JP5882802B2 - Flame monitoring device - Google Patents

Flame monitoring device Download PDF

Info

Publication number
JP5882802B2
JP5882802B2 JP2012061647A JP2012061647A JP5882802B2 JP 5882802 B2 JP5882802 B2 JP 5882802B2 JP 2012061647 A JP2012061647 A JP 2012061647A JP 2012061647 A JP2012061647 A JP 2012061647A JP 5882802 B2 JP5882802 B2 JP 5882802B2
Authority
JP
Japan
Prior art keywords
flame
sensitivity
determination threshold
detection
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061647A
Other languages
Japanese (ja)
Other versions
JP2013196266A (en
Inventor
梅原 寛
寛 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2012061647A priority Critical patent/JP5882802B2/en
Publication of JP2013196266A publication Critical patent/JP2013196266A/en
Application granted granted Critical
Publication of JP5882802B2 publication Critical patent/JP5882802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

本発明は、炎から放射される紫外線を検知して警報する炎監視装置に関する。
The present invention relates to a flame monitoring device that detects and alerts to ultraviolet rays emitted from a flame.

従来、炎から放射される紫外線を検知して警報する炎監視装置が知られており、放火センサや炎感知器として使用している。   2. Description of the Related Art Conventionally, there is known a flame monitoring device that detects ultraviolet rays emitted from a flame and gives an alarm, and is used as an arson sensor or a flame detector.

このような炎監視装置は、炎検出部として紫外線検出管を使用している。紫外線検出管は、紫外線を透過するガラス管の中に陽極と陰極を配置して特殊なガスを封入しており、陽極と陰極の間にパルス的に高電圧を加え、この状態で炎から放射される特有の波長帯域となる185〜260ナノメートルの紫外線が入射すると、光電子の放出によりなだれ的な放電を起こす。この紫外線検出管の放電を電気的に紫外線検出パルス信号として取り出して単位時間当たりの放電回数をカウントし、このカウント値を紫外線量と看做して検出する。このようにして検出した紫外線量が所定の閾値を超えた場合に炎を判定し、炎判定信号を警報装置や受信機に送信して警報するようにしている。このような紫外線検出管は例えばUVトロン(R)として市販されているものを使用できる。
Such a flame monitoring apparatus uses an ultraviolet detection tube as a flame detection unit. In the UV detector tube, an anode and a cathode are placed in a glass tube that transmits UV rays, and a special gas is sealed. A high voltage is applied between the anode and the cathode in a pulsed manner, and radiation is emitted from the flame in this state. When ultraviolet rays of 185 to 260 nanometers having a specific wavelength band are incident, an avalanche discharge is caused by emission of photoelectrons. The discharge of this ultraviolet ray detection tube is electrically taken out as an ultraviolet ray detection pulse signal, the number of discharges per unit time is counted, and this count value is regarded as the amount of ultraviolet ray and detected. When the amount of ultraviolet rays detected in this way exceeds a predetermined threshold, a flame is determined, and a flame determination signal is transmitted to an alarm device or a receiver to give an alarm. As such an ultraviolet detection tube, for example, a commercially available product as UV TRON (R) can be used.

特開平6−325269号公報JP-A-6-325269 特開平3−174699号公報JP-A-3-174699 特開平6−290375号公報JP-A-6-290375 特開2009−119165号公報JP 2009-119165 A

ところで、炎監視装置に設けた紫外線検出管は、製造上のばらつき等により紫外線が入射しなくとも、高電圧を加えた状態で自己放電を起こしており、誤報の一因となっている。   By the way, the ultraviolet ray detection tube provided in the flame monitoring device causes a self-discharge in a state where a high voltage is applied even if ultraviolet rays are not incident due to manufacturing variations or the like, which causes a false alarm.

また炎監視装置の使用期間が長くなると、紫外線検出管の劣化により自己放電の回数が増加していく傾向があり、これも誤報の一因となっている。   Further, when the period of use of the flame monitoring device becomes longer, the number of self-discharges tends to increase due to deterioration of the ultraviolet detection tube, which also contributes to false alarms.

また紫外線検出管は、炎から発生した紫外線以外の自然界にある因子によって放電を起こす。この因子としては、太陽光、溶接の光、プラズマ、放射線、宇宙線などがある。太陽光は一般的には放電を起こさないとされているが、反射等による光を受けると放電を起こす場合がある。また宇宙線は宇宙空間から到来し、ある頻度で紫外線検出管を通過して放電を起こす。このような自然界の因子による紫外線検出管の放電はバックグランドノイズとして不可避であり、誤報の要因となっている。   In addition, the ultraviolet detector tube causes discharge due to factors in the natural world other than ultraviolet rays generated from the flame. These factors include sunlight, welding light, plasma, radiation, and cosmic rays. Although sunlight is generally considered not to cause discharge, it may cause discharge when it receives light due to reflection or the like. Cosmic rays come from outer space and pass through the UV detector tube at a certain frequency, causing discharge. The discharge of the UV detector tube due to such natural factors is unavoidable as background noise, and is a cause of false alarms.

また炎監視装置は監視対象とする炎に応じて検出感度を調整する。ここで、炎の検出感度とは、紫外線検出管を使用して検出できる炎の大きさの限界(下限)を示す検出性能を意味する。   The flame monitoring device adjusts the detection sensitivity according to the flame to be monitored. Here, the flame detection sensitivity means a detection performance indicating a limit (lower limit) of a flame size that can be detected using an ultraviolet ray detection tube.

例えば炎監視装置を放火センサとして使用する場合は、ライタのような微小な炎を判定して警報するため、炎判定の閾値を下げて検出感度を高めに設定している。   For example, when a flame monitoring device is used as an arson sensor, the detection sensitivity is set high by lowering the flame determination threshold in order to determine and warn a minute flame such as a writer.

また炎監視装置を建物内に設置して炎感知器として使用する場合は、喫煙に伴うライタの炎を判定して誤報することを防止するため、炎判定の閾値を上げて検出感度を低めに設定している。   In addition, when a flame monitoring device is installed in a building and used as a flame detector, the flame detection threshold is increased and detection sensitivity is lowered to prevent false alarms by detecting the writer's flame associated with smoking. It is set.

しかしながら、喫煙に伴う誤報を防止するために炎監視装置の検出感度を低めに設定した場合、人の出入りがあり、喫煙が行われる昼間の時間帯にあっては適切な設定感度といえるが、無人となる夜間などの時間帯では例えば侵入者がライタを点けて放火しようとした場合の炎を検出できず、適切な設定感度とはいえない状況が生ずる。   However, if the detection sensitivity of the flame monitoring device is set low in order to prevent false alarms associated with smoking, there are people going in and out, and it can be said that it is an appropriate setting sensitivity in the daytime hours when smoking is performed, In a time zone such as at night when the person is unattended, for example, a flame cannot be detected when an intruder tries to ignite with a writer, and the sensitivity cannot be set appropriately.

この問題を解決するためには、例えば喫煙が行われる昼間の時間帯は、喫煙によるライタの炎は検知しないように炎監視装置の検出感度を低い感度に変更し、一方、無人となる夜間の時間帯には、放火によるライタの炎を検知できるように炎監視装置の検出感度を高い感度に変更する方法が考えられる。   In order to solve this problem, for example, during the daytime when smoking is performed, the detection sensitivity of the flame monitoring device is changed to a low sensitivity so that the writer's flame due to smoking is not detected. In the time zone, a method of changing the detection sensitivity of the flame monitoring device to a high sensitivity so that the flame of the writer due to arson can be detected can be considered.

従来の炎監視装置は、紫外線が入射した場合の紫外線検出管の放電による紫外線検出パルス信号を所定時間に亘りカウントすることで紫外線量(カウント値)を検出し、検出した紫外線量が所定の閾値を超えた場合に炎を判定しており、検出感度の変更は、炎判定の閾値を変更することになる。   A conventional flame monitoring device detects an ultraviolet ray amount (count value) by counting an ultraviolet ray detection pulse signal generated by discharge of an ultraviolet ray detection tube when ultraviolet ray is incident over a predetermined time, and the detected ultraviolet ray amount is a predetermined threshold value. The flame is judged when exceeding the value, and the change of the detection sensitivity changes the threshold value of the flame judgment.

しかしながら、紫外線検出管の放電により検出している紫外線量には、前述したように、自己放電やバックグランドノイズによる放電などのノイズ量が含まれており、検出感度を高めるために検出した紫外線量に対する炎判定の閾値を小さくした場合には、ノイズ量の影響により誤報を出す可能性が高まり、判定しようとする炎に適合した検出感度に変更することができない問題がある。   However, as described above, the amount of ultraviolet rays detected by the discharge of the ultraviolet detector tube includes the amount of noise such as self-discharge and discharge due to background noise, and the amount of ultraviolet rays detected to increase detection sensitivity. When the threshold value for flame determination is reduced, there is a possibility that a false alarm is generated due to the influence of the noise amount, and there is a problem that the detection sensitivity cannot be changed to a detection sensitivity suitable for the flame to be determined.

特に、ライタの炎のように紫外線を放射する継続時間の短い小さな炎を検出するためには、紫外線検出量に対する炎判定の閾値をかなり小さくしなければならないが、そうするとノイズ量との区別がほとんどできず、自己放電やバックグランドノイズによる放電により誤報が頻発する可能性が残されている。   In particular, in order to detect a small flame with a short duration that emits ultraviolet rays, such as a writer's flame, it is necessary to make the flame judgment threshold relative to the ultraviolet detection amount quite small. However, there is a possibility that false alarms frequently occur due to self-discharge or discharge due to background noise.

本発明は、ライタの炎のように紫外線を放射する継続時間の短い小さな炎であっても、自己放電やバックグランドノイズによる放電の影響を受けることなく、判定対象又は非判定対象とする炎に適合した検出感度に変更可能とする炎監視装置を提供することを目的とする。
The present invention can be used as a determination target or non-determination target flame without being affected by discharge due to self-discharge or background noise even for a short flame that emits ultraviolet rays, such as a writer flame. An object of the present invention is to provide a flame monitoring device that can be changed to a suitable detection sensitivity.

(基本構成)
本発明は、炎監視装置に於いて、
所定周期(T2)毎に同期パルス信号を発生し、当該同期パルス信号に同期して所定の高電圧を出力する発振部と、
紫外線検出管を備え、高電圧の印加状態で且つ外部から紫外線が入射した場合の前記紫外線検出管の放電動作により紫外線検出パルス信号を出力する紫外線検出部と、
紫外線検出パルス信号の連続出力数(連続放電回数)が所定の炎判定閾値(Nth)と一致した場合に炎を判定して炎判定信号を出力する炎判定部と、
炎判定部の炎判定閾値を変更して炎の検出感度を変更する感度変更部と、
を設けたことを特徴とする。
を設けたことを特徴とする。
(Basic configuration)
The present invention provides a flame monitoring apparatus,
An oscillation unit that generates a synchronization pulse signal every predetermined period (T2) and outputs a predetermined high voltage in synchronization with the synchronization pulse signal;
An ultraviolet ray detector that includes an ultraviolet ray detector tube and outputs an ultraviolet ray detection pulse signal by a discharge operation of the ultraviolet ray detector tube when ultraviolet rays are incident from the outside in a high voltage application state;
A flame determination unit that determines a flame and outputs a flame determination signal when the number of continuous outputs (number of continuous discharges) of the ultraviolet detection pulse signal matches a predetermined flame determination threshold (Nth) ;
A sensitivity changing unit for changing the flame detection threshold of the flame determining unit to change the flame detection sensitivity;
Is provided.
Is provided.

(炎判定閾値と検出感度の変更)
ここで、発振部、監視対象とする炎からの紫外線が継続して入射する所定の炎継続時間(T1)を所定の炎判定閾値(Nth)で除した商(T1/Nth)を周期(T2)とし
感度変更部は検出感度を高くする場合は炎判定閾値を小さい値に変更し検出感度を低くする場合は炎判定値を大きい値に変更する。
(Change of flame judgment threshold and detection sensitivity)
Here, the oscillation unit has a period ( T1 / Nth) obtained by dividing a predetermined flame continuation time (T1) in which ultraviolet rays from a flame to be monitored continuously enter by a predetermined flame determination threshold (Nth) ( T2)
Sensitivity changing unit, when a higher detection sensitivity by changing the flame determination threshold to a small value, when to lower the detection sensitivity changes the flame determination threshold value to a large value.

(時間帯による感度変更)
感度変更部は、一日を複数の時間帯に分け、複数の時間帯ごとに異なる炎判定閾値を設定して検出感度を変更する。
また、感度変更部は、一日を無人となる所定の第1時間帯と人が出入する所定の第2時間帯と分け、第1時間帯は所定の第1炎判定閾値を設定して高い検出感度に変更し、第2時間帯は第1炎判定値より大きい第2炎判定閾値を設定して低い検出感度に変更する。
(Sensitivity change by time zone)
The sensitivity changing unit divides the day into a plurality of time zones, sets different flame determination threshold values for the plurality of time zones, and changes the detection sensitivity.
In addition, the sensitivity changing unit divides the day into a predetermined first time zone in which the person is unattended and a predetermined second time zone in which the person goes in and out, and the first time zone is high by setting a predetermined first flame determination threshold value. change in the detection sensitivity, the second time zone is changed to lower the detection sensitivity by setting the second flame determination threshold larger than the first flame determination threshold value.

(人感センサによる感度変更)
感度変更部は、人を検知する人感センサを備え、人感センサにより人を検出した場合は所定の第1炎判定閾値を設定して高い検出感度に変更し、人感センサにより人を検出していない場合は第1炎判定閾値より大きい所定の第2炎判定閾値を設定して低い検出感度に変更する。
また、感度変更部は、人感センサによる人の検知状態が変化した場合、当該変化から所定の遅延時間が経過した後に対応する炎判定閾値に変更する。
(Sensitivity change by human sensor)
The sensitivity changing unit includes a human sensor for detecting a person. When a human is detected by the human sensor, a predetermined first flame determination threshold is set and the detection sensor is changed to a high detection sensitivity, and the human is detected by the human sensor. If not, a predetermined second flame determination threshold value greater than the first flame determination threshold value is set and changed to a low detection sensitivity.
Moreover, a sensitivity change part will change to the flame determination threshold value corresponding to, after predetermined | prescribed delay time passes from the said change, when the human detection state by a human sensitive sensor changes.

(誤報に対する感度変更)
感度変更部は、通常の監視状態では所定の第1炎判定閾値を設定して高い検出感度に変更し、誤報対応操作を受け付けた場合は第1炎判定値より大きい第2炎判定閾値を設定して低い検出感度に変更する。
また、感度変更部は、誤報対応操作を受け付け第2炎判定閾値を設定して低い検出感度に変更した場合、所定時間経過後に前記第1炎判定閾値を設定して高い検出感度に復旧する。
(Change in sensitivity to false alarms)
Sensitivity changing unit is in a normal monitoring state is changed to the high detection sensitivity by setting a predetermined first flame determination threshold, the first flame determination threshold value greater than the second flame determination threshold when receiving a false alarm corresponding operation Set to change to low detection sensitivity.
In addition, when the sensitivity changing unit receives an operation for handling false alarms and sets the second flame determination threshold value to change to a low detection sensitivity, the sensitivity change unit sets the first flame determination threshold value after a predetermined time and restores the high detection sensitivity.

(基本的な効果)
本発明によれば、紫外線検出管が所定周期(T2)毎に同期パルス信号に同期した高電圧の印加状態で且つ外部から紫外線が入射した場合に放電動作して出力する紫外線検出パルス信号の連続出力数(N)が、所定の炎判定閾値(Nth)と一致した場合に炎を判定して炎判定信号を出力し、且つ炎判定閾値(Nth)を変更して炎の検出感度を変更するようにしたため、紫外線検出管の特性や劣化による自己放電、或いは自然界の因子に起因したバックグランドノイズによるノイズ放電に影響されることなく、炎の検出感度の設定及び変更を適切に行うことができる。
(Basic effect)
According to the present invention, a continuous UV detection pulse signal outputted by discharging operation when the UV detection tube is applied with a high voltage synchronized with the synchronization pulse signal every predetermined period (T2) and ultraviolet rays are incident from the outside. When the output number (N) matches a predetermined flame determination threshold value (Nth), the flame is determined and a flame determination signal is output, and the flame detection threshold value (Nth) is changed to change the flame detection sensitivity. Therefore, it is possible to appropriately set and change the flame detection sensitivity without being affected by the self-discharge due to the characteristics or deterioration of the ultraviolet detection tube or the noise discharge due to the background noise caused by the factors of the natural world. .

即ち、紫外線検出管の特性や劣化による自己放電、或いは自然界の因子に起因したバックグランドノイズによるノイズ放電は、単発的なもので炎からの紫外線が入射した場合のように連続的な放電にならないことが多く、自己放電やノイズ放電による紫外線検出パルス信号の連続出力数は炎判定閾値(Nth)に達することがない。このため、紫外線検出管の連続出力数(連続放電回数)から炎を判定するための炎判定閾値を、判定しようとする大きさの炎又は判定しないようにする大きさ炎に合わせて設定し、また変更することにより、自己放電やノイズ放電に影響されることなく、炎の検出感度の設定及び変更を正確且つ適切に行うことができる。なお、炎の大きさは、所定レベル以上の紫外線を発する炎の炎継続時間に対応する。
That is, the self-discharge due to the characteristics and deterioration of the UV detector tube, or the noise discharge due to background noise caused by natural factors, is a single discharge and does not result in a continuous discharge as in the case where UV light from a flame is incident. In many cases, the number of continuous outputs of the ultraviolet detection pulse signal by self-discharge or noise discharge does not reach the flame determination threshold (Nth). For this reason, the flame determination threshold for determining the flame from the number of continuous outputs of the ultraviolet ray detection tube (the number of continuous discharges) is set according to the size of the flame to be determined or not to be determined, Moreover, by changing, it is possible to accurately and appropriately set and change the flame detection sensitivity without being affected by self-discharge or noise discharge. The magnitude of the flame corresponds to the flame duration of a flame that emits ultraviolet rays of a predetermined level or higher.

(炎判定閾値により検出感度の変更する効果)
また炎の検出感度を高くする場合は炎判定閾値を小さい値に変更し、炎の検出感度を低くする場合は炎判定値を大きい値に変更するという簡単な処理により、判定しようとする大きさの炎に対する検出感度を簡単に変更することができる。
(Effect of changing detection sensitivity according to flame judgment threshold)
In addition, when the flame detection sensitivity is increased, the flame determination threshold is changed to a smaller value, and when the flame detection sensitivity is decreased, the flame determination value is changed to a larger value. The detection sensitivity to flames can be easily changed.

(時間帯により検出感度を変更する効果)
また、一日を複数の時間帯、例えば一日を無人となる所定の第1時間帯と人が出入する所定の第2時間帯に分け、第1時間帯は所定の第1炎判定閾値を設定して高い検出感度に変更し、第2時間帯は第1炎判定値より大きい所定の第2炎判定閾値を設定して低い検出感度に変更することで、例えば無人となる夜間の第1時間帯は高感度に変更して放火によるライタの炎を確実に判定して警報することができ、人が出入する第2時間帯については低感度に変更して喫煙に伴うライタの炎による誤報を防止できる。
(Effect of changing detection sensitivity according to time zone)
Further, the day is divided into a plurality of time zones, for example, a predetermined first time zone in which the day is unattended and a predetermined second time zone in which a person enters and exits. The first time zone has a predetermined first flame determination threshold value. By setting and changing to a high detection sensitivity, and setting a predetermined second flame determination threshold value that is larger than the first flame determination value and changing to a low detection sensitivity in the second time zone, for example, the first time at night when the person is unattended The time zone can be changed to high sensitivity, and the writer's flame due to arson can be judged and alarmed reliably, and the second time zone where people enter and exit is changed to low sensitivity and the false alarm due to the writer's flame accompanying smoking Can be prevented.

(人感センサによる感度変更)
また人感センサにより人を検出している場合は所定の第1炎判定閾値を設定して高い検出感度に変更し、人感センサにより人を検出していない場合は第1炎判定値より大きい第2炎判定閾値を設定して低い検出感度に変更するようにしたため、例えば放火に対する炎監視にあっては、人を検知した場合は検出感度を高め、ライタで火をつけようとした場合の炎を確実に判定して警報し、一方、人を検知していない場合は低い検出感度に変更することで、誤報を防止できる。
(Sensitivity change by human sensor)
In addition, when a person is detected by a human sensor, a predetermined first flame determination threshold is set and changed to a high detection sensitivity, and when a human is not detected by a human sensor, it is larger than the first flame determination value. Since the second flame judgment threshold is set and changed to a low detection sensitivity, for example, in the case of flame monitoring for arson, if a person is detected, the detection sensitivity is increased and the writer tries to ignite the fire. It is possible to prevent false alarm by changing the detection sensitivity to a low detection sensitivity when the flame is surely determined and a person is not detected.

(誤報に対する感度変更による効果)
また通常の監視状態では所定の第1炎判定閾値を設定して高い検出感度に変更し、誤報を判定した場合、例えば担当者による誤報対応操作などにより第1炎判定値より大きい所定の第2炎判定閾値を設定して低い検出感度に一時的に変更することで、例えば火災以外の炎による誤報原因が判明しているような場合に、監視機能を停止することなく、誤報要因が解消するまで一時的に検出感度を低下して誤報を防止又は抑止することができる。
(Effect of sensitivity change for false alarm)
In a normal monitoring state, when a predetermined first flame determination threshold is set and the detection sensitivity is changed to a high detection sensitivity and a false alarm is determined, for example, a predetermined second larger than the first flame determination value by an operation for handling a false alarm by a person in charge or the like. By setting a flame judgment threshold and temporarily changing it to a low detection sensitivity, for example, if the cause of a false alarm due to a flame other than a fire is known, the cause of the false alarm can be resolved without stopping the monitoring function. The detection sensitivity can be temporarily lowered until the false alarm can be prevented or suppressed.

時間帯により検出感度を変更する放火監視用の炎監視装置の実施形態を示したブロック図The block diagram which showed embodiment of the flame monitoring apparatus for arson monitoring which changes detection sensitivity according to a time slot | zone 監視対象とする炎の紫外線入射と炎判定閾値を変更した場合の紫外線検出管の放電動作を示した説明図Explanatory drawing which showed discharge operation of the ultraviolet ray detection tube when changing the ultraviolet ray incidence of the flame to be monitored and the flame judgment threshold 図1の炎監視装置の動作を示したタイムチャート図Time chart showing the operation of the flame monitoring device of FIG. 感度変更指示により炎判定閾値を変更した場合の監視対象とする炎の炎継続時間と紫外線検出管の放電動作の関係を示した説明図Explanatory drawing which showed the relationship between the flame continuation time of the flame to be monitored and the discharge operation of the ultraviolet ray detector tube when the flame judgment threshold is changed by the sensitivity change instruction 感度変更指示により炎判定閾値を変更する場合の炎持続時間、同期パルス信号周期及び検出感度の関係を一覧で示した説明図Explanatory diagram showing a list of relationships between flame duration, synchronization pulse signal period, and detection sensitivity when changing the flame judgment threshold according to the sensitivity change instruction 図1の炎判定と感度変更をコンピュータ回路のプログラムの実行で実現する場合の処理動作を示したフローチャートThe flowchart which showed the processing operation in the case of implement | achieving the flame determination and sensitivity change of FIG. 1 by execution of the program of a computer circuit 炎感知器として使用する炎監視装置の他の実施形態を示したブロック図The block diagram which showed other embodiment of the flame monitoring apparatus used as a flame detector

[炎監視装置の構成]
(全体構成)
図1は本発明による炎監視装置の実施形態を示したブロック図であり、放火センサとして炎を監視する場合を例にとっている。
[Configuration of flame monitoring device]
(overall structure)
FIG. 1 is a block diagram showing an embodiment of a flame monitoring apparatus according to the present invention, taking as an example a case where flame is monitored as an arson sensor.

図1において、本発明の炎監視装置は、発振部10、紫外線検出部12、炎判定部14、感度変更部16、電池電源18及び無線通信部20で構成する。   In FIG. 1, the flame monitoring apparatus of the present invention includes an oscillation unit 10, an ultraviolet ray detection unit 12, a flame determination unit 14, a sensitivity change unit 16, a battery power source 18, and a wireless communication unit 20.

電池電源18は例えばリチウム電池を使用し、例えばDC5Vを各部に供給して動作している。   The battery power source 18 uses, for example, a lithium battery and operates by supplying, for example, DC 5V to each unit.

(発振部10の構成)
発振部10は発振回路22と高電圧発生回路24を備える。発振部10は所定周期T2で例えばパルス幅が数マイクロ秒の同期パルス信号aを発生し、高電圧発生回路24に出力する。高電圧発生回路24は昇圧回路などを使用し、同期パルス信号aに同期して300〜500Vの範囲で設定した高電圧をパルス的に紫外線検出部12に出力する。なお、発振回路22からの同期パルス信号aは炎判定部14にも供給して動作させるが、図示を省略している。
(Configuration of Oscillator 10)
The oscillation unit 10 includes an oscillation circuit 22 and a high voltage generation circuit 24. The oscillating unit 10 generates a synchronous pulse signal a having a pulse width of, for example, several microseconds at a predetermined period T2, and outputs it to the high voltage generation circuit 24. The high voltage generation circuit 24 uses a booster circuit or the like, and outputs a high voltage set in a range of 300 to 500 V in synchronization with the synchronization pulse signal a to the ultraviolet detection unit 12 in a pulsed manner. The synchronization pulse signal a from the oscillation circuit 22 is also supplied to the flame determination unit 14 for operation, but is not shown.

(紫外線検出部12の構成)
紫外線検出部12は紫外線検出管26を備える。紫外線検出管26は紫外線を透過するガラス管の中に陽極と陰極を配置して特殊なガスを封入しており、例えば市販のUVトロン(R)を使用する。紫外線検出管26の陽極端子には抵抗R1を介して高電圧発生回路24の出力を接続し、陰極端子には抵抗R2とコンデンサCを並列接続し、陰極端子と抵抗R2の間から炎判定部14に紫外線検出パルス信号bを出力するように接続している。
(Configuration of UV detector 12)
The ultraviolet detection unit 12 includes an ultraviolet detection tube 26. The ultraviolet detection tube 26 has an anode and a cathode disposed in a glass tube that transmits ultraviolet rays and encloses a special gas. For example, a commercially available UVtron (R) is used. The output of the high voltage generation circuit 24 is connected to the anode terminal of the ultraviolet ray detection tube 26 via the resistor R1, the resistor R2 and the capacitor C are connected in parallel to the cathode terminal, and a flame determination unit is interposed between the cathode terminal and the resistor R2. 14 is connected to output an ultraviolet detection pulse signal b.

紫外線検出管26は発振部10から同期パルス信号aに同期して高電圧をパルス的に印加した状態で且つ外部から所定の放電開始レベルを超える強度の紫外線を入射した場合に放電を起こし、抵抗R1、紫外線検出管26及び抵抗R2となる経路で放電電流をパルス的に流し、抵抗R2の両端に発生した紫外線検出パルス信号bを炎判定部14に出力する。   The ultraviolet ray detection tube 26 causes discharge when ultraviolet light having an intensity exceeding a predetermined discharge start level is incident from the outside in a state where a high voltage is applied in a pulse manner in synchronization with the synchronization pulse signal a from the oscillation unit 10 A discharge current is caused to flow in a pulse manner through the path of R1, the ultraviolet ray detection tube 26, and the resistor R2, and the ultraviolet ray detection pulse signal b generated at both ends of the resistor R2 is output to the flame determination unit 14.

紫外線検出管26は紫外線の入射がなくとも高電圧をパルス的に印加すると自己放電を起こす場合がある。紫外線検出管26に継続して高電圧を印加していた場合の自己放電の時間間隔は、使用する紫外線検出管毎に異なり、一般的に数分オーダーといわれているが、ばらつきがある。   The ultraviolet ray detection tube 26 may cause self-discharge when a high voltage is applied in a pulsed manner even when no ultraviolet ray is incident. The time interval of self-discharge when a high voltage is continuously applied to the ultraviolet ray detection tube 26 differs for each ultraviolet ray detection tube used and is generally said to be on the order of several minutes, but varies.

また紫外線検出管26は劣化が進むと、自己放電の回数が増加していく。更に紫外線検出管26は紫外線の入射がなくとも高電圧をパルス的に印加した状態で、太陽光、溶接の光、プラズマ、放射線、宇宙線といった自然界にある因子を受けて放電を起こす。この自然界にある因子による放電はバックグランドノイズとなることから、以下、ノイズ放電という。   Further, as the UV detector tube 26 deteriorates, the number of self-discharges increases. Further, the ultraviolet ray detection tube 26 discharges by receiving factors such as sunlight, welding light, plasma, radiation, and cosmic rays in a state where a high voltage is applied in a pulsed manner even when no ultraviolet ray is incident. Since discharge due to factors in the natural world becomes background noise, it is hereinafter referred to as noise discharge.

このように紫外線検出管26は、炎からの紫外線入射による本来の紫外線検出による放電以外に、自己放電やノイズ放電があり、自己放電やノイズ放電は不確定な放電であり、放電により出力する紫外線検出パルス信号bには自己放電やノイズ放電によるものが含まれており、そのまま処理しても、炎を正確に判定することができない状況にある。   As described above, the ultraviolet ray detection tube 26 has self-discharge and noise discharge in addition to the discharge due to the original ultraviolet ray detection due to the ultraviolet ray incident from the flame, and the self-discharge and noise discharge are uncertain discharges, and the ultraviolet rays output by the discharge. The detection pulse signal b includes those due to self-discharge and noise discharge, and even if processed as it is, the flame cannot be accurately determined.

(炎判定部14の構成)
炎判定部14は紫外線検出部12から出力される紫外線検出パルス信号bの連続出力数Nが所定の炎判定閾値Nthと一致した場合に炎を判定して炎判定信号dを無線通信部20へ出力し、警報装置へ送信して警報させる。
(Configuration of the flame determination unit 14)
The flame determination unit 14 determines flame when the continuous output number N of the ultraviolet detection pulse signal b output from the ultraviolet detection unit 12 matches a predetermined flame determination threshold Nth, and sends the flame determination signal d to the wireless communication unit 20. Output and send to alarm device to alarm.

本実施形態にあっては、炎判定部14に、放火監視のためにライタのよる炎を判定する第1炎判定閾値Nth1を初期設定しており、喫煙による誤報を防止する必要がある場合は、感度変更部16による炎の感度変更指示に基づき、ライタによる炎を判定することのない第2炎判定閾値Nth2となる低い検出感度に変更するようにしている。   In the present embodiment, the flame determination unit 14 is initially set with a first flame determination threshold value Nth1 for determining a flame caused by a writer for arson monitoring, and it is necessary to prevent misreporting due to smoking. Based on the flame sensitivity change instruction by the sensitivity changing unit 16, the detection sensitivity is changed to a low detection sensitivity that becomes the second flame determination threshold Nth2 without determining the flame by the writer.

ここで、検出感度の高い第1炎判定値Nth1と検出感度の低い第2炎判定値Nth2との間には
(第1炎判定閾値Nth1)<(第2炎判定閾値Nth2)
大小の関係があり、後述するように、第1時間帯では第1炎判定閾値Nth1を例えばNth1=4に設定して放火によるライタの炎を判定可能とし、別の第2時間帯では第2炎判定閾値Nth2を例えばNth2=8に設定して喫煙によるライタの炎は判定しないようにしている。
Here, between the first flame determination value Nth1 having a high detection sensitivity and the second flame determination value Nth2 having a low detection sensitivity, (first flame determination threshold Nth1) <(second flame determination threshold Nth2).
As will be described later, the first flame determination threshold value Nth1 is set to Nth1 = 4, for example, in the first time zone so that the writer's flame due to arson can be determined, and the second time zone is the second time zone. The flame determination threshold Nth2 is set to Nth2 = 8, for example, so that the writer's flame due to smoking is not determined.

炎判定部14は、ゲート回路28、シフトレジスタ30及び連続数判定部32を備える。ゲート回路28は発振回路22からの同期パルス信号aにより動作し、紫外線検出部12から紫外線検出パルス信号bが入力した場合に論理レベル1のビット信号cを出力し、紫外線検出パルス信号bの入力がない場合は、論理レベル0のビット信号cを出力する。   The flame determination unit 14 includes a gate circuit 28, a shift register 30, and a continuous number determination unit 32. The gate circuit 28 operates in response to the synchronization pulse signal a from the oscillation circuit 22, and outputs a bit signal c having a logic level 1 when the ultraviolet detection pulse signal b is input from the ultraviolet detection unit 12, and inputs the ultraviolet detection pulse signal b. If there is no signal, a bit signal c having a logic level 0 is output.

シフトレジスタ30は、低い検出感度を設定する値の大きい方の第2炎判定閾値Nth2=8に対応した8段のシフト段数を備え、同期パルス信号aによりシフト動作し、ゲート回路28からのビット信号cを順次入力してシフトする。   The shift register 30 includes eight shift stages corresponding to the larger second flame determination threshold Nth2 = 8 for setting a low detection sensitivity, performs a shift operation in accordance with the synchronization pulse signal a, and receives a bit from the gate circuit 28. The signal c is sequentially input and shifted.

連続数判定部32は、感度変更部16から第1炎判定閾値Nth1=4を設定する高感度変更指示信号を受けた場合、Nth1=4に対応したシフトレジスタ30の1〜4段のビット信号を並列的に入力し、4段全てのビット信号が論理レベル1となった場合、即ち紫外線検出部12から出力している紫外線検出パルス信号bの連続出力数Nが第1炎判定閾値Nth1=4に一致した場合、炎を判定して炎判定信号dを無線送信部20へ出力する。   When the continuous number determination unit 32 receives a high sensitivity change instruction signal for setting the first flame determination threshold Nth1 = 4 from the sensitivity change unit 16, the bit signal of 1 to 4 stages of the shift register 30 corresponding to Nth1 = 4 Are input in parallel, and all four stages of bit signals have a logic level 1, that is, the number N of continuous outputs of the UV detection pulse signal b output from the UV detector 12 is equal to the first flame determination threshold Nth1 = If it matches 4, the flame is determined and a flame determination signal d is output to the wireless transmission unit 20.

また連続数判定部32は、感度変更部16から第2炎判定閾値Nth2=8を設定する低感度変更指示信号を受けた場合、Nth2=8に対応したシフトレジスタ30の1〜8段のビット信号を並列的に入力し、8段全てのビット信号が論理レベル1となった場合、即ち紫外線検出部12から出力している紫外線検出パルス信号bの連続出力数Nが第2炎判定閾値Nth2=8に一致した場合、炎を判定して炎判定信号dを無線送信部20へ出力する。   Further, when the continuous number determination unit 32 receives a low sensitivity change instruction signal for setting the second flame determination threshold Nth2 = 8 from the sensitivity change unit 16, the bits of the first to eighth stages of the shift register 30 corresponding to Nth2 = 8. When the signals are input in parallel and all the eight bit signals are at the logic level 1, that is, the number N of continuous outputs of the ultraviolet detection pulse signal b output from the ultraviolet detector 12 is the second flame determination threshold Nth2. When the value is equal to 8, the flame is determined and the flame determination signal d is output to the wireless transmission unit 20.

このため連続数判定部32としては、例えばシフトレジスタ30の1〜4段のビット信号を並列入力して論理積を出力するANDゲートと、シフトレジスタ30の1〜8段のビット信号を並列入力して論理積を出力するANDゲートが使用できる。   For this reason, as the continuous number determination unit 32, for example, an AND gate that outputs a logical product by inputting 1 to 4 bit signals of the shift register 30 in parallel and a 1 to 8 bit signal of the shift register 30 are input in parallel. Thus, an AND gate that outputs a logical product can be used.

なお、炎判定部14は、ゲート回路28、シフトレジスタ30及び連続数判定部32の構成に限定されず、紫外線検出部12から出力する紫外線検出パルス信号aの連続出力数が第1炎判定閾値Nth1=4又は第2炎判定閾値Nth2=8に一致することを判定できれば、適宜の構成とすることができる。   The flame determination unit 14 is not limited to the configuration of the gate circuit 28, the shift register 30, and the continuous number determination unit 32, and the number of continuous outputs of the ultraviolet detection pulse signal a output from the ultraviolet detection unit 12 is the first flame determination threshold value. If it can be determined that Nth1 = 4 or the second flame determination threshold value Nth2 = 8, it can be configured appropriately.

例えばシフトレジスタ30に代えカウンタを設けると共に、連続数判定部32のANDゲートに代えてデコーダを設ける。カウンタは、ゲート回路28からビット信号cが論理レベル1の場合にカウント動作を行い、論理レベル0の場合はリセットする。   For example, a counter is provided instead of the shift register 30 and a decoder is provided instead of the AND gate of the continuous number determination unit 32. The counter performs a counting operation when the bit signal c from the gate circuit 28 is at a logic level 1, and resets when the bit signal c is at a logic level 0.

連続数判定部32のデコーダは、感度変更部16から第1感度変更指示(高感度変更指示)を受けた場合、ゲート回路28からビット1となるビット信号cの出力が連続してカウンタのカウント値が第1炎判定閾値Nth1=4となることを判別した場合に炎判定信号dを無線通信部20へ出力するようにする。   When receiving the first sensitivity change instruction (high sensitivity change instruction) from the sensitivity changing unit 16, the decoder of the continuous number determining unit 32 continuously outputs the bit signal c that becomes bit 1 from the gate circuit 28 and counts the counter. When it is determined that the value is the first flame determination threshold Nth1 = 4, the flame determination signal d is output to the wireless communication unit 20.

また連続数判定部32のデコーダは、感度変更部16から低感度変更指示を受けた場合、ゲート回路28から論理レベル1となるビット信号cの出力が連続してカウンタのカウント値が第2炎判定閾値Nth2=8となることを判別した場合に炎判定信号dを無線送信部20へ出力するようにする。   When the decoder of the continuous number determination unit 32 receives a low sensitivity change instruction from the sensitivity change unit 16, the output of the bit signal c having the logic level 1 from the gate circuit 28 continues and the count value of the counter becomes the second flame. When it is determined that the determination threshold Nth2 = 8, the flame determination signal d is output to the wireless transmission unit 20.

(感度変更部16の構成)
感度変更部16は、放火監視のために,一日を、無人となる第1時間帯と、人が出入する第2時間帯とに分け、第1時間帯は炎判定部14へ高感度変更指示信号を出力して第1炎判定閾値Nth=4による高い検出感度の炎判定状態とし、第2時間帯は炎判定部14へ低感度変更指示信号を出力して第1炎判定値Nth1より第2炎判定閾値Nth2=8による低い検出感度の炎判定状態とする。
(Configuration of sensitivity changing unit 16)
The sensitivity changer 16 divides the day into a first time zone during which no one is present and a second time zone during which a person enters and exits for the purpose of monitoring the fire. An instruction signal is output to make a flame determination state with a high detection sensitivity by the first flame determination threshold Nth = 4, and a low sensitivity change instruction signal is output to the flame determination unit 14 in the second time period from the first flame determination value Nth1 A flame detection state with low detection sensitivity according to the second flame determination threshold Nth2 = 8 is set.

このため感度変更部16はタイマ回路34と閾値変更部36を備える。タイマ回路34は、無人となる第1時間帯として例えば夜8時から翌朝8時までの時間帯を設定し、また人が出入する第2時間帯として朝8時から夜8時までの時間帯を設定し、毎日、夜8時に第1時間帯開始信号を閾値変更部36に出力し、毎日、朝8時に第2時間帯開始信号を閾値変更部36に出力する。   Therefore, the sensitivity changing unit 16 includes a timer circuit 34 and a threshold changing unit 36. The timer circuit 34 sets, for example, a time zone from 8 o'clock to 8 o'clock the next morning as a first time zone in which the person is unattended, and a time zone from 8 o'clock in the morning to 8 o'clock as a second time zone in which people enter and exit Are set, and the first time zone start signal is output to the threshold value changing unit 36 at 8 o'clock every day, and the second time zone start signal is output to the threshold value changing unit 36 every day at 8 o'clock in the morning.

閾値変更部36はタイマ回路34から無人となる第1時間帯開始信号を受信すると、炎判定部14の連続数判定部32へ高感度変更指示信号を出力し、連続数判定部32を第1炎判定閾値Nth1=4の設定による高い検出感度の炎判定状態とする。   When the threshold value changing unit 36 receives the first unmanned first time period start signal from the timer circuit 34, the threshold value changing unit 36 outputs a high sensitivity change instruction signal to the continuous number determining unit 32 of the flame determining unit 14, and the continuous number determining unit 32 is set to the first number. A flame detection state with high detection sensitivity is set by setting the flame determination threshold Nth1 = 4.

また閾値変更部36はタイマ回路34から人が出入する第2時間帯開始信号を受信すると、炎判定部14の連続数判定部32へ低感度変更指示信号を出力し、第2炎判定閾値Nth2=8による低い検出感度の炎判定状態とする。   In addition, when the threshold value changing unit 36 receives the second time zone start signal in which a person enters and exits from the timer circuit 34, the threshold value changing unit 36 outputs a low sensitivity change instruction signal to the continuous number determining unit 32 of the flame determining unit 14, and the second flame determining threshold value Nth2 A flame detection state with low detection sensitivity due to = 8.

[炎判定の原理と炎判定閾値の決め方]
(原理説明)
次に本発明による炎判定の原理を、放火監視のためにライタによる微小な炎を判定する場合を例にとって説明する。これは図1の感度変更部16からの高感度変更指示信号で炎判定部14を第1炎判定閾値Nth1の設定による放火監視のための高い検出感度の炎判定状態とした場合である。なお、以下の原理説明にあっては、第1炎判定値Nth1を、炎判定閾値Nthとして説明する。
[Principle of flame judgment and how to determine the flame judgment threshold]
(Principle explanation)
Next, the principle of flame determination according to the present invention will be described by taking as an example the case of determining a small flame by a writer for arson monitoring. This is a case in which the flame determination unit 14 is set to a flame detection state with high detection sensitivity for fire discharge monitoring by setting the first flame determination threshold value Nth1 by a high sensitivity change instruction signal from the sensitivity change unit 16 of FIG. In the following description of the principle, the first flame determination value Nth1 will be described as the flame determination threshold Nth.

放火監視にあっては、例えば数メートルの監視距離となる位置で、ライタを点けた場合の炎を判定することが要求される。ここで、監視対象とする炎からの紫外線が紫外線検出管26に継続して入射する時間を、炎継続時間T1と定義する。ライタにより放火する場合、ライタを何回か点けたり消したりして火をつけようとすることが想定されるため、ライタの1回の着火による炎の炎継続時間T1は、監視距離を数メートル、例えば5メートルに設定した場合、概ね数百ミリ秒程度となる。そこで放火監視のために判定する炎の炎継続時間T1を、例えばT1=500ミリ秒とする。   In arson monitoring, for example, it is required to determine a flame when a writer is turned on at a position where the monitoring distance is several meters. Here, the time during which the ultraviolet rays from the flame to be monitored continuously enter the ultraviolet detection tube 26 is defined as the flame duration T1. When firing with a writer, it is assumed that the writer is turned on and off several times to try to ignite it. Therefore, the flame duration T1 of the flame caused by one ignition of the writer is several meters away. For example, when it is set to 5 meters, it is about several hundred milliseconds. Therefore, the flame duration time T1 of the flame determined for monitoring the fire is set to T1 = 500 milliseconds, for example.

本発明は、炎継続時間T1を複数の時間に分割し、各分割時間で紫外線検出管26による紫外線検出動作(高電圧の印加)を行い、紫外線検出管26が各分割時間で放電し、これが連続した場合に炎を判定する。この炎判定は、実質的に、監視対象とする炎の炎継続時間T1を検出して炎を判定することを意味する。   In the present invention, the flame duration T1 is divided into a plurality of times, and an ultraviolet ray detection operation (high voltage application) is performed by the ultraviolet ray detection tube 26 at each divided time, and the ultraviolet ray detection tube 26 is discharged at each division time. If it is continuous, the flame is judged. This flame determination substantially means that the flame is determined by detecting the flame duration T1 of the flame to be monitored.

このため炎継続時間T1の分割数が、紫外線検出パルス信号の連続出力数Nから炎を判定するための炎判定閾値Nthとなり、炎継続時間T1を炎判定閾値Nthで割った値(T1/Nth)が、発振部10で発振する同期パルス信号aの周期T2となる。   Therefore, the number of divisions of the flame duration T1 becomes a flame determination threshold value Nth for determining flame from the number N of continuous outputs of the ultraviolet detection pulse signal, and a value obtained by dividing the flame duration time T1 by the flame determination threshold value Nth (T1 / Nth ) Is the period T2 of the synchronization pulse signal a oscillated by the oscillation unit 10.

(炎判定閾値の決め方)
炎継続時間T1の分割数、即ち炎判定閾値Nthは、紫外線検出管26の自己放電や自然界を要因としたノイズ放電が単発的であることから、少なくとも2分割(Nth=2)とすれば、炎による本来の放電を、自己放電やノイズ放電から区別できる。しかし、分割数が少ないと自己放電やノイズ放電によって炎を誤判定する度合いが高くなることから、分割数を3分割(Nth=3)、4分割(Nth=4)、5分割(Nth=5)というように増やすことで、炎を誤判定する度合いを下げることができる。
(How to determine the flame judgment threshold)
The number of divisions of the flame continuation time T1, that is, the flame determination threshold Nth, is such that noise discharge due to self-discharge of the ultraviolet ray detection tube 26 or the natural world is a single occurrence, so if it is at least divided into two (Nth = 2), The original discharge due to flame can be distinguished from self-discharge and noise discharge. However, if the number of divisions is small, the degree of misjudgment of flames due to self-discharge or noise discharge increases, so the number of divisions is divided into three (Nth = 3), four (Nth = 4), and five (Nth = 5). ), The degree of misjudgment of flame can be lowered.

一方、誤判定を抑制するために分割数を増加すると、発振回路22で発生する同期パルス信号aの周期が短くなり、同期パルス信号aを供給して動作している回路部の動作回数が増加し、消費電力が増加して電池寿命が短くなる。そこで、炎の誤判定と消費電力の増加を考慮して最適な分割数、即ち炎判定閾値Nthを決める。   On the other hand, when the number of divisions is increased in order to suppress erroneous determination, the cycle of the synchronization pulse signal a generated in the oscillation circuit 22 is shortened, and the number of operations of the circuit unit that is operating by supplying the synchronization pulse signal a is increased. However, power consumption increases and battery life is shortened. Therefore, an optimum division number, that is, a flame determination threshold value Nth is determined in consideration of erroneous determination of flame and an increase in power consumption.

図2は、ライタによる炎継続時間T1=500ミリ秒の炎を対象に、炎判定閾値Nthを、Nth=2,3,4,5とした場合の炎判定を示した説明図である。   FIG. 2 is an explanatory diagram showing flame determination when the flame determination threshold Nth is set to Nth = 2, 3, 4, and 5 for a flame with a flame duration time T1 = 500 milliseconds.

まず監視対象とするライタによる炎から紫外線検出管26に入射する紫外線は、所定の放電開始レベルを上回る時刻t1〜t2の時間が炎継続時間T1=500ミリ秒となる。   First, the ultraviolet light incident on the ultraviolet ray detection tube 26 from the flame of the writer to be monitored has a flame duration time T1 = 500 milliseconds that exceeds the predetermined discharge start level at times t1 to t2.

炎判定閾値Nth=2とした場合、同期パルス信号aの周期T2は、炎継続時間T1=500ミリ秒を炎判定閾値Nth=2で割ることで、T2=250ミリ秒となる。紫外線検出管26は、時刻t1から炎継続時間T1=500ミリ秒の紫外線が入射した場合、250ミリ秒の間隔で2回連続して放電し、紫外線検出場パルス信号aの連続出力数が炎判定閾値Nth=2に一致することを検知して、炎を判定する。   When the flame determination threshold Nth = 2 is set, the period T2 of the synchronization pulse signal a is T2 = 250 milliseconds by dividing the flame duration T1 = 500 milliseconds by the flame determination threshold Nth = 2. When the ultraviolet ray having a flame duration T1 = 500 milliseconds is incident from the time t1, the ultraviolet ray detection tube 26 is continuously discharged twice at an interval of 250 milliseconds, and the continuous output number of the ultraviolet detection field pulse signal a is flame. The flame is determined by detecting that the determination threshold value Nth = 2 is satisfied.

また、炎判定閾値Nth=3とした場合、同期パルス信号aの周期T2はT2=約167ミリ秒となり、紫外線検出管26は時刻t1から炎継続時間T1=500ミリ秒の紫外線が入射した場合、約167ミリ秒の間隔で3回連続して放電し、紫外線検出場パルス信号aの連続出力数が炎判定閾値Nth=3に一致することを検知して、炎を判定する。   When the flame determination threshold Nth = 3, the period T2 of the synchronization pulse signal a is T2 = about 167 milliseconds, and the ultraviolet ray detection tube 26 is irradiated with ultraviolet rays having a flame duration T1 = 500 milliseconds from time t1. The battery is discharged three times at intervals of about 167 milliseconds, and the flame is determined by detecting that the number of continuous outputs of the ultraviolet detection field pulse signal a matches the flame determination threshold Nth = 3.

また、炎判定閾値Nth=4とした場合、同期パルス信号aの周期T2はT2=125ミリ秒となる。紫外線検出管26は時刻t1から炎継続時間T1=500ミリ秒の紫外線が入射した場合、125ミリ秒の間隔で4回連続して放電し、紫外線検出場パルス信号aの連続出力数が炎判定閾値Nth=4に一致することを検知して、炎を判定する。   When the flame determination threshold Nth = 4, the period T2 of the synchronization pulse signal a is T2 = 125 milliseconds. The ultraviolet ray detection tube 26 is continuously discharged four times at intervals of 125 milliseconds when the ultraviolet ray having a flame duration T1 = 500 milliseconds is incident from the time t1, and the number of continuous outputs of the ultraviolet ray detection field pulse signal a is determined as a flame. A flame is determined by detecting that the threshold value Nth = 4.

さらに、炎判定閾値Nth=5とした場合、同期パルス信号aの周期T2はT2=100ミリ秒となる。紫外線検出管26は時刻t1から炎継続時間T1=500ミリ秒の紫外線が入射した場合、100ミリ秒の間隔で5回連続して放電し、紫外線検出場パルス信号aの連続出力数が炎判定閾値Nth=5に一致することを検知して、炎を判定する。   Further, when the flame determination threshold Nth = 5, the period T2 of the synchronization pulse signal a is T2 = 100 milliseconds. The ultraviolet ray detection tube 26 is continuously discharged five times at an interval of 100 milliseconds when the ultraviolet ray having a flame duration T1 = 500 milliseconds is incident from time t1, and the number of continuous outputs of the ultraviolet ray detection field pulse signal a is determined as a flame. A flame is determined by detecting that the threshold value Nth = 5.

なお、実際には、炎から放射された放電開始レベルを超える紫外線が入射する時刻t1〜t2の炎継続時間T1と、同期パルス信号aの周期T2で決まる紫外線検出管26の放電可能タイミング(高電圧印加タイミング)との間には、時間ずれを生ずる。しかし、この時間ずれがあっても、炎判定閾値Nthに対応した数の同期パルス信号aは、炎継続時間T1の中に必ず納まり、炎継続時間T1のあいだに紫外線が入射すれば、炎判定閾値Nthで決まる回数の連続放電を行うことができる。   Actually, the dischargeable timing of the ultraviolet ray detection tube 26 determined by the flame duration T1 of the time t1 to t2 when the ultraviolet ray exceeding the discharge start level emitted from the flame is incident and the period T2 of the synchronous pulse signal a (high A time lag occurs with respect to the voltage application timing. However, even if there is this time lag, the number of synchronized pulse signals a corresponding to the flame determination threshold value Nth is always included in the flame duration T1, and if the ultraviolet rays are incident during the flame duration T1, the flame determination is performed. The number of continuous discharges determined by the threshold value Nth can be performed.

ここで、炎判定閾値をNth=2とした場合、即ち炎判定の連続放電回数を2回とした場合には、単発的に発生する紫外線検出管26の自己放電やノイズ放電により、炎を誤判定する度合いが高くなる問題がある。   Here, when the flame determination threshold value is Nth = 2, that is, when the number of continuous discharges of the flame determination is two times, the flame is erroneously detected due to self-discharge or noise discharge of the ultraviolet ray detection tube 26 that occurs once. There is a problem that the degree of determination becomes high.

そこで、炎判定閾値Nthを増し、炎判定の連続回数を増加すれば炎を誤判定する度合いは低下する。しかし、例えばNth=5として炎判定の連続放電回数を5回とした場合には、同期パルス信号aの周期T2はT2=100ミリ秒と短くなり、同期パルス信号を受けて動作する回路部の動作回数が増加し、これに伴い消費電力が増加する問題がある。   Therefore, if the flame determination threshold Nth is increased and the number of consecutive flame determinations is increased, the degree of erroneous determination of flame decreases. However, for example, when Nth = 5 and the number of continuous discharges of the flame determination is five, the period T2 of the synchronization pulse signal a is as short as T2 = 100 milliseconds, and the circuit unit that operates in response to the synchronization pulse signal operates. There is a problem that the number of operations increases and the power consumption increases accordingly.

炎の誤判定と消費電力の増加の両方を考慮すると、炎判定閾値NthはNth=3又は4が適切である。ここでは、炎誤判定の回避を重視して例えばNth=4に決める。従って、炎継続時間T1=500ミリ秒とするライタの炎を監視対象として、炎判定閾値Nth=4に決めた場合、同期パルス信号の周期T2は、T2=125ミリ秒となる。   Considering both the erroneous determination of flame and the increase in power consumption, Nth = 3 or 4 is appropriate for the flame determination threshold Nth. Here, for example, Nth = 4 is determined with emphasis on avoidance of erroneous flame determination. Therefore, when the flame of the writer whose flame duration time T1 = 500 milliseconds is to be monitored and the flame determination threshold Nth = 4 is determined, the period T2 of the synchronization pulse signal is T2 = 125 milliseconds.

(炎監視動作)
図3は、図1の実施形態について、炎継続時間T1=500ミリ秒、炎判定閾値Nth=4、同期パルス信号の周期T2=125ミリ秒とした場合の炎監視動作を示したタイムチャートである。
(Fire monitoring operation)
FIG. 3 is a time chart showing the flame monitoring operation in the embodiment of FIG. 1 when the flame duration T1 = 500 milliseconds, the flame determination threshold Nth = 4, and the synchronization pulse signal period T2 = 125 milliseconds. is there.

図3(A)は紫外線検出管26に外部から入射する紫外線の強度であり、放電開始レベルを超える強度の紫外線が入力している状態で、図3(B)の周期T2で発生している発振回路22からの同期パルス信号aにより高電圧発生回路24を動作して紫外線検出管26に高電圧を印加すると、紫外線検出管26が放電を起こし、図3(C)に示す紫外線検出パルス信号bを出力する。   FIG. 3A shows the intensity of ultraviolet light incident on the ultraviolet detection tube 26 from the outside, and is generated with a period T2 in FIG. 3B in a state where ultraviolet light having an intensity exceeding the discharge start level is input. When the high voltage generation circuit 24 is operated by the synchronizing pulse signal a from the oscillation circuit 22 and a high voltage is applied to the ultraviolet detection tube 26, the ultraviolet detection tube 26 is discharged, and the ultraviolet detection pulse signal shown in FIG. b is output.

時刻t1は放電開始レベルを超える紫外線の入射がないのに紫外線検出パルス信号bを出力していることから、これは紫外線検出管26の自己放電である。この場合、図3(D)に示すシフトレジスタ30の内容は「1000」であり、連続数NはN=1となり、炎判定閾値Nth=4未満であることから炎とは判定せず、連続数判定部32のANDゲートによる論理積出力は論理レベル0となる。   Since the ultraviolet ray detection pulse signal b is output at time t1 when no ultraviolet ray exceeding the discharge start level is incident, this is a self-discharge of the ultraviolet ray detection tube 26. In this case, the content of the shift register 30 shown in FIG. 3D is “1000”, the number of consecutive N is N = 1, and since it is less than the flame determination threshold Nth = 4, it is not determined that the flame is continuous. The logical product output by the AND gate of the number determination unit 32 becomes a logical level 0.

時刻t2〜t3にあっては、ライタの炎から放電開始レベルを超える強度の紫外線が入射し、発振パルス信号aに基づく高電圧の印加に同期して紫外線検出管26が連続的に放電し、紫外線検出パルス信号を4つ連続して出力する。このためシフトレジスタ30の内容は、「1000」、「1100」、「1110」、「1111」と変化し、4回目の連続放電によるシフトレジスタ30からの論理レベル1となる4ビット並列入力に基づき連続数判定部32のANDゲートによる論理積出力は論理レベル1となり、炎を判定する。   At time t2 to t3, ultraviolet light having an intensity exceeding the discharge start level is incident from the writer flame, and the ultraviolet detection tube 26 is continuously discharged in synchronization with application of a high voltage based on the oscillation pulse signal a. Four consecutive UV detection pulse signals are output. For this reason, the content of the shift register 30 changes to “1000”, “1100”, “1110”, “1111”, and is based on a 4-bit parallel input that becomes a logic level 1 from the shift register 30 by the fourth continuous discharge. The logical product output by the AND gate of the continuous number determination unit 32 becomes a logical level 1, and the flame is determined.

時刻t4,t5は自然界のバックグランドノイズにより紫外線検出管26がノイズ放電した場合であり、いずれも単発的な放電動作となり、シフトレジスタ30の内容は「1000」、「1001」であり、連続数判定部32のANDゲートによる論理積出力はビット0となり、炎とは判定しない。   Times t4 and t5 are cases where the ultraviolet ray detector tube 26 has been subjected to noise discharge due to natural background noise, both of which are single discharge operations, and the contents of the shift register 30 are “1000” and “1001”. The logical product output by the AND gate of the determination unit 32 is bit 0 and is not determined to be a flame.

(感度変更動作)
次に感度変更部16による感度変更動作を説明する。図4(A)は感度変更部16からの高感度変更指示信号により炎判定部14を第1炎判定閾値Nth1=4の設定状態とした場合の炎から放射された紫外線の受光の強度と紫外線検出管の放電動作を示し、図4(B)は感度変更部16からの低感度変更指示信号により炎判定部14を第2炎判定閾値Nth2=8の設定状態とした場合の判定対象とする炎から放射された紫外線の受光の強度と紫外線検出管の放電動作を示している。
(Sensitivity change operation)
Next, the sensitivity changing operation by the sensitivity changing unit 16 will be described. FIG. 4A shows the intensity of received light and ultraviolet rays emitted from the flame when the flame determination unit 14 is set to the first flame determination threshold Nth1 = 4 by the high sensitivity change instruction signal from the sensitivity change unit 16. FIG. 4B shows a discharge operation of the detection tube, and FIG. 4B is a determination target when the flame determination unit 14 is set to the second flame determination threshold Nth2 = 8 by the low sensitivity change instruction signal from the sensitivity change unit 16. It shows the intensity of the received UV light emitted from the flame and the discharge operation of the UV detector tube.

また図5にNth1=4、Nth2=8とした場合の判定対象とする炎継続時間T1、同期パルス信号周期T2及び検出感度を一覧で示している。   FIG. 5 shows a list of flame duration time T1, synchronization pulse signal period T2, and detection sensitivity to be determined when Nth1 = 4 and Nth2 = 8.

図4(A)の第1炎判定閾値Nth1=4とする高い検出感度の設定状態にあっては、図2のNth=4に示したと同様に、同期パルス信号aの周期T2はT2=125ミリ秒であり、紫外線検出管26へ時刻t1からt2に亘り炎継続時間T=500ミリ秒のライタの炎からの紫外線100が入射したとすると、発振回路22の同期パルス信号に基づく高電圧発生回路24からのパルス的な高電圧の印加により紫外線検出管26はT2=125ミリ秒の間隔で4回連続して放電し、炎判定部14は紫外線検出部12が出力する紫外線検出パルス信号aの連続出力数が第1炎判定閾値Nth=4に一致することを検知して炎を判定する。
In the high detection sensitivity setting state in which the first flame determination threshold value Nth1 = 4 in FIG. 4A, the cycle T2 of the synchronization pulse signal a is T2 = 125 as shown in Nth = 4 in FIG. Assuming that the ultraviolet ray 100 from the flame of the writer whose flame duration is T = 500 milliseconds is incident on the ultraviolet ray detection tube 26 from time t1 to t2, the high voltage generation based on the synchronizing pulse signal of the oscillation circuit 22 occurs. By applying a pulsed high voltage from the circuit 24, the ultraviolet detection tube 26 is continuously discharged four times at an interval of T2 = 125 milliseconds, and the flame determination unit 14 outputs an ultraviolet detection pulse signal a output from the ultraviolet detection unit 12. Is detected by detecting that the number of continuous outputs coincides with the first flame determination threshold Nth = 4.

図4(B)の第2炎判定閾値Nth2=8とする低い検出感度の設定状態にあっては、同期パルス信号aの周期T2はT2=125ミリ秒であり、紫外線検出管26へ時刻t1からt3に亘り炎継続時間T1=1000ミリ秒のライタの炎に比べ継続時間の長い火災による炎の紫外線200が入射したとすると、発振回路22の同期パルス信号に基づく高電圧発生回路24からのパルス的な高電圧の印加により紫外線検出管26はT2=125ミリ秒の間隔で8回連続して放電し、炎判定部14は紫外線検出部12が出力する紫外線検出場パルス信号aの連続出力数が第2炎判定閾値Nth2=8に一致することを検知して、炎を判定する。
In the setting state of the low detection sensitivity with the second flame determination threshold value Nth2 = 8 in FIG. 4B, the period T2 of the synchronization pulse signal a is T2 = 125 milliseconds, and the time t1 is sent to the ultraviolet ray detection tube 26. From the high voltage generation circuit 24 based on the synchronous pulse signal of the oscillation circuit 22, assuming that the flame 200 due to a fire having a long duration compared to the writer flame having a flame duration T1 = 1000 milliseconds from t to t3 is incident. By applying a pulsed high voltage, the ultraviolet ray detection tube 26 is continuously discharged eight times at intervals of T2 = 125 milliseconds, and the flame determination unit 14 continuously outputs the ultraviolet detection field pulse signal a output from the ultraviolet ray detection unit 12. The flame is determined by detecting that the number matches the second flame determination threshold Nth2 = 8.

一方、図4(B)の第2炎判定閾値Nth2=8とする低い検出感度の設定状態で、紫外線検出管26へ時刻t1からライタの炎から点線で示すように紫外線100が炎継続時間T=500ミリ秒に亘り入射したとすると、発振回路22が出力する同期パルス信号に基づく高圧発生回路24からのパルス的な高電圧の印加で紫外線検出管26はT2=125ミリ秒の間隔で4回連続して放電し、炎判定部14は紫外線検出場パルス信号aの連続出力数が第2炎判定閾値Nth2=8に達しないことから炎とは判定せず、誤報を防止すことができる。
On the other hand, in the setting state of the low detection sensitivity with the second flame determination threshold Nth2 = 8 in FIG. 4B, the ultraviolet ray 100 is applied to the ultraviolet ray detection tube 26 from the time t1 from the flame of the writer as indicated by the dotted line from the flame duration T. = When incident with over 500 msec, pulse-like high voltage interval of the ultraviolet detector tube 26 is T2 = 125 msec in application of a high electrostatic pressure generation circuit 24 based on the synchronizing pulse signal oscillator 22 outputs In this case, the flame determination unit 14 does not determine a flame because the number of continuous outputs of the ultraviolet detection field pulse signal a does not reach the second flame determination threshold Nth2 = 8, and prevents false alarms. Can do.

[本発明の変形例]
(コンピュータ回路)
本発明の他の実施形態として、CPU、メモリ及び各種の入出力ポートを備えたコンピュータ回路を設け、図1の炎判定部14と感度変更部16を、CPUによるプログラムの実行による機能で実現するようにしても良い。この場合、発振回路22による同期パルス信号aの発生もコンピュータ回路で行うことができる。
[Modification of the present invention]
(Computer circuit)
As another embodiment of the present invention, a computer circuit having a CPU, a memory, and various input / output ports is provided, and the flame determination unit 14 and the sensitivity change unit 16 of FIG. You may do it. In this case, generation of the synchronization pulse signal a by the oscillation circuit 22 can also be performed by a computer circuit.

図6はコンピュータ回路を設けた場合の炎監視処理を示したフローチャートである。図6において、ステップS1(以下「ステップ」は省略)で感度変更指示の有無を判別し、例えば無人となる第1時間帯の開始による高感度変更指示を判別した場合はS2に進み、炎判定閾値を第1炎判定閾値Nth1=4に設定する。   FIG. 6 is a flowchart showing flame monitoring processing when a computer circuit is provided. In FIG. 6, in step S1 (hereinafter, “step” is omitted), it is determined whether or not there is a sensitivity change instruction. For example, if a high sensitivity change instruction is determined due to the start of the first unmanned period, the process proceeds to S2, and flame determination is performed. The threshold is set to the first flame determination threshold Nth1 = 4.

続いてS3で発振回路22(プログラム実行機能としても良い)による同期パルス信号aの発生を判別するとS4に進み、紫外線検出管26の放電による紫外線検出パルス信号bの有無を判別する。   Subsequently, when the generation of the synchronization pulse signal a by the oscillation circuit 22 (which may be a program execution function) is determined in S3, the process proceeds to S4, and the presence or absence of the ultraviolet detection pulse signal b due to the discharge of the ultraviolet detection tube 26 is determined.

S4で紫外線検出パルス信号有りを判別するとS5に進み、メモリにビット1を書き込み、S6で現在設定している第1炎判定閾値Nth1=4に対応してメモリから最新の連続4ビットを読み出し、読み出した4ビットが全てビット1であることを判別するとS7に進み、炎を判定して無線通信部20から炎判定信号を送信させる。S4で紫外線検出パルス信号なしを判別した場合は、S8に進んでビット0をメモリに書き込んでS7に進む。   When it is determined that there is an ultraviolet detection pulse signal in S4, the process proceeds to S5, where bit 1 is written in the memory, and the latest continuous 4 bits are read out from the memory corresponding to the first flame determination threshold Nth1 = 4 currently set in S6, If it is determined that all the read 4 bits are bit 1, the process proceeds to S7, where a flame is determined and a flame determination signal is transmitted from the wireless communication unit 20. If it is determined in S4 that there is no ultraviolet detection pulse signal, the process proceeds to S8, bit 0 is written in the memory, and the process proceeds to S7.

一方、S1で人が出入する第2時間帯の開始による低感度変更指示を判別した場合はS2に進み、炎判定閾値を第2炎判定閾値Nth2=8の設定に変更する。続いてS3で発振回路22による同期パルス信号aの発生を判別するとS4に進み、紫外線検出管26の放電による紫外線検出パルス信号bの有無を判別する。   On the other hand, if it is determined in S1 that a low sensitivity change instruction is determined due to the start of the second time zone in which a person enters and exits, the process proceeds to S2, and the flame determination threshold is changed to the setting of the second flame determination threshold Nth2 = 8. Subsequently, when the generation of the synchronization pulse signal a by the oscillation circuit 22 is determined in S3, the process proceeds to S4, and the presence or absence of the ultraviolet detection pulse signal b due to the discharge of the ultraviolet detection tube 26 is determined.

S4で紫外線検出パルス信号有りを判別するとS5に進み、メモリにビット1を書き込み、S6で現在設定している第2炎判定閾値Nth2=8に対応してメモリから最新の連続8ビットを読み出す。このとき喫煙によるライタの炎からの紫外線による紫外線検出パルス信号bが得られていたとすると、メモリから読み出した8ビットが全てビット1となることはなく、炎は判定せず、誤報を防止する。   If it is determined in S4 that there is an ultraviolet detection pulse signal, the process proceeds to S5, where bit 1 is written to the memory, and the latest continuous 8 bits are read from the memory corresponding to the second flame determination threshold value Nth2 = 8 currently set in S6. At this time, if the ultraviolet detection pulse signal b by ultraviolet rays from the writer's flame due to smoking is obtained, all 8 bits read from the memory will not become bit 1 and the flame is not judged and false alarms are prevented.

これに対しS6でメモリから読み出した8ビットが全てビット1であることを判別するとS7に進み、火災による炎を判定して無線通信部20から炎判定信号を送信させる。   On the other hand, if it is determined in S6 that all 8 bits read from the memory are bit 1, the process proceeds to S7, where a flame due to fire is determined and a flame determination signal is transmitted from the wireless communication unit 20.

(炎感知器)
図7は炎感知器として使用する本発明の他の実施形態を示したブロック図である。図7において、炎監視装置は、受信機からの感知器回線を接続するため、無極性化部40、定電圧部42、伝送回路部44及び作動表示46を設けており、それ以外の発振部10、紫外線検出部12、炎判定部14及び感度変更部16は図1の実施形態と同様である。
(Flame detector)
FIG. 7 is a block diagram showing another embodiment of the present invention used as a flame detector. In FIG. 7, the flame monitoring apparatus is provided with a non-polarization unit 40, a constant voltage unit 42, a transmission circuit unit 44, and an operation display unit 46 in order to connect a sensor line from a receiver. The unit 10, the ultraviolet ray detection unit 12, the flame determination unit 14, and the sensitivity change unit 16 are the same as those in the embodiment of FIG.

無極性化40は受信機からの感知回線に対する端子L,Cの接続極性を無極性化している。炎監視装置は、受信機から例えばDC24Vの電圧供給を受け、定電圧部42により例えばDC5Vに変換して各部に供給している。
Nonpolarized 40 terminal for sensing line from receiver L, are non-polar the connection polarity of the C. The flame monitoring device receives a voltage supply of, for example, DC 24V from the receiver, converts it to, for example, DC 5V by the constant voltage unit 42, and supplies it to each unit.

伝送回路部44は、炎判定部14から炎判定信号dを入力した場合、例えばスイッチング回路を動作して所定の炎判定電流(発報電流)を流すことで、受信機へ炎判定信号を送信する。このとき作動表示部46にも電流が流れ、LEDなどの作動表示灯を点灯する。   When the flame determination signal d is input from the flame determination unit 14, the transmission circuit unit 44 transmits a flame determination signal to the receiver, for example, by operating a switching circuit to flow a predetermined flame determination current (reporting current). To do. At this time, a current also flows through the operation display unit 46, and an operation indicator lamp such as an LED is turned on.

この場合にも図1の実施形態と同様に、同期パルス信号の周期T2を例えばT2=125ミリ秒に固定し、無人となる夜間などの第1時間帯は放火によるライタの炎を判定するために感度変更部16からの高感度変更指示信号により炎判定部14に第1炎判定閾値Nth1=4を設定し、一方、人が出入する昼間などの第2時間帯は、喫煙によるライタの炎を判定しないように感度変更部16の低感度変更指示により炎判定部14に第2炎判定閾値Nth2=8を設定して火災監視する。   Also in this case, as in the embodiment of FIG. 1, the period T2 of the synchronization pulse signal is fixed to T2 = 125 milliseconds, for example, to determine the flame of the writer due to arson in the first time zone such as night when it is unattended. On the other hand, a first flame determination threshold Nth1 = 4 is set in the flame determination unit 14 by a high sensitivity change instruction signal from the sensitivity change unit 16, while the second time zone such as daytime when a person enters and exits the writer's flame due to smoking In response to a low sensitivity change instruction from the sensitivity changing unit 16, the second flame determination threshold Nth2 = 8 is set in the flame determining unit 14 to monitor the fire.

(人感センサによる感度変更)
炎監視装置の他の実施形態として、図1の感度変更部16に設けたタイマ回路34に代えて人を検知する人感センサを設け、人感センサの検知信号を閾値変更部36に出力する。閾値変更部36は、人感センサから検知信号を受信していない場合は、炎判定部14へ低感度変更指示信号を出力して第2炎判定閾値Nth2=8の設定状態とし、喫煙に伴うライタの炎による誤報を防止する低い検出感度の感度変更状態とする。
(Sensitivity change by human sensor)
As another embodiment of the flame monitoring device, a human sensor for detecting a person is provided instead of the timer circuit 34 provided in the sensitivity changing unit 16 of FIG. 1, and a detection signal of the human sensor is output to the threshold changing unit 36. . When the detection signal is not received from the human sensor, the threshold value changing unit 36 outputs a low sensitivity change instruction signal to the flame determining unit 14 to set the second flame determination threshold value Nth2 = 8 and accompanies smoking. A sensitivity change state with low detection sensitivity that prevents false alarms due to the writer's flame.

一方、閾値変更部36は、人感センサから検知信号を受信した場合は、炎判定部14へ高感度変更指示信号を出力して第1炎判定閾値Nth1=4の設定状態とし、監視領域で人を検知したことで放火による可能性があることから、放火によるライタの炎を判定して警報可能な高い検出感度の感度変更状態とする。   On the other hand, when receiving the detection signal from the human sensor, the threshold change unit 36 outputs a high sensitivity change instruction signal to the flame determination unit 14 to set the first flame determination threshold Nth1 = 4, and in the monitoring region. Since there is a possibility of arson due to detection of a person, the writer's flame due to arson is judged and a sensitivity change state with high detection sensitivity capable of alarming is set.

なお、閾値変更部36は人感センサからの検知信号が人の検知の有無により変化した場合には、検知信号の変化から所定の遅延時間が経過した後に、対応する炎判定閾値への変更を炎判定部14に指示する。これにより複数の人が炎監視装置の監視領域を通過するなどして人感センサが人の検知の有無を頻繁に繰り返しても、これに追従して不必要に炎判定閾値による検出感度の変更を繰り返さないようにする。   When the detection signal from the human sensor changes depending on the presence or absence of human detection, the threshold changing unit 36 changes the corresponding flame determination threshold after a predetermined delay time has elapsed from the change in the detection signal. The flame determination unit 14 is instructed. As a result, even if a human sensor frequently repeats the presence / absence of human detection, for example, when multiple people pass through the monitoring area of the flame monitoring device, the detection sensitivity is unnecessarily changed according to the flame determination threshold. Do not repeat.

(誤報回避操作による感度変更)
炎監視装置の他の実施形態として、図1の感度変更部16に設けたタイマ回路34に代えて誤報対応操作部を設け、炎監視装置で誤報が頻発したような場合、担当者が誤報対応操作部の設けているスイッチを操作することで、誤報対応操作信号を閾値設定部36に出力する。
(Sensitivity change by false alarm avoidance operation)
As another embodiment of the flame monitoring device, a false alarm handling operation unit is provided instead of the timer circuit 34 provided in the sensitivity changing unit 16 of FIG. By operating a switch provided in the operation unit, a false alarm response operation signal is output to the threshold setting unit 36.

閾値設定部36は、通常監視状態では放火監視のために高感度変更指示信号を炎判定部14に出力して第1炎判定閾値Nth1=4の設定状態とし、放火によるライタの炎を判定可能な高意検出感度の感度設定状態としている。   In the normal monitoring state, the threshold setting unit 36 outputs a high sensitivity change instruction signal to the flame determination unit 14 to monitor the fire, and sets the first flame determination threshold Nth1 = 4 to determine the writer flame due to the fire. Sensitive setting sensitivity is set.

この高意検出感度の感度設定状態で炎監視装置の炎判定により誤報が頻発するような事態が発生した場合には、担当者は誤報の頻発を抑止するために、感度変更部16に設けた誤報対応操作部のスイッチを操作する。このスイッチ操作による誤報対応操作信号を受け付けた閾値変更部36は、低感度変更指示信号を炎判定部14に出力して第2炎判定閾値Nth2=8を設定し、炎の検出感度を低下させた状態とする。これにより、それまで多発していた誤報が停止するか、或いは抑制することができ、その間に誤報の原因を調べて必要な対策をとる。
In the case where a situation in which false alarms frequently occur due to the flame determination of the flame monitoring device in the sensitivity setting state of the high sensitivity detection sensitivity, the person in charge provided the sensitivity changing unit 16 in order to suppress the frequent occurrence of false alarms. Operate the switch on the operation unit for handling false alarms. The threshold value changing unit 36 that has received the false alarm response operation signal by the switch operation outputs a low sensitivity change instruction signal to the flame determining unit 14 to set the second flame determination threshold value Nth2 = 8, thereby reducing the flame detection sensitivity. State. As a result, the false alarms that have occurred frequently can be stopped or suppressed, and the cause of the false alarms is investigated during that time and necessary countermeasures are taken.

なお、誤報対応操作部の誤報対応操作に伴う閾値変更部36からの低感度変更指示信号の出力により炎判定部14を第2炎判定閾値Nth2=8として検出感度を下げた設定状態とした場合、所定時間経過後に、閾値変更部36から高感度変更指示信号を炎判定部14へ出力し、元の第1炎判定閾値Nth1=4による放火によるライタの炎を判定する高い検出感度の感度設定状態に自動的に復旧することが望ましい。   In the case where the flame determination unit 14 is set to the second flame determination threshold Nth2 = 8 and the detection sensitivity is lowered by the output of the low sensitivity change instruction signal from the threshold change unit 36 accompanying the misinformation handling operation of the misinformation handling operation unit. After a predetermined time has elapsed, a high sensitivity change instruction signal is output from the threshold changing unit 36 to the flame determining unit 14, and a sensitivity setting of high detection sensitivity for determining the flame of the writer due to firing by the original first flame determination threshold Nth1 = 4 It is desirable to automatically recover to the state.

(その他)
上記の炎判定部に設定する高感度の第1炎判定値Nth1、及び低感度の第2炎判定値Nth2は、判定対象とする炎および非判定対象とする炎に応じて適宜に定めることができる。
(Other)
The high-sensitivity first flame determination value Nth1 and the low-sensitivity second flame determination value Nth2 set in the flame determination unit may be appropriately determined according to the flame to be determined and the flame to be determined. it can.

また上記の実施形態は、炎の検出感度を高低2段階に変更する場合を例にとっているが、炎の検出感度を必要に応じて3段階以上の多段階に変更しても良い。   In the above embodiment, the case where the flame detection sensitivity is changed to two levels of high and low is taken as an example. However, the flame detection sensitivity may be changed to three or more stages as necessary.

また電池電源で動作する炎監視装置については、電池電圧が所定電圧以下に低下するローバッテリー障害を検知して警報させるようにしてもよい。   For the flame monitoring device that operates on battery power, a low battery failure in which the battery voltage drops below a predetermined voltage may be detected and alarmed.

10:発振部
12:紫外線検出部
14:炎判定部
16:感度変更部
18:電池電源
20:無線通信部
22:発振回路
24:高電圧発生回路
26:紫外線検出管
28:ゲート回路
30:シフトレジスタ
32:連続数判定部
34:タイマ回路
36:閾値変更部
40:無極性化部
42:定電圧部
44:伝送回路部
46:作動表示部
DESCRIPTION OF SYMBOLS 10: Oscillation part 12: Ultraviolet detection part 14: Flame determination part 16: Sensitivity change part 18: Battery power supply 20: Wireless communication part 22: Oscillation circuit 24: High voltage generation circuit 26: Ultraviolet detection tube 28: Gate circuit 30: Shift Register 32: Continuous number determination unit 34: Timer circuit 36: Threshold change unit 40: Depolarization unit 42: Constant voltage unit 44: Transmission circuit unit 46: Operation display unit

10:発振部
12:紫外線検出部
14:炎判定部
16:障害判定部
18:電池電源
20:無線通信部
22:発振回路
24:高電圧発生回路
26:紫外線検出管
28:ゲート回路
30:シフトレジスタ
32:連続数判定部
34:タイマ回路
36:閾値変更部
38:カウント判定部
40:無極性化部
42:定電圧部
44:伝送回路部
46:作動表示部
10: Oscillator 12: UV detector 14: Flame determiner 16: Fault determiner 18: Battery power supply 20: Wireless communication unit 22: Oscillator 24: High voltage generator 26: UV detector 28: Gate circuit 30: Shift Register 32: Continuous number determination unit 34: Timer circuit 36: Threshold change unit 38: Count determination unit 40: Depolarization unit 42: Constant voltage unit 44: Transmission circuit unit 46: Operation display unit

Claims (7)

監視対象とする炎からの紫外線が継続して入射する所定の炎継続時間(T1)を所定の炎判定閾値(Nth)で除した商(T1/Nth)を、周期(T2)として同期パルス信号を発生し、当該同期パルス信号に同期して所定の高電圧を出力する発振部と、
紫外線検出管を備え、前記発振部からの高電圧の印加状態で且つ外部から紫外線が入射した場合の前記紫外線検出管の放電動作により紫外線検出パルス信号を出力する紫外線検出部と、
前記紫外線検出パルス信号の連続出力数(連続放電回数)が前記炎判定閾値と一致した場合に炎を判定して炎判定信号を出力する炎判定部と、
検出感度を高くする場合は前記炎判定閾値を小さい値に変更し検出感度を低くする場合は前記炎判定閾値を大きい値に変更する感度変更部と、
を設けたことを特徴とする炎監視装置。
A synchronization pulse signal having a period (T2) as a quotient (T1 / Nth) obtained by dividing a predetermined flame continuation time (T1) in which ultraviolet rays from a flame to be monitored continuously enter by a predetermined flame determination threshold (Nth) An oscillator that outputs a predetermined high voltage in synchronization with the synchronization pulse signal;
An ultraviolet ray detection unit that includes an ultraviolet ray detection tube, and outputs an ultraviolet ray detection pulse signal by a discharge operation of the ultraviolet ray detection tube when ultraviolet rays are incident from the outside in a state where a high voltage is applied from the oscillation unit;
And fire determination unit that determines a flame to output a fire determination signal when the continuous output speed of said ultraviolet detection pulse signal (continuous discharge number) matches with the flame decision threshold,
If a higher detection sensitivity is changed to a smaller value the flame determination threshold, and if the lower detection sensitivity sensitivity changing unit which changes to a larger value the flame determination threshold,
The flame monitoring apparatus characterized by providing.
請求項記載の炎監視装置に於いて、前記感度変更部は、一日を複数の時間帯に分け、前記複数の時間帯ごとに異なる炎判定閾値を設定して検出感度を変更することを特徴とする炎監視装置。
The flame monitoring device according to claim 1 , wherein the sensitivity changing unit divides a day into a plurality of time zones, and sets different flame determination threshold values for the plurality of time zones to change the detection sensitivity. Features a flame monitoring device.
請求項記載の炎監視装置に於いて、前記感度変更部は、
一日を無人となる所定の第1時間帯と人が出入する所定の第2時間帯と分け、前記第1時間帯は所定の第1炎判定閾値を設定して高い検出感度に変更し、前記第2時間帯は前記第1炎判定値より大きい所定の第2炎判定閾値を設定して低い検出感度に変更することを特徴とする炎監視装置。
The flame monitoring device according to claim 2 , wherein the sensitivity changing unit includes:
Dividing a day into a predetermined first time zone in which a person is unattended and a predetermined second time zone in which a person enters and exits, the first time zone is changed to a high detection sensitivity by setting a predetermined first flame determination threshold, the second time zone flame monitoring device and changes to a low detection sensitivity by setting a predetermined second flame determination threshold larger than the first flame determination threshold value.
請求項記載の炎監視装置に於いて、前記感度変更部は、人を検知する人感センサを備え、前記人感センサにより人を検出した場合は所定の第1炎判定閾値を設定して高い検出感度に変更し、前記人感センサにより人を検出していない場合は前記第1炎判定閾値より大きい所定の第2炎判定閾値を設定して低い検出感度に変更することを特徴とする炎監視装置。
The flame monitoring device according to claim 1 , wherein the sensitivity changing unit includes a human sensor that detects a person, and sets a predetermined first flame determination threshold when the human sensor detects the person. It is changed to a high detection sensitivity, and when no person is detected by the human sensor, a predetermined second flame determination threshold value that is larger than the first flame determination threshold value is set and changed to a low detection sensitivity. Flame monitoring device.
請求項4記載の炎監視装置に於いて、前記感度変更部は、前記人感センサによる人の検知状態が変化した場合、当該変化から所定の遅延時間が経過した後に対応する炎判定閾値に変更することを特徴とする炎監視装置。5. The flame monitoring device according to claim 4, wherein when the human detection state by the human sensor changes, the sensitivity changing unit changes to a corresponding flame determination threshold after a predetermined delay time has elapsed from the change. A flame monitoring device characterized by:
請求項記載の炎監視装置に於いて、前記感度変更部は、通常の監視状態では所定の第1炎判定閾値を設定して高い検出感度に変更し、誤報対応操作を受け付けた場合は前記第1炎判定値より大きい所定の第2炎判定閾値を設定して低い検出感度に変更することを特徴とする炎監視装置。
The flame monitoring device according to claim 1 , wherein the sensitivity changing unit sets a predetermined first flame determination threshold value in a normal monitoring state to change the detection sensitivity to a high detection sensitivity, and when a false alarm handling operation is accepted, flame monitoring device and changes to a low detection sensitivity by setting a predetermined second flame determination threshold larger than the first flame determination threshold value.
請求項6記載の炎監視装置に於いて、前記感度変更部は、誤報対応操作を受け付け前記第2炎判定閾値を設定して低い検出感度に変更した場合、所定時間経過後に前記第1炎判定閾値を設定して高い検出感度に復旧することを特徴とする炎監視装置。7. The flame monitoring device according to claim 6, wherein the sensitivity changing unit accepts a false alarm handling operation and sets the second flame determination threshold value to change to a low detection sensitivity, and then the first flame determination after a predetermined time has elapsed. A flame monitoring device characterized in that a threshold value is set to restore high detection sensitivity.
JP2012061647A 2012-03-19 2012-03-19 Flame monitoring device Active JP5882802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061647A JP5882802B2 (en) 2012-03-19 2012-03-19 Flame monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061647A JP5882802B2 (en) 2012-03-19 2012-03-19 Flame monitoring device

Publications (2)

Publication Number Publication Date
JP2013196266A JP2013196266A (en) 2013-09-30
JP5882802B2 true JP5882802B2 (en) 2016-03-09

Family

ID=49395165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061647A Active JP5882802B2 (en) 2012-03-19 2012-03-19 Flame monitoring device

Country Status (1)

Country Link
JP (1) JP5882802B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232104B2 (en) * 2019-03-29 2023-03-02 アズビル株式会社 Flame detection system and fault diagnosis method
JP2021131253A (en) * 2020-02-18 2021-09-09 アズビル株式会社 Light detection system, discharge probability calculating method, and received light quantity measuring method
CN115410334A (en) * 2022-08-29 2022-11-29 浙江华消科技有限公司 Flame detection device and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792873B2 (en) * 1992-03-06 1995-10-09 能美防災株式会社 Fire detector
JP3321054B2 (en) * 1997-11-25 2002-09-03 ニッタン株式会社 Fire alarm
JP2000075827A (en) * 1998-09-02 2000-03-14 Shinten Sangyo Kk No-smoking indicator
JP2002214036A (en) * 2001-01-19 2002-07-31 Takenaka Engineering Co Ltd Ultraviolet ray type flame sensor
JP4095483B2 (en) * 2003-03-31 2008-06-04 能美防災株式会社 Arson detection system
JP2011002904A (en) * 2009-06-16 2011-01-06 New Cosmos Electric Corp Alarm unit

Also Published As

Publication number Publication date
JP2013196266A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP5922452B2 (en) Flame monitoring device
JP5845109B2 (en) Flame monitoring device
US7244946B2 (en) Flame detector with UV sensor
US7280039B2 (en) Fire sensor and fire sensor status information acquisition system
JP5882802B2 (en) Flame monitoring device
JP2018084422A (en) Flame detection system
US4736105A (en) Flame detector system
CN113340437B (en) Light detection system, discharge probability calculation method, and light receiving amount measurement method
JP2020153753A (en) Fire detection system, discharge probability calculation method, and received light quantity measuring method
JP2021131253A (en) Light detection system, discharge probability calculating method, and received light quantity measuring method
US20220082362A1 (en) Method of validating a shock tube event
JP5198110B2 (en) Fire alarm
EP0577045B1 (en) Smoke detecting apparatus for fire alarm
JP4337275B2 (en) Anomaly detection method for human body detector
JP2020153754A (en) Fire detection system and received light quantity measuring method
JP2021131249A (en) Light detection system and discharge probability calculating method
CN113340416B (en) Light detection system, discharge probability calculation method, and light receiving amount measurement method
JP4955307B2 (en) Fire monitoring equipment
JPH06325273A (en) Ultraviolet ray type sensor
JP2011186895A (en) Disaster prevention system
JP5322884B2 (en) Alarm
RU2221278C2 (en) Smoke recording gear
JP7232104B2 (en) Flame detection system and fault diagnosis method
JP6715889B2 (en) Alarm
JP2023131233A (en) Fire sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5882802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150