JP5882817B2 - Zoom lens and imaging apparatus having the same - Google Patents

Zoom lens and imaging apparatus having the same Download PDF

Info

Publication number
JP5882817B2
JP5882817B2 JP2012092305A JP2012092305A JP5882817B2 JP 5882817 B2 JP5882817 B2 JP 5882817B2 JP 2012092305 A JP2012092305 A JP 2012092305A JP 2012092305 A JP2012092305 A JP 2012092305A JP 5882817 B2 JP5882817 B2 JP 5882817B2
Authority
JP
Japan
Prior art keywords
group
lens
refractive power
concave
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012092305A
Other languages
Japanese (ja)
Other versions
JP2013221998A5 (en
JP2013221998A (en
Inventor
和也 下村
和也 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012092305A priority Critical patent/JP5882817B2/en
Priority to EP13001820.3A priority patent/EP2650711B1/en
Priority to US13/860,595 priority patent/US8988786B2/en
Publication of JP2013221998A publication Critical patent/JP2013221998A/en
Publication of JP2013221998A5 publication Critical patent/JP2013221998A5/ja
Application granted granted Critical
Publication of JP5882817B2 publication Critical patent/JP5882817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Nonlinear Science (AREA)

Description

本発明は、ズームレンズ及びそれを有する撮像装置に関し、特に放送用テレビカメラ、映画用カメラ、ビデオカメラ、デジタルスチルカメラ、銀塩写真用カメラ等に好適なものである。   The present invention relates to a zoom lens and an image pickup apparatus having the same, and is particularly suitable for a broadcast television camera, a movie camera, a video camera, a digital still camera, a silver salt photography camera, and the like.

近年、テレビカメラや映画用カメラ、写真用カメラ、ビデオカメラ等の撮像装置には、小型軽量で、広画角・高ズーム比かつ高い光学性能を有したズームレンズが要望されている。特に、プロフェッショナルの動画撮影システムとしてのテレビ・映画用カメラに用いられているCCDやCMOS等の撮像デバイスは、撮像範囲全体が略均一の解像力を有している。そのため、これを用いるズームレンズに対しては、画面中心から画面周辺まで解像力が略均一であることが要求されている。また、機動性や操作性を重視した撮影形態に対して小型軽量化も要求されている。   In recent years, there has been a demand for a zoom lens that is compact and lightweight, has a wide angle of view, a high zoom ratio, and high optical performance for imaging devices such as a TV camera, a movie camera, a photographic camera, and a video camera. In particular, an imaging device such as a CCD or CMOS used in a television / movie camera as a professional moving image shooting system has a substantially uniform resolution in the entire imaging range. Therefore, a zoom lens using this is required to have substantially uniform resolution from the center of the screen to the periphery of the screen. In addition, a reduction in size and weight is also demanded for shooting modes that emphasize mobility and operability.

広画角、高ズーム比のズームレンズとして、最も物体側に正の屈折力のレンズ群を配置し、全体として4つのレンズ群により構成されるポジティブリード型の4群ズームレンズが知られている。   As a zoom lens having a wide angle of view and a high zoom ratio, a positive lead type four-unit zoom lens in which a lens unit having a positive refractive power is disposed closest to the object side and is composed of four lens units as a whole is known. .

例えば、特許文献1では、広角端のFナンバー1.6〜1.7程度、広角端の画角65度〜87度程度、望遠端の画角4度〜13度程度、変倍比8〜18程度の4群ズームレンズが開示されている。正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正または負の屈折力の第3レンズ群、正の屈折力の第4レンズ群から構成されている。また、第1レンズ群が負の屈折力の第11群、正の屈折力の第12群、正の屈折力の第13群から構成され、無限遠側から至近側への合焦時に第12群が像側へ移動する構成となっている。 For example, in Patent Document 1, an F number of about 1.6 to 1.7 at the wide angle end, an angle of view of about 65 to 87 degrees at the wide angle end, an angle of view of about 4 to 13 degrees at the telephoto end, and a zoom ratio of 8 to A 18-unit four-group zoom lens is disclosed. The first lens group has a positive refractive power, the second lens group has a negative refractive power, the third lens group has a positive or negative refractive power, and the fourth lens group has a positive refractive power. The first lens group includes an eleventh group having a negative refractive power, a twelfth group having a positive refractive power, and a thirteenth group having a positive refractive power, and the twelfth lens group is in focus from the infinity side to the closest side. The group moves to the image side.

特許文献2では、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群から構成されている4群ズームレンズが開示されている。第1レンズ群が負の屈折力の第11群、正の屈折力の第12群、正の屈折力の第13群から構成され、無限遠側から至近側への合焦時に第12群が像側へ移動する構成となっている。 In Patent Document 2, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power 4 are configured. A group zoom lens is disclosed. The first lens group includes an eleventh group having a negative refractive power, a twelfth group having a positive refracting power, and a thirteenth group having a positive refracting power, and the twelfth group is in focus from the infinity side to the closest side. It is configured to move to the image side.

特許文献3では、広角端のFナンバー2.8程度、広角端の画角35度程度、望遠端の画角12度程度、変倍比2.7程度の4群ズームレンズが開示されている。第1レンズ群が負の屈折力の第11群、正の屈折力の第12群から構成され、無限遠側から至近側への合焦時に第12群は物体側へ移動する構成となっている。 Patent Document 3 discloses a four-group zoom lens having an F number of about 2.8 at the wide angle end, an angle of view of about 35 degrees at the wide angle end, an angle of view of about 12 degrees at the telephoto end, and a zoom ratio of about 2.7. . The first lens group is composed of an eleventh group having a negative refractive power and a twelfth group having a positive refractive power, and the twelfth group moves to the object side upon focusing from the infinity side to the close side. Yes.

特開平6−242378号公報JP-A-6-242378 特開昭52−084754号公報JP 52-084754 A 特開2008−216480号公報JP 2008-216480 A

しかしながら、特許文献1に開示されているズームレンズでは、更なる小型軽量化と高い光学性能達成の両立が困難である。実施例1、2には、絞りより物体側に負の屈折力を有したレンズ群が並ぶ構成が開示されている。第2レンズ群や第1レンズ群の像側のレンズ群の径が増大する傾向があるため、ズームレンズの小型化に不利である。また、小型軽量化のために、各レンズ群の屈折力を強くすると、全ズーム領域に渡り収差変動が大きくなり、高い光学性能達成が困難となる。また、特許文献1の実施例3には、第3レンズ群が正の屈折力の実施例が開示されているが、第3レンズ群の屈折力が強いため、構成枚数が多くなり、小型軽量化には不利である。且つ、第3レンズ群から射出される強い収斂光束に対して、十分なFナンバーや射出瞳を確保するためには、第4レンズの構成枚数が多くなり、結果として小型軽量化が困難である。   However, in the zoom lens disclosed in Patent Document 1, it is difficult to achieve both further reduction in size and weight and achievement of high optical performance. Examples 1 and 2 disclose configurations in which lens groups having negative refractive power are arranged on the object side of the stop. Since the diameters of the lens groups on the image side of the second lens group and the first lens group tend to increase, it is disadvantageous for downsizing the zoom lens. Further, if the refractive power of each lens group is increased in order to reduce the size and weight, the variation in aberration increases over the entire zoom region, making it difficult to achieve high optical performance. In Example 3 of Patent Document 1, an example in which the third lens unit has a positive refractive power is disclosed. However, since the third lens unit has a strong refractive power, the number of components increases, and the size and weight are reduced. It is disadvantageous for conversion. In addition, in order to secure a sufficient F number and exit pupil for the strong convergent light beam emitted from the third lens group, the number of constituent elements of the fourth lens increases, and as a result, it is difficult to reduce the size and weight. .

一方、特許文献2には、第3レンズ群が正の屈折力を有する実施例が開示されているが、第3群の屈折力が弱く、第3レンズ群から射出される光束が発散となる。発散光束に対して、十分なFナンバーや射出瞳を確保するためには、第4レンズの構成枚数が多くなり、結果として小型軽量化が困難である。   On the other hand, Patent Document 2 discloses an example in which the third lens group has a positive refractive power, but the refractive power of the third lens group is weak and the light beam emitted from the third lens group becomes divergent. . In order to secure a sufficient F number and exit pupil for the divergent light beam, the number of constituent lenses of the fourth lens increases, and as a result, it is difficult to reduce the size and weight.

特許文献3に開示されているズームレンズでは、各レンズ群の屈折力やレンズ構成が更なる広画角化に対して不利であり、広画角化に伴うレンズ径の大型化を抑制することが困難となる。   In the zoom lens disclosed in Patent Document 3, the refractive power of each lens group and the lens configuration are disadvantageous for further widening the angle of view, and the increase in the lens diameter associated with the widening of the angle of view is suppressed. It becomes difficult.

そこで、本発明は、各レンズ群の屈折力やレンズ構成、そして収差分担等を適切に設定することにより、広画角、高ズーム比、小型軽量で全ズーム範囲に渡り高い光学性能を有するズームレンズの提供を目的とする。具体的には、広角端の画角35度〜100度程度、望遠端の画角10度〜45度程度、変倍比2.5〜5程度の高変倍比・小型軽量で、高性能なズームレンズの提供を目的とする。   Accordingly, the present invention provides a zoom lens that has a wide angle of view, a high zoom ratio, a small size and light weight and high optical performance over the entire zoom range by appropriately setting the refractive power, lens configuration, and aberration sharing of each lens group. The purpose is to provide lenses. Specifically, the angle of view at the wide-angle end is about 35 ° to 100 °, the angle of view at the telephoto end is about 10 ° to 45 °, a high zoom ratio of about 2.5 to 5 and a small, lightweight, high performance. Aims to provide a simple zoom lens.

上記目的を達成するために、本発明のズームレンズ及びそれを有する撮像装置は、物体側から順に、変倍のためには移動しない正の屈折力の第1群、変倍時に移動する負の屈折力の第2群、変倍時に移動する正の第3群、変倍のためには移動しない正の第4群より構成されるズームレンズにおいて、変倍に際して隣接するレンズ群の間隔が変化し、該第3群は広角端から望遠端への変倍に際して、像側に移動した後、物体側に移動し、該第1群の焦点距離をf1、該第2群の焦点距離をf2、該第3群の焦点距離をf3、無限遠より光束が入射する際の広角端における該第3群の横倍率をβ3wとしたとき、
−2.92≦f1/f2<−1.0
−0.55<f2/f3<−0.20
−0.5<1/β3w<0.5
を満たすことを特徴とする。
In order to achieve the above object, the zoom lens of the present invention and the image pickup apparatus having the zoom lens, in order from the object side, a first group of positive refractive power that does not move for zooming, a negative lens that moves during zooming In a zoom lens composed of a second group of refractive power, a positive third group that moves during zooming, and a positive fourth group that does not move for zooming, the distance between adjacent lens groups changes during zooming The third lens group moves to the image side after zooming from the wide-angle end to the telephoto end, and then moves to the object side. The focal length of the first group is f1, and the focal length of the second group is f2. When the focal length of the third group is f3 and the lateral magnification of the third group at the wide angle end when the light beam enters from infinity is β3w,
-2.92 ≦ f1 / f2 <−1.0
−0.55 <f2 / f3 <−0.20
-0.5 <1 / β3w <0.5
It is characterized by satisfying.

各レンズ群の屈折力やレンズ構成、そして収差分担等を適切に設定することにより、広画角、高ズーム比、小型軽量で全ズーム範囲に渡り高い光学性能を有するズームレンズを実現する。   By appropriately setting the refractive power of each lens group, the lens configuration, the aberration sharing, and the like, a zoom lens having a wide field angle, a high zoom ratio, a small size and light weight and high optical performance over the entire zoom range is realized.

数値実施例1の広角端において無限遠合焦時のレンズ断面図Lens cross-sectional view when focusing on infinity at the wide-angle end in Numerical Example 1 数値実施例1の広角端(a)、ズーム中間(b)、望遠端(c)で無限遠合焦時の収差図Aberration diagram when focusing on infinity at the wide-angle end (a), the zoom middle (b), and the telephoto end (c) in Numerical Example 1. 数値実施例2の広角端において無限遠合焦時のレンズ断面図Lens cross-sectional view when focusing on infinity at the wide angle end in Numerical Example 2 数値実施例2の広角端(a)、ズーム中間(b)、望遠端(c)で無限遠合焦時の収差図Aberration diagram when focusing on infinity at the wide-angle end (a), the zoom middle (b), and the telephoto end (c) in Numerical Example 2. 数値実施例3の広角端において無限遠合焦時のレンズ断面図Lens cross-sectional view when focusing on infinity at the wide-angle end in Numerical Example 3 数値実施例3の広角端(a)、ズーム中間(b)、望遠端(c)で無限遠合焦時の収差図Aberration diagram at the time of focusing on infinity at the wide angle end (a), the zoom middle (b), and the telephoto end (c) in Numerical Example 3. 数値実施例4の広角端において無限遠合焦時のレンズ断面図Lens sectional view at the time of focusing on infinity at the wide angle end in Numerical Example 4 数値実施例4の広角端(a)、ズーム中間(b)、望遠端(c)で無限遠合焦時の収差図Aberration diagram at the time of focusing on infinity at the wide-angle end (a), the zoom middle (b), and the telephoto end (c) in Numerical Example 4. 数値実施例5の広角端において無限遠合焦時のレンズ断面図Lens sectional view at the time of focusing on infinity at the wide angle end in Numerical Example 5 数値実施例5の広角端(a)、ズーム中間(b)、望遠端(c)で無限遠合焦時の収差図Aberration diagram when focusing on infinity at the wide-angle end (a), the zoom middle (b), and the telephoto end (c) in Numerical Example 5 数値実施例6の広角端において無限遠合焦時のレンズ断面図Lens sectional view at the time of focusing on infinity at the wide angle end in Numerical Example 6 数値実施例6の広角端(a)、ズーム中間(b)、望遠端(c)で無限遠合焦時の収差図Aberration diagram when focusing on infinity at the wide angle end (a), the zoom middle (b), and the telephoto end (c) in Numerical Example 6 数値実施例7の広角端において無限遠合焦時のレンズ断面図Lens cross-sectional view when focusing on infinity at the wide angle end in Numerical Example 7 数値実施例7の広角端(a)、ズーム中間(b)、望遠端(c)で無限遠合焦時の収差図Aberration diagram when focusing on infinity at the wide angle end (a), the zoom middle (b), and the telephoto end (c) in Numerical Example 7 広角端、ズーム中間、望遠端における光路図Optical path diagram at wide-angle end, middle zoom, and telephoto end 正レンズ群の軸上色収差の2色の色消しと二次スペクトル残存に関する模式図Schematic diagram of two-color achromatic and secondary spectrum remaining of axial chromatic aberration of positive lens group 負レンズ群の軸上色収差の2色の色消しと二次スペクトル残存に関する模式図Schematic diagram of the two-color achromatic and secondary spectrum remaining of the axial chromatic aberration of the negative lens group 正レンズ群の倍率色収差の2色の色消しと二次スペクトル残存に関する模式図Schematic diagram of the two-color achromatic and secondary spectrum remaining of the chromatic aberration of magnification of the positive lens group 負レンズ群の倍率色収差の2色の色消しと二次スペクトル残存に関する模式図Schematic diagram of two-color achromatic and secondary spectrum remaining of chromatic aberration of magnification of negative lens group 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。
まず、本発明のズームレンズの特徴について、各条件式に沿って説明する。
本発明のズームレンズは、広画角、高ズーム比、小型軽量で全ズーム範囲に渡り高い光学性能を達成するために、第1群と第2群の焦点距離の比、第2群と第3群の焦点距離の比および第3群の広角端における横倍率を規定することを特徴とする。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
First, features of the zoom lens according to the present invention will be described along conditional expressions.
The zoom lens according to the present invention has a wide angle of view, a high zoom ratio, a small size and a light weight, and achieves high optical performance over the entire zoom range. The ratio of the focal length of the third group and the lateral magnification at the wide angle end of the third group are defined.

本発明のズームレンズは、物体側から順に、変倍のためには移動しない正の屈折力の第1群、変倍時に移動する負の屈折力の第2群、変倍時に移動する正の第3群、変倍のためには移動しない正の第4群より構成されている。さらに、第1群の焦点距離をf1、第2群の焦点距離をf2、第3群の焦点距離をf3、無限遠より光束が入射する際の広角端における第3群の横倍率をβ3wとしたとき、
−2.92≦f1/f2<−1.0 ・・・(1)
−0.55<f2/f3<−0.20 ・・・(2)
−0.7<1/β3w<0.5 ・・・(3)
を満たしている。
The zoom lens of the present invention includes, in order from the object side, a first group of positive refractive power that does not move for zooming, a second group of negative refractive power that moves when zooming, and a positive group that moves when zooming The third group consists of a positive fourth group that does not move for zooming. Further, the focal length of the first group is f1, the focal length of the second group is f2, the focal length of the third group is f3, and the lateral magnification of the third group at the wide angle end when the light beam enters from infinity is β3w. When
-2.92 ≦ f1 / f2 <−1.0 (1)
−0.55 <f2 / f3 <−0.20 (2)
-0.7 <1 / β3w <0.5 (3)
Meet.

本発明において、変倍のためには移動しない正の屈折力の第1群、変倍時に移動する負の屈折力の第2群、変倍時に移動する正の第3群、変倍のためには移動しない正の第4群より構成することによる光学的作用に関して説明する。   In the present invention, the first group of positive refractive power that does not move for zooming, the second group of negative refractive power that moves during zooming, the third group of positive power that moves during zooming, for zooming Will be described with respect to the optical effect of the positive fourth group that does not move.

図15は、本発明の実施例1の広角端(a)、ズーム中間(b)、望遠端(c)における光路図を示している。U1〜U4は、それぞれ第1群〜第4群を表している。図15の(a)、(c)からわかるように、第1群の中でも像側のレンズ群は、望遠端の軸外光線でレンズ径が決まっており、また第2群の中でも物体側のレンズは、広角端の軸外光線でレンズ径が決まっている。小型軽量化を達成するには、レンズ重量の重い第1群、第2群のレンズ径を抑制することが有効である。本発明のように、第3群の屈折力を正にすることで、軸外光線の光線高を下げることが可能であり、小型軽量化に有利なレンズ構成となっている。
更に、前述の(1)〜(3)式を満たすことで、広画角、高ズーム比、小型軽量で全ズーム範囲に渡り高い光学性能を効果的に達成することが可能となる。
FIG. 15 shows optical path diagrams at the wide-angle end (a), the zoom middle (b), and the telephoto end (c) of Embodiment 1 of the present invention. U1 to U4 represent the first group to the fourth group, respectively. As can be seen from FIGS. 15A and 15C, the lens group on the image side in the first group has a lens diameter determined by the off-axis light beam at the telephoto end, and also on the object side in the second group. The lens diameter is determined by the off-axis light beam at the wide-angle end. In order to achieve a reduction in size and weight, it is effective to suppress the lens diameters of the first group and the second group that are heavy in lens weight. As in the present invention, by making the refractive power of the third group positive, it is possible to reduce the ray height of off-axis rays, and the lens configuration is advantageous for reduction in size and weight.
Furthermore, by satisfying the above-described equations (1) to (3), it is possible to effectively achieve high optical performance over the entire zoom range with a wide angle of view, a high zoom ratio, a small size and light weight.

(1)式は、第1群の焦点距離と第2群の焦点距離の比を規定している。(1)式を満たすことで、ズームレンズの広画角化と収差変動の補正の両立を達成している。ズームレンズの焦点距離は、第1群の焦点距離に第2群から第4群までの横倍率を掛け合わせ値となるため、広画角化を達成するためには、第1群の焦点距離を適切に設定する必要がある。(1)式の上限の条件が満たされないと、第1群の屈折力が強くなり、収差変動の補正が困難となる。また、第1群に対して第2群の屈折力が不足するため、ズームレンズの小型軽量化に不利である。逆に、(1)式の下限の条件が満たされないと、第1群の屈折力が不足するため、広画角化や小型軽量化が困難となる。更に好ましくは、(1)式は次の如く設定するのが良い。
−2.92≦f1/f2<−1.5 ・・・(1a)

Equation (1) defines the ratio of the focal length of the first group to the focal length of the second group. By satisfying the expression (1), both the wide angle of view of the zoom lens and the correction of aberration fluctuation are achieved. The focal length of the zoom lens is a value obtained by multiplying the focal length of the first group by the lateral magnification from the second group to the fourth group. Therefore, in order to achieve a wide angle of view, the focal length of the first group Must be set appropriately. If the upper limit condition of the expression (1) is not satisfied, the refractive power of the first group becomes strong, and it becomes difficult to correct aberration fluctuations. Further, since the refractive power of the second group is insufficient with respect to the first group, it is disadvantageous for making the zoom lens compact and lightweight. On the other hand, if the lower limit condition of the expression (1) is not satisfied, the refractive power of the first group is insufficient, and it becomes difficult to widen the angle of view and reduce the size and weight. More preferably, the formula (1) is set as follows.
-2.92 ≦ f1 / f2 <−1.5 (1a)

また、(2)式は第2群の焦点距離と第3群の焦点距離の比を規定している。(2)式を満たすことで、第3群に対する第2群の焦点距離を適切に設定することができるため、広画角化と小型軽量化の両立に加え、高ズーム比と高い光学性能を効率的に実現することができる。(2)式の上限の条件が満たされないと、第2群の屈折力が強くなるため、変倍に伴う収差変動が大きくなり、ズーム全域で良好な光学性能を達成することが困難となる。また、第3群の屈折力が弱くなるため、前述で説明した第1群の像側のレンズ径及び第2群の物体側のレンズ径の抑制効果が弱くなり、小型軽量化に不利となる。逆に、(2)式の下限の条件が満たされないと、第2群の屈折力が弱くなるため、変倍に伴う第2群の移動量が大きくなり、高ズーム比と小型軽量化の両立が困難となる。更に好ましくは、(2)式は次の如く設定するのが良い。
−0.45<f2/f3<−0.25 ・・・(2a)
Equation (2) defines the ratio of the focal length of the second group to the focal length of the third group. By satisfying the expression (2), the focal length of the second group relative to the third group can be set appropriately, and in addition to achieving both a wide angle of view and a reduction in size and weight, a high zoom ratio and high optical performance are achieved. Can be realized efficiently. If the condition of the upper limit of the expression (2) is not satisfied, the refractive power of the second group becomes strong, so that the aberration fluctuation accompanying zooming increases, making it difficult to achieve good optical performance over the entire zoom range. In addition, since the refractive power of the third group becomes weak, the effect of suppressing the lens diameter on the image side of the first group and the lens diameter on the object side of the second group described above becomes weak, which is disadvantageous for reduction in size and weight. . On the other hand, if the lower limit condition of the expression (2) is not satisfied, the refractive power of the second group becomes weak, so the amount of movement of the second group accompanying zooming becomes large, and both a high zoom ratio and a reduction in size and weight are achieved. It becomes difficult. More preferably, the formula (2) is set as follows.
−0.45 <f2 / f3 <−0.25 (2a)

(3)式は無限遠より光束が入射する際の広角端における第3群の横倍率β3wの逆数を規定したものである。(3)式は、レンズ系全体の小型軽量化を図るために規定している。(3)式を満たすことで、第3群からの射出光束が略アフォーカルとなるため、第4群の構成枚数を少なくすることが可能となり、小型軽量に有利である。(3)式の上限の条件が満たされないと、第3群からの射出光束の発散が強くなり、第4群に強い正の屈折力のレンズ群が必要となるため、第4群の構成枚数が多くなる。逆に、(3)式の下限の条件が満たされないと、第3群からの射出光束の収斂が強くなる。第3群からの射出光束を強い収斂光束にするには、第3群の屈折力を強くする必要があり、その結果、第3群の構成枚数が増える。よって、小型軽量の達成が困難となる。更に好ましくは、(3)式は次の如く設定するのが良い。
−0.4<1/β3w<0.1 ・・・(3a)
Equation (3) defines the reciprocal of the lateral magnification β3w of the third group at the wide-angle end when the light beam enters from infinity. Equation (3) is defined to reduce the size and weight of the entire lens system. By satisfying the expression (3), the emitted light beam from the third group becomes substantially afocal, so that the number of constituent elements of the fourth group can be reduced, which is advantageous for small size and light weight. If the upper limit condition of the expression (3) is not satisfied, the divergence of the emitted light beam from the third group becomes strong, and a lens unit having a strong positive refractive power is required for the fourth group. Will increase. On the contrary, if the lower limit condition of the expression (3) is not satisfied, the convergence of the emitted light beam from the third group becomes strong. In order to make the emitted light beam from the third group a strong convergent light beam, it is necessary to increase the refractive power of the third group, and as a result, the number of constituent members of the third group increases. Therefore, it becomes difficult to achieve a small size and light weight. More preferably, the expression (3) is set as follows.
−0.4 <1 / β3w <0.1 (3a)

さらなる本発明のズームレンズの態様として、広画角化と高い光学性能を達成するための第1群の構成を規定している。第1群は、合焦のためには移動しない固定の負の屈折力の第11群、無限遠側から至近側への合焦時に像側へ移動する正の屈折力の第12群、合焦のためには移動しない正の屈折力の第13群から構成される。第1群の物体側に負の屈折力レンズ群を、第1群の像側に正の屈折力のレンズ群を配置することで、第1群の像側主点を像側に設定し易く、広画角化に有利な構成となる。 As a further aspect of the zoom lens according to the present invention, a first group configuration for achieving a wide angle of view and high optical performance is defined. The first group, the 11th group of negative refractive power fixed which does not move for focusing, infinity side positive second subgroup refractive power and moves to focus at the image side to the near side from coupling The thirteenth group has a positive refractive power that does not move for focusing . By disposing a negative refractive power lens group on the object side of the first group and a lens group having a positive refractive power on the image side of the first group, it is easy to set the image side principal point of the first group on the image side. This is a configuration advantageous for widening the angle of view.

さらなる本発明のズームレンズの態様として、第11群の焦点距離に対する第12群の焦点距離の比と第1群の焦点距離に対する第13群の焦点距離の比を規定している。第11群の焦点距離をf11、第12群の焦点距離をf12としたとき、
−2.3<f12/f11<−1.5 ・・・(4)
を満たしている。(4)式は合焦時における第12群の移動量の抑制と高性能化を図るために規定している。特に、最至近物体距離が短い(例えば、望遠端の焦点距離及び最至近物体距離をそれぞれmm単位で表したとき、望遠端の焦点距離に対する最至近物体距離の比が10より小さい)ズームレンズに対して有効である。(4)式の上限の条件が満たされないと、第11群の屈折力が弱くなり、合焦時における第12群の移動量が大きくなり、ズームレンズの小型軽量化に不利である。逆に、(4)式の下限の条件が満たされないと、第11群の屈折力が強くなり、その結果、第12群の正の屈折力が強くなり、良好な光学性能を達成することが困難となる。更に好ましくは、(4)式は次の如く設定するのが良い。
−2.1<f12/f11<−1.8 ・・・(4a)
As a further aspect of the zoom lens of the present invention, the ratio of the focal length of the twelfth group to the focal length of the eleventh group and the ratio of the focal length of the thirteenth group to the focal length of the first group are defined. When the focal length of the 11th group is f11 and the focal length of the 12th group is f12,
-2.3 <f12 / f11 <-1.5 (4)
Meet. Formula (4) is defined in order to suppress the movement amount of the twelfth group during focusing and to improve the performance. In particular, the zoom lens has a short nearest object distance (for example, when the focal length at the telephoto end and the nearest object distance are expressed in mm, the ratio of the nearest object distance to the focal length at the telephoto end is smaller than 10). It is effective against this. If the upper limit condition of the expression (4) is not satisfied, the refractive power of the eleventh group becomes weak, the amount of movement of the twelfth group at the time of focusing becomes large, which is disadvantageous for the reduction in size and weight of the zoom lens. On the contrary, if the lower limit condition of the expression (4) is not satisfied, the refractive power of the eleventh group becomes strong, and as a result, the positive refractive power of the twelfth group becomes strong, and good optical performance can be achieved. It becomes difficult. More preferably, the equation (4) is set as follows.
−2.1 <f12 / f11 <−1.8 (4a)

さらに、第13群の焦点距離をf13としたとき、
0.9<f13/f1<1.5 ・・・(5)(5)式は小型軽量化と高性能化を図るために規定している。(5)式の上限の条件が満たされないと、第13群の屈折力が弱くなり、第11群や第12群の径の抑制が困難となる。その結果、ズームレンズの小型軽量化に不利となる。逆に、(5)式の下限の条件が満たされないと、第13群の屈折力が強くなるため、第13群を構成する各レンズの曲率半径が小さくなることにより、高次収差や歪曲収差の増大、構成枚数の増加を招き、小型軽量化と良好な光学性能の両立が困難となる。更に好ましくは、(5)式は次の如く設定するのが良い。
0.95<f13/f1<1.45 ・・・(5a)
Furthermore, when the focal length of the thirteenth group is f13,
0.9 <f13 / f1 <1.5 (5) The formula (5) is defined in order to reduce the size and weight and improve the performance. If the upper limit condition of the expression (5) is not satisfied, the refractive power of the thirteenth group becomes weak, and it becomes difficult to suppress the diameters of the eleventh group and the twelfth group. As a result, it is disadvantageous for reducing the size and weight of the zoom lens. On the contrary, if the lower limit condition of the expression (5) is not satisfied, the refractive power of the thirteenth group becomes strong. Therefore, the curvature radius of each lens constituting the thirteenth group becomes small, so that higher-order aberrations and distortion aberrations. And an increase in the number of components, making it difficult to achieve both compact size and light weight and good optical performance. More preferably, the formula (5) is set as follows.
0.95 <f13 / f1 <1.45 (5a)

さらなる本発明のズームレンズの態様として、第11群の構成及び第11群内に使用する光学材料の分散を規定している。
第11群は1枚以上の凸レンズと1枚以上の凹レンズから構成され、第11群を構成する凸レンズのアッベ数の平均値をν11p、凹レンズのアッベ数の平均値をν11nとしたとき、
18<ν11n−ν11p<45 ・・・(6)
を満たしている。
As a further aspect of the zoom lens of the present invention, the constitution of the eleventh group and the dispersion of the optical material used in the eleventh group are defined.
The eleventh group is composed of one or more convex lenses and one or more concave lenses, and when the average value of Abbe numbers of the convex lenses constituting the eleventh group is ν11p and the average value of Abbe numbers of the concave lenses is ν11n,
18 <ν11n−ν11p <45 (6)
Meet.

(6)式は合焦時の色収差の変動を抑制しつつ、良好な光学性能を達成するための条件を規定している。現存する光学材料は、アッベ数νdが大きいほど屈折率が小さい傾向を持っており、(6)式の上限の条件が満たされないと、第11群を構成する凹レンズの屈折率が低くなる。その結果、各レンズの曲率半径が小さくなり、高次収差の補正が困難となる。逆に(6)式の下限の条件が満たされないと、第11群を構成する凸レンズ及び凹レンズの屈折力が強くなるため、高次収差が発生し、その残存収差の補正が困難となる。また、合焦時の色収差の変動が大きくなり、全フォーカス領域に渡り高い光学性能を達成することが困難となる。更に好ましくは、(6)式は次の如く設定するのが良い。
25<ν11n−ν11p<38 ・・・(6a)
Equation (6) defines conditions for achieving good optical performance while suppressing fluctuations in chromatic aberration during focusing . Existing optical materials tend to have a smaller refractive index as the Abbe number νd increases, and the refractive index of the concave lens constituting the eleventh group is lowered unless the upper limit of the expression (6) is satisfied. As a result, the radius of curvature of each lens becomes small, making it difficult to correct high-order aberrations. On the contrary, if the lower limit condition of the expression (6) is not satisfied, the refractive power of the convex lens and the concave lens constituting the eleventh group becomes strong, so that high-order aberration occurs and it is difficult to correct the residual aberration. In addition, variation in chromatic aberration at the time of in- focus increases, making it difficult to achieve high optical performance over the entire focus area. More preferably, the formula (6) is set as follows.
25 <ν11n−ν11p <38 (6a)

さらなる本発明のズームレンズの態様として、第11群の最も物体側のレンズの形状を規定している。第11群の最も物体側のレンズは凹レンズであり、物体側の面の曲率半径をR1、像側の面の曲率半径をR2としたとき、
−0.5<(R1+R2)/(R1−R2)<2.5 ・・・(7)
の満たしている。
As a further aspect of the zoom lens of the present invention, the shape of the lens on the most object side in the eleventh group is defined. The most object side lens of the eleventh group is a concave lens, and when the radius of curvature of the object side surface is R1 and the radius of curvature of the image side surface is R2,
-0.5 <(R1 + R2) / (R1-R2) <2.5 (7)
Meet.

(7)式は、広画角化及び広角端の軸外収差、特にディストーションを良好に補正するために規定している。
三次収差論では、ディストーションの収差係数Vは軸上近軸光線高Hの1乗、瞳近軸光線高H’の3乗に比例する。広角端における瞳近軸光線高は、第11群の中でも最も物体側のレンズで高くなるため、広角端におけるディストーションを良好に補正するためには、第11群の最も物体側のレンズG1の形状を適切に設定する必要がある。ここで、G1の物体側の面をr1面、像側の面をr2面と定義する。G1のr1面が凹面になり、その曲率半径が小さくなると、r1面への入射角度が大きくなり、樽型のディストーションが大きく発生する。そのため、広角端における樽型のディストーションの補正が困難となる。
(7)式の上限の条件が満たされないと、G1の形状が、r1面が凸面でr2面が凹面のメニスカス形状となり、さらにr1面とr2面の曲率半径の差が小さくなるため、レンズの負の屈折力が弱くなる。その結果、第1群の像側主点を像側に設定しにくくなり、広画角化に不利である。逆に(7)式の下限の条件が満たされないと、r1面が凹面となり、さらに曲率半径が小さくなるので、広角端における樽型のディストーションの補正が困難となる。更に好ましくは、(7)式は次の如く設定するのが良い。
0.5<(R1+R2)/(R1−R2)<2.0 ・・・(7a)
Expression (7) is defined to satisfactorily correct the wide angle of view and off-axis aberrations at the wide-angle end, particularly distortion.
In the third-order aberration theory, the distortion aberration coefficient V is proportional to the first power of the axial paraxial ray height H and the third power of the pupil paraxial ray height H ′. The pupil paraxial ray height at the wide-angle end is increased by the lens closest to the object in the eleventh group. Therefore, in order to satisfactorily correct the distortion at the wide-angle end, the shape of the lens G1 closest to the object in the eleventh group is used. Must be set appropriately. Here, the object side surface of G1 is defined as the r1 surface, and the image side surface is defined as the r2 surface. When the r1 surface of G1 becomes concave and the radius of curvature decreases, the incident angle on the r1 surface increases and barrel distortion is greatly generated. For this reason, it is difficult to correct barrel distortion at the wide-angle end.
If the upper limit of the expression (7) is not satisfied, the shape of G1 becomes a meniscus shape in which the r1 surface is convex and the r2 surface is concave, and the difference in the radius of curvature between the r1 surface and the r2 surface is small. Negative refractive power is weakened. As a result, it becomes difficult to set the image side principal point of the first group to the image side, which is disadvantageous for widening the angle of view. On the contrary, if the lower limit condition of the expression (7) is not satisfied, the r1 surface becomes concave and the radius of curvature becomes smaller, so that it becomes difficult to correct barrel distortion at the wide angle end. More preferably, the formula (7) is set as follows.
0.5 <(R1 + R2) / (R1-R2) <2.0 (7a)

さらなる本発明のズームレンズの態様として、第13群の構成及び第13群内に使用する光学材料の部分分散比を規定している。第13群は2枚以上の凸レンズと1枚以上の凹レンズから構成され、第13群を構成する凸レンズのアッベ数と部分分散比の平均値をν13p、θ13p、凹レンズのアッベ数と部分分散比の平均値をν13n、θ13nとしたとき、
−2.5×10−3<(θ13p−θ13n)/(ν13p−ν13n)
<−5.0×10−4 ・・・(8)
の条件式を満たしている。
As a further aspect of the zoom lens according to the present invention, the configuration of the thirteenth group and the partial dispersion ratio of the optical material used in the thirteenth group are defined. The thirteenth group is composed of two or more convex lenses and one or more concave lenses. The average value of Abbe number and partial dispersion ratio of the convex lenses constituting the thirteenth group is ν13p, θ13p, the Abbe number of concave lenses and the partial dispersion ratio. When the average value is ν13n and θ13n,
−2.5 × 10 −3 <(θ13p−θ13n) / (ν13p−ν13n)
<−5.0 × 10 −4 (8)
Is satisfied.

ここで、本発明で用いている光学素子(レンズ)の材料のアッベ数と部分分散比は以下の通りである。フラウンフォーファ線のg線(435.8nm)、F線(486.1nm)、d線(587.6nm)、C線(656.3nm)における屈折率をそれぞれNg、NF、Nd、NCとすると、アッベ数νd、g線とF線に関する部分分散比θgFは以下の通りである。
νd=(Nd−1)/(NF−NC) ・・・(ア)
θgF=(Ng−NF)/(NF−NC) ・・・(イ)
Here, the Abbe number and the partial dispersion ratio of the material of the optical element (lens) used in the present invention are as follows. The refractive indexes of the Fraunhofer line g-line (435.8 nm), F-line (486.1 nm), d-line (587.6 nm), and C-line (656.3 nm) are Ng, NF, Nd, and NC, respectively. Then, the partial dispersion ratio θgF regarding the Abbe number νd, g-line and F-line is as follows.
νd = (Nd−1) / (NF-NC) (a)
θgF = (Ng−NF) / (NF−NC) (A)

現存する光学材料は、アッベ数νdに対して部分分散比θgFは狭い範囲に存在する。また、アッベ数νdが小さいほど部分分散比θgFが大きい傾向を持っている。ここで、屈折力φ1、φ2、アッベ数ν1、ν2の2枚のレンズ1、2で構成される薄肉密着系の色収差補正条件は、
φ1/ν1+φ2/ν2=E ・・・(ウ)
で表される。ここで、レンズ1、2の合成屈折力φは、
φ=φ1+φ2 ・・・(エ)
である。(ウ)式において、E=0を満たすと、色収差においてC線とF線の結像位置が一致する。このとき、φ1、φ2は以下の式で表される。
Existing optical materials have a partial dispersion ratio θgF in a narrow range with respect to the Abbe number νd. Further, the partial dispersion ratio θgF tends to increase as the Abbe number νd decreases. Here, the chromatic aberration correction condition of the thin-walled close contact system composed of two lenses 1 and 2 having refractive powers φ1 and φ2 and Abbe numbers ν1 and ν2 is as follows:
φ1 / ν1 + φ2 / ν2 = E (C)
It is represented by Here, the combined refractive power φ of the lenses 1 and 2 is
φ = φ1 + φ2 (D)
It is. In the formula (C), when E = 0 is satisfied, the imaging positions of the C line and the F line coincide with each other in chromatic aberration. At this time, φ1 and φ2 are expressed by the following equations.

φ1=φ×ν1/(ν1−ν2) ・・・(オ)
φ2=φ×ν2/(ν1−ν2) ・・・(カ)
図16は正の屈折力のレンズ群LPによる軸上色収差の2色の色消しと2次スペクトルの残存に関する模式図である。図16において、正レンズ1にアッベ数ν1の大きい材料、負レンズ2にアッベ数ν2の小さい材料を用いる。したがって、正レンズ1は部分分散比θ1が小さく、負レンズ2は部分分散比θ2が大きくなり、C線とF線で軸上色収差を補正するとg線の結像点が像側にずれる。物体距離を無限遠として光束を入射した場合の軸上色収差のズレ量を2次スペクトル量ΔSと定義すると、
ΔS=−(1/φ)×(θ1−θ2)/(ν1−ν2) ・・・(キ)
で表される。一方、図17のような負レンズ群LNの色消しでは、負レンズ1にアッベ数ν1の大きい材料、正レンズ2にアッベ数ν2の小さい材料を用いる。したがって、負レンズ1は部分分散比θ1が小さく、正レンズ2は部分分散比θ2が大きい。この場合は図17のように、C線とF線で色収差を補正するとg線の結像点が物体側にずれる。望遠端の軸上色収差の2次スペクトルを良好に補正するには、2次スペクトルが顕著に発生する第13群及び第2群の発生量を調節する必要がある。第13群は正の屈折力を持っており、望遠端の軸上色収差の2次スペクトルを良好に補正するためには、第13群で発生する2次スペクトル量ΔSを小さくするような硝材を選択する必要がある。また、第2群は負の屈折力を持っており、第2群において2次スペクトル量ΔSを大きくするような硝材を選択することで、第1群で発生した軸上色収差の二次スペクトルを効果的に補正することができる。
φ1 = φ × ν1 / (ν1−ν2) (e)
φ2 = φ × ν2 / (ν1−ν2) (F)
FIG. 16 is a schematic diagram relating to the two-color achromaticity of the longitudinal chromatic aberration and the remaining secondary spectrum by the lens unit LP having a positive refractive power. In FIG. 16, a material having a large Abbe number ν1 is used for the positive lens 1, and a material having a small Abbe number ν2 is used for the negative lens 2. Therefore, the positive lens 1 has a small partial dispersion ratio θ1, the negative lens 2 has a large partial dispersion ratio θ2, and when the axial chromatic aberration is corrected by the C line and the F line, the image point of the g line shifts to the image side. When the amount of deviation of axial chromatic aberration when a light beam is incident at an infinite object distance is defined as a secondary spectral amount ΔS,
ΔS = − (1 / φ) × (θ1−θ2) / (ν1−ν2) (G)
It is represented by On the other hand, in the achromatization of the negative lens unit LN as shown in FIG. 17, a material having a large Abbe number ν1 is used for the negative lens 1 and a material having a small Abbe number ν2 is used for the positive lens 2. Therefore, the negative lens 1 has a small partial dispersion ratio θ1, and the positive lens 2 has a large partial dispersion ratio θ2. In this case, as shown in FIG. 17, when the chromatic aberration is corrected by the C line and the F line, the image point of the g line is shifted to the object side. In order to satisfactorily correct the secondary spectrum of longitudinal chromatic aberration at the telephoto end, it is necessary to adjust the generation amounts of the thirteenth group and the second group where the secondary spectrum is remarkably generated. The thirteenth group has a positive refractive power, and in order to satisfactorily correct the secondary spectrum of longitudinal chromatic aberration at the telephoto end, a glass material that reduces the secondary spectrum amount ΔS generated in the thirteenth group is used. Must be selected. The second group has negative refractive power, and by selecting a glass material that increases the secondary spectrum amount ΔS in the second group, the secondary spectrum of the longitudinal chromatic aberration generated in the first group can be obtained. It can be corrected effectively.

図18は物体面と絞りの間にある正の屈折力のレンズ群LPによる倍率色収差の2色の色消しと2次スペクトル残存に関する模式図である。前述したように、正レンズ1にアッベ数ν1の大きい材料、負レンズ2にアッベ数ν2の小さい材料を用いる。したがって、正レンズ1は部分分散比θ1が小さく、負レンズ2は部分分散比θ2が大きくなり、C線とF線で倍率色収差を補正するとg線の結像点が光軸に近づく方向にずれる。倍率色収差のズレ量を2次スペクトル量ΔYと定義すると、
ΔY=(1/φ)×(θ1−θ2)/(ν1−ν2) ・・・(ク)
FIG. 18 is a schematic diagram regarding the achromaticity of the two colors of lateral chromatic aberration and the remaining secondary spectrum by the lens unit LP having a positive refractive power between the object plane and the stop. As described above, the positive lens 1 is made of a material having a large Abbe number ν1, and the negative lens 2 is made of a material having a small Abbe number ν2. Therefore, the positive lens 1 has a small partial dispersion ratio θ1, the negative lens 2 has a large partial dispersion ratio θ2, and when the chromatic aberration of magnification is corrected by the C line and the F line, the image point of the g line shifts in a direction closer to the optical axis. . When the amount of deviation of lateral chromatic aberration is defined as the secondary spectral amount ΔY,
ΔY = (1 / φ) × (θ1-θ2) / (ν1-ν2) (K)

一方、図19のような負レンズ群LNの色消しでは、負レンズ1にアッベ数ν1の大きい材料、正レンズ2にアッベ数ν2の小さい材料を用いる。したがって、負レンズ1は部分分散比θ1が小さく、正レンズ2は部分分散比θ2が大きい。この場合は、C線とF線で倍率色収差を補正するとg線の結像点が光軸から離れる方向にずれる。広角端の倍率色収差の2次スペクトルを良好に補正するには、第13群及び第2群の発生量を調節する必要がある。第13群は正の屈折力を持っており、広角端の倍率色収差の2次スペクトルを良好に補正するには、第13群で発生する2次スペクトル量ΔYを大きくするような硝材を選択する必要がある。また、第2群は負の屈折力を持っており、第2群において2次スペクトル量ΔYを小さくするような硝材を選択する必要がある。   On the other hand, in the achromatization of the negative lens unit LN as shown in FIG. 19, a material having a large Abbe number ν1 is used for the negative lens 1 and a material having a small Abbe number ν2 is used for the positive lens 2. Therefore, the negative lens 1 has a small partial dispersion ratio θ1, and the positive lens 2 has a large partial dispersion ratio θ2. In this case, when the lateral chromatic aberration is corrected with the C line and the F line, the image point of the g line is shifted in the direction away from the optical axis. In order to satisfactorily correct the secondary spectrum of lateral chromatic aberration at the wide angle end, it is necessary to adjust the generation amounts of the thirteenth group and the second group. The thirteenth group has a positive refractive power, and in order to satisfactorily correct the secondary spectrum of lateral chromatic aberration at the wide angle end, a glass material that increases the amount of secondary spectrum ΔY generated in the thirteenth group is selected. There is a need. Further, the second group has negative refractive power, and it is necessary to select a glass material that reduces the secondary spectral amount ΔY in the second group.

(8)式の条件は、広角端の倍率色収差及び望遠端の軸上色収差を良好に補正するために規定している。(8)式の上限の条件が満たされないと、望遠端の軸上色収差の2次スペクトルの補正には有利だが、広角端の倍率色収差の2次スペクトルが増加し、ズーム全域に渡り高い光学性能の達成が困難となる。逆に(8)式の下限の条件が満たされないと、広角端の倍率色収差の2次スペクトルの補正には有利だが、望遠端の軸上色収差の2次スペクトルが増加し、ズーム全域に渡り高い光学性能の達成が困難となる。更に好ましくは、(8)式は次の如く設定するのが良い。
−2.0×10−3<(θ13p−θ13n)/(ν13p−ν13n)
<−1.0×10−3 ・・・(8a)
The condition of the equation (8) is defined in order to satisfactorily correct the lateral chromatic aberration at the wide-angle end and the axial chromatic aberration at the telephoto end. If the condition of the upper limit of equation (8) is not satisfied, it is advantageous for correcting the secondary spectrum of axial chromatic aberration at the telephoto end, but the secondary spectrum of lateral chromatic aberration at the wide angle end increases, and high optical performance over the entire zoom range. Is difficult to achieve. Conversely, if the lower limit condition of equation (8) is not satisfied, it is advantageous for correcting the secondary spectrum of lateral chromatic aberration at the wide-angle end, but the secondary spectrum of axial chromatic aberration at the telephoto end increases and is high over the entire zoom range. It becomes difficult to achieve optical performance. More preferably, equation (8) should be set as follows.
−2.0 × 10 −3 <(θ13p−θ13n) / (ν13p−ν13n)
<−1.0 × 10 −3 (8a)

さらなる本発明のズームレンズの態様として、第2群の構成及び第2群内に使用する光学材料の部分分散比を規定している。第2群は1枚以上の凸レンズと2枚以上の凹レンズから構成され、第2群を構成する凸レンズのアッベ数と部分分散比の平均値をν2p、θ2p、凹レンズのアッベ数と部分分散比の平均値をν2n、θ2nとしたとき、
−3.5×10−3<(θ2p−θ2n)/(ν2p−ν2n)<−1.5×10−3
・・・(9)
を満たしている。
As a further aspect of the zoom lens of the present invention, the constitution of the second group and the partial dispersion ratio of the optical material used in the second group are defined. The second group is composed of one or more convex lenses and two or more concave lenses. The average values of Abbe number and partial dispersion ratio of the convex lenses constituting the second group are ν2p and θ2p, and the Abbe number and partial dispersion ratio of the concave lens are When the average value is ν2n and θ2n,
−3.5 × 10 −3 <(θ2p−θ2n) / (ν2p−ν2n) <− 1.5 × 10 −3
... (9)
Meet.

この条件は、広角端の倍率色収差及び望遠端の軸上色収差を良好に補正するために規定している。(9)式の上限の条件が満たされないと、広角端の倍率色収差の2次スペクトルの補正には有利だが、望遠端の軸上色収差の2次スペクトルが増加し、ズーム全域に渡り高い光学性能の達成が困難となる。逆に(9)式の下限の条件が満たされないと、望遠端の軸上色収差の2次スペクトルの補正には有利だが、広角端の倍率色収差の2次スペクトルが増加し、ズーム全域に渡り高い光学性能の達成が困難となる。更に好ましくは、(9)式は次の如く設定するのが良い。
−3.0×10−3<(θ2p−θ2n)/(ν2p−ν2n)<−2.0×10−3
・・・(9a)
This condition is defined to satisfactorily correct the lateral chromatic aberration at the wide angle end and the axial chromatic aberration at the telephoto end. If the condition of the upper limit of equation (9) is not satisfied, it is advantageous for correcting the secondary spectrum of lateral chromatic aberration at the wide-angle end, but the secondary spectrum of axial chromatic aberration at the telephoto end increases, and high optical performance over the entire zoom range. Is difficult to achieve. Conversely, if the lower limit condition of equation (9) is not satisfied, it is advantageous for correcting the secondary spectrum of longitudinal chromatic aberration at the telephoto end, but the secondary spectrum of lateral chromatic aberration at the wide-angle end increases and is high over the entire zoom range. It becomes difficult to achieve optical performance. More preferably, equation (9) should be set as follows.
−3.0 × 10 −3 <(θ2p−θ2n) / (ν2p−ν2n) <− 2.0 × 10 −3
... (9a)

さらなる本発明のズームレンズの態様として、広画角化を達成するための第11群の構成を規定している。第11群は1枚の凸レンズと2枚以上の凹レンズから構成され、該第11群の最も像側のレンズは凸レンズから構成される。第11群の物体側に負の屈折力のレンズ群を、第11群の像側に正の屈折力のレンズ群を配置することで、第1群の像側主点を像側に設定し易く、広画角化に有利な構成となる。
さらなる本発明のズームレンズの態様として、第11群の焦点距離に対する第11群内の凸レンズ、凹レンズの焦点距離の比を規定している。第11群内の凸レンズの合成焦点距離をf11p、凹レンズの合成焦点距離をf11nとしたとき、
−3.5<f11p/f11<−1.5 ・・・(10)
0.5<f11n/f11<0.8 ・・・(11)
を満たしている。
As a further aspect of the zoom lens according to the present invention, a configuration of an eleventh group for achieving a wide angle of view is defined. The eleventh group is composed of one convex lens and two or more concave lenses, and the most image-side lens of the eleventh group is composed of a convex lens. By arranging a lens unit having a negative refractive power on the object side of the eleventh group and a lens group having a positive refractive power on the image side of the eleventh group, the image side principal point of the first group is set on the image side. This is easy and is advantageous for widening the angle of view.
As a further aspect of the zoom lens of the present invention, the ratio of the focal lengths of the convex lens and concave lens in the eleventh group to the focal length of the eleventh group is defined. When the combined focal length of the convex lens in the eleventh group is f11p and the combined focal length of the concave lens is f11n,
−3.5 <f11p / f11 <−1.5 (10)
0.5 <f11n / f11 <0.8 (11)
Meet.

この条件は広画角化と小型軽量化の両立に加え、良好な光学性能を達成するために規定している。(10)式の上限の条件が満たされないと、第11群の正の屈折力のレンズの曲率半径が小さくなることによって高次収差が増大し、良好な光学性能の達成が困難となる。逆に、(10)式の下限の条件が満たされないと、第11群の正の屈折力が弱くなり、その結果、第11群の負の屈折力も弱くなり、十分な広画角化の効果を得ることが困難となる。   This condition is stipulated to achieve good optical performance in addition to achieving both a wide angle of view and a reduction in size and weight. If the condition of the upper limit of the expression (10) is not satisfied, the curvature radius of the eleventh lens unit having a positive refractive power is decreased, so that higher-order aberrations are increased and it is difficult to achieve good optical performance. On the contrary, if the lower limit condition of the expression (10) is not satisfied, the positive refractive power of the eleventh group is weakened, and as a result, the negative refractive power of the eleventh group is also weakened. It becomes difficult to obtain.

(11)式の上限の条件が満たされないと、第11群の負の屈折力が不足し、十分な広画角化の効果を得ることが困難となる。逆に、(11)式の下限の条件が満たされないと、負の屈折力のレンズの曲率半径が小さくなることによる高次収差の増大や、構成枚数やレンズ重量の増加を招き、小型軽量化と良好な光学性能の両立が困難となる。更に好ましくは、(10)式は次の如く設定するのが良い。
−3.2<f11p/f11<−2.0 ・・・(10a)
If the condition of the upper limit of the expression (11) is not satisfied, the negative refractive power of the eleventh group will be insufficient, and it will be difficult to obtain a sufficient wide-angle effect. On the other hand, if the condition of the lower limit of the expression (11) is not satisfied, the higher-order aberration is increased due to the decrease in the radius of curvature of the lens having a negative refractive power, and the number of components and the lens weight are increased. And good optical performance are difficult to achieve. More preferably, the equation (10) is set as follows.
−3.2 <f11p / f11 <−2.0 (10a)

更に好ましくは、(11)式は次の如く設定するのが良い。
0.60<f11n/f11<0.75 ・・・(11a)
More preferably, the expression (11) is set as follows.
0.60 <f11n / f11 <0.75 (11a)

さらに本発明の撮像装置は、各実施例のズームレンズとズームレンズによって形成された像を受光する所定の有効撮像範囲を有する固体撮像素子を有することを特徴とする。
以下に本発明のズームレンズの具体的な構成について、実施例1〜7に対応する数値実施例1〜7のレンズ構成の特徴により説明する。
Furthermore, the image pickup apparatus of the present invention includes the zoom lens of each embodiment and a solid-state image pickup device having a predetermined effective image pickup range for receiving an image formed by the zoom lens.
Hereinafter, a specific configuration of the zoom lens according to the present invention will be described based on characteristics of lens configurations of Numerical Examples 1 to 7 corresponding to Embodiments 1 to 7.

図1は本発明の実施例1(数値実施例1)であるズームレンズにおいて、広角端で無限遠に合焦しているときのレンズ断面図である。図2において、(a)は数値実施例1の広角端、(b)は数値実施例1の焦点距離40mm、(c)は数値実施例1の望遠端の縦収差図を示している。いずれの収差図も、無限遠に合焦しているときの縦収差図である。また、焦点距離の値は、後述する数値実施例をmm単位で表したときの値である。これは以下の数値実施例においても、全て同じである。   FIG. 1 is a lens cross-sectional view of a zoom lens that is Embodiment 1 (Numerical Embodiment 1) of the present invention when focused at infinity at the wide-angle end. 2A shows a longitudinal aberration diagram at the wide-angle end of Numerical Example 1, FIG. 2B shows a focal length of 40 mm of Numerical Example 1, and FIG. 2C shows a longitudinal aberration diagram at the telephoto end of Numerical Example 1. FIG. Both aberration diagrams are longitudinal aberration diagrams when focusing on infinity. The value of the focal length is a value when a numerical example described later is expressed in mm. The same applies to the following numerical examples.

図1において、物体側から順に、合焦用の正の屈折力の第1群(フォーカスレンズ群)U1を有している。さらに、広角端から望遠端への変倍に際して、像側へ移動する変倍用の負の屈折力の第2群(バリエータ)U2を有している。さらに、第2群U2の移動に連動して光軸上を非直線的に移動し、変倍に伴う像面変動を補正する正の屈折力の第3群(コンペンセータ)U3を有している。さらに、変倍のためには移動しない結像作用をする正の屈折力の第4群(リレーレンズ群)U4を有している。   In FIG. 1, in order from the object side, a first group (focus lens group) U1 having a positive refractive power for focusing is provided. Further, the zoom lens has a second refractive power second group (variator) U2 that moves toward the image side upon zooming from the wide-angle end to the telephoto end. Further, it has a third group (compensator) U3 having a positive refractive power that moves in a non-linear manner on the optical axis in conjunction with the movement of the second group U2, and corrects image plane fluctuations accompanying zooming. . Further, it has a fourth group (relay lens group) U4 having a positive refractive power that has an image forming action that does not move for zooming.

第2群U2と第3群U3とで変倍系を構成している。SPは開口絞りであり、第4群U4の物体側に配置されている。Iは像面であり、放送用テレビカメラ、ビデオカメラ、デジタルスチルカメラの撮像光学系として使用する際には、ズームレンズで形成された像を受光し、光電変換する固体撮像素子(光電変換素子)等の撮像面に相当している。フィルム用カメラの撮像光学系として使用する際には、ズームレンズで形成された像が感光するフィルム面に相当する。   The second lens unit U2 and the third lens unit U3 constitute a variable power system. SP is an aperture stop, which is disposed on the object side of the fourth lens unit U4. I is an image plane. When used as an imaging optical system for a broadcast television camera, a video camera, or a digital still camera, a solid-state imaging device (photoelectric conversion device) that receives an image formed by a zoom lens and photoelectrically converts it. ) And the like. When used as an imaging optical system for a film camera, the image formed by the zoom lens corresponds to the photosensitive film surface.

縦収差図において、球面収差における直線と一点鎖線と点線は各々e線、g線、C線である。非点収差における点線と実線は各々メリディオナル像面,サジタル像面であり、倍率色収差における一点鎖線と点線は各々g線、C線である。ωは半画角、FnoはFナンバーである。   In the longitudinal aberration diagram, the straight line, the alternate long and short dash line, and the dotted line in the spherical aberration are the e-line, g-line, and C-line, respectively. The dotted line and the solid line in astigmatism are the meridional image surface and the sagittal image surface, respectively, and the alternate long and short dash line and the dotted line in the lateral chromatic aberration are the g line and the C line, respectively. ω is a half angle of view, and Fno is an F number.

縦収差図では、球面収差は0.4mm、非点収差は0.4mm、歪曲は10%、倍率色収差は0.1mmのスケールで描かれている。なお、以下の各実施例において広角端と望遠端は、変倍用の第2群U2が機構に対して光軸上を移動可能な範囲の両端に位置したときのズーム位置を指す。   In the longitudinal aberration diagram, the spherical aberration is 0.4 mm, the astigmatism is 0.4 mm, the distortion is 10%, and the chromatic aberration of magnification is 0.1 mm. In each of the following embodiments, the wide-angle end and the telephoto end indicate zoom positions when the second group U2 for zooming is positioned at both ends of a range that can move on the optical axis with respect to the mechanism.

次に、本実施例における第1群U1について説明する。第1群U1は第1面から第17面に対応する。第1群U1は、合焦のためには移動しない負の屈折力の第11群U1a、無限遠側から至近側への合焦時に像側へ移動する正の屈折力の第12群U1b、合焦のためには移動しない正の屈折力の第13群U1cから構成される。第11群U1aは、物体側から順に、物体側に凸のメニスカス凹レンズG1と両凹レンズG2、像側に凸のメニスカス凹レンズG3、像側に凹のメニスカス凸レンズG4で構成される。また、第12群U1bは、両凸レンズG5で構成される。第13群U1cは物体側に凸のメニスカス凹レンズG6と像側に凹のメニスカス凸レンズG7を接合した接合レンズ、両凸レンズG8、像側に凹のメニスカス凸レンズG9で構成される。第2群U2は、物体側に凸のメニスカス凹レンズ、両凹レンズと像側に凹のメニスカス凸レンズとの接合レンズ、像側に凸のメニスカス凹レンズから構成される。また、第3群U3は、凸レンズと凹レンズを含み、全体として3個のレンズから成っている。第4群U4は、凸レンズと凹レンズを含み、全体として6個のレンズから成っている。 Next, the 1st group U1 in a present Example is demonstrated. The first group U1 corresponds to the first surface to the seventeenth surface. The first lens unit U1 includes an eleventh lens unit U1a having a negative refractive power that does not move for focusing, a twelfth lens unit U1b having a positive refractive power that moves toward the image side upon focusing from the infinity side to the close side, The thirteenth lens unit U1c has a positive refractive power that does not move for focusing . The eleventh lens unit U1a includes, in order from the object side, a meniscus concave lens G1 and a biconcave lens G2 that are convex on the object side, a meniscus concave lens G3 that is convex on the image side, and a meniscus convex lens G4 that is concave on the image side. The twelfth lens unit U1b includes a biconvex lens G5. The thirteenth lens unit U1c includes a cemented lens obtained by cementing a concave meniscus lens G6 on the object side, a concave meniscus lens G7 on the image side, a biconvex lens G8, and a concave meniscus lens G9 on the image side. The second unit U2 includes a meniscus concave lens convex on the object side, a cemented lens of a biconcave lens and a meniscus convex lens concave on the image side, and a meniscus concave lens convex on the image side. The third unit U3 includes a convex lens and a concave lens, and is composed of three lenses as a whole. The fourth unit U4 includes a convex lens and a concave lens, and is composed of six lenses as a whole.

上記実施例1に対応する数値実施例1について説明する。数値実施例1に限らず全数値実施例において、iは物体側からの面(光学面)の順序を示し、riは物体側より第i番目の面の曲率半径、diは物体側より第i番目の面と第i+1番目の面の間隔(光軸上)を示している。また、ndi、νdi、θgFiは、第i番目の面と第i+1番目の面との間の媒質(光学部材)の屈折率、アッベ数、部分分散比を、BFは空気換算のバックフォーカスを表している。
非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、kを円錐常数、A4、A6、A8、A10、A12をそれぞれ非球面係数としたとき、次式で表している。また、「e−Z」は「×10−Z」を意味する。
Numerical Example 1 corresponding to Example 1 will be described. In all numerical examples, not limited to Numerical Example 1, i indicates the order of surfaces (optical surfaces) from the object side, ri is the radius of curvature of the i-th surface from the object side, and di is the i-th surface from the object side. The interval (on the optical axis) between the i th surface and the (i + 1) th surface is shown. Ndi, νdi, and θgFi represent the refractive index, Abbe number, and partial dispersion ratio of the medium (optical member) between the i-th surface and the (i + 1) -th surface, and BF represents air-converted back focus. ing.
The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, k is the cone constant, A4, A6, A8, A10, A12. When each aspheric coefficient is used, it is expressed by the following equation. “E-Z” means “× 10 −Z ”.

Figure 0005882817
Figure 0005882817

また、本実施例の広角端において、無限遠物体に合焦したときの、各光学面(レンズ面)における軸上近軸光線高H、軸上近軸光線と光軸のなす角度α、瞳近軸光線高H’、瞳近軸光線と光軸のなす角度α’も合わせて数値実施例に示す。さらに、本実施例の広角端において、無限遠物体に合焦したときの3次のディストーションの収差係数Vの各面における分担値を示している。ここで、軸上近軸光線(近軸軸上光線)とは、光学系全系の広角端の焦点距離を1に規格化した場合に、光学系に光軸と平行に、入射高を1として入射させた近軸光線(光軸と平行な状態で最も物体側の面の光軸近傍の位置に入射する光線のうち像面位置において光軸を通過する光線)のことである。また、数値実施例の表に示しているのは、各光学面における、その軸上近軸光線の高さ(光軸からの距離)と、各光学面への入射角である。また、瞳近軸光線は、光学系全系の広角端の焦点距離を1に規格化し、像面(撮像素子の受光面)の最大像高に入射する光線の内、光学系の入射瞳と光軸との交点を通過する近軸光線である。数値実施例の表に示しているのは、各光学面におけるこの瞳近軸光線の高さ(光軸からの距離)と、各光学面への入射角である。   Further, at the wide-angle end of the present embodiment, when focusing on an object at infinity, the axial paraxial ray height H on each optical surface (lens surface), the angle α between the axial paraxial ray and the optical axis, the pupil The paraxial ray height H ′ and the angle α ′ formed by the pupil paraxial ray and the optical axis are also shown in the numerical examples. Furthermore, at the wide-angle end of the present embodiment, the sharing value on each surface of the aberration coefficient V of the third-order distortion when focusing on an object at infinity is shown. Here, the on-axis paraxial ray (paraxial on-axis ray) means that when the focal length at the wide-angle end of the entire optical system is normalized to 1, the incident height of the optical system is 1 parallel to the optical axis. The paraxial light beam (the light beam that passes through the optical axis at the image plane position among the light beams that enter the position near the optical axis of the surface closest to the object side in a state parallel to the optical axis). Also, what is shown in the table of the numerical examples is the height (distance from the optical axis) of the on-axis paraxial ray and the incident angle to each optical surface in each optical surface. In addition, the paraxial ray of the pupil normalizes the focal length at the wide-angle end of the entire optical system to 1, and among the rays incident on the maximum image height of the image plane (the light receiving surface of the image sensor), This is a paraxial ray passing through the intersection with the optical axis. The table of the numerical examples shows the height (distance from the optical axis) of this pupil paraxial ray on each optical surface and the incident angle on each optical surface.

本実施例の各条件式対応値を表1に示す。
本実施例は(1)〜(11)式を満足しており、2.60倍の高ズーム比で広角端における撮影画角(画角)63.76°と広画角化を達成している。
また、瞳近軸光線高の最も高い1面の収差係数(3次のディストーションの収差係数)Vを適切な範囲に設定することで、広角端の樽型のディストーションを効果的に補正している。この瞳近軸光線高が最も高い面(レンズ面)における3次のディストーションの収差係数Vの値Vdisは、
−0.5 < Vdis < 1.5 ・・・(12)
を満足することが望ましい。更には、
0.1 < Vdis < 1.0 ・・・(12a)
を満足すると尚良い。
且つズーム全域において諸収差を良好に補正した高い光学性能を有するズームレンズを達成している。しかしながら、本発明のズームレンズは、(1)、(2)、(3)式を満足することは必須であるが、(4)〜(12)式については満足していなくても構わない。但し、(4)〜(12)式について少なくとも1つでも満足していれば更に良い効果を奏することができる。これは他の実施例についても同様である。
Table 1 shows values corresponding to the conditional expressions of this example.
This embodiment satisfies the expressions (1) to (11), and achieves a wide field angle of 63.76 ° at the wide angle end with a high zoom ratio of 2.60 times. Yes.
Further, the barrel-shaped distortion at the wide-angle end is effectively corrected by setting the aberration coefficient (aberration coefficient of third-order distortion) V of the one surface having the highest pupil paraxial ray height to an appropriate range. . The value Vdis of the third-order distortion aberration coefficient V on the surface (lens surface) having the highest pupil paraxial ray height is:
−0.5 <Vdis <1.5 (12)
It is desirable to satisfy Furthermore,
0.1 <Vdis <1.0 (12a)
It is still better to satisfy.
In addition, a zoom lens having high optical performance in which various aberrations are favorably corrected over the entire zoom range is achieved. However, in the zoom lens of the present invention, it is essential that the expressions (1), (2), and (3) are satisfied, but the expressions (4) to (12) may not be satisfied. However, if at least one of the expressions (4) to (12) is satisfied, a better effect can be obtained. The same applies to the other embodiments.

図20は各実施例のズームレンズを撮影光学系として用いた撮像装置(テレビカメラシステム)の概略図である。図20において101は実施例1〜7のいずれかのズームレンズである。124はカメラである。ズームレンズ101はカメラ124に対して着脱可能となっている。125はカメラ124にズームレンズ101を装着することで構成される撮像装置である。ズームレンズ101は第1群F、変倍部LZ、結像用の第4群Rを有している。第1群Fは合焦用レンズ群が含まれている。変倍部LZは変倍のために光軸上を移動する第2群と、変倍に伴う像面変動を補正するために光軸上を移動する第3群が含まれている。SPは開口絞りである。114、115は各々第1群F、変倍部LZを光軸方向に駆動するヘリコイドやカム等の駆動機構である。116〜118は駆動機構114、115および開口絞りSPを電動駆動するモータ(駆動手段)である。119〜121は、第1群Fや変倍部LZの光軸上の位置や、開口絞りSPの絞り径を検出するためのエンコーダやポテンショメータ、あるいはフォトセンサ等の検出器である。カメラ124において、109はカメラ124内の光学フィルタや色分解光学系に相当するガラスブロック、110はズームレンズ101によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。また、111、122はカメラ124及びズームレンズ101の各種の駆動を制御するCPUである。
このように、本発明のズームレンズをテレビカメラに適用することにより、高い光学性能を有する撮像装置を実現している。
FIG. 20 is a schematic diagram of an image pickup apparatus (television camera system) using the zoom lens of each embodiment as a photographing optical system. In FIG. 20, reference numeral 101 denotes a zoom lens according to any one of Examples 1 to 7. Reference numeral 124 denotes a camera. The zoom lens 101 can be attached to and detached from the camera 124. An imaging apparatus 125 is configured by attaching the zoom lens 101 to the camera 124. The zoom lens 101 includes a first group F, a zoom unit LZ, and a fourth group R for image formation. The first group F includes a focusing lens group. The zoom unit LZ includes a second group that moves on the optical axis for zooming, and a third group that moves on the optical axis to correct image plane fluctuations accompanying zooming. SP is an aperture stop. Reference numerals 114 and 115 denote driving mechanisms such as helicoids and cams for driving the first lens unit F and the zooming portion LZ in the optical axis direction, respectively. Reference numerals 116 to 118 denote motors (drive means) that electrically drive the drive mechanisms 114 and 115 and the aperture stop SP. Reference numerals 119 to 121 denote detectors such as encoders, potentiometers, or photosensors for detecting positions on the optical axis of the first lens unit F and the zooming unit LZ and the aperture diameter of the aperture stop SP. In the camera 124, 109 is a glass block corresponding to an optical filter or color separation optical system in the camera 124, and 110 is a solid-state imaging device (photoelectric conversion) such as a CCD sensor or a CMOS sensor that receives an object image formed by the zoom lens 101. Element). Reference numerals 111 and 122 denote CPUs that control various types of driving of the camera 124 and the zoom lens 101.
In this way, an imaging apparatus having high optical performance is realized by applying the zoom lens of the present invention to a television camera.

図3は本発明の実施例2(数値実施例2)であるズームレンズにおいて、広角端で無限遠に合焦しているときのレンズ断面図である。図4において、(a)は数値実施例2の広角端、(b)は数値実施例2の焦点距離50mm、(c)は数値実施例2の望遠端の縦収差図を示している。いずれの収差図も、無限遠に合焦しているときの縦収差図である。   FIG. 3 is a lens cross-sectional view of a zoom lens that is Embodiment 2 (Numerical Embodiment 2) of the present invention when focused at infinity at the wide angle end. 4A is a longitudinal angle view of Numerical Example 2, FIG. 4B is a focal length of 50 mm of Numerical Example 2, and FIG. 4C is a longitudinal aberration diagram of the telephoto end of Numerical Example 2. FIG. Both aberration diagrams are longitudinal aberration diagrams when focusing on infinity.

図3において、物体側から順に、合焦用の正の屈折力の第1群(フォーカスレンズ群)U1を有している。さらに、広角端から望遠端への変倍に際して、像側へ移動する変倍用の負の屈折力の第2群(バリエータ)U2を有している。さらに、第2群U2の移動に連動して光軸上を非直線的に移動し、変倍に伴う像面変動を補正する正の屈折力の第3群(コンペンセータ)U3を有している。さらに、変倍のためには移動しない結像作用をする正の屈折力の第4群(リレーレンズ群)U4を有している。   In FIG. 3, in order from the object side, a first group (focus lens group) U1 having a positive refractive power for focusing is provided. Further, the zoom lens has a second refractive power second group (variator) U2 that moves toward the image side upon zooming from the wide-angle end to the telephoto end. Further, it has a third group (compensator) U3 having a positive refractive power that moves in a non-linear manner on the optical axis in conjunction with the movement of the second group U2, and corrects image plane fluctuations accompanying zooming. . Further, it has a fourth group (relay lens group) U4 having a positive refractive power that has an image forming action that does not move for zooming.

次に、本実施例における第1群U1について説明する。第1群U1は第1面から第15面に対応する。第1群U1は、合焦のためには移動しない負の屈折力の第11群U1a、無限遠側から至近側への合焦時に像側へ移動する正の屈折力の第12群U1b、合焦のためには移動しない正の屈折力の第13群U1cから構成される。第11群U1aは、物体側から順に、物体側に凸のメニスカス凹レンズG1と両凹レンズG2、両凸レンズG3で構成される。また、第12群U1bは、両凸レンズG4で構成される。第13群U1cは物体側に凸のメニスカス凹レンズG5と両凸レンズG6を接合した接合レンズ、両凸レンズG7、像側に凹のメニスカス凸レンズG8で構成される。第2群U2は、物体側に凸のメニスカス凹レンズ、両凹レンズ、像側に凹のメニスカス凸レンズ、両凹レンズから構成される。また、第3群U3は、凸レンズと凹レンズを含み、全体として3個のレンズから成っている。第4群U4は、凸レンズと凹レンズを含み、全体として6個のレンズから成っている。 Next, the 1st group U1 in a present Example is demonstrated. The first group U1 corresponds to the first surface to the fifteenth surface. The first lens unit U1 includes an eleventh lens unit U1a having a negative refractive power that does not move for focusing, a twelfth lens unit U1b having a positive refractive power that moves toward the image side upon focusing from the infinity side to the close side, The thirteenth lens unit U1c has a positive refractive power that does not move for focusing . The eleventh unit U1a includes, in order from the object side, a meniscus concave lens G1, a biconcave lens G2, and a biconvex lens G3 that are convex on the object side. The twelfth group U1b includes a biconvex lens G4. The thirteenth lens unit U1c includes a cemented lens obtained by cementing a convex meniscus lens G5 and a biconvex lens G6 on the object side, a biconvex lens G7, and a meniscus convex lens G8 concave on the image side. The second unit U2 includes a meniscus concave lens that is convex on the object side, a biconcave lens, a meniscus convex lens that is concave on the image side, and a biconcave lens. The third unit U3 includes a convex lens and a concave lens, and is composed of three lenses as a whole. The fourth unit U4 includes a convex lens and a concave lens, and is composed of six lenses as a whole.

本実施例の各条件式対応値を表1に示す。
本実施例は(1)〜(11)式を満足しており、2.67倍の高ズーム比で広角端における撮影画角(画角)54.80°と広画角化を達成している。また、瞳近軸光線高の最も高い1面の収差係数Vを適切な範囲に設定することで、広角端の樽型のディストーションを効果的に補正している。且つズーム全域において諸収差を良好に補正した高い光学性能を有するズームレンズを達成している。
Table 1 shows values corresponding to the conditional expressions of this example.
This embodiment satisfies the expressions (1) to (11), and achieves a wide field angle of 54.80 ° at the wide angle end with a high zoom ratio of 2.67 times. Yes. In addition, the barrel-shaped distortion at the wide-angle end is effectively corrected by setting the aberration coefficient V of one surface having the highest pupil paraxial ray height within an appropriate range. In addition, a zoom lens having high optical performance in which various aberrations are favorably corrected over the entire zoom range is achieved.

図5は本発明の実施例3(数値実施例3)であるズームレンズにおいて、広角端で無限遠に合焦しているときのレンズ断面図である。図6において、(a)は数値実施例3の広角端、(b)は数値実施例3の焦点距離70mm、(c)は数値実施例3の望遠端の縦収差図を示している。いずれの収差図も、無限遠に合焦しているときの縦収差図である。   FIG. 5 is a lens cross-sectional view of a zoom lens that is Embodiment 3 (Numerical Embodiment 3) of the present invention when focused at infinity at the wide-angle end. 6A shows a longitudinal aberration diagram at the wide-angle end of Numerical Example 3, FIG. 6B shows a focal length of 70 mm of Numerical Example 3, and FIG. Both aberration diagrams are longitudinal aberration diagrams when focusing on infinity.

図5において、物体側から順に、合焦用の正の屈折力の第1群(フォーカスレンズ群)U1を有している。さらに、広角端から望遠端への変倍に際して、像側へ移動する変倍用の負の屈折力の第2群(バリエータ)U2を有している。さらに、第2群U2の移動に連動して光軸上を非直線的に移動し、変倍に伴う像面変動を補正する正の屈折力の第3群(コンペンセータ)U3を有している。さらに、変倍のためには移動しない結像作用をする正の屈折力の第4群(リレーレンズ群)U4を有している。   In FIG. 5, in order from the object side, a first group (focus lens group) U1 having positive refractive power for focusing is provided. Further, the zoom lens has a second refractive power second group (variator) U2 that moves toward the image side upon zooming from the wide-angle end to the telephoto end. Further, it has a third group (compensator) U3 having a positive refractive power that moves in a non-linear manner on the optical axis in conjunction with the movement of the second group U2, and corrects image plane fluctuations accompanying zooming. . Further, it has a fourth group (relay lens group) U4 having a positive refractive power that has an image forming action that does not move for zooming.

次に、本実施例における第1群U1について説明する。第1群U1は第1面から第17面に対応する。第1群U1は、合焦のためには移動しない負の屈折力の第11群U1a、無限遠側から至近側への合焦時に像側へ移動する正の屈折力の第12群U1b、合焦のためには移動しない正の屈折力の第13群U1cから構成される。第11群U1aは、物体側から順に、両凹レンズG1と像側に凹のメニスカス凸レンズG2との接合レンズ、両凹レンズG3で構成される。また、第12群U1bは、物体側に凸のメニスカス凹レンズG4と両凸レンズG5との接合レンズで構成される。第13群U1cは物体側に凸のメニスカス凹レンズG6、両凸レンズG7、両凸レンズG8、像側に凹のメニスカス凸レンズG9で構成される。第2群U2は、物体側に凸のメニスカス凹レンズ、両凹レンズ、両凸レンズ、両凹レンズから構成される。また、第3群U3は、凸レンズと凹レンズを含み、全体として3個のレンズから成っている。第4群U4は、凸レンズと凹レンズを含み、全体として6個のレンズから成っている。 Next, the 1st group U1 in a present Example is demonstrated. The first group U1 corresponds to the first surface to the seventeenth surface. The first lens unit U1 includes an eleventh lens unit U1a having a negative refractive power that does not move for focusing, a twelfth lens unit U1b having a positive refractive power that moves toward the image side upon focusing from the infinity side to the close side, The thirteenth lens unit U1c has a positive refractive power that does not move for focusing . The eleventh unit U1a includes, in order from the object side, a cemented lens of a biconcave lens G1 and a meniscus convex lens G2 that is concave on the image side, and a biconcave lens G3. The twelfth lens unit U1b includes a cemented lens of a meniscus concave lens G4 convex to the object side and a biconvex lens G5. The thirteenth lens unit U1c includes a meniscus concave lens G6 convex to the object side, a biconvex lens G7, a biconvex lens G8, and a meniscus convex lens G9 concave to the image side. The second unit U2 includes a meniscus concave lens convex to the object side, a biconcave lens, a biconvex lens, and a biconcave lens. The third unit U3 includes a convex lens and a concave lens, and is composed of three lenses as a whole. The fourth unit U4 includes a convex lens and a concave lens, and is composed of six lenses as a whole.

本実施例の各条件式対応値を表1に示す。
本実施例は(1)〜(9)式を満足しており、3.00倍の高ズーム比で広角端における撮影画角(画角)42.48°と広画角化を達成している。また、瞳近軸光線高の最も高い1面の収差係数Vを適切な範囲に設定することで、広角端の樽型のディストーションを効果的に補正している。且つズーム全域において諸収差を良好に補正した高い光学性能を有するズームレンズを達成している。
Table 1 shows values corresponding to the conditional expressions of this example.
This embodiment satisfies the expressions (1) to (9), and achieves a wide field angle of 42.48 ° at the wide angle end with a high zoom ratio of 3.00 times. Yes. In addition, the barrel-shaped distortion at the wide-angle end is effectively corrected by setting the aberration coefficient V of one surface having the highest pupil paraxial ray height within an appropriate range. In addition, a zoom lens having high optical performance in which various aberrations are favorably corrected over the entire zoom range is achieved.

図7は本発明の実施例4(数値実施例4)であるズームレンズにおいて、広角端で無限遠に合焦しているときのレンズ断面図である。図8において、(a)は数値実施例4の広角端、(b)は数値実施例4の焦点距離80mm、(c)は数値実施例4の望遠端の縦収差図を示している。いずれの収差図も、無限遠に合焦しているときの縦収差図である。   FIG. 7 is a lens cross-sectional view of a zoom lens that is Embodiment 4 (Numerical Embodiment 4) of the present invention when focused at infinity at the wide-angle end. 8A shows a longitudinal aberration diagram at the wide-angle end of Numerical Example 4, FIG. 8B shows a focal length of 80 mm at Numerical Example 4, and FIG. Both aberration diagrams are longitudinal aberration diagrams when focusing on infinity.

図7において、物体側から順に、合焦用の正の屈折力の第1群(フォーカスレンズ群)U1を有している。さらに、広角端から望遠端への変倍に際して、像側へ移動する変倍用の負の屈折力の第2群(バリエータ)U2を有している。さらに、第2群U2の移動に連動して光軸上を非直線的に移動し、変倍に伴う像面変動を補正する正の屈折力の第3群(コンペンセータ)U3を有している。さらに、変倍のためには移動しない結像作用をする正の屈折力の第4群(リレーレンズ群)U4を有している。   In FIG. 7, in order from the object side, a first group (focus lens group) U1 having positive refractive power for focusing is provided. Further, the zoom lens has a second refractive power second group (variator) U2 that moves toward the image side upon zooming from the wide-angle end to the telephoto end. Further, it has a third group (compensator) U3 having a positive refractive power that moves in a non-linear manner on the optical axis in conjunction with the movement of the second group U2, and corrects image plane fluctuations accompanying zooming. . Further, it has a fourth group (relay lens group) U4 having a positive refractive power that has an image forming action that does not move for zooming.

次に、本実施例における第1群U1について説明する。第1群U1は第1面から第17面に対応する。第1群U1は、合焦のためには移動しない負の屈折力の第11群U1a、無限遠側から至近側への合焦時に像側へ移動する正の屈折力の第12群U1b、合焦のためには移動しない正の屈折力の第13群U1cから構成される。第11群U1aは、物体側から順に、両凹レンズG1、像側に凹のメニスカス凸レンズG2、両凹レンズG3で構成される。また、第12群U1bは、両凸レンズG4と像側に凸のメニスカス凹レンズG5の接合レンズで構成される。第13群U1cは物体側に凸のメニスカス凹レンズG6、両凸レンズG7、像側に凹のメニスカス凸レンズG8、像側に凹のメニスカス凸レンズG9で構成される。第2群U2は、物体側に凸のメニスカス凹レンズ、両凹レンズ、両凸レンズ、両凹レンズから構成される。また、第3群U3は、凸レンズと凹レンズを含み、全体として3個のレンズから成っている。第4群U4は、凸レンズと凹レンズを含み、全体として6個のレンズから成っている。 Next, the 1st group U1 in a present Example is demonstrated. The first group U1 corresponds to the first surface to the seventeenth surface. The first lens unit U1 includes an eleventh lens unit U1a having a negative refractive power that does not move for focusing, a twelfth lens unit U1b having a positive refractive power that moves toward the image side upon focusing from the infinity side to the close side, The thirteenth lens unit U1c has a positive refractive power that does not move for focusing . The eleventh unit U1a includes, in order from the object side, a biconcave lens G1, a meniscus convex lens G2 that is concave on the image side, and a biconcave lens G3. The twelfth lens unit U1b includes a cemented lens including a biconvex lens G4 and a meniscus concave lens G5 convex on the image side. The thirteenth lens unit U1c includes a meniscus concave lens G6 convex to the object side, a biconvex lens G7, a convex meniscus lens G8 concave to the image side, and a meniscus convex lens G9 concave to the image side. The second unit U2 includes a meniscus concave lens convex to the object side, a biconcave lens, a biconvex lens, and a biconcave lens. The third unit U3 includes a convex lens and a concave lens, and is composed of three lenses as a whole. The fourth unit U4 includes a convex lens and a concave lens, and is composed of six lenses as a whole.

本実施例の各条件式対応値を表1に示す。
本実施例は(1)〜(9)式を満足しており、3.11倍の高ズーム比で広角端における撮影画角(画角)38.12°と広画角化を達成している。また、瞳近軸光線高の最も高い1面の収差係数Vを適切な範囲に設定することで、広角端の樽型のディストーションを効果的に補正している。且つズーム全域において諸収差を良好に補正した高い光学性能を有するズームレンズを達成している。
Table 1 shows values corresponding to the conditional expressions of this example.
This embodiment satisfies the expressions (1) to (9), and achieves a wide field angle of 38.12 ° at the wide angle end with a high zoom ratio of 3.11 times. Yes. In addition, the barrel-shaped distortion at the wide-angle end is effectively corrected by setting the aberration coefficient V of one surface having the highest pupil paraxial ray height within an appropriate range. In addition, a zoom lens having high optical performance in which various aberrations are favorably corrected over the entire zoom range is achieved.

図9は本発明の実施例5(数値実施例5)であるズームレンズにおいて、広角端で無限遠に合焦しているときのレンズ断面図である。図10において、(a)は数値実施例5の広角端、(b)は数値実施例5の焦点距離70mm、(c)は数値実施例5の望遠端の縦収差図を示している。いずれの収差図も、無限遠に合焦しているときの縦収差図である。   FIG. 9 is a lens cross-sectional view of a zoom lens that is Embodiment 5 (Numerical Embodiment 5) of the present invention when focused at infinity at the wide-angle end. 10A shows a longitudinal aberration diagram at the wide-angle end of Numerical Example 5, FIG. 10B shows a focal length of 70 mm of Numerical Example 5, and FIG. 10C shows a longitudinal aberration diagram at the telephoto end of Numerical Example 5. FIG. Both aberration diagrams are longitudinal aberration diagrams when focusing on infinity.

図9において、物体側から順に、合焦用の正の屈折力の第1群(フォーカスレンズ群)U1を有している。さらに、広角端から望遠端への変倍に際して、像側へ移動する変倍用の負の屈折力の第2群(バリエータ)U2を有している。さらに、第2群U2の移動に連動して光軸上を非直線的に移動し、変倍に伴う像面変動を補正する正の屈折力の第3群(コンペンセータ)U3を有している。さらに、変倍のためには移動しない結像作用をする正の屈折力の第4群(リレーレンズ群)U4を有している。   In FIG. 9, in order from the object side, a first group (focus lens group) U1 having positive refractive power for focusing is provided. Further, the zoom lens has a second refractive power second group (variator) U2 that moves toward the image side upon zooming from the wide-angle end to the telephoto end. Further, it has a third group (compensator) U3 having a positive refractive power that moves in a non-linear manner on the optical axis in conjunction with the movement of the second group U2, and corrects image plane fluctuations accompanying zooming. . Further, it has a fourth group (relay lens group) U4 having a positive refractive power that has an image forming action that does not move for zooming.

次に、本実施例における第1群U1について説明する。第1群U1は第1面から第14面に対応する。第1群U1は、合焦のためには移動しない負の屈折力の第11群U1a、無限遠側から至近側への合焦時に像側へ移動する正の屈折力の第12群U1b、合焦のためには移動しない正の屈折力の第13群U1cから構成される。第11群U1aは、物体側から順に、物体側に凸のメニスカス凹レンズG1と像側に凸のメニスカス凹レンズG2、像側に凹のメニスカス凸レンズG3で構成される。また、第12群U1bは、物体側に凸のメニスカス凹レンズG4、両凸レンズG5で構成される。第13群U1cは物体側に凸のメニスカス凹レンズG6と両凸レンズG7を接合した接合レンズ、像側に凹のメニスカス凸レンズG8で構成される。第2群U2は、物体側に凸のメニスカス凹レンズ、両凹レンズと像側に凹のメニスカス凸レンズとの接合レンズ、両凹レンズから構成される。また、第21面は非球面形状である。第21面は主に広角側の像面湾曲の補正を行っている。第3群U3は、凸レンズと凹レンズを含み、全体として3個のレンズから成っている。第4群U4は、凸レンズと凹レンズを含み、全体として6個のレンズから成っている。 Next, the 1st group U1 in a present Example is demonstrated. The first group U1 corresponds to the first surface to the fourteenth surface. The first lens unit U1 includes an eleventh lens unit U1a having a negative refractive power that does not move for focusing, a twelfth lens unit U1b having a positive refractive power that moves toward the image side upon focusing from the infinity side to the close side, The thirteenth lens unit U1c has a positive refractive power that does not move for focusing . The eleventh lens unit U1a includes, in order from the object side, a meniscus concave lens G1 convex toward the object side, a meniscus concave lens G2 convex toward the image side, and a meniscus convex lens G3 concave toward the image side. The twelfth lens unit U1b includes a meniscus concave lens G4 and a biconvex lens G5 that are convex on the object side. The thirteenth lens unit U1c includes a cemented lens obtained by cementing a convex meniscus concave lens G6 and a biconvex lens G7 on the object side, and a concave meniscus convex lens G8 on the image side. The second unit U2 includes a meniscus concave lens convex on the object side, a cemented lens of a biconcave lens and a meniscus convex lens concave on the image side, and a biconcave lens. The twenty-first surface has an aspheric shape. The 21st surface mainly corrects the curvature of field on the wide angle side. The third unit U3 includes a convex lens and a concave lens, and is composed of three lenses as a whole. The fourth unit U4 includes a convex lens and a concave lens, and is composed of six lenses as a whole.

本実施例の各条件式対応値を表1に示す。
本実施例は(1)〜(11)式を満足しており、5.00倍の高ズーム比で広角端における撮影画角(画角)54.80°と広画角化を達成している。また、瞳近軸光線高の最も高い1面の収差係数Vを適切な範囲に設定することで、広角端の樽型のディストーションを効果的に補正している。且つズーム全域において諸収差を良好に補正した高い光学性能を有するズームレンズを達成している。
Table 1 shows values corresponding to the conditional expressions of this example.
This embodiment satisfies the expressions (1) to (11), and achieves a wide field angle of 54.80 ° at the wide angle end with a high zoom ratio of 5.00 times. Yes. In addition, the barrel-shaped distortion at the wide-angle end is effectively corrected by setting the aberration coefficient V of one surface having the highest pupil paraxial ray height within an appropriate range. In addition, a zoom lens having high optical performance in which various aberrations are favorably corrected over the entire zoom range is achieved.

図11は本発明の実施例6(数値実施例6)であるズームレンズにおいて、広角端で無限遠に合焦しているときのレンズ断面図である。図12において、(a)は数値実施例6の広角端、(b)は数値実施例6の焦点距離60mm、(c)は数値実施例6の望遠端の縦収差図を示している。いずれの収差図も、無限遠に合焦しているときの縦収差図である。   FIG. 11 is a lens cross-sectional view of a zoom lens that is Embodiment 6 (Numerical Embodiment 6) of the present invention when focused at infinity at the wide-angle end. 12A is a longitudinal aberration diagram of Numerical Example 6, FIG. 12B is a longitudinal aberration diagram of the telephoto end of Numerical Example 6, and FIG. Both aberration diagrams are longitudinal aberration diagrams when focusing on infinity.

図11において、物体側から順に、合焦用の正の屈折力の第1群(フォーカスレンズ群)U1を有している。さらに、広角端から望遠端への変倍に際して、像側へ移動する変倍用の負の屈折力の第2群(バリエータ)U2を有している。さらに、第2群U2の移動に連動して光軸上を非直線的に移動し、変倍に伴う像面変動を補正する正の屈折力の第3群(コンペンセータ)U3を有している。さらに、変倍のためには移動しない結像作用をする正の屈折力の第4群(リレーレンズ群)U4を有している。   In FIG. 11, in order from the object side, a first group (focus lens group) U1 having positive refractive power for focusing is provided. Further, the zoom lens has a second refractive power second group (variator) U2 that moves toward the image side upon zooming from the wide-angle end to the telephoto end. Further, it has a third group (compensator) U3 having a positive refractive power that moves in a non-linear manner on the optical axis in conjunction with the movement of the second group U2, and corrects image plane fluctuations accompanying zooming. . Further, it has a fourth group (relay lens group) U4 having a positive refractive power that has an image forming action that does not move for zooming.

次に、本実施例における第1群U1について説明する。第1群U1は第1面から第13面に対応する。第1群U1は、合焦のためには移動しない負の屈折力の第11群U1a、無限遠側から至近側への合焦時に像側へ移動する正の屈折力の第12群U1b、合焦のためには移動しない正の屈折力の第13群U1cから構成される。第11群U1aは、物体側から順に、両凹レンズG1と像側に凸のメニスカス凹レンズG2、像側に凹のメニスカス凸レンズG3で構成される。また、第12群U1bは、両凸レンズG4で構成される。第13群U1cは物体側に凸のメニスカス凹レンズG5と両凸レンズG6を接合した接合レンズ、像側に凹のメニスカス凸G7で構成される。第2群U2は、物体側に凸のメニスカス凹レンズ、両凹レンズ、像側に凹のメニスカス凸レンズ、両凹レンズから構成される。また、第3群U3は、凸レンズと凹レンズを含み、全体として3個のレンズから成っている。第4群U4は、凸レンズと凹レンズを含み、全体として6個のレンズから成っている。 Next, the 1st group U1 in a present Example is demonstrated. The first group U1 corresponds to the first surface to the thirteenth surface. The first lens unit U1 includes an eleventh lens unit U1a having a negative refractive power that does not move for focusing, a twelfth lens unit U1b having a positive refractive power that moves toward the image side upon focusing from the infinity side to the close side, The thirteenth lens unit U1c has a positive refractive power that does not move for focusing . The eleventh unit U1a includes, in order from the object side, a biconcave lens G1, a meniscus concave lens G2 convex on the image side, and a meniscus convex lens G3 concave on the image side. The twelfth group U1b includes a biconvex lens G4. The thirteenth lens unit U1c includes a cemented lens in which a meniscus concave lens G5 convex to the object side and a biconvex lens G6 are cemented, and a meniscus convex G7 concave to the image side. The second unit U2 includes a meniscus concave lens that is convex on the object side, a biconcave lens, a meniscus convex lens that is concave on the image side, and a biconcave lens. The third unit U3 includes a convex lens and a concave lens, and is composed of three lenses as a whole. The fourth unit U4 includes a convex lens and a concave lens, and is composed of six lenses as a whole.

本実施例の各条件式対応値を表1に示す。
本実施例は(1)〜(11)式を満足しており、2.86倍の高ズーム比で広角端における撮影画角(画角)47.90°と広画角化を達成している。また、瞳近軸光線高の最も高い1面の収差係数Vを適切な範囲に設定することで、広角端の樽型のディストーションを効果的に補正している。且つズーム全域において諸収差を良好に補正した高い光学性能を有するズームレンズを達成している。
Table 1 shows values corresponding to the conditional expressions of this example.
This embodiment satisfies the expressions (1) to (11), and achieves a wide field angle of 47.90 ° at the wide angle end with a high zoom ratio of 2.86 times. Yes. In addition, the barrel-shaped distortion at the wide-angle end is effectively corrected by setting the aberration coefficient V of one surface having the highest pupil paraxial ray height within an appropriate range. In addition, a zoom lens having high optical performance in which various aberrations are favorably corrected over the entire zoom range is achieved.

図13は本発明の実施例7(数値実施例7)であるズームレンズにおいて、広角端で無限遠に合焦しているときのレンズ断面図である。図14において、(a)は数値実施例7の広角端、(b)は数値実施例7の焦点距離21mm、(c)は数値実施例7の望遠端の縦収差図を示している。いずれの収差図も、無限遠に合焦しているときの縦収差図である。   FIG. 13 is a lens cross-sectional view of the zoom lens that is Embodiment 7 (Numerical Embodiment 7) of the present invention when focused at infinity at the wide-angle end. 14A is a longitudinal aberration diagram of Numerical Example 7, FIG. 14B is a longitudinal aberration diagram of Numerical Example 7, and FIG. 14C is a longitudinal aberration diagram of Numerical Example 7. FIG. Both aberration diagrams are longitudinal aberration diagrams when focusing on infinity.

図13において、物体側から順に、合焦用の正の屈折力の第1群(フォーカスレンズ群)U1を有している。さらに、広角端から望遠端への変倍に際して、像側へ移動する変倍用の負の屈折力の第2群(バリエータ)U2を有している。さらに、第2群U2の移動に連動して光軸上を非直線的に移動し、変倍に伴う像面変動を補正する正の屈折力の第3群(コンペンセータ)U3を有している。さらに、変倍のためには移動しない結像作用をする正の屈折力の第4群(リレーレンズ群)U4を有している。   In FIG. 13, in order from the object side, a first group (focus lens group) U1 having positive refractive power for focusing is provided. Further, the zoom lens has a second refractive power second group (variator) U2 that moves toward the image side upon zooming from the wide-angle end to the telephoto end. Further, it has a third group (compensator) U3 having a positive refractive power that moves in a non-linear manner on the optical axis in conjunction with the movement of the second group U2, and corrects image plane fluctuations accompanying zooming. . Further, it has a fourth group (relay lens group) U4 having a positive refractive power that has an image forming action that does not move for zooming.

次に、本実施例における第1群U1について説明する。第1群U1は第1面から第17面に対応する。第1群U1は、合焦のためには移動しない負の屈折力の第11群U1a、無限遠側から至近側への合焦時に像側へ移動する正の屈折力の第12群U1b、合焦のためには移動しない正の屈折力の第13群U1cから構成される。第11群U1aは、物体側から順に、物体側に凸のメニスカス凹レンズG1と物体側に凸のメニスカス凹レンズG2、像側に凸のメニスカス凹レンズG3、像側に凹のメニスカス凸レンズG4で構成される。また、第12群U1bは、両凸レンズG5で構成される。第13群U1cは両凹レンズG6と両凸レンズG7を接合した接合レンズ、両凸レンズG8、像側に凹のメニスカス凸レンズG9で構成される。また、第1面は非球面形状である。第1面は主に広角側の歪曲収差の補正を行っている。第2群U2は、物体側に凸のメニスカス凹レンズ、両凹レンズと両凸レンズとの接合レンズ、像側に凸のメニスカス凹レンズから構成される。また、第3群U3は、凸レンズと凹レンズを含み、全体として3個のレンズから成っている。第4群U4は、凸レンズと凹レンズを含み、全体として7個のレンズから成っている。 Next, the 1st group U1 in a present Example is demonstrated. The first group U1 corresponds to the first surface to the seventeenth surface. The first lens unit U1 includes an eleventh lens unit U1a having a negative refractive power that does not move for focusing, a twelfth lens unit U1b having a positive refractive power that moves toward the image side upon focusing from the infinity side to the close side, The thirteenth lens unit U1c has a positive refractive power that does not move for focusing . The eleventh unit U1a includes, in order from the object side, a meniscus concave lens G1 convex toward the object side, a meniscus concave lens G2 convex toward the object side, a meniscus concave lens G3 convex toward the image side, and a meniscus convex lens G4 concave toward the image side. . The twelfth lens unit U1b includes a biconvex lens G5. The thirteenth unit U1c includes a cemented lens in which a biconcave lens G6 and a biconvex lens G7 are cemented, a biconvex lens G8, and a meniscus convex lens G9 that is concave on the image side. The first surface has an aspheric shape. The first surface mainly corrects distortion on the wide-angle side. The second unit U2 includes a meniscus concave lens convex on the object side, a cemented lens of a biconcave lens and a biconvex lens, and a meniscus concave lens convex on the image side. The third unit U3 includes a convex lens and a concave lens, and is composed of three lenses as a whole. The fourth unit U4 includes a convex lens and a concave lens, and is composed of seven lenses as a whole.

本実施例の各条件式対応値を表1に示す。
本実施例は(1)〜(3)、(6)〜(9)、(11)式を満足しており、2.86倍の高ズーム比で広角端における撮影画角(画角)96.00°と広画角化を達成している。また、瞳近軸光線高の最も高い1面の収差係数Vを適切な範囲に設定することで、広角端の樽型のディストーションを効果的に補正している。且つズーム全域において諸収差を良好に補正した高い光学性能を有するズームレンズを達成している。
Table 1 shows values corresponding to the conditional expressions of this example.
The present embodiment satisfies the expressions (1) to (3), (6) to (9), and (11), and has a shooting angle of view (view angle) 96 at the wide angle end with a high zoom ratio of 2.86 times. A wide angle of view of .00 ° has been achieved. In addition, the barrel-shaped distortion at the wide-angle end is effectively corrected by setting the aberration coefficient V of one surface having the highest pupil paraxial ray height within an appropriate range. In addition, a zoom lens having high optical performance in which various aberrations are favorably corrected over the entire zoom range is achieved.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

<数値実施例1>
単位 mm

面データ
第i面 ri di ndi νdi θgFi 有効径 焦点距離
1 113.35495 2.10000 1.772499 49.60 0.5521 62.167 -84.555
2 41.22933 12.22908 54.489
3 -380.22797 2.00000 1.589130 61.14 0.5406 54.058 -131.963
4 98.39664 7.84168 52.642
5 -92.86928 2.00000 1.589130 61.14 0.5406 52.633 -222.909
6 -316.72478 2.50000 53.594
7 105.42501 5.54987 1.805181 25.42 0.6161 57.774 148.201
8 825.97252 1.71834 58.025
9 160.20088 9.37829 1.496999 81.54 0.5374 59.154 122.738
10 -97.05090 10.36281 59.275
11 161.98385 2.00000 1.805181 25.42 0.6161 55.212 -83.312
12 47.48212 9.70418 1.496999 81.54 0.5374 53.020 99.816
13 969.23400 0.15372 52.875
14 86.41375 9.27635 1.487490 70.23 0.5300 52.555 106.410
15 -126.27409 0.15372 51.902
16 64.28015 5.18222 1.729157 54.68 0.5444 47.224 123.534
17 214.49049 (可変) 45.879
18 154.04994 1.15291 1.772499 49.60 0.5521 24.596 -40.274
19 25.90238 4.64707 22.567
20 -76.38966 1.07605 1.589130 61.14 0.5406 22.637 -35.603
21 29.22191 3.45874 1.846660 23.78 0.6034 23.277 38.757
22 233.70320 3.39659 23.278
23 -27.39565 0.99919 1.589130 61.14 0.5406 23.321 -88.730
24 -58.09515 (可変) 24.239
25 -143.82535 3.02257 1.589130 61.14 0.5406 25.120 138.124
26 -52.50607 0.10376 25.713
27 70.73807 5.74776 1.496999 81.54 0.5374 26.247 48.232
28 -35.43497 1.07605 1.834000 37.16 0.5775 26.236 -74.678
29 -82.65359 (可変) 26.592
30(絞り) ∞ 6.80013 26.476
31 26.04181 4.38025 1.651597 58.55 0.5426 26.346 74.782
32 51.97292 6.78396 25.274
33 296.75559 3.92358 1.846660 23.78 0.6205 22.972 41.104
34 -39.62446 1.03762 1.720467 34.70 0.5834 22.429 -21.464
35 25.93030 10.00000 20.836
36 52.04781 10.35747 1.496999 81.54 0.5374 27.625 30.287
37 -19.85686 1.03762 1.720467 34.70 0.5834 28.256 -47.764
38 -47.53798 0.20000 30.269
39 57.39627 4.98220 1.438750 94.93 0.5343 31.721 112.479
40 -348.94714 49.43659 31.777
像面 ∞

各種データ
ズーム比 2.60

広角 中間 望遠
焦点距離 25.00 40.00 65.00
Fナンバー 2.60 2.60 2.60
半画角 31.88 21.24 13.45
像高 15.55 15.55 15.55
レンズ全長 239.92 239.92 239.92
BF 49.44 49.44 49.44

d17 2.00 18.21 28.40
d24 23.15 14.96 1.50
d29 9.00 0.97 4.25

入射瞳位置 48.49 63.91 79.56
射出瞳位置 -78.87 -78.87 -78.87
前側主点位置 68.62 91.44 111.63
後側主点位置 24.44 9.44 -15.56

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 46.50 82.15 52.36 26.10
2 18 -24.00 14.73 3.80 -7.34
3 25 67.50 9.95 3.01 -3.44
4 30 69.21 49.50 32.84 -16.37

合焦時の第12群の移動量(物体側から像側の方向を正とする)
群 無限遠 最至近(0.6m)
12群 0 8.83

近軸追跡値(広角端)
面番号 α H α’ H ’
1 0.0000 1.0000 -1.0000 -1.9396
2 0.1712 0.9919 -1.3320 -1.8766
3 -0.2957 1.1365 -0.4488 -1.6570
4 -0.3399 1.1536 -0.3844 -1.6377
5 -0.5132 1.3146 -0.1383 -1.5944
6 -0.7225 1.3509 0.1156 -1.6002
7 -0.6594 1.4169 0.0409 -1.6043
8 -0.3864 1.4642 -0.2683 -1.5714
9 -0.4224 1.4932 -0.2296 -1.5556
10 -0.3063 1.5699 -0.3506 -1.4678
11 -0.1047 1.6133 -0.5391 -1.2444
12 0.0976 1.6090 -0.6952 -1.2137
13 -0.1685 1.6526 -0.4944 -1.0856
14 -0.1898 1.6538 -0.4804 -1.0827
15 0.0443 1.6428 -0.6337 -0.9248
16 0.2034 1.6415 -0.7232 -0.9203
17 0.6709 1.5612 -0.9853 -0.8024
18 0.5376 1.5182 -0.9168 -0.7291
19 0.7289 1.4993 -1.0087 -0.7029
20 -0.3943 1.5726 -0.4821 -0.6133
21 -0.6987 1.5915 -0.3634 -0.6034
22 -0.3398 1.6168 -0.4995 -0.5662
23 -0.4877 1.6831 -0.4477 -0.5054
24 -1.3961 1.7182 -0.1750 -0.5010
25 -0.9588 2.6059 -0.3025 -0.2209
26 -1.2267 2.6991 -0.2798 -0.1997
27 -0.4666 2.7010 -0.3360 -0.1983
28 0.0092 2.6996 -0.3709 -0.1414
29 -0.6400 2.7146 -0.3369 -0.1335
30 0.0491 2.6969 -0.3708 0.0000
31 0.0491 2.6835 -0.3708 0.1009
32 1.7346 2.4998 -0.3075 0.1334
33 0.9479 2.2426 -0.3494 0.2282
34 1.1094 2.1487 -0.3330 0.2564
35 1.2852 2.1178 -0.3120 0.2639
36 -0.1959 2.1962 -0.4966 0.4626
37 0.3299 2.1050 -0.3859 0.5692
38 -0.2715 2.1115 -0.5485 0.5824
39 0.5340 2.1072 -0.3263 0.5851
40 0.9377 1.9775 -0.2142 0.6147

3次のディストーションの収差係数(広角端)
面番号 V
1 0.2962
2 0.3301
3 0.0824
4 0.0442
5 -0.0127
6 0.0040
7 -0.1027
8 -0.0111
9 -0.0010
10 -0.3904
11 0.0935
12 0.0313
13 -0.0923
14 0.0262
15 -0.5358
16 0.1418
17 -0.6554
18 0.6194
19 0.0488
20 0.1973
21 -0.0217
22 -0.0841
23 0.3707
24 -0.0661
25 0.0533
26 -0.0979
27 0.0388
28 0.0415
29 -0.1169
30 0.0000
31 0.1338
32 -0.0909
33 0.0737
34 -0.0002
35 -0.3877
36 0.3154
37 -0.0556
38 -0.0027
39 0.1134
40 -0.0061
<Numerical Example 1>
Unit mm

Surface data i-th surface ri di ndi νdi θgFi Effective diameter Focal length
1 113.35495 2.10000 1.772499 49.60 0.5521 62.167 -84.555
2 41.22933 12.22908 54.489
3 -380.22797 2.00000 1.589130 61.14 0.5406 54.058 -131.963
4 98.39664 7.84168 52.642
5 -92.86928 2.00000 1.589130 61.14 0.5406 52.633 -222.909
6 -316.72478 2.50000 53.594
7 105.42501 5.54987 1.805181 25.42 0.6161 57.774 148.201
8 825.97252 1.71834 58.025
9 160.20088 9.37829 1.496999 81.54 0.5374 59.154 122.738
10 -97.05090 10.36281 59.275
11 161.98385 2.00000 1.805181 25.42 0.6161 55.212 -83.312
12 47.48212 9.70418 1.496999 81.54 0.5374 53.020 99.816
13 969.23400 0.15372 52.875
14 86.41375 9.27635 1.487490 70.23 0.5300 52.555 106.410
15 -126.27409 0.15372 51.902
16 64.28015 5.18222 1.729157 54.68 0.5444 47.224 123.534
17 214.49049 (variable) 45.879
18 154.04994 1.15291 1.772499 49.60 0.5521 24.596 -40.274
19 25.90238 4.64707 22.567
20 -76.38966 1.07605 1.589130 61.14 0.5406 22.637 -35.603
21 29.22191 3.45874 1.846660 23.78 0.6034 23.277 38.757
22 233.70320 3.39659 23.278
23 -27.39565 0.99919 1.589130 61.14 0.5406 23.321 -88.730
24 -58.09515 (variable) 24.239
25 -143.82535 3.02257 1.589130 61.14 0.5406 25.120 138.124
26 -52.50607 0.10376 25.713
27 70.73807 5.74776 1.496999 81.54 0.5374 26.247 48.232
28 -35.43497 1.07605 1.834000 37.16 0.5775 26.236 -74.678
29 -82.65359 (variable) 26.592
30 (Aperture) ∞ 6.80013 26.476
31 26.04181 4.38025 1.651597 58.55 0.5426 26.346 74.782
32 51.97292 6.78396 25.274
33 296.75559 3.92358 1.846660 23.78 0.6205 22.972 41.104
34 -39.62446 1.03762 1.720467 34.70 0.5834 22.429 -21.464
35 25.93030 10.00000 20.836
36 52.04781 10.35747 1.496999 81.54 0.5374 27.625 30.287
37 -19.85686 1.03762 1.720467 34.70 0.5834 28.256 -47.764
38 -47.53798 0.20000 30.269
39 57.39627 4.98220 1.438750 94.93 0.5343 31.721 112.479
40 -348.94714 49.43659 31.777
Image plane ∞

Various data Zoom ratio 2.60

Wide angle Medium Telephoto focal length 25.00 40.00 65.00
F number 2.60 2.60 2.60
Half angle of view 31.88 21.24 13.45
Image height 15.55 15.55 15.55
Total lens length 239.92 239.92 239.92
BF 49.44 49.44 49.44

d17 2.00 18.21 28.40
d24 23.15 14.96 1.50
d29 9.00 0.97 4.25

Entrance pupil position 48.49 63.91 79.56
Exit pupil position -78.87 -78.87 -78.87
Front principal point position 68.62 91.44 111.63
Rear principal point position 24.44 9.44 -15.56

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 46.50 82.15 52.36 26.10
2 18 -24.00 14.73 3.80 -7.34
3 25 67.50 9.95 3.01 -3.44
4 30 69.21 49.50 32.84 -16.37

Amount of movement of the 12th lens group during focusing (the direction from the object side to the image side is positive)
Group Infinity Closest (0.6m)
12 groups 0 8.83

Paraxial tracking value (wide-angle end)
Surface number α H α 'H'
1 0.0000 1.0000 -1.0000 -1.9396
2 0.1712 0.9919 -1.3320 -1.8766
3 -0.2957 1.1365 -0.4488 -1.6570
4 -0.3399 1.1536 -0.3844 -1.6377
5 -0.5132 1.3146 -0.1383 -1.5944
6 -0.7225 1.3509 0.1156 -1.6002
7 -0.6594 1.4169 0.0409 -1.6043
8 -0.3864 1.4642 -0.2683 -1.5714
9 -0.4224 1.4932 -0.2296 -1.5556
10 -0.3063 1.5699 -0.3506 -1.4678
11 -0.1047 1.6133 -0.5391 -1.2444
12 0.0976 1.6090 -0.6952 -1.2137
13 -0.1685 1.6526 -0.4944 -1.0856
14 -0.1898 1.6538 -0.4804 -1.0827
15 0.0443 1.6428 -0.6337 -0.9248
16 0.2034 1.6415 -0.7232 -0.9203
17 0.6709 1.5612 -0.9853 -0.8024
18 0.5376 1.5182 -0.9168 -0.7291
19 0.7289 1.4993 -1.0087 -0.7029
20 -0.3943 1.5726 -0.4821 -0.6133
21 -0.6987 1.5915 -0.3634 -0.6034
22 -0.3398 1.6168 -0.4995 -0.5662
23 -0.4877 1.6831 -0.4477 -0.5054
24 -1.3961 1.7182 -0.1750 -0.5010
25 -0.9588 2.6059 -0.3025 -0.2209
26 -1.2267 2.6991 -0.2798 -0.1997
27 -0.4666 2.7010 -0.3360 -0.1983
28 0.0092 2.6996 -0.3709 -0.1414
29 -0.6400 2.7146 -0.3369 -0.1335
30 0.0491 2.6969 -0.3708 0.0000
31 0.0491 2.6835 -0.3708 0.1009
32 1.7346 2.4998 -0.3075 0.1334
33 0.9479 2.2426 -0.3494 0.2282
34 1.1094 2.1487 -0.3330 0.2564
35 1.2852 2.1178 -0.3120 0.2639
36 -0.1959 2.1962 -0.4966 0.4626
37 0.3299 2.1050 -0.3859 0.5692
38 -0.2715 2.1115 -0.5485 0.5824
39 0.5340 2.1072 -0.3263 0.5851
40 0.9377 1.9775 -0.2142 0.6147

Aberration coefficient of third-order distortion (wide-angle end)
Surface number V
1 0.2962
2 0.3301
3 0.0824
4 0.0442
5 -0.0127
6 0.0040
7 -0.1027
8 -0.0111
9 -0.0010
10 -0.3904
11 0.0935
12 0.0313
13 -0.0923
14 0.0262
15 -0.5358
16 0.1418
17 -0.6554
18 0.6194
19 0.0488
20 0.1973
21 -0.0217
22 -0.0841
23 0.3707
24 -0.0661
25 0.0533
26 -0.0979
27 0.0388
28 0.0415
29 -0.1169
30 0.0000
31 0.1338
32 -0.0909
33 0.0737
34 -0.0002
35 -0.3877
36 0.3154
37 -0.0556
38 -0.0027
39 0.1134
40 -0.0061

<数値実施例2>
単位 mm

面データ
第i面 ri di ndi νdi θgFi 有効径 焦点距離
1 569.09377 2.50000 1.772499 49.60 0.5521 60.901 -70.246
2 49.66287 13.37511 54.777
3 -79.91880 2.30000 1.589130 61.14 0.5406 54.739 -112.798
4 408.02306 3.09406 56.294
5 112.28112 7.70636 1.720467 34.70 0.5834 58.902 119.452
6 -368.60510 2.00000 59.446
7 206.34761 8.86325 1.496999 81.54 0.5374 60.794 149.796
8 -115.33272 15.73443 60.953
9 147.60148 2.40000 1.846660 23.78 0.6205 56.869 -102.392
10 54.54195 10.13325 1.487490 70.23 0.5300 54.911 101.597
11 -525.18292 0.19000 54.771
12 105.32160 6.29682 1.589130 61.14 0.5406 54.082 165.676
13 -1375.48863 0.19000 53.347 0.000
14 86.03858 6.39104 1.729157 54.68 0.5444 51.176 117.556
15 138926.03827 (可変) 49.796
16 34.99716 1.42500 1.882997 40.76 0.5667 27.336 -72.631
17 22.25354 5.50719 25.453
18 -67.59354 1.33000 1.589130 61.14 0.5406 25.399 -63.016
19 83.68381 1.14000 25.514
20 32.48916 3.50000 1.959060 17.47 0.6599 26.210 60.670
21 68.51665 3.11055 25.605
22 -51.90144 1.23500 1.772499 49.60 0.5521 25.530 -42.723
23 92.79882 (可変) 25.855
24 283.11036 1.33000 1.834000 37.16 0.5775 26.788 -69.257
25 48.12367 5.48001 1.496999 81.54 0.5374 27.275 58.380
26 -70.82342 0.12825 28.003
27 69.02571 3.76292 1.589130 61.14 0.5406 28.973 110.369
28 -1177.06735 (可変) 29.045
29(絞り) ∞ 1.00000 29.114
30 31.40773 5.67589 1.622296 53.20 0.5542 29.291 57.226
31 239.58077 10.00000 28.374
32 -118.60112 4.38050 1.808095 22.76 0.6307 23.562 46.770
33 -29.36460 1.03762 1.720467 34.70 0.5834 23.059 -20.270
34 29.88605 10.00000 21.693
35 84.94267 9.52402 1.496999 81.54 0.5374 28.303 35.324
36 -21.38315 1.03762 1.755199 27.51 0.6103 29.200 -68.341
37 -37.05262 0.20000 31.055
38 63.03441 4.47896 1.589130 61.14 0.5406 32.663 115.819
39 769.33635 55.44627 32.591
像面 ∞

各種データ
ズーム比 2.67

広角 中間 望遠
焦点距離 30.00 50.00 80.00
Fナンバー 2.60 2.60 2.60
半画角 27.40 17.28 11.00
像高 15.55 15.55 15.55
レンズ全長 248.72 248.72 248.72
BF 55.45 55.45 55.45

d15 1.59 18.97 29.02
d23 26.23 17.01 2.73
d28 9.00 0.84 5.06

入射瞳位置 54.66 75.54 94.32
射出瞳位置 -76.32 -76.32 -76.32
前側主点位置 77.83 106.57 125.75
後側主点位置 25.45 5.45 -24.55

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 54.00 81.17 53.22 25.18
2 16 -25.00 17.25 8.59 -4.20
3 24 82.00 10.70 5.57 -1.25
4 29 71.11 47.33 30.98 -21.43

合焦時の第12群の移動量(物体側から像側の方向を正とする)
群 無限遠 最至近(0.6m)
12群 0 13.73

近軸追跡値(広角端)
面番号 α H α’ H ’
1 0.0000 1.0000 -1.0000 -1.8221
2 0.0409 0.9981 -1.0746 -1.7717
3 -0.4271 1.1885 -0.2438 -1.6630
4 -0.6909 1.2218 0.1254 -1.6690
5 -0.7441 1.2985 0.1979 -1.6894
6 -0.4924 1.3718 -0.1295 -1.6702
7 -0.4114 1.3992 -0.2281 -1.6550
8 -0.3100 1.4604 -0.3480 -1.5863
9 -0.1207 1.5236 -0.5537 -1.2959
10 0.1441 1.5174 -0.7789 -1.2623
11 -0.1613 1.5540 -0.5249 -1.1433
12 -0.1178 1.5547 -0.5568 -1.1398
13 0.1441 1.5357 -0.7488 -1.0410
14 0.1639 1.5347 -0.7623 -1.0362
15 0.5558 1.4664 -1.0268 -0.9099
16 0.5556 1.4369 -1.0267 -0.8555
17 1.6495 1.3954 -1.6780 -0.8133
18 -0.0212 1.3993 -0.7043 -0.6840
19 -0.3885 1.4101 -0.5247 -0.6694
20 -0.6875 1.4363 -0.3828 -0.6549
21 0.6014 1.4007 -0.9705 -0.5974
22 0.0054 1.4001 -0.7162 -0.5232
23 -0.6228 1.4146 -0.4815 -0.5120
24 -0.9778 2.2694 -0.3530 -0.2034
25 -0.7759 2.2881 -0.3711 -0.1944
26 -1.2622 2.4420 -0.3298 -0.1542
27 -0.7466 2.4452 -0.3624 -0.1527
28 -0.1180 2.4545 -0.4016 -0.1210
29 -0.0810 2.4788 -0.4034 0.0000
30 -0.0810 2.4815 -0.4034 0.0134
31 1.4006 2.3184 -0.3954 0.0595
32 1.2191 1.9121 -0.4001 0.1928
33 0.8242 1.8458 -0.4399 0.2282
34 0.9959 1.8258 -0.4186 0.2366
35 -0.3335 1.9370 -0.5909 0.4336
36 0.0075 1.9354 -0.5146 0.5426
37 -0.7073 1.9493 -0.7150 0.5566
38 0.4949 1.9460 -0.3717 0.5591
39 1.0426 1.8482 -0.2143 0.5792

3次のディストーションの収差係数(広角端)
面番号 V
1 0.5768
2 0.4525
3 0.0613
4 0.0333
5 -0.2554
6 -0.0128
7 -0.0010
8 -0.4111
9 0.0773
10 0.0428
11 -0.1792
12 0.0499
13 -0.4349
14 0.1649
15 -1.0577
16 0.1699
17 0.1521
18 0.5928
19 -0.0178
20 -0.0567
21 -0.1937
22 0.6842
23 -0.0235
24 0.0639
25 -0.0041
26 -0.0870
27 0.0510
28 -0.0988
29 0.0000
30 0.1070
31 -0.0952
32 0.0706
33 -0.0001
34 -0.4815
35 0.3500
36 -0.0484
37 0.0137
38 0.1642
39 -0.0145
<Numerical Example 2>
Unit mm

Surface data i-th surface ri di ndi νdi θgFi Effective diameter Focal length
1 569.09377 2.50000 1.772499 49.60 0.5521 60.901 -70.246
2 49.66287 13.37511 54.777
3 -79.91880 2.30000 1.589130 61.14 0.5406 54.739 -112.798
4 408.02306 3.09406 56.294
5 112.28112 7.70636 1.720467 34.70 0.5834 58.902 119.452
6 -368.60510 2.00000 59.446
7 206.34761 8.86325 1.496999 81.54 0.5374 60.794 149.796
8 -115.33272 15.73443 60.953
9 147.60148 2.40000 1.846660 23.78 0.6205 56.869 -102.392
10 54.54195 10.13325 1.487490 70.23 0.5300 54.911 101.597
11 -525.18292 0.19000 54.771
12 105.32160 6.29682 1.589130 61.14 0.5406 54.082 165.676
13 -1375.48863 0.19000 53.347 0.000
14 86.03858 6.39104 1.729157 54.68 0.5444 51.176 117.556
15 138926.03827 (variable) 49.796
16 34.99716 1.42500 1.882997 40.76 0.5667 27.336 -72.631
17 22.25354 5.50719 25.453
18 -67.59354 1.33000 1.589130 61.14 0.5406 25.399 -63.016
19 83.68381 1.14000 25.514
20 32.48916 3.50000 1.959060 17.47 0.6599 26.210 60.670
21 68.51665 3.11055 25.605
22 -51.90144 1.23500 1.772499 49.60 0.5521 25.530 -42.723
23 92.79882 (variable) 25.855
24 283.11036 1.33000 1.834000 37.16 0.5775 26.788 -69.257
25 48.12367 5.48001 1.496999 81.54 0.5374 27.275 58.380
26 -70.82342 0.12825 28.003
27 69.02571 3.76292 1.589130 61.14 0.5406 28.973 110.369
28 -1177.06735 (variable) 29.045
29 (Aperture) ∞ 1.00000 29.114
30 31.40773 5.67589 1.622296 53.20 0.5542 29.291 57.226
31 239.58077 10.00000 28.374
32 -118.60112 4.38050 1.808095 22.76 0.6307 23.562 46.770
33 -29.36460 1.03762 1.720467 34.70 0.5834 23.059 -20.270
34 29.88605 10.00000 21.693
35 84.94267 9.52402 1.496999 81.54 0.5374 28.303 35.324
36 -21.38315 1.03762 1.755199 27.51 0.6103 29.200 -68.341
37 -37.05262 0.20000 31.055
38 63.03441 4.47896 1.589130 61.14 0.5406 32.663 115.819
39 769.33635 55.44627 32.591
Image plane ∞

Various data Zoom ratio 2.67

Wide angle Medium Telephoto focal length 30.00 50.00 80.00
F number 2.60 2.60 2.60
Half angle of view 27.40 17.28 11.00
Image height 15.55 15.55 15.55
Total lens length 248.72 248.72 248.72
BF 55.45 55.45 55.45

d15 1.59 18.97 29.02
d23 26.23 17.01 2.73
d28 9.00 0.84 5.06

Entrance pupil position 54.66 75.54 94.32
Exit pupil position -76.32 -76.32 -76.32
Front principal point position 77.83 106.57 125.75
Rear principal point position 25.45 5.45 -24.55

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 54.00 81.17 53.22 25.18
2 16 -25.00 17.25 8.59 -4.20
3 24 82.00 10.70 5.57 -1.25
4 29 71.11 47.33 30.98 -21.43

Amount of movement of the 12th lens group during focusing (the direction from the object side to the image side is positive)
Group Infinity Closest (0.6m)
12 groups 0 13.73

Paraxial tracking value (wide-angle end)
Surface number α H α 'H'
1 0.0000 1.0000 -1.0000 -1.8221
2 0.0409 0.9981 -1.0746 -1.7717
3 -0.4271 1.1885 -0.2438 -1.6630
4 -0.6909 1.2218 0.1254 -1.6690
5 -0.7441 1.2985 0.1979 -1.6894
6 -0.4924 1.3718 -0.1295 -1.6702
7 -0.4114 1.3992 -0.2281 -1.6550
8 -0.3100 1.4604 -0.3480 -1.5863
9 -0.1207 1.5236 -0.5537 -1.2959
10 0.1441 1.5174 -0.7789 -1.2623
11 -0.1613 1.5540 -0.5249 -1.1433
12 -0.1178 1.5547 -0.5568 -1.1398
13 0.1441 1.5357 -0.7488 -1.0410
14 0.1639 1.5347 -0.7623 -1.0362
15 0.5558 1.4664 -1.0268 -0.9099
16 0.5556 1.4369 -1.0267 -0.8555
17 1.6495 1.3954 -1.6780 -0.8133
18 -0.0212 1.3993 -0.7043 -0.6840
19 -0.3885 1.4101 -0.5247 -0.6694
20 -0.6875 1.4363 -0.3828 -0.6549
21 0.6014 1.4007 -0.9705 -0.5974
22 0.0054 1.4001 -0.7162 -0.5232
23 -0.6228 1.4146 -0.4815 -0.5120
24 -0.9778 2.2694 -0.3530 -0.2034
25 -0.7759 2.2881 -0.3711 -0.1944
26 -1.2622 2.4420 -0.3298 -0.1542
27 -0.7466 2.4452 -0.3624 -0.1527
28 -0.1180 2.4545 -0.4016 -0.1210
29 -0.0810 2.4788 -0.4034 0.0000
30 -0.0810 2.4815 -0.4034 0.0134
31 1.4006 2.3184 -0.3954 0.0595
32 1.2191 1.9121 -0.4001 0.1928
33 0.8242 1.8458 -0.4399 0.2282
34 0.9959 1.8258 -0.4186 0.2366
35 -0.3335 1.9370 -0.5909 0.4336
36 0.0075 1.9354 -0.5146 0.5426
37 -0.7073 1.9493 -0.7150 0.5566
38 0.4949 1.9460 -0.3717 0.5591
39 1.0426 1.8482 -0.2143 0.5792

Aberration coefficient of third-order distortion (wide-angle end)
Surface number V
1 0.5768
2 0.4525
3 0.0613
4 0.0333
5 -0.2554
6 -0.0128
7 -0.0010
8 -0.4111
9 0.0773
10 0.0428
11 -0.1792
12 0.0499
13 -0.4349
14 0.1649
15 -1.0577
16 0.1699
17 0.1521
18 0.5928
19 -0.0178
20 -0.0567
21 -0.1937
22 0.6842
23 -0.0235
24 0.0639
25 -0.0041
26 -0.0870
27 0.0510
28 -0.0988
29 0.0000
30 0.1070
31 -0.0952
32 0.0706
33 -0.0001
34 -0.4815
35 0.3500
36 -0.0484
37 0.0137
38 0.1642
39 -0.0145

<数値実施例3>
単位 mm

面データ
第i面 ri di ndi νdi θgFi 有効径 焦点距離
1 -387.64273 2.50000 1.696797 55.53 0.5433 59.898 -59.064
2 46.38826 8.64808 1.755199 27.51 0.6103 55.136 90.636
3 130.00855 5.00033 54.147
4 -198.93482 2.50000 1.589130 61.14 0.5406 54.025 -227.124
5 415.54663 2.50037 54.708
6 136.25286 3.00000 1.805181 25.42 0.6161 56.044 -181.576
7 70.14039 10.81699 1.589130 61.14 0.5406 55.871 89.414
8 -202.60045 13.52988 56.141
9 258.20501 2.85000 1.720467 34.70 0.5834 55.717 -121.610
10 65.44554 0.05688 54.938
11 64.07890 11.55971 1.438750 94.93 0.5343 55.060 100.928
12 -136.54293 0.19000 55.179
13 73.47706 8.63795 1.438750 94.93 0.5343 54.241 141.235
14 -387.57107 0.19000 53.439
15 65.89591 7.11833 1.487490 70.23 0.5300 51.447 152.586
16 542.70635 (可変) 50.295
17 90.34638 1.42500 1.772499 49.60 0.5521 28.500 -43.805
18 24.53389 5.49570 26.391
19 -65.70815 1.33000 1.589130 61.14 0.5406 26.405 -66.841
20 99.97739 1.14000 27.051
21 38.05226 4.85065 1.846660 23.78 0.6205 28.433 43.812
22 -2268.67983 2.38400 28.151
23 -47.60904 1.23500 1.729157 54.68 0.5444 28.068 -45.632
24 113.33972 (可変) 28.537
25 326.79061 1.20000 1.834000 37.16 0.5775 28.981 -91.748
26 62.21608 6.00133 1.496999 81.54 0.5374 29.422 58.799
27 -53.63319 0.20000 30.096
28 67.51788 3.77676 1.651597 58.55 0.5426 30.910 144.366
29 231.53313 (可変) 30.738
30(絞り) ∞ 4.42650 30.488
31 31.66067 9.01039 1.620411 60.29 0.5426 30.269 48.264
32 -530.41808 7.64675 28.182
33 -64.40672 6.07509 1.805181 25.42 0.6161 23.096 46.617
34 -24.86149 1.50000 1.737999 32.26 0.5899 22.128 -17.751
35 28.84693 6.87481 22.056
36 -254.47813 5.67446 1.496999 81.54 0.5374 25.005 50.317
37 -23.00000 1.64526 25.938
38 -22.50692 1.50000 1.772499 49.60 0.5521 26.032 -78.195
39 -36.81350 6.14540 27.836
40 94.65141 5.34629 1.595220 67.74 0.5442 32.702 69.715
41 -72.78282 54.89683 33.010
像面 ∞

各種データ
ズーム比 3.00

広角 中間 望遠
焦点距離 40.00 70.00 120.00
Fナンバー 2.80 2.80 2.80
半画角 21.24 12.52 7.38
像高 15.55 15.55 15.55
レンズ全長 259.93 259.93 259.93
BF 54.90 54.90 54.90

d16 1.97 21.72 32.35
d24 29.08 18.60 1.51
d29 10.00 0.73 7.20

入射瞳位置 73.17 113.26 152.33
射出瞳位置 -92.49 -92.49 -92.49
前側主点位置 102.31 150.01 174.63
後側主点位置 14.90 -15.10 -65.10

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 68.00 79.10 54.36 10.07
2 17 -25.00 17.86 5.60 -6.93
3 25 74.00 11.18 4.98 -2.11
4 30 88.57 55.84 37.87 -26.32

合焦時の第12群の移動量(物体側から像側の方向を正とする)
群 無限遠 最至近(1.0m)
12群 0 12.03

近軸追跡値(広角端)
面番号 α H α’ H ’
1 0.0000 1.0000 -1.0000 -1.8292
2 -0.0722 1.0027 -0.8679 -1.7972
3 -0.0187 1.0050 -0.9638 -1.6790
4 -0.2542 1.0367 -0.5704 -1.6077
5 -0.3775 1.0516 -0.3792 -1.5928
6 -0.4374 1.0789 -0.2885 -1.5747
7 -0.1800 1.0863 -0.6642 -1.5473
8 -0.3170 1.1402 -0.4690 -1.4676
9 -0.1839 1.2024 -0.6404 -1.2510
10 -0.0488 1.2044 -0.7809 -1.2187
11 -0.5827 1.2053 -0.2406 -1.2184
12 -0.2518 1.2558 -0.5751 -1.1029
13 -0.0900 1.2562 -0.7173 -1.0995
14 0.2108 1.2246 -0.9805 -0.9525
15 0.2664 1.2233 -1.0238 -0.9476
16 0.6296 1.1481 -1.3051 -0.7916
17 0.5882 1.1191 -1.2766 -0.7288
18 0.9728 1.0996 -1.5271 -0.6982
19 -0.4188 1.1572 -0.6435 -0.6097
20 -0.8354 1.1746 -0.4240 -0.6009
21 -1.1133 1.2063 -0.2818 -0.5928
22 -0.0291 1.2082 -0.8147 -0.5396
23 -0.0108 1.2089 -0.8228 -0.4906
24 -0.7547 1.2223 -0.5210 -0.4813
25 -1.0706 2.0007 -0.3966 -0.1929
26 -0.8650 2.0149 -0.4164 -0.1861
27 -1.3066 2.1457 -0.3756 -0.1485
28 -0.5089 2.1482 -0.4308 -0.1464
29 0.3237 2.1297 -0.4876 -0.1185
30 0.0830 2.1090 -0.4742 0.0000
31 0.0830 2.0994 -0.4742 0.0551
32 1.7501 1.8606 -0.4304 0.1138
33 1.8473 1.5125 -0.4245 0.1938
34 1.0865 1.4217 -0.5219 0.2374
35 1.2418 1.4032 -0.4960 0.2448
36 -0.2128 1.4525 -0.7498 0.4187
37 -0.2950 1.4836 -0.7735 0.5002
38 0.9911 1.4428 -0.3398 0.5143
39 -1.0096 1.4575 -1.0530 0.5296
40 0.1349 1.4492 -0.6371 0.5688
41 0.4512 1.4100 -0.5129 0.6134

3次のディストーションの収差係数(広角端)
面番号 V
1 0.8963
2 -0.0884
3 -0.0128
4 0.2409
5 -0.0104
6 -0.0332
7 0.0794
8 -0.3488
9 0.1270
10 0.1646
11 -0.1328
12 -0.4952
13 0.0260
14 -0.8156
15 0.1919
16 -1.1958
17 0.9417
18 0.2032
19 0.4273
20 -0.0039
21 -0.0917
22 -0.4869
23 0.9818
24 -0.0303
25 0.0801
26 -0.0063
27 -0.1459
28 0.0761
29 -0.1334
30 0.0000
31 0.1787
32 -0.0851
33 0.0536
34 0.0011
35 -0.8212
36 0.3014
37 0.1554
38 -0.2295
39 -0.0283
40 0.3857
41 0.0177
<Numerical Example 3>
Unit mm

Surface data i-th surface ri di ndi νdi θgFi Effective diameter Focal length
1 -387.64273 2.50000 1.696797 55.53 0.5433 59.898 -59.064
2 46.38826 8.64808 1.755199 27.51 0.6103 55.136 90.636
3 130.00855 5.00033 54.147
4 -198.93482 2.50000 1.589130 61.14 0.5406 54.025 -227.124
5 415.54663 2.50037 54.708
6 136.25286 3.00000 1.805181 25.42 0.6161 56.044 -181.576
7 70.14039 10.81699 1.589130 61.14 0.5406 55.871 89.414
8 -202.60045 13.52988 56.141
9 258.20501 2.85000 1.720467 34.70 0.5834 55.717 -121.610
10 65.44554 0.05688 54.938
11 64.07890 11.55971 1.438750 94.93 0.5343 55.060 100.928
12 -136.54293 0.19000 55.179
13 73.47706 8.63795 1.438750 94.93 0.5343 54.241 141.235
14 -387.57107 0.19000 53.439
15 65.89591 7.11833 1.487490 70.23 0.5300 51.447 152.586
16 542.70635 (variable) 50.295
17 90.34638 1.42500 1.772499 49.60 0.5521 28.500 -43.805
18 24.53389 5.49570 26.391
19 -65.70815 1.33000 1.589130 61.14 0.5406 26.405 -66.841
20 99.97739 1.14000 27.051
21 38.05226 4.85065 1.846660 23.78 0.6205 28.433 43.812
22 -2268.67983 2.38400 28.151
23 -47.60904 1.23500 1.729157 54.68 0.5444 28.068 -45.632
24 113.33972 (variable) 28.537
25 326.79061 1.20000 1.834000 37.16 0.5775 28.981 -91.748
26 62.21608 6.00133 1.496999 81.54 0.5374 29.422 58.799
27 -53.63319 0.20000 30.096
28 67.51788 3.77676 1.651597 58.55 0.5426 30.910 144.366
29 231.53313 (variable) 30.738
30 (Aperture) ∞ 4.42650 30.488
31 31.66067 9.01039 1.620411 60.29 0.5426 30.269 48.264
32 -530.41808 7.64675 28.182
33 -64.40672 6.07509 1.805181 25.42 0.6161 23.096 46.617
34 -24.86149 1.50000 1.737999 32.26 0.5899 22.128 -17.751
35 28.84693 6.87481 22.056
36 -254.47813 5.67446 1.496999 81.54 0.5374 25.005 50.317
37 -23.00000 1.64526 25.938
38 -22.50692 1.50000 1.772499 49.60 0.5521 26.032 -78.195
39 -36.81350 6.14540 27.836
40 94.65141 5.34629 1.595220 67.74 0.5442 32.702 69.715
41 -72.78282 54.89683 33.010
Image plane ∞

Various data Zoom ratio 3.00

Wide angle Medium Telephoto focal length 40.00 70.00 120.00
F number 2.80 2.80 2.80
Half angle of view 21.24 12.52 7.38
Image height 15.55 15.55 15.55
Total lens length 259.93 259.93 259.93
BF 54.90 54.90 54.90

d16 1.97 21.72 32.35
d24 29.08 18.60 1.51
d29 10.00 0.73 7.20

Entrance pupil position 73.17 113.26 152.33
Exit pupil position -92.49 -92.49 -92.49
Front principal point position 102.31 150.01 174.63
Rear principal point position 14.90 -15.10 -65.10

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 68.00 79.10 54.36 10.07
2 17 -25.00 17.86 5.60 -6.93
3 25 74.00 11.18 4.98 -2.11
4 30 88.57 55.84 37.87 -26.32

Amount of movement of the 12th lens group during focusing (the direction from the object side to the image side is positive)
Group Infinity Closest (1.0m)
12 groups 0 12.03

Paraxial tracking value (wide-angle end)
Surface number α H α 'H'
1 0.0000 1.0000 -1.0000 -1.8292
2 -0.0722 1.0027 -0.8679 -1.7972
3 -0.0187 1.0050 -0.9638 -1.6790
4 -0.2542 1.0367 -0.5704 -1.6077
5 -0.3775 1.0516 -0.3792 -1.5928
6 -0.4374 1.0789 -0.2885 -1.5747
7 -0.1800 1.0863 -0.6642 -1.5473
8 -0.3170 1.1402 -0.4690 -1.4676
9 -0.1839 1.2024 -0.6404 -1.2510
10 -0.0488 1.2044 -0.7809 -1.2187
11 -0.5827 1.2053 -0.2406 -1.2184
12 -0.2518 1.2558 -0.5751 -1.1029
13 -0.0900 1.2562 -0.7173 -1.0995
14 0.2108 1.2246 -0.9805 -0.9525
15 0.2664 1.2233 -1.0238 -0.9476
16 0.6296 1.1481 -1.3051 -0.7916
17 0.5882 1.1191 -1.2766 -0.7288
18 0.9728 1.0996 -1.5271 -0.6982
19 -0.4188 1.1572 -0.6435 -0.6097
20 -0.8354 1.1746 -0.4240 -0.6009
21 -1.1133 1.2063 -0.2818 -0.5928
22 -0.0291 1.2082 -0.8147 -0.5396
23 -0.0108 1.2089 -0.8228 -0.4906
24 -0.7547 1.2223 -0.5210 -0.4813
25 -1.0706 2.0007 -0.3966 -0.1929
26 -0.8650 2.0149 -0.4164 -0.1861
27 -1.3066 2.1457 -0.3756 -0.1485
28 -0.5089 2.1482 -0.4308 -0.1464
29 0.3237 2.1297 -0.4876 -0.1185
30 0.0830 2.1090 -0.4742 0.0000
31 0.0830 2.0994 -0.4742 0.0551
32 1.7501 1.8606 -0.4304 0.1138
33 1.8473 1.5125 -0.4245 0.1938
34 1.0865 1.4217 -0.5219 0.2374
35 1.2418 1.4032 -0.4960 0.2448
36 -0.2128 1.4525 -0.7498 0.4187
37 -0.2950 1.4836 -0.7735 0.5002
38 0.9911 1.4428 -0.3398 0.5143
39 -1.0096 1.4575 -1.0530 0.5296
40 0.1349 1.4492 -0.6371 0.5688
41 0.4512 1.4100 -0.5129 0.6134

Aberration coefficient of third-order distortion (wide-angle end)
Surface number V
1 0.8963
2 -0.0884
3 -0.0128
4 0.2409
5 -0.0104
6 -0.0332
7 0.0794
8 -0.3488
9 0.1270
10 0.1646
11 -0.1328
12 -0.4952
13 0.0260
14 -0.8156
15 0.1919
16 -1.1958
17 0.9417
18 0.2032
19 0.4273
20 -0.0039
21 -0.0917
22 -0.4869
23 0.9818
24 -0.0303
25 0.0801
26 -0.0063
27 -0.1459
28 0.0761
29 -0.1334
30 0.0000
31 0.1787
32 -0.0851
33 0.0536
34 0.0011
35 -0.8212
36 0.3014
37 0.1554
38 -0.2295
39 -0.0283
40 0.3857
41 0.0177

<数値実施例4>
単位 mm

面データ
第i面 ri di ndi νdi θgFi 有効径 焦点距離
1 -204.79851 2.50000 1.696797 55.53 0.5433 62.091 -115.366
2 133.93464 0.20000 61.905
3 91.69315 3.72815 2.102050 16.77 0.6721 62.534 355.261
4 116.67681 4.63519 61.950
5 -3328.10384 2.50000 1.696797 55.53 0.5433 61.981 -354.526
6 268.15995 2.00000 62.278
7 244.03004 8.40980 1.620411 60.29 0.5426 62.904 137.836
8 -130.70000 3.00000 1.654115 39.70 0.5737 63.082 -580.448
9 -200.50000 17.84704 63.428
10 157.56595 2.85000 1.846660 23.78 0.6205 61.590 -132.757
11 65.42970 0.59717 59.994
12 66.79239 11.66371 1.496999 81.54 0.5374 60.241 105.153
13 -229.34107 0.19000 60.162
14 69.82956 9.08594 1.487490 70.23 0.5300 58.600 151.196
15 1197.68869 0.19000 57.449
16 84.53680 6.59855 1.620411 60.29 0.5426 55.734 178.009
17 345.20662 (可変) 54.273
18 115.60141 1.42500 1.772499 49.60 0.5521 30.692 -43.106
19 25.80886 6.09645 28.296
20 -64.68927 1.33000 1.589130 61.14 0.5406 28.312 -65.105
21 95.85406 1.14000 29.108
22 41.92068 6.12593 1.846660 23.78 0.6205 30.632 45.368
23 -484.67721 2.52170 30.324
24 -47.97539 1.23500 1.729157 54.68 0.5444 30.247 -49.743
25 152.99974 (可変) 30.877
26 116.05829 5.58544 1.589130 61.14 0.5406 32.230 64.177
27 -55.39353 0.12825 32.523
28 91.69957 8.25612 1.496999 81.54 0.5374 31.995 58.440
29 -41.41239 1.33000 1.800999 34.97 0.5863 31.213 -61.762
30 -249.24669 (可変) 31.105
31(絞り) ∞ 2.91177 29.303
32 33.09875 7.50204 1.620411 60.29 0.5426 28.376 67.061
33 145.56585 9.56548 26.187
34 -121.47875 3.89638 1.805181 25.42 0.6161 20.882 37.522
35 -24.72443 1.50000 1.737999 32.26 0.5899 20.911 -17.475
36 28.08335 8.73653 20.782
37 -118.63157 6.43084 1.496999 81.54 0.5374 24.545 53.011
38 -22.00000 0.74840 25.901
39 -21.49045 1.50000 1.816000 46.62 0.5568 25.918 -91.821
40 -31.01771 8.02212 27.619
41 55.68313 4.88195 1.589130 61.14 0.5406 33.032 83.152
42 -407.26788 45.96507 33.040
像面 ∞

各種データ
ズーム比 3.11
広角 中間 望遠
焦点距離 45.00 80.00 140.00
Fナンバー 2.80 2.80 2.80
半画角 19.06 11.00 6.34
像高 15.55 15.55 15.55
レンズ全長 257.46 257.46 257.46
BF 45.97 45.97 45.97

d17 1.50 23.19 32.54
d25 31.63 20.74 2.38
d30 11.50 0.69 9.70

入射瞳位置 80.79 138.40 197.15
射出瞳位置 -96.93 -96.93 -96.93
前側主点位置 111.62 173.62 199.98
後側主点位置 0.97 -34.04 -94.03

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 73.00 76.00 51.28 4.66
2 18 -25.00 19.87 5.66 -8.06
3 26 58.00 15.30 1.31 -8.45
4 31 106.46 55.70 46.06 -15.74

合焦時の第12群の移動量(物体側から像側の方向を正とする)
群 無限遠 最至近(1.0m)
12群 0 16.35

近軸追跡値(広角端)
面番号 α H α’ H ’
1 0.0000 1.0000 -1.0000 -1.7954
2 -0.1538 1.0050 -0.7239 -1.7718
3 -0.3901 1.0068 -0.3074 -1.7704
4 0.1620 1.0004 -1.2782 -1.7204
5 -0.2691 1.0281 -0.5368 -1.6651
6 -0.2788 1.0373 -0.5210 -1.6481
7 -0.4007 1.0551 -0.3275 -1.6335
8 -0.2795 1.0872 -0.5151 -1.5742
9 0.2926 1.0990 -0.4961 -1.5542
10 -0.1303 1.1507 -0.7256 -1.2665
11 0.1507 1.1456 -1.0349 -1.2311
12 -0.5230 1.1525 -0.3109 -1.2270
13 -0.1360 1.1760 -0.7229 -1.1020
14 -0.0209 1.1761 -0.8307 -1.0984
15 0.3498 1.1287 -1.1770 -0.9389
16 0.3291 1.1273 -1.1597 -0.9340
17 0.7028 1.0638 -1.4694 -0.8012
18 0.6164 1.0432 -1.4043 -0.7544
19 0.9317 1.0266 -1.6323 -0.7253
20 -0.4578 1.0886 -0.6507 -0.6371
21 -0.9056 1.1055 -0.3885 -0.6299
22 -1.2126 1.1362 -0.2136 -0.6245
23 -0.1697 1.1486 -0.7868 -0.5668
24 -0.0786 1.1530 -0.8318 -0.5202
25 -0.8706 1.1668 -0.4745 -0.5126
26 -1.1219 1.9554 -0.3641 -0.2567
27 -0.6735 2.0079 -0.4230 -0.2237
28 0.2912 2.0071 -0.5305 -0.2222
29 0.7821 1.9113 -0.5848 -0.1506
30 0.1425 1.9090 -0.5344 -0.1419
31 0.4205 1.8015 -0.5551 0.0000
32 0.4205 1.7743 -0.5551 0.0359
33 1.9255 1.5763 -0.5247 0.0898
34 1.6233 1.2303 -0.5419 0.2053
35 1.2462 1.1675 -0.6048 0.2358
36 1.3963 1.1490 -0.5745 0.2434
37 0.0320 1.1435 -0.8635 0.3934
38 -0.1877 1.1637 -0.9391 0.4943
39 0.9987 1.1497 -0.4351 0.5005
40 -0.9790 1.1621 -1.2960 0.5169
41 0.4238 1.0726 -0.6720 0.6587
42 0.9306 1.0098 -0.3608 0.6831

3次のディストーションの収差係数(広角端)
面番号 V
1 1.2309
2 0.0658
3 -0.2504
4 0.0403
5 0.1095
6 -0.0062
7 0.0031
8 0.0221
9 -0.5429
10 0.1254
11 0.2058
12 -0.1452
13 -0.5805
14 0.0339
15 -0.9106
16 0.4242
17 -1.5735
18 1.2840
19 0.2877
20 0.4676
21 0.0086
22 -0.1447
23 -0.5205
24 1.0808
25 -0.0245
26 0.0368
27 -0.3221
28 0.1115
29 0.1119
30 -0.2453
31 0.0000
32 0.2190
33 -0.1692
34 0.1111
35 0.0016
36 -1.0078
37 0.2939
38 0.1873
39 -0.2717
40 0.0279
41 0.5813
42 -0.0164
<Numerical Example 4>
Unit mm

Surface data i-th surface ri di ndi νdi θgFi Effective diameter Focal length
1 -204.79851 2.50000 1.696797 55.53 0.5433 62.091 -115.366
2 133.93464 0.20000 61.905
3 91.69315 3.72815 2.102050 16.77 0.6721 62.534 355.261
4 116.67681 4.63519 61.950
5 -3328.10384 2.50000 1.696797 55.53 0.5433 61.981 -354.526
6 268.15995 2.00000 62.278
7 244.03004 8.40980 1.620411 60.29 0.5426 62.904 137.836
8 -130.70000 3.00000 1.654115 39.70 0.5737 63.082 -580.448
9 -200.50000 17.84704 63.428
10 157.56595 2.85000 1.846660 23.78 0.6205 61.590 -132.757
11 65.42970 0.59717 59.994
12 66.79239 11.66371 1.496999 81.54 0.5374 60.241 105.153
13 -229.34107 0.19000 60.162
14 69.82956 9.08594 1.487490 70.23 0.5300 58.600 151.196
15 1197.68869 0.19000 57.449
16 84.53680 6.59855 1.620411 60.29 0.5426 55.734 178.009
17 345.20662 (variable) 54.273
18 115.60141 1.42500 1.772499 49.60 0.5521 30.692 -43.106
19 25.80886 6.09645 28.296
20 -64.68927 1.33000 1.589130 61.14 0.5406 28.312 -65.105
21 95.85406 1.14000 29.108
22 41.92068 6.12593 1.846660 23.78 0.6205 30.632 45.368
23 -484.67721 2.52170 30.324
24 -47.97539 1.23500 1.729157 54.68 0.5444 30.247 -49.743
25 152.99974 (variable) 30.877
26 116.05829 5.58544 1.589130 61.14 0.5406 32.230 64.177
27 -55.39353 0.12825 32.523
28 91.69957 8.25612 1.496999 81.54 0.5374 31.995 58.440
29 -41.41239 1.33000 1.800999 34.97 0.5863 31.213 -61.762
30 -249.24669 (variable) 31.105
31 (Aperture) ∞ 2.91177 29.303
32 33.09875 7.50204 1.620411 60.29 0.5426 28.376 67.061
33 145.56585 9.56548 26.187
34 -121.47875 3.89638 1.805181 25.42 0.6161 20.882 37.522
35 -24.72443 1.50000 1.737999 32.26 0.5899 20.911 -17.475
36 28.08335 8.73653 20.782
37 -118.63157 6.43084 1.496999 81.54 0.5374 24.545 53.011
38 -22.00000 0.74840 25.901
39 -21.49045 1.50000 1.816000 46.62 0.5568 25.918 -91.821
40 -31.01771 8.02212 27.619
41 55.68313 4.88195 1.589130 61.14 0.5406 33.032 83.152
42 -407.26788 45.96507 33.040
Image plane ∞

Various data Zoom ratio 3.11
Wide angle Medium Telephoto focal length 45.00 80.00 140.00
F number 2.80 2.80 2.80
Half angle of view 19.06 11.00 6.34
Image height 15.55 15.55 15.55
Total lens length 257.46 257.46 257.46
BF 45.97 45.97 45.97

d17 1.50 23.19 32.54
d25 31.63 20.74 2.38
d30 11.50 0.69 9.70

Entrance pupil position 80.79 138.40 197.15
Exit pupil position -96.93 -96.93 -96.93
Front principal point position 111.62 173.62 199.98
Rear principal point position 0.97 -34.04 -94.03

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 73.00 76.00 51.28 4.66
2 18 -25.00 19.87 5.66 -8.06
3 26 58.00 15.30 1.31 -8.45
4 31 106.46 55.70 46.06 -15.74

Amount of movement of the 12th lens group during focusing (the direction from the object side to the image side is positive)
Group Infinity Closest (1.0m)
12 groups 0 16.35

Paraxial tracking value (wide-angle end)
Surface number α H α 'H'
1 0.0000 1.0000 -1.0000 -1.7954
2 -0.1538 1.0050 -0.7239 -1.7718
3 -0.3901 1.0068 -0.3074 -1.7704
4 0.1620 1.0004 -1.2782 -1.7204
5 -0.2691 1.0281 -0.5368 -1.6651
6 -0.2788 1.0373 -0.5210 -1.6481
7 -0.4007 1.0551 -0.3275 -1.6335
8 -0.2795 1.0872 -0.5151 -1.5742
9 0.2926 1.0990 -0.4961 -1.5542
10 -0.1303 1.1507 -0.7256 -1.2665
11 0.1507 1.1456 -1.0349 -1.2311
12 -0.5230 1.1525 -0.3109 -1.2270
13 -0.1360 1.1760 -0.7229 -1.1020
14 -0.0209 1.1761 -0.8307 -1.0984
15 0.3498 1.1287 -1.1770 -0.9389
16 0.3291 1.1273 -1.1597 -0.9340
17 0.7028 1.0638 -1.4694 -0.8012
18 0.6164 1.0432 -1.4043 -0.7544
19 0.9317 1.0266 -1.6323 -0.7253
20 -0.4578 1.0886 -0.6507 -0.6371
21 -0.9056 1.1055 -0.3885 -0.6299
22 -1.2126 1.1362 -0.2136 -0.6245
23 -0.1697 1.1486 -0.7868 -0.5668
24 -0.0786 1.1530 -0.8318 -0.5202
25 -0.8706 1.1668 -0.4745 -0.5126
26 -1.1219 1.9554 -0.3641 -0.2567
27 -0.6735 2.0079 -0.4230 -0.2237
28 0.2912 2.0071 -0.5305 -0.2222
29 0.7821 1.9113 -0.5848 -0.1506
30 0.1425 1.9090 -0.5344 -0.1419
31 0.4205 1.8015 -0.5551 0.0000
32 0.4205 1.7743 -0.5551 0.0359
33 1.9255 1.5763 -0.5247 0.0898
34 1.6233 1.2303 -0.5419 0.2053
35 1.2462 1.1675 -0.6048 0.2358
36 1.3963 1.1490 -0.5745 0.2434
37 0.0320 1.1435 -0.8635 0.3934
38 -0.1877 1.1637 -0.9391 0.4943
39 0.9987 1.1497 -0.4351 0.5005
40 -0.9790 1.1621 -1.2960 0.5169
41 0.4238 1.0726 -0.6720 0.6587
42 0.9306 1.0098 -0.3608 0.6831

Aberration coefficient of third-order distortion (wide-angle end)
Surface number V
1 1.2309
2 0.0658
3 -0.2504
4 0.0403
5 0.1095
6 -0.0062
7 0.0031
8 0.0221
9 -0.5429
10 0.1254
11 0.2058
12 -0.1452
13 -0.5805
14 0.0339
15 -0.9106
16 0.4242
17 -1.5735
18 1.2840
19 0.2877
20 0.4676
21 0.0086
22 -0.1447
23 -0.5205
24 1.0808
25 -0.0245
26 0.0368
27 -0.3221
28 0.1115
29 0.1119
30 -0.2453
31 0.0000
32 0.2190
33 -0.1692
34 0.1111
35 0.0016
36 -1.0078
37 0.2939
38 0.1873
39 -0.2717
40 0.0279
41 0.5813
42 -0.0164

<数値実施例5>
単位 mm

面データ
第i面 ri di ndi νdi θgFi 有効径 焦点距離
1 295.01268 2.66000 1.772499 49.60 0.5521 72.176 -91.878
2 57.20621 16.51744 65.371
3 -126.03429 2.37500 1.589130 61.14 0.5406 65.361 -256.308
4 -752.89141 1.04955 66.519
5 92.29299 4.75000 1.922860 18.90 0.6495 69.140 234.329
6 155.58877 3.80686 68.901
7 344.35398 2.28000 1.805181 25.42 0.6161 69.233 -245.887
8 126.07007 14.08461 1.589130 61.14 0.5406 69.331 104.438
9 -116.07149 18.59321 69.722
10 99.01089 2.18500 1.805181 25.42 0.6161 63.476 -159.575
11 55.58844 16.67748 1.496999 81.54 0.5374 61.426 88.788
12 -195.44112 0.19000 60.748
13 66.75712 8.88535 1.595220 67.74 0.5442 57.417 122.045
14 752.89620 (可変) 55.734
15 98.72346 1.23500 1.816000 46.62 0.5568 25.757 -53.696
16 30.28261 4.84874 23.508
17 -55.04852 1.14000 1.589130 61.14 0.5406 22.470 -31.974
18 29.02742 4.45572 1.808095 22.76 0.6307 21.197 37.017
19 683.54291 1.82601 20.577
20 -43.07889 1.23500 1.772499 49.60 0.5521 20.518 -53.747
21* 1337.73630 (可変) 20.895
22 66.18922 1.23500 1.834000 37.16 0.5775 21.741 -88.269
23 34.65998 3.06641 1.487490 70.23 0.5300 21.745 58.382
24 -157.47489 0.19000 21.895
25 90.68628 1.90796 1.589130 61.14 0.5406 22.109 112.137
26 -244.91474 (可変) 22.124
27(絞り) ∞ 1.49938 21.531
28 31.00767 1.42500 1.755199 27.51 0.6103 21.431 -75.913
29 19.78262 3.46411 1.592010 67.02 0.5357 20.634 42.707
30 83.92386 14.71759 20.349
31 48.39285 3.81455 1.761821 26.52 0.6135 18.560 20.996
32 -23.38220 1.20000 1.749505 35.33 0.5818 18.490 -15.573
33 24.14287 15.00026 18.114
34 37.69649 7.47218 1.496999 81.54 0.5374 26.161 35.644
35 -31.38922 4.19375 26.323
36 -28.03877 1.20000 1.903660 31.32 0.5946 24.753 -61.931
37 -56.90913 46.04769 25.488
像面 ∞

非球面データ
第21面
K = 6.47521e+003 A 4= 7.28288e-007 A 6= 1.43818e-009 A 8=-1.89454e-011 A10=-7.91776e-014 A12= 9.52326e-016

各種データ
ズーム比 5.00

広角 中間 望遠
焦点距離 30.00 70.00 150.00
Fナンバー 4.00 4.00 4.00
半画角 27.40 12.52 5.92
像高 15.55 15.55 15.55
レンズ全長 274.98 274.98 274.98
BF 46.05 46.05 46.05

d14 1.50 32.58 44.16
d21 38.25 25.71 1.50
d26 20.00 1.47 14.09

入射瞳位置 66.66 129.34 198.76
射出瞳位置 -57.05 -57.05 -57.05
前側主点位置 87.93 151.81 130.52
後側主点位置 16.05 -23.95 -103.95

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 63.20 94.05 61.05 18.81
2 15 -22.00 14.74 5.31 -5.12
3 22 69.00 6.40 2.13 -2.05
4 27 95.06 53.99 16.56 -37.00

合焦時の第12群の移動量(物体側から像側の方向を正とする)
群 無限遠 最至近(0.8m)
12群 0 15.70

近軸追跡値(広角端)
面番号 α H α’ H ’
1 0.0000 1.0000 -1.0000 -2.2221
2 0.0789 0.9961 -1.1754 -2.1634
3 -0.3265 1.1758 -0.2948 -2.0012
4 -0.4921 1.2003 -0.0130 -2.0005
5 -0.4638 1.2165 -0.0602 -1.9984
6 -0.0943 1.2243 -0.6671 -1.9438
7 -0.3149 1.2642 -0.3169 -1.9036
8 -0.2254 1.2737 -0.4517 -1.8847
9 -0.2924 1.3599 -0.3525 -1.7807
10 -0.0845 1.4123 -0.6247 -1.3935
11 0.2632 1.4017 -0.9678 -1.3546
12 0.0256 1.3923 -0.7381 -1.0808
13 0.1321 1.3914 -0.8208 -1.0756
14 0.5056 1.2977 -1.1095 -0.8699
15 0.4747 1.2739 -1.0888 -0.8154
16 0.7922 1.2560 -1.2920 -0.7862
17 -0.2283 1.2929 -0.6533 -0.6806
18 -0.6451 1.3083 -0.4339 -0.6702
19 -0.3408 1.3362 -0.5898 -0.6220
20 -0.3887 1.3598 -0.5675 -0.5875
21 -1.1237 1.3859 -0.2499 -0.5817
22 -1.1479 2.8495 -0.2398 -0.2759
23 -0.0639 2.8509 -0.3448 -0.2682
24 -0.9280 2.9146 -0.2635 -0.2501
25 -0.6564 2.9188 -0.2868 -0.2483
26 -0.0853 2.9222 -0.3354 -0.2349
27 0.1264 2.8379 -0.3524 0.0000
28 0.1264 2.8307 -0.3524 0.0203
29 1.8131 2.7793 -0.3403 0.0299
30 1.4710 2.6097 -0.3440 0.0696
31 1.1089 2.0553 -0.3536 0.2464
32 1.7847 1.9055 -0.2726 0.2693
33 1.9046 1.8636 -0.2557 0.2749
34 0.1713 1.7937 -0.5113 0.4835
35 0.9704 1.5452 -0.2959 0.5593
36 1.9732 1.5388 0.0671 0.5591
37 0.2913 1.5338 -0.5440 0.5685

3次のディストーションの収差係数(広角端)
面番号 V
1 0.4523
2 0.4710
3 0.0660
4 0.0029
5 -0.2349
6 0.0099
7 0.0164
8 0.0121
9 -0.5915
10 0.0574
11 0.0241
12 -0.6125
13 0.1221
14 -0.9567
15 0.7236
16 0.0389
17 0.5124
18 -0.0404
19 -0.1582
20 0.4586
21 0.0360
22 0.0117
23 0.0021
24 -0.0495
25 0.0251
26 -0.0893
27 0.0000
28 0.0871
29 -0.0062
30 -0.0758
31 0.0944
32 0.0028
33 -0.4636
34 0.4764
35 0.4001
36 -0.4859
37 0.0043
<Numerical example 5>
Unit mm

Surface data i-th surface ri di ndi νdi θgFi Effective diameter Focal length
1 295.01268 2.66000 1.772499 49.60 0.5521 72.176 -91.878
2 57.20621 16.51744 65.371
3 -126.03429 2.37500 1.589130 61.14 0.5406 65.361 -256.308
4 -752.89141 1.04955 66.519
5 92.29299 4.75000 1.922860 18.90 0.6495 69.140 234.329
6 155.58877 3.80686 68.901
7 344.35398 2.28000 1.805181 25.42 0.6161 69.233 -245.887
8 126.07007 14.08461 1.589130 61.14 0.5406 69.331 104.438
9 -116.07149 18.59321 69.722
10 99.01089 2.18500 1.805181 25.42 0.6161 63.476 -159.575
11 55.58844 16.67748 1.496999 81.54 0.5374 61.426 88.788
12 -195.44112 0.19000 60.748
13 66.75712 8.88535 1.595220 67.74 0.5442 57.417 122.045
14 752.89620 (variable) 55.734
15 98.72346 1.23500 1.816000 46.62 0.5568 25.757 -53.696
16 30.28261 4.84874 23.508
17 -55.04852 1.14000 1.589130 61.14 0.5406 22.470 -31.974
18 29.02742 4.45572 1.808095 22.76 0.6307 21.197 37.017
19 683.54291 1.82601 20.577
20 -43.07889 1.23500 1.772499 49.60 0.5521 20.518 -53.747
21 * 1337.73630 (variable) 20.895
22 66.18922 1.23500 1.834000 37.16 0.5775 21.741 -88.269
23 34.65998 3.06641 1.487490 70.23 0.5300 21.745 58.382
24 -157.47489 0.19000 21.895
25 90.68628 1.90796 1.589130 61.14 0.5406 22.109 112.137
26 -244.91474 (variable) 22.124
27 (Aperture) ∞ 1.49938 21.531
28 31.00767 1.42500 1.755199 27.51 0.6103 21.431 -75.913
29 19.78262 3.46411 1.592010 67.02 0.5357 20.634 42.707
30 83.92386 14.71759 20.349
31 48.39285 3.81455 1.761821 26.52 0.6135 18.560 20.996
32 -23.38220 1.20000 1.749505 35.33 0.5818 18.490 -15.573
33 24.14287 15.00026 18.114
34 37.69649 7.47218 1.496999 81.54 0.5374 26.161 35.644
35 -31.38922 4.19375 26.323
36 -28.03877 1.20000 1.903660 31.32 0.5946 24.753 -61.931
37 -56.90913 46.04769 25.488
Image plane ∞

Aspheric data 21st surface
K = 6.47521e + 003 A 4 = 7.28288e-007 A 6 = 1.43818e-009 A 8 = -1.89454e-011 A10 = -7.91776e-014 A12 = 9.52326e-016

Various data Zoom ratio 5.00

Wide angle Medium Telephoto focal length 30.00 70.00 150.00
F number 4.00 4.00 4.00
Half angle of view 27.40 12.52 5.92
Image height 15.55 15.55 15.55
Total lens length 274.98 274.98 274.98
BF 46.05 46.05 46.05

d14 1.50 32.58 44.16
d21 38.25 25.71 1.50
d26 20.00 1.47 14.09

Entrance pupil position 66.66 129.34 198.76
Exit pupil position -57.05 -57.05 -57.05
Front principal point position 87.93 151.81 130.52
Rear principal point position 16.05 -23.95 -103.95

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 63.20 94.05 61.05 18.81
2 15 -22.00 14.74 5.31 -5.12
3 22 69.00 6.40 2.13 -2.05
4 27 95.06 53.99 16.56 -37.00

Amount of movement of the 12th lens group during focusing (the direction from the object side to the image side is positive)
Group Infinity Closest (0.8m)
12 groups 0 15.70

Paraxial tracking value (wide-angle end)
Surface number α H α 'H'
1 0.0000 1.0000 -1.0000 -2.2221
2 0.0789 0.9961 -1.1754 -2.1634
3 -0.3265 1.1758 -0.2948 -2.0012
4 -0.4921 1.2003 -0.0130 -2.0005
5 -0.4638 1.2165 -0.0602 -1.9984
6 -0.0943 1.2243 -0.6671 -1.9438
7 -0.3149 1.2642 -0.3169 -1.9036
8 -0.2254 1.2737 -0.4517 -1.8847
9 -0.2924 1.3599 -0.3525 -1.7807
10 -0.0845 1.4123 -0.6247 -1.3935
11 0.2632 1.4017 -0.9678 -1.3546
12 0.0256 1.3923 -0.7381 -1.0808
13 0.1321 1.3914 -0.8208 -1.0756
14 0.5056 1.2977 -1.1095 -0.8699
15 0.4747 1.2739 -1.0888 -0.8154
16 0.7922 1.2560 -1.2920 -0.7862
17 -0.2283 1.2929 -0.6533 -0.6806
18 -0.6451 1.3083 -0.4339 -0.6702
19 -0.3408 1.3362 -0.5898 -0.6220
20 -0.3887 1.3598 -0.5675 -0.5875
21 -1.1237 1.3859 -0.2499 -0.5817
22 -1.1479 2.8495 -0.2398 -0.2759
23 -0.0639 2.8509 -0.3448 -0.2682
24 -0.9280 2.9146 -0.2635 -0.2501
25 -0.6564 2.9188 -0.2868 -0.2483
26 -0.0853 2.9222 -0.3354 -0.2349
27 0.1264 2.8379 -0.3524 0.0000
28 0.1264 2.8307 -0.3524 0.0203
29 1.8131 2.7793 -0.3403 0.0299
30 1.4710 2.6097 -0.3440 0.0696
31 1.1089 2.0553 -0.3536 0.2464
32 1.7847 1.9055 -0.2726 0.2693
33 1.9046 1.8636 -0.2557 0.2749
34 0.1713 1.7937 -0.5113 0.4835
35 0.9704 1.5452 -0.2959 0.5593
36 1.9732 1.5388 0.0671 0.5591
37 0.2913 1.5338 -0.5440 0.5685

Aberration coefficient of third-order distortion (wide-angle end)
Surface number V
1 0.4523
2 0.4710
3 0.0660
4 0.0029
5 -0.2349
6 0.0099
7 0.0164
8 0.0121
9 -0.5915
10 0.0574
11 0.0241
12 -0.6125
13 0.1221
14 -0.9567
15 0.7236
16 0.0389
17 0.5124
18 -0.0404
19 -0.1582
20 0.4586
21 0.0360
22 0.0117
23 0.0021
24 -0.0495
25 0.0251
26 -0.0893
27 0.0000
28 0.0871
29 -0.0062
30 -0.0758
31 0.0944
32 0.0028
33 -0.4636
34 0.4764
35 0.4001
36 -0.4859
37 0.0043

<数値実施例6>
単位 mm

面データ
第i面 ri di ndi νdi θgFi 有効径 焦点距離
1 4223.62978 2.50000 1.696797 55.53 0.5433 61.571 -86.684
2 59.78700 10.22649 56.665
3 -146.88609 2.20000 1.696797 55.53 0.5433 56.615 -244.586
4 -1042.17543 6.91855 56.954
5 93.47373 5.17118 1.808095 22.76 0.6307 62.443 280.417
6 154.04313 2.50000 62.354
7 222.07620 8.59235 1.487490 70.23 0.5300 62.803 169.972
8 -131.20537 16.57309 63.049
9 111.48673 2.85000 1.805181 25.42 0.6161 60.674 -136.130
10 54.89059 13.36539 1.496999 81.54 0.5374 58.518 85.836
11 -178.29679 0.19000 58.228
12 72.85828 8.19012 1.595220 67.74 0.5442 55.439 128.730
13 1330.23098 (可変) 53.890
14 39.06758 1.42500 1.772499 49.60 0.5521 28.548 -77.609
15 23.32081 5.36255 26.000
16 -77.14879 1.33000 1.589130 61.14 0.5406 25.973 -67.116
17 82.28676 1.14000 26.222
18 33.53582 4.01958 1.846660 23.78 0.6205 27.145 56.613
19 103.13541 2.89438 26.656
20 -52.21673 1.23500 1.589130 61.14 0.5406 26.586 -50.763
21 71.25518 (可変) 26.820
22 146.90596 3.99420 1.589130 61.14 0.5406 27.183 80.980
23 -70.34347 0.12825 27.448
24 -562.62295 4.30225 1.496999 81.54 0.5374 27.415 84.489
25 -39.28096 1.33000 1.834000 37.16 0.5775 27.413 -83.883
26 -90.22950 (可変) 27.784
27(絞り) ∞ 1.00000 27.617
28 34.58038 4.67355 1.618000 63.33 0.5441 27.579 59.758
29 488.38014 13.55541 26.918
30 -77.11980 2.59571 2.102050 16.77 0.6721 20.604 107.591
31 -47.81605 1.50000 1.728250 28.46 0.6077 20.917 -28.866
32 38.57836 13.79597 21.253
33 120.06049 5.73515 1.592400 68.30 0.5456 29.338 52.370
34 -41.28142 5.68368 29.894
35 -28.86122 1.50000 1.903660 31.32 0.5946 29.814 -106.338
36 -42.13698 0.20000 31.248
37 60.30831 6.34934 1.589130 61.14 0.5406 33.009 98.013
38 -1435.31250 43.99960 32.940
像面 ∞

各種データ
ズーム比 2.86

広角 中間 望遠
焦点距離 35.00 60.00 100.00
Fナンバー 2.80 2.80 2.80
半画角 23.95 14.53 8.84
像高 15.55 15.55 15.55
レンズ全長 256.34 256.34 256.34
BF 44.00 44.00 44.00

d13 1.90 27.21 41.12
d21 31.71 20.00 1.50
d26 15.70 2.10 6.69

入射瞳位置 64.70 97.79 127.01
射出瞳位置 -93.92 -93.92 -93.92
前側主点位置 90.82 131.68 154.51
後側主点位置 9.00 -16.00 -56.00

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 75.40 79.28 59.32 26.22
2 14 -31.20 17.41 8.32 -4.68
3 22 83.00 9.75 2.41 -3.90
4 27 77.99 56.59 34.72 -31.32

合焦時の第12群の移動量(物体側から像側の方向を正とする)
群 無限遠 最至近(0.7m)
12群 0 15.07

近軸追跡値(広角端)
面番号 α H α’ H ’
1 0.0000 1.0000 -1.0000 -1.8486
2 0.0058 0.9998 -1.0107 -1.8062
3 -0.4038 1.1177 -0.2708 -1.7270
4 -0.5901 1.1396 0.0172 -1.7277
5 -0.5634 1.2509 -0.0234 -1.7230
6 -0.1810 1.2656 -0.5502 -1.6783
7 -0.4157 1.2953 -0.2388 -1.6612
8 -0.3159 1.3474 -0.3669 -1.6007
9 -0.1401 1.4137 -0.5758 -1.3281
10 0.2206 1.4038 -0.9146 -1.2870
11 -0.0606 1.4193 -0.6568 -1.1196
12 0.0782 1.4188 -0.7663 -1.1155
13 0.4854 1.3477 -1.0864 -0.9563
14 0.4642 1.3225 -1.0714 -0.8981
15 1.3838 1.2908 -1.6959 -0.8592
16 -0.1198 1.3091 -0.6950 -0.7527
17 -0.4711 1.3204 -0.4930 -0.7409
18 -0.8032 1.3465 -0.3066 -0.7310
19 0.3984 1.3219 -0.9589 -0.6716
20 0.0148 1.3206 -0.7640 -0.6084
21 -0.5087 1.3319 -0.5228 -0.5968
22 -0.8957 2.1433 -0.3495 -0.2802
23 -0.5936 2.1859 -0.3890 -0.2523
24 0.0496 2.1857 -0.4632 -0.2506
25 -0.0182 2.1872 -0.4554 -0.2133
26 -0.6825 2.2013 -0.3907 -0.2052
27 0.0342 2.1859 -0.4575 0.0000
28 0.0342 2.1839 -0.4575 0.0280
29 1.5239 1.9668 -0.4384 0.0904
30 1.5076 1.5374 -0.4391 0.2155
31 0.8932 1.4932 -0.5253 0.2415
32 1.0009 1.4762 -0.5078 0.2501
33 -0.1397 1.5161 -0.7011 0.4504
34 0.0123 1.5143 -0.6559 0.5485
35 1.1634 1.4347 -0.2390 0.5648
36 -0.5436 1.4435 -0.9110 0.5795
37 0.5047 1.3714 -0.4902 0.6495
38 1.0796 1.2859 -0.2178 0.6668

3次のディストーションの収差係数(広角端)
面番号 V
1 0.6366
2 0.3913
3 0.0284
4 0.0017
5 -0.2496
6 0.0226
7 -0.0019
8 -0.4153
9 0.0403
10 0.0479
11 -0.5818
12 0.0718
13 -0.9622
14 0.1441
15 0.2632
16 0.5721
17 0.0010
18 -0.1526
19 -0.2407
20 0.8336
21 -0.0067
22 0.0406
23 -0.2071
24 0.1280
25 0.0873
26 -0.1976
27 0.0000
28 0.1457
29 -0.1038
30 0.0637
31 -0.0006
32 -0.6216
33 0.3841
34 0.1256
35 -0.2189
36 0.0025
37 0.3382
38 -0.0156
<Numerical Example 6>
Unit mm

Surface data i-th surface ri di ndi νdi θgFi Effective diameter Focal length
1 4223.62978 2.50000 1.696797 55.53 0.5433 61.571 -86.684
2 59.78700 10.22649 56.665
3 -146.88609 2.20000 1.696797 55.53 0.5433 56.615 -244.586
4 -1042.17543 6.91855 56.954
5 93.47373 5.17118 1.808095 22.76 0.6307 62.443 280.417
6 154.04313 2.50000 62.354
7 222.07620 8.59235 1.487490 70.23 0.5300 62.803 169.972
8 -131.20537 16.57309 63.049
9 111.48673 2.85000 1.805181 25.42 0.6161 60.674 -136.130
10 54.89059 13.36539 1.496999 81.54 0.5374 58.518 85.836
11 -178.29679 0.19000 58.228
12 72.85828 8.19012 1.595220 67.74 0.5442 55.439 128.730
13 1330.23098 (variable) 53.890
14 39.06758 1.42500 1.772499 49.60 0.5521 28.548 -77.609
15 23.32081 5.36255 26.000
16 -77.14879 1.33000 1.589130 61.14 0.5406 25.973 -67.116
17 82.28676 1.14000 26.222
18 33.53582 4.01958 1.846660 23.78 0.6205 27.145 56.613
19 103.13541 2.89438 26.656
20 -52.21673 1.23500 1.589130 61.14 0.5406 26.586 -50.763
21 71.25518 (variable) 26.820
22 146.90596 3.99420 1.589130 61.14 0.5406 27.183 80.980
23 -70.34347 0.12825 27.448
24 -562.62295 4.30225 1.496999 81.54 0.5374 27.415 84.489
25 -39.28096 1.33000 1.834000 37.16 0.5775 27.413 -83.883
26 -90.22950 (variable) 27.784
27 (Aperture) ∞ 1.00000 27.617
28 34.58038 4.67355 1.618000 63.33 0.5441 27.579 59.758
29 488.38014 13.55541 26.918
30 -77.11980 2.59571 2.102050 16.77 0.6721 20.604 107.591
31 -47.81605 1.50000 1.728250 28.46 0.6077 20.917 -28.866
32 38.57836 13.79597 21.253
33 120.06049 5.73515 1.592400 68.30 0.5456 29.338 52.370
34 -41.28142 5.68368 29.894
35 -28.86122 1.50000 1.903660 31.32 0.5946 29.814 -106.338
36 -42.13698 0.20000 31.248
37 60.30831 6.34934 1.589130 61.14 0.5406 33.009 98.013
38 -1435.31250 43.99960 32.940
Image plane ∞

Various data Zoom ratio 2.86

Wide angle Medium Telephoto focal length 35.00 60.00 100.00
F number 2.80 2.80 2.80
Half angle of view 23.95 14.53 8.84
Image height 15.55 15.55 15.55
Total lens length 256.34 256.34 256.34
BF 44.00 44.00 44.00

d13 1.90 27.21 41.12
d21 31.71 20.00 1.50
d26 15.70 2.10 6.69

Entrance pupil position 64.70 97.79 127.01
Exit pupil position -93.92 -93.92 -93.92
Front principal point position 90.82 131.68 154.51
Rear principal point 9.00 -16.00 -56.00

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 75.40 79.28 59.32 26.22
2 14 -31.20 17.41 8.32 -4.68
3 22 83.00 9.75 2.41 -3.90
4 27 77.99 56.59 34.72 -31.32

Amount of movement of the 12th lens group during focusing (the direction from the object side to the image side is positive)
Group Infinity Closest (0.7m)
12 groups 0 15.07

Paraxial tracking value (wide-angle end)
Surface number α H α 'H'
1 0.0000 1.0000 -1.0000 -1.8486
2 0.0058 0.9998 -1.0107 -1.8062
3 -0.4038 1.1177 -0.2708 -1.7270
4 -0.5901 1.1396 0.0172 -1.7277
5 -0.5634 1.2509 -0.0234 -1.7230
6 -0.1810 1.2656 -0.5502 -1.6783
7 -0.4157 1.2953 -0.2388 -1.6612
8 -0.3159 1.3474 -0.3669 -1.6007
9 -0.1401 1.4137 -0.5758 -1.3281
10 0.2206 1.4038 -0.9146 -1.2870
11 -0.0606 1.4193 -0.6568 -1.1196
12 0.0782 1.4188 -0.7663 -1.1155
13 0.4854 1.3477 -1.0864 -0.9563
14 0.4642 1.3225 -1.0714 -0.8981
15 1.3838 1.2908 -1.6959 -0.8592
16 -0.1198 1.3091 -0.6950 -0.7527
17 -0.4711 1.3204 -0.4930 -0.7409
18 -0.8032 1.3465 -0.3066 -0.7310
19 0.3984 1.3219 -0.9589 -0.6716
20 0.0148 1.3206 -0.7640 -0.6084
21 -0.5087 1.3319 -0.5228 -0.5968
22 -0.8957 2.1433 -0.3495 -0.2802
23 -0.5936 2.1859 -0.3890 -0.2523
24 0.0496 2.1857 -0.4632 -0.2506
25 -0.0182 2.1872 -0.4554 -0.2133
26 -0.6825 2.2013 -0.3907 -0.2052
27 0.0342 2.1859 -0.4575 0.0000
28 0.0342 2.1839 -0.4575 0.0280
29 1.5239 1.9668 -0.4384 0.0904
30 1.5076 1.5374 -0.4391 0.2155
31 0.8932 1.4932 -0.5253 0.2415
32 1.0009 1.4762 -0.5078 0.2501
33 -0.1397 1.5161 -0.7011 0.4504
34 0.0123 1.5143 -0.6559 0.5485
35 1.1634 1.4347 -0.2390 0.5648
36 -0.5436 1.4435 -0.9110 0.5795
37 0.5047 1.3714 -0.4902 0.6495
38 1.0796 1.2859 -0.2178 0.6668

Aberration coefficient of third-order distortion (wide-angle end)
Surface number V
1 0.6366
2 0.3913
3 0.0284
4 0.0017
5 -0.2496
6 0.0226
7 -0.0019
8 -0.4153
9 0.0403
10 0.0479
11 -0.5818
12 0.0718
13 -0.9622
14 0.1441
15 0.2632
16 0.5721
17 0.0010
18 -0.1526
19 -0.2407
20 0.8336
21 -0.0067
22 0.0406
23 -0.2071
24 0.1280
25 0.0873
26 -0.1976
27 0.0000
28 0.1457
29 -0.1038
30 0.0637
31 -0.0006
32 -0.6216
33 0.3841
34 0.1256
35 -0.2189
36 0.0025
37 0.3382
38 -0.0156

<数値実施例7>
単位 mm

面データ
第i面 ri di ndi νdi θgFi 有効径 焦点距離
1* 98.70007 2.50000 1.772499 49.60 0.5521 75.668 -55.418
2 29.62727 16.26062 55.309
3 64.42910 2.00000 1.772499 49.60 0.5521 52.747 -87.740
4 32.65886 18.07660 47.083
5 -52.68987 2.00000 1.589130 61.14 0.5406 46.718 -111.047
6 -270.22920 1.49474 49.520
7 76.48550 5.60617 1.922860 18.90 0.6495 55.360 117.496
8 243.28386 4.02023 55.283
9 4668.02554 8.22678 1.487490 70.23 0.5300 55.637 134.050
10 -66.46589 5.36022 55.818
11 -622.14337 2.00000 1.846660 23.78 0.6205 52.313 -51.330
12 47.28994 12.39326 1.487490 70.23 0.5300 51.310 71.424
13 -122.23105 0.15000 51.721
14 118.96805 11.02578 1.496999 81.54 0.5374 52.223 80.349
15 -58.51414 0.15000 52.037
16 46.98238 4.59503 1.772499 49.60 0.5521 43.725 99.532
17 114.76830 (可変) 42.814
18 10396.90306 1.20000 1.754998 52.32 0.5476 27.090 -33.265
19 25.16697 4.86194 23.972
20 -153.43950 1.20000 1.496999 81.54 0.5374 23.390 -43.659
21 25.42462 5.07329 1.784696 26.29 0.6135 24.170 31.942
22 -4324.64113 3.34835 24.087
23 -39.81518 1.20000 1.834000 37.16 0.5775 23.967 -59.807
24 -195.14536 (可変) 24.612
25 142.25721 2.95792 1.729157 54.68 0.5444 25.745 79.349
26 -97.37703 0.20000 25.921
27 60.75670 5.04520 1.496999 81.54 0.5374 25.935 49.403
28 -40.26471 1.40000 1.834000 37.16 0.5775 25.718 -67.044
29 -143.79570 (可変) 25.753
30(絞り) ∞ 1.39957 24.312
31 85.08699 4.36998 1.761821 26.52 0.6135 24.020 33.919
32 -36.74762 1.50000 1.720467 34.70 0.5834 23.714 -32.337
33 65.96749 10.69231 22.734
34 112.13875 1.50000 1.834000 37.16 0.5775 21.437 -79.706
35 41.64594 5.81919 1.496999 81.54 0.5374 21.070 46.821
36 -50.62143 7.77569 20.819
37 36.34485 5.68860 1.496999 81.54 0.5374 22.099 35.111
38 -31.99802 1.50000 1.834000 37.16 0.5775 21.977 -19.605
39 34.59932 5.00023 22.435
40 40.76716 6.64810 1.487490 70.23 0.5300 27.106 44.425
41 -44.04308 0.00000 27.669
像面 ∞

非球面データ
第1面
K = 0.00000e+000 A 4= 2.23037e-006 A 6=-6.41540e-010 A 8= 4.30245e-013 A10=-1.45017e-016 A12= 3.57965e-020

各種データ
ズーム比 2.86
広角 中間 望遠
焦点距離 14.00 21.00 40.00
Fナンバー 2.79 2.79 2.80
半画角 48.00 36.52 21.24
像高 15.55 15.55 15.55
レンズ全長 255.05 255.05 255.05
BF 40.00 40.00 40.00

d17 2.31 16.93 27.94
d24 29.18 21.91 2.34
d29 9.32 1.97 10.53
d41 40.00 40.00 40.00

入射瞳位置 33.57 38.48 46.11
射出瞳位置 -70.63 -70.63 -70.63
前側主点位置 45.80 55.49 71.65
後側主点位置 26.00 19.00 0.00

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 25.00 95.86 45.18 44.95
2 18 -24.00 16.88 4.02 -7.88
3 25 54.82 9.60 1.06 -4.98
4 30 83.91 51.89 34.16 -13.01

合焦時の第12群の移動量(物体側から像側の方向を正とする)
群 無限遠 最至近(0.7m)
12群 0 2.36

近軸追跡値(広角端)
面番号 α H α’ H ’
1 0.0000 1.0000 -1.0000 -2.3981
2 0.1101 0.9889 -1.2640 -2.2710
3 -0.2526 1.2824 -0.4311 -1.7703
4 -0.0363 1.2853 -0.7296 -1.7117
5 -0.4640 1.8844 -0.1601 -1.5049
6 -0.7601 1.9526 0.0764 -1.5118
7 -0.7003 2.0274 0.0301 -1.5150
8 -0.3536 2.1006 -0.2290 -1.4676
9 -0.4665 2.2346 -0.1501 -1.4245
10 -0.4632 2.4174 -0.1522 -1.3644
11 -0.2142 2.4994 -0.2928 -1.2523
12 -0.2623 2.5196 -0.2687 -1.2316
13 -0.5352 2.8377 -0.1353 -1.1512
14 -0.3762 2.8417 -0.1998 -1.1491
15 -0.2095 2.9519 -0.2672 -1.0086
16 0.1425 2.9503 -0.3875 -1.0045
17 0.8249 2.7979 -0.6198 -0.8900
18 0.5600 2.7054 -0.5355 -0.8015
19 0.5628 2.6780 -0.5364 -0.7754
20 -0.5671 2.8749 -0.2092 -0.7027
21 -0.6979 2.9149 -0.1773 -0.6926
22 -0.2271 2.9608 -0.2891 -0.6341
23 -0.2195 3.0133 -0.2907 -0.5646
24 -1.1088 3.0650 -0.1241 -0.5588
25 -0.9243 4.9913 -0.1578 -0.2300
26 -0.5646 5.0602 -0.1743 -0.2088
27 -0.0318 5.0606 -0.1963 -0.2060
28 0.5495 4.9285 -0.2200 -0.1531
29 -0.0347 4.9304 -0.2018 -0.1421
30 0.3682 4.6852 -0.2134 0.0000
31 0.3682 4.6484 -0.2134 0.0213
32 0.9561 4.4797 -0.2107 0.0585
33 1.0298 4.4157 -0.2098 0.0716
34 0.3500 4.1484 -0.2208 0.2402
35 0.7847 4.1027 -0.1956 0.2516
36 0.3146 4.0154 -0.2245 0.3138
37 0.8682 3.5332 -0.1812 0.4145
38 1.5465 3.1138 -0.1016 0.4420
39 1.0822 3.0508 -0.1675 0.4518
40 0.0460 3.0344 -0.3210 0.5664
41 0.5558 2.8571 -0.2258 0.6384

3次のディストーションの収差係数(広角端)
面番号 V
1 -0.1651
2 0.2887
3 0.0083
4 0.2140
5 0.0292
6 0.0014
7 -0.0587
8 -0.0035
9 0.0041
10 -0.1276
11 0.0511
12 0.0268
13 -0.0289
14 0.0039
15 -0.2629
16 0.0159
17 -0.1932
18 0.2801
19 0.0366
20 0.0222
21 -0.0215
22 -0.0507
23 0.1389
24 -0.0109
25 0.0104
26 -0.0330
27 0.0134
28 0.0150
29 -0.0377
30 0.0000
31 0.0316
32 -0.0005
33 -0.0355
34 0.0391
35 -0.0176
36 -0.0056
37 0.0377
38 -0.0050
39 -0.1681
40 0.1437
41 0.0047
<Numerical Example 7>
Unit mm

Surface data i-th surface ri di ndi νdi θgFi Effective diameter Focal length
1 * 98.70007 2.50000 1.772499 49.60 0.5521 75.668 -55.418
2 29.62727 16.26062 55.309
3 64.42910 2.00000 1.772499 49.60 0.5521 52.747 -87.740
4 32.65886 18.07660 47.083
5 -52.68987 2.00000 1.589130 61.14 0.5406 46.718 -111.047
6 -270.22920 1.49474 49.520
7 76.48550 5.60617 1.922860 18.90 0.6495 55.360 117.496
8 243.28386 4.02023 55.283
9 4668.02554 8.22678 1.487490 70.23 0.5300 55.637 134.050
10 -66.46589 5.36022 55.818
11 -622.14337 2.00000 1.846660 23.78 0.6205 52.313 -51.330
12 47.28994 12.39326 1.487490 70.23 0.5300 51.310 71.424
13 -122.23105 0.15000 51.721
14 118.96805 11.02578 1.496999 81.54 0.5374 52.223 80.349
15 -58.51414 0.15000 52.037
16 46.98238 4.59503 1.772499 49.60 0.5521 43.725 99.532
17 114.76830 (variable) 42.814
18 10396.90306 1.20000 1.754998 52.32 0.5476 27.090 -33.265
19 25.16697 4.86194 23.972
20 -153.43950 1.20000 1.496999 81.54 0.5374 23.390 -43.659
21 25.42462 5.07329 1.784696 26.29 0.6135 24.170 31.942
22 -4324.64113 3.34835 24.087
23 -39.81518 1.20000 1.834000 37.16 0.5775 23.967 -59.807
24 -195.14536 (variable) 24.612
25 142.25721 2.95792 1.729157 54.68 0.5444 25.745 79.349
26 -97.37703 0.20000 25.921
27 60.75670 5.04520 1.496999 81.54 0.5374 25.935 49.403
28 -40.26471 1.40000 1.834000 37.16 0.5775 25.718 -67.044
29 -143.79570 (variable) 25.753
30 (Aperture) ∞ 1.39957 24.312
31 85.08699 4.36998 1.761821 26.52 0.6135 24.020 33.919
32 -36.74762 1.50000 1.720467 34.70 0.5834 23.714 -32.337
33 65.96749 10.69231 22.734
34 112.13875 1.50000 1.834000 37.16 0.5775 21.437 -79.706
35 41.64594 5.81919 1.496999 81.54 0.5374 21.070 46.821
36 -50.62143 7.77569 20.819
37 36.34485 5.68860 1.496999 81.54 0.5374 22.099 35.111
38 -31.99802 1.50000 1.834000 37.16 0.5775 21.977 -19.605
39 34.59932 5.00023 22.435
40 40.76716 6.64810 1.487490 70.23 0.5300 27.106 44.425
41 -44.04308 0.00000 27.669
Image plane ∞

Aspheric data 1st surface
K = 0.00000e + 000 A 4 = 2.23037e-006 A 6 = -6.41540e-010 A 8 = 4.30245e-013 A10 = -1.45017e-016 A12 = 3.57965e-020

Various data Zoom ratio 2.86
Wide angle Medium Tele focal length 14.00 21.00 40.00
F number 2.79 2.79 2.80
Half angle of view 48.00 36.52 21.24
Image height 15.55 15.55 15.55
Total lens length 255.05 255.05 255.05
BF 40.00 40.00 40.00

d17 2.31 16.93 27.94
d24 29.18 21.91 2.34
d29 9.32 1.97 10.53
d41 40.00 40.00 40.00

Entrance pupil position 33.57 38.48 46.11
Exit pupil position -70.63 -70.63 -70.63
Front principal point position 45.80 55.49 71.65
Rear principal point position 26.00 19.00 0.00

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 25.00 95.86 45.18 44.95
2 18 -24.00 16.88 4.02 -7.88
3 25 54.82 9.60 1.06 -4.98
4 30 83.91 51.89 34.16 -13.01

Amount of movement of the 12th lens group during focusing (the direction from the object side to the image side is positive)
Group Infinity Closest (0.7m)
12 groups 0 2.36

Paraxial tracking value (wide-angle end)
Surface number α H α 'H'
1 0.0000 1.0000 -1.0000 -2.3981
2 0.1101 0.9889 -1.2640 -2.2710
3 -0.2526 1.2824 -0.4311 -1.7703
4 -0.0363 1.2853 -0.7296 -1.7117
5 -0.4640 1.8844 -0.1601 -1.5049
6 -0.7601 1.9526 0.0764 -1.5118
7 -0.7003 2.0274 0.0301 -1.5150
8 -0.3536 2.1006 -0.2290 -1.4676
9 -0.4665 2.2346 -0.1501 -1.4245
10 -0.4632 2.4174 -0.1522 -1.3644
11 -0.2142 2.4994 -0.2928 -1.2523
12 -0.2623 2.5196 -0.2687 -1.2316
13 -0.5352 2.8377 -0.1353 -1.1512
14 -0.3762 2.8417 -0.1998 -1.1491
15 -0.2095 2.9519 -0.2672 -1.0086
16 0.1425 2.9503 -0.3875 -1.0045
17 0.8249 2.7979 -0.6198 -0.8900
18 0.5600 2.7054 -0.5355 -0.8015
19 0.5628 2.6780 -0.5364 -0.7754
20 -0.5671 2.8749 -0.2092 -0.7027
21 -0.6979 2.9149 -0.1773 -0.6926
22 -0.2271 2.9608 -0.2891 -0.6341
23 -0.2195 3.0133 -0.2907 -0.5646
24 -1.1088 3.0650 -0.1241 -0.5588
25 -0.9243 4.9913 -0.1578 -0.2300
26 -0.5646 5.0602 -0.1743 -0.2088
27 -0.0318 5.0606 -0.1963 -0.2060
28 0.5495 4.9285 -0.2200 -0.1531
29 -0.0347 4.9304 -0.2018 -0.1421
30 0.3682 4.6852 -0.2134 0.0000
31 0.3682 4.6484 -0.2134 0.0213
32 0.9561 4.4797 -0.2107 0.0585
33 1.0298 4.4157 -0.2098 0.0716
34 0.3500 4.1484 -0.2208 0.2402
35 0.7847 4.1027 -0.1956 0.2516
36 0.3146 4.0154 -0.2245 0.3138
37 0.8682 3.5332 -0.1812 0.4145
38 1.5465 3.1138 -0.1016 0.4420
39 1.0822 3.0508 -0.1675 0.4518
40 0.0460 3.0344 -0.3210 0.5664
41 0.5558 2.8571 -0.2258 0.6384

Aberration coefficient of third-order distortion (wide-angle end)
Surface number V
1 -0.1651
2 0.2887
3 0.0083
4 0.2140
5 0.0292
6 0.0014
7 -0.0587
8 -0.0035
9 0.0041
10 -0.1276
11 0.0511
12 0.0268
13 -0.0289
14 0.0039
15 -0.2629
16 0.0159
17 -0.1932
18 0.2801
19 0.0366
20 0.0222
21 -0.0215
22 -0.0507
23 0.1389
24 -0.0109
25 0.0104
26 -0.0330
27 0.0134
28 0.0150
29 -0.0377
30 0.0000
31 0.0316
32 -0.0005
33 -0.0355
34 0.0391
35 -0.0176
36 -0.0056
37 0.0377
38 -0.0050
39 -0.1681
40 0.1437
41 0.0047

Figure 0005882817
Figure 0005882817

U1 第1群
U2 第2群
U3 第3群
U4 第4群
U11 第11群
U12 第12群
U13 第13群
SP 絞り
U1 1st group U2 2nd group U3 3rd group U4 4th group U11 11th group U12 12th group U13 13th group SP Aperture

Claims (10)

物体側から順に、変倍のためには移動しない正の屈折力の第1群、変倍時に移動する負の屈折力の第2群、変倍時に移動する正の第3群、変倍のためには移動しない正の第4群から構成され、
変倍に際して隣接するレンズ群の間隔が変化し
該第3群は広角端から望遠端への変倍に際して、像側に移動した後、物体側に移動し、該第1群の焦点距離をf1、該第2群の焦点距離をf2、該第3群の焦点距離をf3、無限遠より光束が入射する際の広角端における該第3群の横倍率をβ3wとしたとき、
−2.92≦f1/f2<−1.0
−0.55<f2/f3<−0.20
−0.7<1/β3w<0.5
を満たすことを特徴とするズームレンズ。
In order from the object side, the first group of positive refractive power that does not move for zooming, the second group of negative refractive power that moves when zooming, the third group of positive power that moves when zooming, For this purpose, it consists of a positive fourth group that does not move ,
The distance between adjacent lens groups changes during zooming ,
The third lens unit moves to the image side after zooming from the wide-angle end to the telephoto end, then moves to the object side, the focal length of the first group is f1, the focal length of the second group is f2, When the focal length of the third group is f3 and the lateral magnification of the third group at the wide angle end when the light beam enters from infinity is β3w,
-2.92 ≦ f1 / f2 <−1.0
−0.55 <f2 / f3 <−0.20
-0.7 <1 / β3w <0.5
A zoom lens characterized by satisfying
前記第1群は、合焦のためには移動しない負の屈折力の第11群、無限遠側から至近側への合焦時に像側へ移動する正の屈折力の第12群、合焦のためには移動しない正の屈折力の第13群から構成される、ことを特徴とする請求項1に記載のズームレンズ。 The first group includes an eleventh group having a negative refractive power that does not move for focusing, a twelfth group having a positive refractive power that moves toward the image side when focusing from the infinity side to the close side, and focusing. The zoom lens according to claim 1, wherein the zoom lens includes a thirteenth lens unit having a positive refractive power that does not move . 前記第11群の焦点距離をf11、前記第12群の焦点距離をf12、前記第13群の焦点距離をf13としたとき、
−2.3<f12/f11<−1.5
0.9<f13/f1<1.5
を満たすことを特徴とする請求項2に記載のズームレンズ。
When the focal length of the eleventh group is f11, the focal length of the twelfth group is f12, and the focal length of the thirteenth group is f13,
-2.3 <f12 / f11 <-1.5
0.9 <f13 / f1 <1.5
The zoom lens according to claim 2, wherein:
前記第11群は1枚以上の凸レンズと1枚以上の凹レンズから構成され、該第11群を構成する凸レンズのアッベ数の平均値をν11p、該第11群を構成する凹レンズのアッベ数の平均値をν11nとしたとき、
18<ν11n−ν11p<45
を満たすことを特徴とする請求項2又は3に記載のズームレンズ。
The eleventh group is composed of one or more convex lenses and one or more concave lenses, the average Abbe number of convex lenses constituting the eleventh group is ν11p, and the average Abbe number of concave lenses constituting the eleventh group When the value is ν11n,
18 <ν11n−ν11p <45
The zoom lens according to claim 2, wherein:
前記第11群の最も物体側のレンズは凹レンズであり、該凹レンズの物体側の面の曲率半径をR1、該凹レンズの像側の面の曲率半径をR2としたとき、
−0.5<(R1+R2)/(R1−R2)<2.5
を満たすことを特徴とする請求項2乃至4のいずれか1項に記載のズームレンズ。
The lens closest to the object side in the eleventh group is a concave lens. When the radius of curvature of the object side surface of the concave lens is R1, and the radius of curvature of the image side surface of the concave lens is R2,
-0.5 <(R1 + R2) / (R1-R2) <2.5
The zoom lens according to claim 2, wherein:
前記第13群は2枚以上の凸レンズと1枚以上の凹レンズから構成され、該第13群を構成する凸レンズのアッベ数と部分分散比の平均値をν13p、θ13p、該第13群を構成する凹レンズのアッベ数と部分分散比の平均値をν13n、θ13nとしたとき、
−2.5×10−3<(θ13p−θ13n)/(ν13p−ν13n)<−5.0×10−4
を満たすことを特徴とする請求項2乃至5のいずれか1項に記載のズームレンズ。
The thirteenth group includes two or more convex lenses and one or more concave lenses. The average value of Abbe number and partial dispersion ratio of the convex lenses constituting the thirteenth group is ν13p, θ13p, and the thirteenth group is configured. When the average value of the Abbe number and partial dispersion ratio of the concave lens is ν13n and θ13n,
−2.5 × 10 −3 <(θ13p−θ13n) / (ν13p−ν13n) <− 5.0 × 10 −4
The zoom lens according to claim 2, wherein:
前記第2群は1枚以上の凸レンズと2枚以上の凹レンズから構成され、該第2群を構成する凸レンズのアッベ数と部分分散比の平均値をν2p、θ2p、該第2群を構成する凹レンズのアッベ数と部分分散比の平均値をν2n、θ2nとしたとき、
−3.5×10−3<(θ2p−θ2n)/(ν2p−ν2n)<−1.5×10−3
を満たすことを特徴とする請求項2乃至6のいずれか1項に記載のズームレンズ。
The second group is composed of one or more convex lenses and two or more concave lenses. The average value of Abbe number and partial dispersion ratio of the convex lenses constituting the second group is ν2p, θ2p, and the second group is constructed. When the average value of the Abbe number and partial dispersion ratio of the concave lens is ν2n and θ2n,
−3.5 × 10 −3 <(θ2p−θ2n) / (ν2p−ν2n) <− 1.5 × 10 −3
The zoom lens according to claim 2, wherein:
前記第11群は1枚の凸レンズと2枚以上の凹レンズから構成され、該第11群の最も像側のレンズは凸レンズである、ことを特徴とする請求項2乃至7のいずれか1項に記載のズームレンズ。   The eleventh group is composed of one convex lens and two or more concave lenses, and the most image side lens of the eleventh group is a convex lens. The described zoom lens. 前記第11群内の凸レンズの合成焦点距離をf11p、該第11群内の凹レンズの合成焦点距離をf11n、該第11群の焦点距離をf11、としたとき、
−3.5<f11p/f11<−1.5
0.5<f11n/f11<0.8
を満たすことを特徴とする請求項8に記載のズームレンズ。
When the synthetic focal length of the convex lens in the eleventh group is f11p, the synthetic focal length of the concave lens in the eleventh group is f11n, and the focal length of the eleventh group is f11,
−3.5 <f11p / f11 <−1.5
0.5 <f11n / f11 <0.8
The zoom lens according to claim 8, wherein:
請求項1乃至9のいずれか1項に記載のズームレンズと前記ズームレンズによって形成された像を受光する固体撮像素子を有することを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image pickup device that receives an image formed by the zoom lens.
JP2012092305A 2012-04-13 2012-04-13 Zoom lens and imaging apparatus having the same Active JP5882817B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012092305A JP5882817B2 (en) 2012-04-13 2012-04-13 Zoom lens and imaging apparatus having the same
EP13001820.3A EP2650711B1 (en) 2012-04-13 2013-04-09 Zoom lens of the telephoto type having four lens groups
US13/860,595 US8988786B2 (en) 2012-04-13 2013-04-11 Zoom lens and image pickup apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092305A JP5882817B2 (en) 2012-04-13 2012-04-13 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2013221998A JP2013221998A (en) 2013-10-28
JP2013221998A5 JP2013221998A5 (en) 2015-04-02
JP5882817B2 true JP5882817B2 (en) 2016-03-09

Family

ID=48050416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092305A Active JP5882817B2 (en) 2012-04-13 2012-04-13 Zoom lens and imaging apparatus having the same

Country Status (3)

Country Link
US (1) US8988786B2 (en)
EP (1) EP2650711B1 (en)
JP (1) JP5882817B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5941364B2 (en) * 2012-07-25 2016-06-29 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6128387B2 (en) * 2013-07-12 2017-05-17 富士フイルム株式会社 Zoom lens and imaging device
JP6418732B2 (en) * 2013-08-08 2018-11-07 キヤノン株式会社 Zoom lens and imaging apparatus having the same
US9402031B2 (en) * 2013-08-08 2016-07-26 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP6312408B2 (en) * 2013-11-12 2018-04-18 キヤノン株式会社 Zoom lens and imaging apparatus having the same
CN107589527A (en) * 2014-10-17 2018-01-16 奥林巴斯株式会社 Telephoto lens and the camera device with the telephoto lens
US9964743B2 (en) 2014-11-28 2018-05-08 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP6609956B2 (en) * 2015-03-27 2019-11-27 株式会社シグマ Fisheye lens
JP6581456B2 (en) * 2015-09-30 2019-09-25 キヤノン株式会社 Zoom lens and imaging device
JP6411678B2 (en) * 2016-01-27 2018-10-24 富士フイルム株式会社 Zoom lens and imaging device
WO2017130478A1 (en) * 2016-01-27 2017-08-03 富士フイルム株式会社 Zoom lens and imaging device
JP6685944B2 (en) * 2017-01-27 2020-04-22 富士フイルム株式会社 Zoom lens and imaging device
JP6695293B2 (en) * 2017-03-07 2020-05-20 富士フイルム株式会社 Zoom lens and imaging device
JP6983611B2 (en) * 2017-10-06 2021-12-17 キヤノン株式会社 Zoom lens and image pickup device
JP6820878B2 (en) * 2018-03-29 2021-01-27 富士フイルム株式会社 Zoom lens and imaging device
JP7146497B2 (en) * 2018-07-13 2022-10-04 キヤノン株式会社 Zoom lens and imaging device
JP7210322B2 (en) * 2019-02-22 2023-01-23 キヤノン株式会社 Zoom lens and imaging device
CN116027530B (en) * 2023-03-29 2023-06-30 深圳市东正光学技术股份有限公司 Optical imaging system and optical lens

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594686B2 (en) 1975-12-04 1984-01-31 キヤノン株式会社 Kahenshyouten Kiyori Lens
JPH06242378A (en) 1993-02-17 1994-09-02 Canon Inc Zoom lens
US5745300A (en) * 1993-02-17 1998-04-28 Canon Kabushiki Kaisha Zoom lens of the inner focus type
JPH07140386A (en) * 1993-11-12 1995-06-02 Asahi Optical Co Ltd Inner focusing system telephoto zoom lens
JP3376171B2 (en) 1995-06-22 2003-02-10 キヤノン株式会社 Zoom lens
JPH11174323A (en) * 1997-12-05 1999-07-02 Nikon Corp Large-aperture telephoto zoom lens
US6545818B2 (en) * 1999-05-10 2003-04-08 Canon Kabushiki Kaisha Zoom lens and camera system
JP4626135B2 (en) * 2002-10-04 2011-02-02 株式会社ニコン Large aperture ratio internal focusing telephoto zoom lens
JP2008070450A (en) * 2006-09-12 2008-03-27 Canon Inc Zoom lens
JP4898410B2 (en) 2006-12-14 2012-03-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP4880498B2 (en) 2007-03-01 2012-02-22 株式会社タムロン Telephoto zoom lens
JP5031476B2 (en) 2007-08-02 2012-09-19 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5332169B2 (en) * 2007-10-02 2013-11-06 株式会社ニコン Zoom lens and optical apparatus having the same
JP5142829B2 (en) 2008-05-30 2013-02-13 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5489480B2 (en) 2009-01-30 2014-05-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5455403B2 (en) 2009-03-18 2014-03-26 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5393259B2 (en) 2009-05-27 2014-01-22 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5517525B2 (en) 2009-08-17 2014-06-11 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5615141B2 (en) 2010-11-24 2014-10-29 キヤノン株式会社 Zoom lens
JP5615143B2 (en) 2010-11-25 2014-10-29 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5661490B2 (en) 2011-02-07 2015-01-28 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5656684B2 (en) 2011-02-28 2015-01-21 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5893487B2 (en) * 2012-04-13 2016-03-23 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
US20130271850A1 (en) 2013-10-17
EP2650711A1 (en) 2013-10-16
EP2650711B1 (en) 2015-03-18
JP2013221998A (en) 2013-10-28
US8988786B2 (en) 2015-03-24

Similar Documents

Publication Publication Date Title
JP5882817B2 (en) Zoom lens and imaging apparatus having the same
US9329372B2 (en) Zoom lens and image pickup apparatus having the same
JP5893487B2 (en) Zoom lens and imaging apparatus having the same
JP6494245B2 (en) Zoom lens and imaging apparatus having the same
US9244259B2 (en) Zoom lens and image pickup apparatus including the same
JP5911359B2 (en) Zoom lens and imaging apparatus having the same
US9134512B2 (en) Zoom lens and image pickup apparatus having the same
JP5419519B2 (en) Zoom lens and imaging apparatus having the same
JP5901401B2 (en) Zoom lens and imaging apparatus having the same
JP6314471B2 (en) Zoom lens system
JP6711666B2 (en) Zoom lens and imaging device having the same
JP6632319B2 (en) Zoom lens and imaging device having the same
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP7263122B2 (en) Zoom lens and imaging device
JP6632320B2 (en) Zoom lens and imaging device having the same
JP7146497B2 (en) Zoom lens and imaging device
JP6707987B2 (en) Large-diameter anti-vibration zoom lens
JP2005345891A (en) Zoom lens and imaging apparatus having the same
JP6544975B2 (en) Zoom lens and imaging device
JP5574796B2 (en) Zoom lens and imaging apparatus having the same
JP6702797B2 (en) Zoom lens and imaging device
JP7314200B2 (en) Magnification optical system and imaging device
JP2017156423A (en) Rear attachment lens and image capturing device having the same
JP6355373B2 (en) Zoom lens and imaging apparatus
JP2016004137A (en) Photographing lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R151 Written notification of patent or utility model registration

Ref document number: 5882817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151