JP5882653B2 - Method for methane fermentation of organic substances - Google Patents

Method for methane fermentation of organic substances Download PDF

Info

Publication number
JP5882653B2
JP5882653B2 JP2011217807A JP2011217807A JP5882653B2 JP 5882653 B2 JP5882653 B2 JP 5882653B2 JP 2011217807 A JP2011217807 A JP 2011217807A JP 2011217807 A JP2011217807 A JP 2011217807A JP 5882653 B2 JP5882653 B2 JP 5882653B2
Authority
JP
Japan
Prior art keywords
substrate
reactor
cod
methane fermentation
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011217807A
Other languages
Japanese (ja)
Other versions
JP2013075273A (en
Inventor
伸明 田島
伸明 田島
長尾 宣夫
宣夫 長尾
千明 丹羽
千明 丹羽
戸田 龍樹
龍樹 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soka University
Original Assignee
Soka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soka University filed Critical Soka University
Priority to JP2011217807A priority Critical patent/JP5882653B2/en
Publication of JP2013075273A publication Critical patent/JP2013075273A/en
Application granted granted Critical
Publication of JP5882653B2 publication Critical patent/JP5882653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は、基質として、たとえば、生ゴミなど食品系廃棄物に含まれる有機性物質からメタンを発酵させる技術に関する。
本発明は特に、高負荷で運転している状態で安定にメタン発酵処理を可能とする技術に関する。
The present invention relates to a technique for fermenting methane from an organic substance contained in food waste such as raw garbage as a substrate.
In particular, the present invention relates to a technology that enables methane fermentation treatment stably in a state of operating at a high load.

メタン発酵処理は、たとえば、生ごみからメタンガスとしてエネルギーを回収可能であり、有機性廃棄物の創エネルギー・省エネルギー処理として期待されている。   For example, methane fermentation treatment can recover energy from trash as methane gas, and is expected as an energy-saving / energy-saving treatment of organic waste.

メタン発酵プロセスは、たとえば、図1に図解したように、(1)高分子有機物を各種バクテリアにより単分子化、加水分解反応などにより可溶化する過程、(2)酸生成過程、(3)酢酸生成過程、および、(4)揮発性脂肪酸(Volatile Fatty Acid :VFA)中の酢酸やメタンからメタン生成菌によりメタン(CH4 )と二酸化炭素(CO2 )に分解するメタン生成過程からなる(たとえば、非特許文献1、図2.3)。 For example, as illustrated in FIG. 1, the methane fermentation process includes (1) a process of solubilizing macromolecular organic matter by various bacteria, such as unimolecularization, hydrolysis reaction, (2) acid generation process, (3) acetic acid And (4) a methane production process in which acetic acid or methane in volatile fatty acid (VFA) is decomposed into methane (CH 4 ) and carbon dioxide (CO 2 ) by methanogenic bacteria (for example, Non-Patent Document 1, FIG. 2.3).

有機性の溶解性(Soluble ) 物質(Total Suspended Solid :TSS)が酢酸や水素を経て最終的なガス物質であるメタンや二酸化炭素に変化する速度は、有機性固形物質(TSS)が可溶化する速度より速い。   The organic solid material (TSS) is solubilized at the rate at which the organic soluble material (Total Suspended Solid: TSS) changes to methane and carbon dioxide, which are the final gas materials via acetic acid and hydrogen. Faster than speed.

したがって、1日1回、メタン発酵槽(反応器)へ供給される生ごみなどの基質中に含有される溶解性(Soluble )物質に起因する化学的酸素要求量(Chemical Oxygen Demand:COD)S−COD1 と、固形物が可溶化することに起因する化学的酸素要求量S−COD2 との総和S−CODT は、メタン発酵反応が良好に行われている間は、たとえば、図2に図解した特性となる。
図2は、毎日1回、反応器から汚泥を引き抜き、その後、メタン発酵槽(反応器)へ基質(廃棄物)を投入する運転を連続した場合、生成されるガスの変化を図解した図である。
図2において、最大値を示す反応器への基質の供給点から次の基質の供給点までの間は下に凸状の「ノコギリ波」状に変化する。なお、反応器からの抜液は基質供給前に1日1回実施し、メタン発酵槽のオーバーフローは起きない。
Therefore, once a day, chemical oxygen demand (COD) S caused by soluble substances contained in a substrate such as garbage that is supplied to the methane fermenter (reactor) and -COD 1, while solids are the sum S-COD T and chemical oxygen demand S-COD 2 due to be solubilized, methane fermentation reaction has been carried out satisfactorily, for example, FIG. 2 It becomes the characteristic illustrated in.
Fig. 2 is a diagram illustrating the change in the gas produced when the operation of continuously extracting the sludge from the reactor once a day and then introducing the substrate (waste) into the methane fermentation tank (reactor) is continued. is there.
In FIG. 2, a downwardly convex “sawtooth wave” shape changes from the supply point of the substrate to the reactor showing the maximum value to the supply point of the next substrate. In addition, the drainage from the reactor is carried out once a day before supplying the substrate, and the methane fermentation tank does not overflow.

汚泥を濾過してメタン発酵槽(反応器)へ返送する汚泥循環返送方式の場合、固形物可溶化がガス化反応によって消費される溶解性・化学的酸素要求量S−CODに間に合わないと、固形物(TSS)が徐々に反応器内に蓄積し、徐々に固形物の濃度が上昇する。
その結果、(1)可溶化速度の低下、(2)各種中間反応速度の低下、(3)酢酸経由および水素経由のメタン生成反応の低下、(4)各種反応に寄与する細菌への基質同化反応の低下により、これらのバランスが崩れ、各種揮発性脂肪酸(VFA)、たとえば、プロピオン酸の蓄積による、いわゆる、”酸敗”や、水素分圧の上昇による、メタン発酵の系が破綻することになる。
上述した理由により、湿式メタン発酵の固形物濃度の限界は、経験的に10%程度である。
In the case of the sludge circulation return system that filters sludge and returns it to the methane fermentation tank (reactor), if the solid solubilization is not in time for the solubility / chemical oxygen demand S-COD consumed by the gasification reaction, Solids (TSS) gradually accumulate in the reactor and the solids concentration gradually increases.
As a result, (1) decrease in solubilization rate, (2) decrease in various intermediate reaction rates, (3) decrease in methanation via acetic acid and hydrogen, (4) substrate assimilation to bacteria contributing to various reactions Due to the lowering of the reaction, these balances are lost, so that the methane fermentation system breaks down due to the accumulation of various volatile fatty acids (VFA), for example, propionic acid, so-called "acid loss" or the increase of hydrogen partial pressure. Become.
For the reasons described above, the solid concentration limit of wet methane fermentation is empirically about 10%.

通常、生ごみの連続メタン発酵処理には、嫌気性条件下で運転される完全混合型発酵槽(Continous Stirred Tank Reactor:CSTR)が用いられている。
嫌気性処理は、好気性処理に比較して、固形物の濃度が2〜3%程度以上の高濃度廃液や、有機性固形廃棄物がメタン発酵の処理対象とされており、一般に、汚泥返送を行わない、一過性のCSTRが用いられてきた。
嫌気性処理において、寄与する主な細菌群のうち、最も増殖速度が遅いのは、一連のメタン生成菌であり、基質の、たとえば、3%程度しか菌体に転換しない。
そのことが、これまで、CSTR方式における基質滞留時間(Hydrauric Retention Time:HRT)を約30日(33日)にしている理由である。
Usually, a continuous mixed fermenter (Continous Stirred Tank Reactor: CSTR) operated under anaerobic conditions is used for continuous methane fermentation treatment of garbage.
In anaerobic treatment, compared to aerobic treatment, high-concentration waste liquid with a solid concentration of about 2 to 3% or more and organic solid waste are targeted for methane fermentation. Transient CSTRs have been used that do not.
In the anaerobic treatment, among the main bacterial groups that contribute, the slowest growth rate is a series of methanogens, and only about 3% of the substrate, for example, is converted into cells.
That is the reason why the substrate retention time (HRT) in the CSTR system is about 30 days (33 days).

特開2005−254203JP-A-2005-254203

CSTR方式においては、図2に図解のごとく、1日1回、基質、たとえば、生ごみを反応器に投入した容量分だけ、反応器から反応混合液(消化液(汚泥も均一に混合されている)を引き抜くので、SRT=HRTとなる。
なお、HRTは基質滞留時間を示し、SRTはメタン発酵槽(反応器)内の汚泥の反応器内(平均)滞留時間を示す。
したがって、反応器内で菌体変換率の低い細菌群を一定以上に増殖させることは難しく、基質分解率、メタンのガス化率には限界がある。
特に、CSTR方式においては、高負荷で運転した場合、安定性に問題がある。
以下、その理由を述べる。
In the CSTR system, as illustrated in FIG. 2, once a day, the reaction mixture (digested liquid (sludge is also mixed uniformly) from the reactor by the volume of the substrate, for example, garbage, put into the reactor. SRT = HRT.
HRT represents the substrate residence time, and SRT represents the sludge in the reactor (average) residence time in the methane fermentation tank (reactor).
Therefore, it is difficult to grow a bacterial group having a low cell conversion rate in the reactor to a certain level, and there are limits to the substrate decomposition rate and the gasification rate of methane.
In particular, in the CSTR system, there is a problem in stability when operating at a high load.
The reason will be described below.

メタン発酵槽(反応器)は、運転を誤ると、”酸敗”によってメタンの生成が中断し、処理系として破綻する。
酸敗は、基質の種類によって、中間生成物である酪酸や、プロピオン酸、場合によっては、酢酸やその他の揮発性脂肪酸(VFA)、あるいは、その複合化したVFA群の蓄積によって起こる。
VFAが蓄積すると、(1)pHが低下する、(2)pH低下に伴う非解離のVFA、たとえば、プロピオン酸の濃度が増すことにより、可溶化もメタン発酵も同時に阻害される。
If the methane fermenter (reactor) is operated incorrectly, the production of methane is interrupted by "acid loss" and fails as a processing system.
Depending on the type of substrate, the rancidity is caused by the accumulation of butyric acid, which is an intermediate product, propionic acid, and in some cases, acetic acid and other volatile fatty acids (VFA), or their complexed VFA groups.
As VFA accumulates, (1) the pH decreases, (2) the concentration of non-dissociated VFA, eg, propionic acid, accompanying the pH decrease increases solubilization and methane fermentation at the same time.

上記課題を解決するため、本発明は下記の構想に基づく。
(1)汚泥循環返送型のメタン発酵処理法で行う。
(2)汚泥の増殖が十分な高い容積負荷、たとえば、基質が生ごみの場合、5kgCOD/m3 /日以上の容積負荷で運転する。
(3)細菌と基質との接触速度を保持し、反応器内の固形物濃度を一定量以下にした運転状態で、汚泥中の菌体濃度(生菌濃度)を極大(最大)にする。
(4)反応器への基質を連続供給する期間と、基質の供給を停止する期間との合計を1単位とし、たとえば、1単位を基質滞留時間(HRT)とする。
(5)微生物および未分解起因固形物質の和に基づく反応器(反応槽またはメタン発酵槽)内の汚泥滞留時間(SRT)を基質滞留時間(HRT)より長い状態で反応器を運転する。
In order to solve the above problems, the present invention is based on the following concept.
(1) The sludge circulation return type methane fermentation treatment method is used.
(2) A high volume load sufficient for sludge growth, for example, when the substrate is garbage, it is operated at a volume load of 5 kg COD / m 3 / day or more.
(3) Maintaining the contact speed between the bacteria and the substrate and setting the solid concentration in the reactor to a certain level or less, the bacterial cell concentration (viable bacterial concentration) in the sludge is maximized (maximum).
(4) The total of the period for continuously supplying the substrate to the reactor and the period for stopping the supply of the substrate is 1 unit, for example, 1 unit is the substrate residence time (HRT).
(5) The reactor is operated with the sludge residence time (SRT) in the reactor (reaction tank or methane fermentation tank) based on the sum of microorganisms and undecomposed solid substances longer than the substrate residence time (HRT).

なお、有機性物質をメタン発酵には、固形物に起因する化学的酸素要求量(p−COD)の割合が全CODに対して所定の割合、たとえば、70%以下の有機性物質をメタン発酵する場合を想定している。
固形物に起因する化学的酸素要求量の割合は、基質(廃棄物)の性状によっても異なるが、固形物基質のCODが狭すぎると速くTSS(固形物)の濃度が上がり、基質供給期間に比べて必要とする休止期間の割合が1:1程度となり、好ましくない。基質の性状としては、たとえば、(1)固形物の可溶化速度と可溶化物質(S−COD)の分解性、(2)固形物の粒径分布、(3)有機性物質の組成などが対象となる。
以上から、有機性物質をメタン発酵の場合、固形物に起因する化学的酸素要求量の割合が全CODに対して所定の割合として、経験的事項をも考慮して、上記のように、たとえば、70%以下の有機性物質をメタン発酵する場合を想定している。
In addition, for methane fermentation of an organic substance, an organic substance having a chemical oxygen demand (p-COD) ratio due to solids of a predetermined ratio with respect to the total COD, for example, 70% or less, is methane fermentation. Assume that you want to.
The proportion of chemical oxygen demand due to solids varies depending on the nature of the substrate (waste), but if the solid substrate COD is too narrow, the concentration of TSS (solids) will rise quickly and during the substrate supply period The ratio of the required rest period is about 1: 1, which is not preferable. The properties of the substrate include, for example, (1) solid solubilization rate and solubilizing substance (S-COD) decomposability, (2) solid particle size distribution, and (3) organic substance composition. It becomes a target.
From the above, when the organic substance is methane fermentation, the ratio of the chemical oxygen demand caused by the solid matter is a predetermined ratio with respect to the total COD, taking into account empirical matters, for example, The case where 70% or less of an organic substance is methane-fermented is assumed.

反応器内の汚泥の反応器内(平均)滞留時間(SRT)は毎日行う反応液引き抜きと、反応液から汚泥分を分離して循環するに際して、全量を循環返送するのではなく、一部抜去処分する量を調整することにより、容易に制御可能である。ただし、一定以上の高負荷、適正な負荷をかけて運転する必要がある。   Sludge in the reactor (average) residence time (SRT) is a part of the reaction liquid withdrawn every day, and when the sludge is separated from the reaction liquid and circulated, a part of the sludge is not recirculated but returned. It can be easily controlled by adjusting the amount to be disposed. However, it is necessary to operate with a high load above a certain level and an appropriate load.

反応器内の固形物濃度を一定以上に保持しながら、汚泥中の基質の連続供給と基質供給休止期間の合体した期間を1つの単位期間として、その期間中の平均総菌体濃度を、なるべく、活性の高い状態で極大(または最大)に保つ運転を行う。   While maintaining the solid matter concentration in the reactor above a certain level, the combined total of the substrate supply in the sludge and the substrate supply suspension period is taken as one unit period, and the average total cell concentration during that period is preferably as much as possible. , Keep the maximum (or maximum) in a highly active state.

より特定的には、基質を、たとえば、生ごみとした場合、本発明のメタン発酵処理法は、固形物に起因する化学的酸素要求量(p−COD)の割合が全CODに対して、たとえば、70%以下の有機性物質を基質としてメタン発酵するに際して、たとえば、5kgCOD/m3 /日以上の容積負荷で、5日以上30日以下(1日1回ないしは複数回を含めて)の連続供給と、4日以上20日以下の基質供給停止期間を設け、(消化)汚泥(循環)返送を伴い、微生物、未分解のいずれかを含む固形物の反応槽内の滞留時間(SRT)を基質滞留時間(HRT)より長い30日以上で運転する、ことを特徴とする。
なお、上述した数値は、基質としての有機性廃棄物の種類、性状によって変化する。たとえば、上述した、容積負荷が5kgCOD/m3 /日以上という意味は、基質として生ごみを用いた場合、汚泥の増殖が、5kgCOD/m3 /日未満では不十分となることから設定しているが、基質が異なれば、容積負荷も変化する。
More specifically, when the substrate is, for example, garbage, in the methane fermentation treatment method of the present invention, the ratio of chemical oxygen demand (p-COD) due to solids is based on the total COD. For example, when performing methane fermentation using 70% or less of an organic substance as a substrate, for example, 5 to 30 days (including one or more times a day) with a volume load of 5 kg COD / m 3 / day or more A continuous supply and a substrate supply stop period of 4 days or more and 20 days or less are provided. With (digestion) sludge (circulation) return, residence time (SRT) in the reaction vessel of solid matter containing either microorganisms or undegraded Is operated over 30 days longer than the substrate residence time (HRT).
In addition, the numerical value mentioned above changes with the kind and property of the organic waste as a substrate. For example, the above-mentioned meaning that the volume load is 5 kg COD / m 3 / day or more is set when sludge growth is insufficient when less than 5 kg COD / m 3 / day is used when garbage is used as a substrate. However, if the substrate is different, the volumetric load also changes.

本発明によれば、効率的かつ安定的に処理する、汚泥循環返送型のメタン発酵処理法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sludge circulation return type methane fermentation processing method processed efficiently and stably can be provided.

図1はメタン発酵プロセスの基本を図解した図である。FIG. 1 is a diagram illustrating the basics of a methane fermentation process. 図2は、毎日1回、反応器から汚泥を引き抜き、その後、メタン発酵槽(反応器)へ基質(廃棄物)を投入する運転を連続した場合、生成されるガス量の変化を図解した図である。FIG. 2 is a diagram illustrating a change in the amount of gas produced when the operation of continuously extracting the sludge from the reactor once a day and then introducing the substrate (waste) into the methane fermentation tank (reactor) is continued. It is. 図3は本発明のメタン発酵処理法を実施する1例としてのメタン発酵システムの概要を示す図である。FIG. 3 is a diagram showing an outline of a methane fermentation system as an example for carrying out the methane fermentation treatment method of the present invention. 図4は、基質として生ごみを対象とした場合の、化学的酸素要求量(COD)容積負荷(kg−COD/m3 /day)と、反応器内の汚泥生成量、たとえば、固形物TSSの蓄積速度(mg−ss/l(リットル)/day)との関係を示した図である。FIG. 4 shows chemical oxygen demand (COD) volumetric load (kg-COD / m 3 / day) and sludge generation amount in the reactor, for example, solids TSS when garbage is targeted as a substrate. It is the figure which showed the relationship with the accumulation | storage speed | rate (mg-ss / l (liter) / day). 図5は、容積負荷を、6.0、9.0、12.0、12.0、15.0(kg−COD/m3 /day)の6フェーズについて段階的に変化させたときの、運転日数と、単位TSSに含まれる微生物の数の経時変化を示した図である。FIG. 5 shows a case where the volumetric load is changed stepwise for 6 phases of 6.0, 9.0, 12.0, 12.0, 15.0 (kg-COD / m 3 / day). It is the figure which showed the time-dependent change of the number of operation days and the number of the microorganisms contained in unit TSS. 図6は、負荷速度と定常状態のTSS濃度を示した特性図である。FIG. 6 is a characteristic diagram showing the load speed and the steady-state TSS concentration. 図7は、有機物負荷速度を6.0(kg−COD/m3 /day)、9.0(kg−COD/m3 /day)、12.0(kg−COD/m3 /day)と3段階に変化させた場合の、基質としての生ごみの嫌気性連続実験における微生物サンプル引き抜きを補正しないでもとで入れる濃度を図解した図である。7, the organic loading rate 6.0 and (kg-COD / m 3 /day),9.0(kg-COD/m 3 /day),12.0(kg-COD/m 3 / day) It is the figure which illustrated the density | concentration put in without correct | amending microorganisms sample extraction in the anaerobic continuous experiment of the garbage as a substrate at the time of changing to 3 steps | paragraphs.

本発明の実施の形態を述べる。
図3は、本発明のメタン発酵処理法を実施するメタン発酵システムの概要を示す図である。
本発明の実施の形態のメタン発酵システムは、メタン発酵槽(反応器)10と、攪拌器11と、反応器10に基質を投入する投入口12と、反応器10から消化汚泥を抜き取る抜取口13と、抜き取った汚泥の一部を遠心分離して細菌を分離するための遠心分離器14と、遠心分離した細菌を含む汚泥を反応器10に戻す返送系15と、メタン発酵されて生成したメタンガスを排出するガス排出部16とを有する。
本実施の形態のメタン発酵システムは、完全混合型発酵槽(CSTR)方式ではなく、汚泥の一部を反応器10に返送する、「汚泥循環返送型のメタン発酵処理システム」である。
An embodiment of the present invention will be described.
FIG. 3 is a diagram showing an outline of a methane fermentation system that implements the methane fermentation treatment method of the present invention.
A methane fermentation system according to an embodiment of the present invention includes a methane fermentation tank (reactor) 10, a stirrer 11, an inlet 12 for introducing a substrate into the reactor 10, and an extraction port for extracting digested sludge from the reactor 10. 13, a centrifuge 14 for separating a part of the extracted sludge by centrifuging, a return system 15 for returning the sludge containing the centrifuged bacteria to the reactor 10, and methane fermentation to produce A gas discharge unit 16 for discharging methane gas.
The methane fermentation system of the present embodiment is not a fully mixed fermenter (CSTR) system but a “sludge circulation return type methane fermentation treatment system” that returns a part of sludge to the reactor 10.

図4は、化学的酸素要求量(COD)容積負荷(kg−COD/m3 /day)と、反応器内の汚泥生成量、たとえば、固形物TSSの蓄積速度(mg−ss/l(リットル)/day)との関係を示した図である。横軸は有機物負荷比率(OLR)を示し、縦軸は固形物(TSS)蓄積比率を示す。
図4の図解から、高い容積負荷をかけるほど汚泥の生成量が増加することが理解できる。
FIG. 4 shows the chemical oxygen demand (COD) volumetric load (kg-COD / m 3 / day) and sludge production in the reactor, for example, the accumulation rate of solid TSS (mg-ss / l (liters). ) / Day). The horizontal axis represents the organic substance load ratio (OLR), and the vertical axis represents the solid matter (TSS) accumulation ratio.
From the illustration of FIG. 4, it can be understood that the amount of sludge generated increases as the volume load increases.

汚泥の増加速度について述べる。
総菌体Sの増殖速度dS/dtは、dS/dt=Σ(dSi /dt)として表すことができる。下記式1、2は、嫌気発酵に寄与する菌体iの増加速度を示す。
The increase rate of sludge is described.
The growth rate dS / dt of the total cell S can be expressed as dS / dt = Σ (dS i / dt). The following formulas 1 and 2 show the increase rate of the bacterial cell i contributing to anaerobic fermentation.

dSi /dt=kSiii −kdii
…(1)
ただし、iは細菌iであり、
i は細菌iの濃度であり、
Siは細菌iの基質との接触速度に起因する係数であり、
i は細菌iが作用する対象とする基質の濃度であり、
diは細菌iの自己消化係数である。
dS i / dt = k Si C i S i −k di S i
... (1)
Where i is a bacterium i and
S i is the concentration of bacteria i,
k Si is a coefficient resulting from the contact speed of bacteria i with the substrate,
C i is the concentration of the target substrate on which bacteria i act,
k di is the autolysis coefficient of bacteria i.

細菌iは、たとえば、図1に図解した過程における、加水分解細菌、酢酸形成細菌などである。
細菌iの自己消化係数kdiは、基質の種類、特性状態(性状)、反応器の形式、攪拌方法と反応器とのマッチングに依存する。
式1において、右辺第1項:kSiii は増殖項であり、第2辺:kdii は分解項である。
The bacterium i is, for example, a hydrolyzing bacterium or an acetic acid-forming bacterium in the process illustrated in FIG.
The autodigestion coefficient k di of the bacterium i depends on the type of the substrate, the characteristic state (property), the type of the reactor, and the matching between the stirring method and the reactor.
In Equation 1, the first term on the right side: k Si C i S i is a growth term, and the second side: k di S i is a decomposition term.

dCi /dt=−kci(kmaxi /(khi+Ci )×Si
…(2)
ただし、kciは細菌iと基質との接触速度に起因する係数であり(kci≦1)、
max は最大比基質利用速度(gCOD/gvss/月)であり、
i は細菌iが作用する対象とする基質の濃度であり、
hiは半飽和定数(mg/l)である。
dC i / dt = −k ci (k max C i / (k hi + C i ) × S i
... (2)
Where k ci is a coefficient resulting from the contact speed between bacteria i and the substrate (k ci ≦ 1),
k max is the maximum specific substrate utilization rate (gCOD / gvss / month),
C i is the concentration of the target substrate on which bacteria i act,
k hi is a half-saturation constant (mg / l).

一般に、反応器内において、溶解性の基質成分S−CODは比較的速やかに分解するため、固体物質の可溶化が可溶化した物質の消費に間に合わない。したがって、消化汚泥循環(返送)運転(以下、汚泥循環法)を続けた場合、ある程度の容積負荷以上では反応器内の固体成分は徐々に増加していく。   In general, the soluble substrate component S-COD decomposes relatively quickly in the reactor, so that the solubilization of the solid substance is not in time for the consumption of the solubilized substance. Therefore, when the digested sludge circulation (return) operation (hereinafter referred to as the sludge circulation method) is continued, the solid components in the reactor gradually increase above a certain volume load.

式1を参照すると、反応器内の固形物濃度(TSS濃度)が増加すると、細菌と基質との接触速度に起因する係数ksiは低下するが、細菌iの自己消化係数kdiは余り変化しないため、左辺の菌体増殖速度dSi /dtは減少する。 Referring to Equation 1, when the solids concentration in the reactor (TSS concentration) increases, although the coefficient k si resulting from contact speed between bacteria and substrate decreases, changes remainder autolysis coefficient k di bacteria i Therefore, the cell growth rate dS i / dt on the left side decreases.

図5は、容積負荷を、6.0、9.0、12.0、12.0、15.0(kg−COD/m3 /day)の6フェーズについて段階的に変化させたときの、運転日数と、単位TSSに含まれる微生物の数の経時変化を示した図である。
図5において、各々の黒丸は、反応器への基質を連続供給する期間と、基質の供給を停止する期間との合計を1単位とし、たとえば、1単位を基質滞留時間(HRT)としたことを示している。
各フェーズの間に休止期間が設けられている。
FIG. 5 shows a case where the volumetric load is changed stepwise for 6 phases of 6.0, 9.0, 12.0, 12.0, 15.0 (kg-COD / m 3 / day). It is the figure which showed the time-dependent change of the number of operation days and the number of the microorganisms contained in unit TSS.
In FIG. 5, each black circle indicates that the total of the period for continuously supplying the substrate to the reactor and the period for stopping the substrate supply is 1 unit, for example, 1 unit is the substrate residence time (HRT). Is shown.
There is a rest period between each phase.

図5において、各フェーズの容積負荷の設定条件での一定期間の運転後、基質供給休止期間後に、矢印で示したように、固形物TSS中に占める菌体濃度が増加していることが理解される。
各フェーズ間に基質供給の休止期間を設けることにより、すなわち、SRT>HRTとすることにより、反応器内の固体物質の可溶化が進み、攪拌効果が改善されて、式1における可溶化した基質濃度Ci の増加とともに、接触速度に起因する係数ksiが増大する。その結果、式1の右辺第1項kSiii は増殖項の値が増大して、菌体増殖速度dSi
/dtが増大する。
In FIG. 5, it is understood that after the operation for a certain period under the setting condition of the volumetric load of each phase, and after the substrate supply suspension period, as shown by the arrows, the concentration of the cells in the solid TSS increases. Is done.
By providing a substrate supply pause period between phases, that is, by setting SRT> HRT, solubilization of the solid substance in the reactor proceeds and the stirring effect is improved, solubilized substrate in Formula 1 As the concentration C i increases, the coefficient k si resulting from the contact speed increases. As a result, the value of the growth term of the first term k Si C i S i on the right side of Equation 1 increases, and the cell growth rate dS i
/ Dt increases.

最終的には、高い容積負荷のもとで、安定した運転を達成するということは、各素反応に寄与する菌体iの濃度Si が高い濃度で反応器内に保持され、式2において、分解に寄与する細菌iと基質との接触速度に起因する係数kciがなるべく1に近い値に保持されることである。 Ultimately, under a high volume loading, stable that to achieve operation is held in the reactor at a concentration S i is high concentration of contributing cell i to each elementary reaction, in Formula 2 The coefficient k ci resulting from the contact speed between the bacteria i contributing to the degradation and the substrate is kept as close to 1 as possible.

たとえば、基質としての生ごみについて考察すると、種々の生ごみを収集混合するとほぼ同じになるように、基質がそれほど変化しなければ、関与する菌体iが反応に関与する基質Ci (中間生成物を含む)の組成は大きく変化しない。したがって、反応器に投入する基質(廃棄物)の性状に合わせて、反応器から引き抜く汚泥量を制御すること、および、微生物および未分解基質のいずれかを含む固形物の反応器内の滞留時間(SRT)を適切な値に制御することができる。 For example, when considering the garbage as a substrate, if the substrate does not change so much that the various garbages are collected and mixed, if the substrate does not change so much, the substrate C i (intermediate production) in which the cell i involved participates in the reaction. The composition of the product (including the product) does not change greatly. Therefore, the amount of sludge withdrawn from the reactor is controlled in accordance with the properties of the substrate (waste) charged into the reactor, and the residence time of the solid matter containing either microorganisms or undegraded substrates in the reactor (SRT) can be controlled to an appropriate value.

実施例
有機性物質として、図3に例示した装置を用いて、破砕生ごみを対象としたメタン発酵の実施例を述べる。
また、図5〜図7の実験値を考察する。
Example An example of methane fermentation targeting crushed garbage is described using the apparatus illustrated in FIG. 3 as the organic substance.
Also consider the experimental values of FIGS.

本実施例において、固形物に起因する割合が生CODに対して一定の割合、たとえば、、70%以下の有機性物質をメタン発酵する場合を例にとる。
なお、上述したとおり、固形物に起因する化学的酸素要求量の割合は、基質(廃棄物)の性状によっても異なるが、固形物基質のCODが狭すぎると速くTSS(固形物)の濃度が上がり、基質供給期間に比べて必要とする休止期間の割合が1:1程度となり、好ましくない。基質の性状としては、たとえば、(1)固形物の可溶化速度と可溶化物質(S−COD)の分解性、(2)固形物の粒径分布、(3)有機性物質の組成などが対象となる。
以上から、有機性物質をメタン発酵の場合、固形物に起因する化学的酸素要求量の割合が全CODに対して所定の割合として、経験的事項をも考慮して、上記のように、たとえば、70%以下の有機性物質をメタン発酵する場合を想定している。
In the present embodiment, an example is given of a case where methane fermentation is performed on an organic substance whose ratio attributable to the solid matter is a constant ratio relative to raw COD, for example, 70% or less.
As described above, the ratio of chemical oxygen demand caused by solids varies depending on the properties of the substrate (waste). However, if the COD of the solid substrate is too narrow, the concentration of TSS (solids) increases quickly. The ratio of the required rest period is about 1: 1 compared with the substrate supply period, which is not preferable. The properties of the substrate include, for example, (1) solid solubilization rate and solubilizing substance (S-COD) decomposability, (2) solid particle size distribution, and (3) organic substance composition. It becomes a target.
From the above, when the organic substance is methane fermentation, the ratio of the chemical oxygen demand caused by the solid matter is a predetermined ratio with respect to the total COD, taking into account empirical matters, for example, The case where 70% or less of an organic substance is methane-fermented is assumed.

固形物が難分解性であり、固形物の占める割合rP が比較的小さい場合、たとえば、rP <0.6の場合、メタン生成の関連が取り扱い易い重クロム酸カリウム(CODcr)の指標をもって示す。
本実施例では、重クロム酸カリウム(CODcr)の指標を持って示す。
Indices of potassium dichromate (COD cr ) that are easy to handle when the solid matter is hardly decomposable and the proportion r P of the solid matter is relatively small, for example, r P <0.6 Show with.
In this embodiment, it is shown with an index of potassium dichromate (COD cr ).

T−COD=p−COD+S−COD
ただし、T−CODは、全基質のCODであり、
p−CODは、固形物起因のCODであり、
s−CODは、溶解しているCODである。
T-COD = p-COD + S-COD
However, T-COD is the COD of all substrates,
p-COD is COD due to solid matter,
s-COD is dissolved COD.

とすると、固形物の占める割合rP は下記となる。 Then, the ratio r P of the solid matter is as follows.

P =p−COD/T−COD r P = p-COD / T-COD

また、溶解物の占める割合rS は下記になる。 Further, the ratio r S occupied by the melt is as follows.

S =s−COD/T−COD=1−rP r S = s-COD / T-COD = 1-r P

図5に図解したように、微生物および未分解固形物質を含む固形物の反応器内の汚泥滞留時間(SRT)をHRTより長い60日とし、他方、HRT=16日として、容積負荷を5段階に上昇させた運転の結果、各運転中で、各段階において、終期において、固形物(TSS)濃度はほぼ一定値となった。
このことから、常法では言われている湿式運転の限界濃度10%値における容積負荷を、図5において、内挿すると、容積負荷が約17kg−COD/m3 /dayとなった。この値は、一般の生ごみを対象としたCSTR方式に比べると、かなり高い値であり、本実施例は、高い効率で運転できたことを示している。
As illustrated in FIG. 5, the sludge residence time (SRT) in the reactor of solid matter containing microorganisms and undegraded solid material is 60 days longer than HRT, while HRT = 16 days, and the volumetric load is 5 stages. As a result, the solids (TSS) concentration was almost constant at each stage during the operation.
From this, when the volume load at the limit concentration 10% value of wet operation, which is said in the usual method, is interpolated in FIG. 5, the volume load becomes about 17 kg-COD / m 3 / day. This value is considerably higher than that of the CSTR system for general garbage, and this example shows that the operation was possible with high efficiency.

その理由を考察する。
図5は、上述したように、各有機物負荷速度における単位TSSに含まれる微生物数の経時変化を図解した図である。
微生物濃度は、反応器に有機物(基質)を投入していない休止期間に、上向きの矢印を示したように、増加する。
図5において、たとえば、フェーズ1〜3の休止時間は、微生物濃度を段階的に増加させたが、フェーズ相互間のTSS濃度には余り変化がない。このことは、汚泥内に存在する固形量は増減せず、微生物だけが休止期間に増加したことを意味する。
他方、フェーズ3〜6におけるフェーズ間の休止期間には固形物濃度の急激な減少が起きているにも関わらず、微生物濃度には大きな変化が認められない。このことは、フェーズ間の微生物濃度の変化に関わらず、単位TSSに含まれる微生物濃度が休止期間において増加していることを示している。
このように、本願発明者は、基質を投入しない休止期間に、単位TSSに含まれる微生物濃度が増加していることを見いだし、基質供給期間と休止期間を設けることにより、効果的な微生物量を保持することができる有機性物質のメタン発酵法を発明するに至った。
Consider the reason.
FIG. 5 is a diagram illustrating the change over time in the number of microorganisms contained in the unit TSS at each organic substance loading speed as described above.
The microbial concentration increases as indicated by the upward arrow during the rest period when the organic substance (substrate) is not charged into the reactor.
In FIG. 5, for example, during the rest periods of phases 1 to 3, the microorganism concentration was increased stepwise, but there was not much change in the TSS concentration between phases. This means that the amount of solids present in the sludge did not increase or decrease, and only the microorganisms increased during the rest period.
On the other hand, no significant change is observed in the microbial concentration in spite of the sudden decrease in the solid concentration during the suspension period between phases 3-6. This indicates that the microbial concentration contained in the unit TSS increases during the rest period regardless of the microbial concentration change between phases.
Thus, the inventor of the present application finds that the concentration of microorganisms contained in the unit TSS is increased during the rest period in which the substrate is not added, and provides an effective amount of microorganisms by providing the substrate supply period and the rest period. It came to invent the methane fermentation method of the organic substance which can be hold | maintained.

各有機物負荷での定常状態でのTSS濃度は、反応器に投入する有機物の分解性と、固形物の滞留時間、および有機物の負荷速度によって決定されている。有機物負荷速度を上昇させ続けると、定常状態におけるTSS濃度は上昇する。
このまま有機物負荷速度を上昇させると、半乾式メタン発酵あるいは乾式メタン発酵で使用されるような高濃度TSS濃度領域へと増加し、分解率は低下すると予想される。
The steady-state TSS concentration at each organic substance load is determined by the decomposability of the organic substance charged into the reactor, the residence time of the solid substance, and the organic substance loading rate. As the organic loading rate continues to increase, the TSS concentration in the steady state increases.
If the organic substance loading rate is increased as it is, it is expected that the decomposition rate will decrease while increasing to a high concentration TSS concentration region as used in semi-dry methane fermentation or dry methane fermentation.

図6は、横軸に負荷速度をとり、縦軸に定常状態のTSS濃度を示した特性図である。 図6を参照すると、本発明法(湿式メタン発酵法)における半乾式状態や乾式状態でのメタン発酵法との境界の有機物容積負荷率は、約17(kgCOD/m3 /day)である。
この図から、基質として生ごみを用いた場合、容積負荷は5kgCOD/m3 /day以上が好ましい。すなわち、5kgCOD/m3 /日以上であると、汚泥の増殖が十分となる。もちろん、上述した数値は、基質としての有機性廃棄物の種類、性状によって変化する。
FIG. 6 is a characteristic diagram in which the horizontal axis indicates the load speed and the vertical axis indicates the steady-state TSS concentration. Referring to FIG. 6, the organic substance volumetric load factor at the boundary with the methane fermentation method in the semi-dry state or the dry state in the method of the present invention (wet methane fermentation method) is about 17 (kgCOD / m 3 / day).
From this figure, when garbage is used as the substrate, the volume load is preferably 5 kg COD / m 3 / day or more. That is, if it is 5 kg COD / m 3 / day or more, the sludge is sufficiently propagated. Of course, the above-mentioned numerical values vary depending on the type and properties of organic waste as a substrate.

図7は、有機物負荷速度(容積負荷)を6.0(kg−COD/m3 /day)、9.0(kg−COD/m3 /day)、12.0(kg−COD/m3 /day)と3段階に変化させた場合の、生ごみの嫌気性連続実験における修正した微生物濃度を図解した図である。
基質供給期間と休止期間を設けることにより、微生物の濃度が増加していることが理解される。
7, organic loading rate (volumetric loading) 6.0 (kg-COD / m 3 /day),9.0(kg-COD/m 3 /day),12.0(kg-COD/m 3 / Day) is a diagram illustrating the corrected concentration of microorganisms in an anaerobic continuous experiment of garbage when it is changed in three stages.
It is understood that the concentration of microorganisms is increased by providing a substrate supply period and a rest period.

なお、基質(廃棄物)供給時の有機物容積負荷を小さくとれば、廃棄物供給期間を長くし、休止期間を短くすることができる。もちろん、その逆も言える。   In addition, if the organic substance volume load at the time of substrate (waste) supply is taken small, a waste supply period can be lengthened and a rest period can be shortened. Of course, the reverse is also true.

本発明の実施に際しては、上述した例示した数値に限らず、上述した技術思想を敷衍した変形例をとることができる。   In carrying out the present invention, the present invention is not limited to the above-described numerical values, but can be modified based on the technical idea described above.

10…メタン発酵槽(反応器)、11…攪拌器、12…基質投入口、13…抜取口、14…遠心分離器、15…返送系、16…ガス排出部。   DESCRIPTION OF SYMBOLS 10 ... Methane fermenter (reactor), 11 ... Stirrer, 12 ... Substrate input port, 13 ... Extraction port, 14 ... Centrifuge, 15 ... Return system, 16 ... Gas discharge part.

Claims (2)

生ごみを基質とし、
固形物に起因する化学的酸素要求量(COD)の割合が、全CODに対して70%以下の有機性物質を基質としてメタン発酵するに際して、
汚泥を濾過してメタン反応器に返送する汚泥循環返送型のメタン発酵処理法で、汚泥の増殖を十分にする5kgCOD/m3 /day以上の容積負荷で運転し、
細菌と前記基質との接触速度を保持するため、反応器内の固形物濃度を10%以下(00g/l以下)にした運転状態で、
日以上30日以下の前記反応器への前記基質を連続供給する期間と、微生物濃度の増加が促進される4日以上20日以下の基質の供給を停止する期間とを設け、両期間の合計を周期的に連続運転するときの1単位とし、
前記反応器内の汚泥滞留時間(SRT)を16日の基質滞留時間(HRT)より長い状態で、周期的に連続運転する、
ことを特徴とする、微生物の集積に基づく有機性物質のメタン発酵方法。
Using raw garbage as a substrate,
When methane fermentation is performed using an organic substance as a substrate in which the ratio of chemical oxygen demand (COD) due to solids is 70% or less of the total COD,
A sludge circulation return type methane fermentation treatment method that filters sludge and returns it to the methane reactor, and operates at a volume load of 5 kg COD / m 3 / day or more to sufficiently increase sludge growth.
In order to maintain the contact speed between the bacteria and the substrate, the solids concentration in the reactor is 10% or less (00 g / l or less) .
A period for continuously supplying the substrate to the reactor for 5 days or more and 30 days or less and a period for stopping the substrate supply for 4 days or more and 20 days or less for which an increase in microbial concentration is promoted are provided. The total is one unit for periodic continuous operation.
Periodic continuous operation with the sludge residence time (SRT) in the reactor longer than the substrate residence time (HRT) of 16 days.
Wherein the methane fermentation process based rather organic material in accumulation of microorganisms.
前記反応器内の前記汚泥滞留時間(SRT)は30日以上である、
ことを特徴とする、
請求項1に記載の、微生物の集積に基づく有機性物質のメタン発酵方法。
The sludge residence time (SRT) in the reactor is 30 days or more,
It is characterized by
According to claim 1, methane fermentation method of organic substance rather based on accumulation of microorganisms.
JP2011217807A 2011-09-30 2011-09-30 Method for methane fermentation of organic substances Expired - Fee Related JP5882653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217807A JP5882653B2 (en) 2011-09-30 2011-09-30 Method for methane fermentation of organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217807A JP5882653B2 (en) 2011-09-30 2011-09-30 Method for methane fermentation of organic substances

Publications (2)

Publication Number Publication Date
JP2013075273A JP2013075273A (en) 2013-04-25
JP5882653B2 true JP5882653B2 (en) 2016-03-09

Family

ID=48479178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217807A Expired - Fee Related JP5882653B2 (en) 2011-09-30 2011-09-30 Method for methane fermentation of organic substances

Country Status (1)

Country Link
JP (1) JP5882653B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722562B (en) * 2015-03-13 2016-10-05 西南交通大学 The control technique of aerobe reactor landfill yard

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358391A (en) * 2003-06-05 2004-12-24 Kurita Water Ind Ltd Treatment method and treatment apparatus of organic waste

Also Published As

Publication number Publication date
JP2013075273A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
Savvas et al. Biological methanation of CO2 in a novel biofilm plug-flow reactor: A high rate and low parasitic energy process
Corbellini et al. Hybrid biogas upgrading in a two-stage thermophilic reactor
Wu et al. A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment
Zhang et al. High-rate lactic acid production from food waste and waste activated sludge via interactive control of pH adjustment and fermentation temperature
Fernandes et al. Potential to produce biohydrogen from various wastewaters
Luo et al. Enhanced food waste degradation in integrated two-phase anaerobic digestion: effect of leachate recirculation ratio
Park et al. Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses
Lee et al. Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation
Guwy et al. Fermentative biohydrogen production systems integration
Khemkhao et al. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR
Li et al. Performance assessment and metagenomic analysis of full-scale innovative two-stage anaerobic digestion biogas plant for food wastes treatment
US20090130734A1 (en) System for the production of methane from co2
Arooj et al. Effect of HRT on ASBR converting starch into biological hydrogen
Xie et al. Thermophilic hydrogen production from starch wastewater using two-phase sequencing batch fermentation coupled with UASB methanogenic effluent recycling
Santiago et al. Biohydrogen production from organic solid waste in a sequencing batch reactor: an optimization of the hydraulic and solids retention time
Mohammadi et al. High-rate fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket-fixed film reactor
Yan et al. Influence of acidogenic headspace pressure on methane production under schematic of diversion of acidogenic off-gas to methanogenic reactor
Ri et al. Effect of hydraulic retention time on the hydrogen production in a horizontal and vertical continuous stirred-tank reactor
CN104651440A (en) Biological extension method for electrically promoted carbon chain and biological extension device for electrically promoted carbon chain
Ta et al. Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time
Reyna-Gómez et al. Evaluation of the production of biohydrogen during the co-digestion of organic wastes in an upflow hybrid anaerobic reactor
Radjaram et al. Start up study of UASB reactor treating press mud for biohydrogen production
CN106978346B (en) Method for improving strain discharge amount of PHA (polyhydroxyalkanoate) synthesis strain output section
Liu et al. High-efficiency anaerobic co-digestion of food waste and mature leachate using expanded granular sludge blanket reactor
Sravan et al. Status of biogas production and biogas upgrading: A global scenario

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R150 Certificate of patent or registration of utility model

Ref document number: 5882653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees