前記リブ部の外端間を連結する外環状部とを備え、前記内,外環状部とリブ部とで囲まれた複数の中空部を有する断面蓮根状形状であり、前記中央の空間部に画像伝送用、又は高速信号伝送用の光ファイバ、あるいは抗張力体線状物からなる極細線状物を備え、見なし外径平均値が0.5mm以下、長手方向の見なし外径変動率が2%以下、真円率が90%以上である極細多孔チューブを製造するに際して、
中央に前記極細線状物を導入するための導入孔を有し、所望の形状の極細多孔チューブを得るべく設計され、中空部を形成するダイス相当部分に中空部形成用内圧調整エアーの導入用の貫通孔を設けたダイスを用い、内圧調整用エアーを中空部内に導入しつつ、前記導入孔に極細線状物を挿入し、この周囲に極細多孔チューブの樹脂部を形成するためのダイス孔部から溶融した樹脂を垂直下方に押出して、複数の中空部を有する樹脂部で被覆しつつ引き取る製造方法であって、
該製造方法は以下の(1)及び(2)の工程を有することを特徴とする極細多孔チューブの製造方法。
(1)ダイスに接触し、40℃以上で樹脂部を形成する樹脂の融点近傍未満の温度に加熱した加熱筒中で、押出成形物を加熱冷却しつつ以下に定義する面積引落とし率280〜776倍で引き落とす徐冷工程、
(2)次いで、室温付近の空冷ゾーンを少なくとも1段階以上設け、空冷しつつ通過させ樹脂部を室温付近まで冷却するか、又は空冷ゾーンの後、さらに必要に応じて水冷し室温付近まで押出成形物を冷却する冷却工程。
〔 面積引落とし倍率:面積引落とし倍率(倍)=(ダイス孔部の外環状部の外径)2/(極細多孔チューブの外径)2
An outer annular portion made of a thermoplastic resin and having a transverse cross section that connects between a central space portion, an inner annular portion surrounding the central space portion, a plurality of rib portions extending radially from the inner annular portion, and outer ends of the rib portions. A cross-sectional lotus root shape having a plurality of hollow portions surrounded by the inner and outer annular portions and rib portions, and an optical fiber for image transmission or high-speed signal transmission in the central space portion, Alternatively, an ultra-fine porous material having an ultra-thin linear object composed of a tensile-strength linear object and having an assumed outer diameter average value of 0.5 mm or less, a assumed outer diameter fluctuation rate in the longitudinal direction of 2% or less, and a roundness of 90% or more. When manufacturing tubes,
It has an introduction hole for introducing the ultrafine wire in the center, and is designed to obtain an ultrafine porous tube of the desired shape, for the introduction of air pressure adjusting air for forming the hollow part into the part corresponding to the die forming the hollow part A die hole for forming a resin portion of a microporous tube around the introduction hole while inserting air for adjusting internal pressure into the hollow portion and using a die provided with a through hole Extruding the molten resin vertically from the part, and taking it while covering with a resin part having a plurality of hollow parts,
The production method includes the following steps (1) and (2): A method for producing an ultrafine porous tube.
(1) An area reduction rate of 280 to 776 as defined below while heating and cooling the extruded product in a heating cylinder that is in contact with the die and heated to a temperature below the melting point of the resin forming the resin part at 40 ° C. or higher. An annealing process that is pulled down
(2) Next, at least one stage of air cooling zone near room temperature is provided, and the resin part is cooled to near room temperature by passing it through air cooling, or it is further cooled with water as needed and extruded to near room temperature. A cooling process that cools things.
[Area withdrawal magnification: Area withdrawal magnification (times) = (outer diameter of outer annular portion of die hole portion) 2 / (outer diameter of microporous tube) 2 ]
前記熱可塑性樹脂がフッ素樹脂、ポリオレフィン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、及び塩化ビニル樹脂から選択される1種の熱可塑性樹脂からなる請求項1〜3のいずれかに記載の極細多孔チューブの製造方法。
The said thermoplastic resin consists of 1 type of thermoplastic resins selected from a fluororesin, a polyolefin resin, a polyimide resin, a polyamide resin, a polyester resin, a polystyrene resin, and a vinyl chloride resin. Manufacturing method of ultra-fine porous tube.
JP2011054771A 2011-03-11 2011-03-11 Method for producing ultra-fine porous tube Active JP5883229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054771A JP5883229B2 (en) 2011-03-11 2011-03-11 Method for producing ultra-fine porous tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054771A JP5883229B2 (en) 2011-03-11 2011-03-11 Method for producing ultra-fine porous tube

Publications (2)

Publication Number Publication Date
JP2012189173A JP2012189173A (en) 2012-10-04
JP5883229B2 true JP5883229B2 (en) 2016-03-09

Family

ID=47082571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054771A Active JP5883229B2 (en) 2011-03-11 2011-03-11 Method for producing ultra-fine porous tube

Country Status (1)

Country Link
JP (1) JP5883229B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512776B (en) * 2018-07-26 2023-02-17 大金工业株式会社 Method for producing resin molded article
CN113021825B (en) * 2021-02-26 2023-04-07 重庆鸽牌电线电缆有限公司 Self-extinguishing thermal cable production device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349285Y2 (en) * 1984-11-02 1988-12-19
JPS61296113A (en) * 1985-06-20 1986-12-26 Kitazawa Valve:Kk Hollow yarn, production thereof and precise filtration filter using same
JPH05337188A (en) * 1992-06-10 1993-12-21 Mitsubishi Cable Ind Ltd Preparation of rigid slant continuous body
JP3891415B2 (en) * 2002-07-15 2007-03-14 キヤノン化成株式会社 Method for manufacturing coated tube for charging member
JP5393016B2 (en) * 2007-10-15 2014-01-22 宇部エクシモ株式会社 Method for producing perforated tube
JP5259529B2 (en) * 2008-09-02 2013-08-07 宇部日東化成株式会社 Method for producing hollow core body for coaxial cable
JP2010192271A (en) * 2009-02-19 2010-09-02 Ube Nitto Kasei Co Ltd Manufacturing method and manufacturing device of hollow core object for coaxial cable

Also Published As

Publication number Publication date
JP2012189173A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5254982B2 (en) Method and apparatus for producing an anisotropic foam extrusion product having a capillary channel and anisotropic foam extrusion product
KR101226732B1 (en) Method for producing optical fiber
US7212716B2 (en) Process for manufacturing a micro-structured optical fibre
JP2007514566A (en) Apparatus and method for manufacturing capillary products
JP5883229B2 (en) Method for producing ultra-fine porous tube
US6797212B2 (en) Method for forming hollow fibers
Toal Jr et al. Microstructured monofilament via thermal drawing of additively manufactured preforms
Jin et al. Cross-section design of multi-lumen extrusion dies: Study on the effects of die swell and gas flow rate of the lumen
JP2012187550A (en) Small-diameter degassing tube and method for producing the same
WO2024012122A1 (en) High-degassing polyolefin hollow fiber membrane, preparation method therefor, and use thereof
JP2012187549A (en) Small-diameter degassing tube and method for producing the same
JP5863814B2 (en) Thermal fiber drawing (TFD) with added core decomposition process and particles obtained therefrom
JP2016106043A (en) Method for producing tube, and production device therefor
CN106891463B (en) A kind of Coaxial nozzle production method
CN108284590A (en) 3D printing consumptive material wire-drawing equipment
US10744696B2 (en) Reinforced coreless tube extrusion systems and methods
JP2010207321A (en) Catheter
CN104525003B (en) Polyether sulfone hollow fiber membrane preparation method
JP6515582B2 (en) Apparatus and method for manufacturing tubular body
JP6515583B2 (en) Apparatus and method for manufacturing tubular body
JP2015175385A (en) multi-lumen tube
JP2019108249A (en) Manufacturing apparatus and manufacturing method for glass fiber
US20090257725A1 (en) Preform for an optical fibre
JP2014201594A (en) Method for producing porous polytetrafluoroethylene tube
RU2706794C2 (en) Method of making constant and variable-diameter wire from amorphous alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160205

R150 Certificate of patent or registration of utility model

Ref document number: 5883229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250