JP5879342B2 - Multilayer catalyst for producing phthalic anhydride and method for producing phthalic anhydride - Google Patents
Multilayer catalyst for producing phthalic anhydride and method for producing phthalic anhydride Download PDFInfo
- Publication number
- JP5879342B2 JP5879342B2 JP2013517626A JP2013517626A JP5879342B2 JP 5879342 B2 JP5879342 B2 JP 5879342B2 JP 2013517626 A JP2013517626 A JP 2013517626A JP 2013517626 A JP2013517626 A JP 2013517626A JP 5879342 B2 JP5879342 B2 JP 5879342B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst layer
- alkali metal
- metal content
- catalyst
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 221
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 title claims description 37
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title description 8
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 120
- 229910052783 alkali metal Inorganic materials 0.000 claims description 98
- 150000001340 alkali metals Chemical class 0.000 claims description 98
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 93
- 239000000203 mixture Substances 0.000 claims description 65
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 55
- 229940078552 o-xylene Drugs 0.000 claims description 46
- 239000004408 titanium dioxide Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 17
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 14
- 230000001590 oxidative effect Effects 0.000 claims description 14
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 14
- 238000011049 filling Methods 0.000 claims description 7
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 6
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 6
- 239000003513 alkali Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- WNZQDUSMALZDQF-UHFFFAOYSA-N 2-benzofuran-1(3H)-one Chemical compound C1=CC=C2C(=O)OCC2=C1 WNZQDUSMALZDQF-UHFFFAOYSA-N 0.000 description 14
- 229910052720 vanadium Inorganic materials 0.000 description 14
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000725 suspension Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 229910052792 caesium Inorganic materials 0.000 description 8
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 229930192627 Naphthoquinone Natural products 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 6
- 150000002791 naphthoquinones Chemical class 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000010955 niobium Substances 0.000 description 5
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 2
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 2
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 2
- 150000001463 antimony compounds Chemical class 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- FLJPGEWQYJVDPF-UHFFFAOYSA-L caesium sulfate Chemical compound [Cs+].[Cs+].[O-]S([O-])(=O)=O FLJPGEWQYJVDPF-UHFFFAOYSA-L 0.000 description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- -1 cesium compound Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000019837 monoammonium phosphate Nutrition 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NJVOHKFLBKQLIZ-UHFFFAOYSA-N (2-ethenylphenyl) prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1C=C NJVOHKFLBKQLIZ-UHFFFAOYSA-N 0.000 description 1
- JSYPRLVDJYQMAI-ODZAUARKSA-N (z)-but-2-enedioic acid;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)\C=C/C(O)=O JSYPRLVDJYQMAI-ODZAUARKSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 229910000413 arsenic oxide Inorganic materials 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- JIHMVMRETUQLFD-UHFFFAOYSA-N cerium(3+);dioxido(oxo)silane Chemical compound [Ce+3].[Ce+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O JIHMVMRETUQLFD-UHFFFAOYSA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical group C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 1
- UXAYDBNWIBJTRO-UHFFFAOYSA-N ethenyl acetate;ethenyl dodecanoate Chemical compound CC(=O)OC=C.CCCCCCCCCCCC(=O)OC=C UXAYDBNWIBJTRO-UHFFFAOYSA-N 0.000 description 1
- CYKDLUMZOVATFT-UHFFFAOYSA-N ethenyl acetate;prop-2-enoic acid Chemical compound OC(=O)C=C.CC(=O)OC=C CYKDLUMZOVATFT-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000012041 precatalyst Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- KFAIYPBIFILLEZ-UHFFFAOYSA-N thallium(i) oxide Chemical compound [Tl]O[Tl] KFAIYPBIFILLEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 150000003681 vanadium Chemical class 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/87—Benzo [c] furans; Hydrogenated benzo [c] furans
- C07D307/89—Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0211—Impregnation using a colloidal suspension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0219—Coating the coating containing organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0234—Impregnation and coating simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Furan Compounds (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、反応管内に連続するように配置された複数の触媒層を有し、個々の触媒層が流れ方向に減少するアルカリ金属含有量を有する、無水フタル酸を製造するための多層触媒に関する。本発明はさらに、そのような多層触媒を通してナフタレン又はo−キシレン/ナフタレン混合物を酸化させる方法、及びナフタレン又はo−キシレン/ナフタレン混合物を無水フタル酸に酸化させるためのそのような多層触媒の使用方法に関する。 The present invention relates to a multilayer catalyst for producing phthalic anhydride having a plurality of catalyst layers arranged continuously in a reaction tube, each catalyst layer having an alkali metal content that decreases in the flow direction. . The present invention further provides a method for oxidizing naphthalene or o-xylene / naphthalene mixture through such a multilayer catalyst, and a method for using such multilayer catalyst to oxidize naphthalene or o-xylene / naphthalene mixture to phthalic anhydride. About.
多くのカルボン酸及び/又はカルボン酸無水物は、固定床反応器中で、ベンゼン、キシレン、ナフタレン、トルエン又はデュレン等の炭化水素の接触気相酸化により工業的に製造される。こうして、例えば、安息香酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸又は無水ピロメリットを得ることが可能である。一般に、酸素含有ガス及び酸化されるべき出発材料は触媒床が存在する管を通過する。温度を調節するために、その管は、溶融塩等の伝熱媒体によって覆われている。 Many carboxylic acids and / or carboxylic anhydrides are produced industrially in a fixed bed reactor by catalytic gas phase oxidation of hydrocarbons such as benzene, xylene, naphthalene, toluene or durene. Thus, for example, benzoic acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid or pyromellitic anhydride can be obtained. In general, the oxygen-containing gas and the starting material to be oxidized pass through a tube in which a catalyst bed is present. In order to adjust the temperature, the tube is covered with a heat transfer medium such as a molten salt.
これらの酸化反応のために好適であるとわかった触媒は、触媒活性組成物がステアタイト等の不活性担体材料にシェル形態で施された被覆触媒である。一般に、二酸化チタンと五酸化バナジウムが、これらの被覆触媒の触媒活性組成物の触媒活性成分として用いられる。さらに、触媒の活性及び選択性に影響を与えるプロモーターとして作用する多くの他の酸化物化合物の少量を、触媒活性組成物中に含ませることができる。 Catalysts found to be suitable for these oxidation reactions are coated catalysts in which the catalytically active composition is applied in the form of a shell to an inert support material such as steatite. In general, titanium dioxide and vanadium pentoxide are used as catalytically active components in the catalytically active compositions of these coated catalysts. In addition, small amounts of many other oxide compounds that act as promoters that affect catalyst activity and selectivity can be included in the catalytically active composition.
異なる触媒層中で、それらの触媒活性及び/又はそれらの活性組成物の化学的性質に関して異なる触媒を用いることが特に有利であることがわかった。2個の反応区域を用いる場合、第1反応区域、すなわち、反応ガスの入口の最寄りに位置する反応区域で好ましく用いられる触媒は、第2反応区域、すなわち、反応ガスの出口に最寄りの反応区域に存在する触媒よりも幾分低い触媒活性を有する。一般に、その反応は、反応ガス中に含まれる芳香族炭化水素の大部分が第1の区域内において最大収率で反応するような温度設定により調節される。3〜5個の層の触媒系が用いられることが好ましく、特に、3個と4個の層の触媒系が用いられることが好ましい。 It has been found to be particularly advantageous to use different catalysts in different catalyst layers with respect to their catalytic activity and / or the chemistry of their active composition. When two reaction zones are used, the catalyst preferably used in the first reaction zone, ie the reaction zone closest to the reaction gas inlet, is the second reaction zone, ie the reaction zone closest to the reaction gas outlet. It has a somewhat lower catalytic activity than the catalyst present in In general, the reaction is controlled by a temperature setting such that most of the aromatic hydrocarbons contained in the reaction gas react with maximum yield in the first zone. It is preferred to use a catalyst system of 3 to 5 layers, in particular a catalyst system of 3 and 4 layers.
酸化バナジウム/二酸化チタン触媒系を通したo−キシレンの無水フタル酸(PAn)への酸化は、通常約4標準立方メートル毎時の空気流及び1標準立方メートル当たり最大100gのo−キシレン負荷で実施される。o−キシレン/ナフタレン混合物を酸化させるために、触媒が特定のo−キシレン/ナフタレン混合比に、又は狭い範囲のo−キシレン/ナフタレン混合比に非常に適するように、触媒は一般的に開発されている。o−キシレン/ナフタレン比が大きく変更する場合、PAnの収率は大きく減少し、生成物の品質が著しく悪化し、及び/又は触媒の適切に作用する寿命に悪影響を及ぼす。これはo−キシレン又はナフタレンの高負荷で特に著しい。o−キシレン及びナフタレンの総負荷が高いほど、o−キシレン/ナフタレン比の許容範囲はより狭くなる。 The oxidation of o-xylene to phthalic anhydride (PAn) through a vanadium oxide / titanium dioxide catalyst system is usually carried out with an air flow of about 4 standard cubic meters per hour and an o-xylene load of up to 100 g per standard cubic meter. . In order to oxidize an o-xylene / naphthalene mixture, the catalyst is generally developed so that the catalyst is very suitable for a specific o-xylene / naphthalene mixture ratio or a narrow range of o-xylene / naphthalene mixture ratios. ing. If the o-xylene / naphthalene ratio is changed significantly, the yield of PAn is greatly reduced, the product quality is significantly deteriorated, and / or the catalyst's proper working life is adversely affected. This is particularly noticeable at high loads of o-xylene or naphthalene. The higher the total load of o-xylene and naphthalene, the narrower the tolerance range for the o-xylene / naphthalene ratio.
EP539878には、2層触媒を通してo−キシレン/ナフタレン混合物を酸化させる方法が記載されている。10/90〜90/10の質量比が用いられ、及び一回の通過での最大限の総負荷は毎時3000のガス毎時空間速度(GHSV)で標準立方メートル当たり70gである。触媒及びo−キシレン/ナフタレン混合比に応じて、PAn収率は98.5〜111.5質量%の範囲である。 EP 539878 describes a process for oxidizing an o-xylene / naphthalene mixture through a two-layer catalyst. A mass ratio of 10/90 to 90/10 is used, and the maximum total load in a single pass is 70 grams per standard cubic meter with a gas hourly space velocity (GHSV) of 3000 per hour. Depending on the catalyst and the o-xylene / naphthalene mixing ratio, the PAn yield is in the range of 98.5-111.5% by weight.
EP744214には、わずか101質量%のPAn収率が、標準立方メートル当たり80gのナフタレン負荷及び毎時4標準立方メートルの空気で達成された。 In EP744214, a PAn yield of only 101% by weight was achieved with a naphthalene load of 80 g per standard cubic meter and 4 standard cubic meters of air per hour.
EP1082317に記載されたような2層触媒の場合には、110質量%のPAn収率が、標準立方メートル当たり65〜80gで、75質量%/25質量%のo−キシレン/ナフタレン混合物及び毎時4標準立方メートルの空気で達成された。o−キシレン/ナフタレン比の変更は行われなかった。 In the case of a two-layer catalyst as described in EP 1082317, a PAn yield of 110% by weight is 65-80 g per standard cubic meter, a 75% / 25% by weight o-xylene / naphthalene mixture and 4 standards per hour. Achieved in cubic meters of air. The o-xylene / naphthalene ratio was not changed.
EP286448では、2層触媒が標準立方メートル当たり70gのナフタレンを用い、毎時3000のGHSVで運転された。しかしながら、o−キシレン/ナフタレン比は、個々の触媒に対して100:0〜50:50又は50:50〜0:100に変化したのみであった。同一の触媒を用いた混合比の広範な変動は記載されていない。 In EP286448, a two-layer catalyst was operated at 3000 GHSV per hour using 70 g of naphthalene per standard cubic meter. However, the o-xylene / naphthalene ratio only changed from 100: 0 to 50:50 or from 50:50 to 0: 100 for the individual catalysts. Extensive variations in the mixing ratio using the same catalyst are not described.
2個を超える触媒層を有する触媒が、毎時4標準立方メートルの空気で、標準立方メートル当たり最大100gのo−キシレンの非常に高い負荷でも、o−キシレンを無水フタル酸に酸化させることが記載されている。EP1084115に記載されるように、例として、o−キシレンからPAnへの酸化のための3個の層触媒系が挙げられている。しかしながら、これらの触媒は、毎時約4標準立方メートルの空気で、標準立方メートル当たり少なくとも80gの総負荷で、且つo−キシレン/ナフタレン比の広い変動を伴うo−キシレン/ナフタレン混合物の酸化のためには好適では無い。 A catalyst with more than two catalyst layers is described to oxidize o-xylene to phthalic anhydride at 4 standard cubic meters of air per hour and even at very high loads of up to 100 g o-xylene per standard cubic meter. Yes. As described in EP 1084115, a three-layer catalyst system for the oxidation of o-xylene to PAn is mentioned as an example. However, these catalysts are suitable for the oxidation of o-xylene / naphthalene mixtures at about 4 standard cubic meters of air per hour, at a total load of at least 80 g per standard cubic meter, and with a wide variation in the o-xylene / naphthalene ratio. It is not suitable.
高選択性で非常に高い転化をもたらす気相酸化のための触媒が引き続き必要とされている。 There is a continuing need for catalysts for gas phase oxidation that provide very high selectivity and very high conversion.
本発明の目的は、毎時約4標準立方メートルの空気で、標準立方メートル当たり少なくとも80gの総負荷でナフタレン又はo−キシレン/ナフタレン混合物を酸化させるための触媒であって、高いPAn収率及び良好な生成物品質でo−キシレン/ナフタレン比が広範囲で変動可能である触媒を開発することである。 The object of the present invention is a catalyst for the oxidation of naphthalene or o-xylene / naphthalene mixtures with a total load of at least 80 g per standard cubic meter at about 4 standard cubic meters of air per hour, with a high PAn yield and good production It is to develop a catalyst in which the o-xylene / naphthalene ratio can vary over a wide range in terms of product quality.
この目的は、ナフタレン又はo−キシレン/ナフタレン混合物を無水フタル酸に酸化させるための多層触媒であって、各触媒層が酸化バナジウム及び二酸化チタンを含み、且つその触媒層のアルカリ金属含量が流れ方向に層から層へと減少する多層触媒によって達成される。 The purpose is a multilayer catalyst for oxidizing naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride, each catalyst layer comprising vanadium oxide and titanium dioxide, and the alkali metal content of the catalyst layer being in the direction of flow. This is achieved by a multilayer catalyst that decreases from layer to layer.
したがって、本発明は、ナフタレン又はo−キシレン/ナフタレン混合物を無水フタル酸に酸化させるための多層触媒であって、少なくとも3個の触媒層を含み、
各層が、酸化バナジウム及び二酸化チタンを含み、且つ
a)一の触媒層Aのアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに後から続く触媒層Zが、触媒層Aのアルカリ金属含量の0〜10%のアルカリ金属含量を有し、且つ
c)触媒層AとZの間に位置する触媒層が触媒層Aのアルカリ金属含量の30〜90%のアルカリ金属含量を有し、各層のアルカリ金属含量が流れ方向の次の層のアルカリ金属含量よりも高くなるように選択されたアルカリ金属含量を有する多層触媒を提供する。
Accordingly, the present invention is a multilayer catalyst for oxidizing naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride, comprising at least three catalyst layers,
Each layer comprises vanadium oxide and titanium dioxide, and a) the alkali metal content of one catalyst layer A is the highest,
b) The catalyst layer Z that follows the catalyst layer A in the flow direction has an alkali metal content of 0 to 10% of the alkali metal content of the catalyst layer A, and c) is located between the catalyst layers A and Z Alkali metal selected such that the catalyst layer has an alkali metal content of 30-90% of the alkali metal content of catalyst layer A, and the alkali metal content of each layer is higher than the alkali metal content of the next layer in the flow direction A multilayer catalyst having a content is provided.
本発明の好ましい実施の形態では、多層触媒層は3個、4個又は5個の層を有する。3個及び4個の層の触媒であることが特に好ましい。 In a preferred embodiment of the invention, the multilayer catalyst layer has 3, 4 or 5 layers. Particular preference is given to three and four layer catalysts.
本発明に係る多層触媒は、例えば、高いホットスポット温度を回避するために、適宜に、好適な上流及び/又は下流床並びに中間層との組み合わせで用いることができ、その上流及び/又は下流床並びに中間層には、一般に触媒的に不活性な、或いは低活性の材料を含み得る。 The multilayer catalyst according to the invention can be used in combination with suitable upstream and / or downstream beds and intermediate layers as appropriate, for example in order to avoid high hot spot temperatures, the upstream and / or downstream beds thereof. As well, the intermediate layer can include materials that are generally catalytically inert or less active.
本発明のさらに好ましい実施の形態は、ナフタレン又はo−キシレン/ナフタレン混合物を無水フタル酸に酸化させるための4層触媒であって、各触媒層が酸化バナジウム及び二酸化チタンを含み、且つ
その触媒層のアルカリ金属含量が
a)一の触媒層Aのアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに続く触媒層Bが、触媒層Aのアルカリ金属含量の60〜90%のアルカリ金属含量を有し、
c)流れ方向で触媒層Bに続く触媒層Cが、触媒層Aのアルカリ金属含量の30〜59%のアルカリ金属含量を有し、
d)流れ方向で触媒層Cに続く触媒層Zが、触媒層Aのアルカリ金属含量の0〜10%のアルカリ金属含量を有するように選択された4層触媒である。
A further preferred embodiment of the present invention is a four-layer catalyst for oxidizing naphthalene or o-xylene / naphthalene mixture to phthalic anhydride, each catalyst layer comprising vanadium oxide and titanium dioxide, and the catalyst layer A) the alkali metal content of one catalyst layer A is the highest,
b) Catalyst layer B following catalyst layer A in the flow direction has an alkali metal content of 60 to 90% of the alkali metal content of catalyst layer A;
c) the catalyst layer C following the catalyst layer B in the flow direction has an alkali metal content of 30 to 59% of the alkali metal content of the catalyst layer A;
d) A four-layer catalyst selected such that the catalyst layer Z following the catalyst layer C in the flow direction has an alkali metal content of 0 to 10% of the alkali metal content of the catalyst layer A.
本発明に係る触媒は、一般に、触媒活性組成物が不活性担体材料にシェル形態で施された被覆触媒である。 The catalyst according to the present invention is generally a coated catalyst in which a catalytically active composition is applied to an inert support material in the form of a shell.
不活性担体材料としては、芳香族炭化水素をアルデヒド、カルボン酸及び/又はカルボン酸無水物に酸化させるための被覆触媒の製造の際に有利に用いられ得るような、石英(SiO2)、磁器、酸化マグネシウム、二酸化スズ、炭化ケイ素、ルチル、アルミナ(Al2O3)、ケイ酸アルミニウム、ステアタイト(ケイ酸マグネシウム)、ケイ酸ジルコニウム、ケイ酸セリウム又はこれらの担体材料の混合物等の実質的に先行技術の全ての担体材料を用いることができる。触媒担体は、例えば、球状、リング状、ペレット状、らせん状、管状、押出物状又は粉砕物状の材料の形態で用いられ得る。これらの触媒担体の寸法は、芳香族炭化水素の気相反応のための被覆触媒の製造のために慣習的に用いられる触媒担体に対応する。直径3〜6mmの球状、又は5〜9mmの外径と3〜8mmの長さと1〜2mmの壁厚とを有するリング状の形態のステアタイトを用いることが好ましい。 Inert support materials include quartz (SiO 2 ), porcelain, which can be advantageously used in the production of coated catalysts for oxidizing aromatic hydrocarbons to aldehydes, carboxylic acids and / or carboxylic anhydrides. , Magnesium oxide, tin dioxide, silicon carbide, rutile, alumina (Al 2 O 3 ), aluminum silicate, steatite (magnesium silicate), zirconium silicate, cerium silicate or a mixture of these carrier materials, etc. All the carrier materials of the prior art can be used. The catalyst support may be used in the form of, for example, a spherical, ring-shaped, pellet-shaped, spiral-shaped, tubular, extrudate-shaped or pulverized material. The dimensions of these catalyst supports correspond to the catalyst supports conventionally used for the production of coated catalysts for the gas phase reaction of aromatic hydrocarbons. It is preferable to use steatite having a spherical shape with a diameter of 3 to 6 mm, or a ring shape having an outer diameter of 5 to 9 mm, a length of 3 to 8 mm, and a wall thickness of 1 to 2 mm.
本発明に係る触媒は、少なくとも酸化バナジウムと二酸化チタンとを含む触媒活性組成物を含み、担体材料に1個以上の層で施され得る。種々の層は、それらの組成物の点で異なり得る。 The catalyst according to the invention comprises a catalytically active composition comprising at least vanadium oxide and titanium dioxide and can be applied to the support material in one or more layers. The various layers can differ in their composition.
触媒活性組成物は、好ましくは、触媒活性組成物の合計量に対してV2O5として計算して1〜40質量%の酸化バナジウム及びTiO2として計算して60〜99質量%の二酸化チタンを含む。好ましい実施の形態では、その触媒活性組成物は、Csとして計算して最大1質量%のセシウム化合物、Pとして計算して最大1質量%のリン化合物、及びSb2O3として計算して最大10質量%の酸化アンチモンをさらに含む。触媒活性組成物の化学組成の全ての数値は、後者の焼成状態、例えば、450℃で1時間の触媒の焼成後の状態に基づいている。 Catalytically active composition, preferably, the total 60 to 99 wt% calculated as 1 to 40% by weight of vanadium oxide and TiO 2, calculated as V 2 O 5 with respect to the amount of titanium dioxide in the catalytic active composition including. In a preferred embodiment, the catalytically active composition comprises up to 1% by weight of cesium compound calculated as Cs, up to 1% by weight of phosphorus compound calculated as P, and up to 10% calculated as Sb 2 O 3. It further contains mass% antimony oxide. All numerical values of the chemical composition of the catalytically active composition are based on the latter calcination state, for example, the state after calcination of the catalyst at 450 ° C. for 1 hour.
二酸化チタンは、通常、触媒活性組成物のためのアナターゼ型で用いられる。二酸化チタンは、好ましくは15〜60m2/gの、特に15〜45m2/gの、特に好ましくは13〜28m2/gのBET表面積を有する。使用される二酸化チタンは、単一の二酸化チタン又は二酸化チタンの混合物を含み得る。後者の場合、BET表面積の値は、個々の二酸化チタンの寄与の加重平均である。用いられる二酸化チタンは、例えば、5〜15m2/gのBET表面積を有するTiO2及び15〜50m2/gのBET表面積を有するTiO2の混合物を有利に含む。 Titanium dioxide is usually used in the anatase form for catalytically active compositions. The titanium dioxide preferably has a BET surface area of 15 to 60 m 2 / g, in particular 15 to 45 m 2 / g, particularly preferably 13 to 28 m 2 / g. The titanium dioxide used may comprise a single titanium dioxide or a mixture of titanium dioxide. In the latter case, the BET surface area value is a weighted average of the individual titanium dioxide contributions. Titanium dioxide used may, for example, advantageously comprises a mixture of TiO 2 having a BET surface area of TiO 2 and 15 to 50 m 2 / g with a BET surface area of 5 to 15 m 2 / g.
好適なバナジウム源は、特に、五酸化バナジウムとメタバナジン酸アンモニウムである。好適なアンチモン源は、様々なアンチモン源であり、特に、三酸化アンチモンである。バナジウム及びアンチモンはまた、アンチモン酸バナジウム化合物(vanadium antimonate compound)の形態で用いられ得る。少なくとも1個の層の活性組成物に導入されたアンチモン酸バナジウムは、任意のバナジウムとアンチモン酸化合物の反応により製造され得る。混合酸又はアンチモン酸バナジウムを形成するための酸化物の直接反応が好ましい。 Suitable vanadium sources are in particular vanadium pentoxide and ammonium metavanadate. Suitable antimony sources are various antimony sources, in particular antimony trioxide. Vanadium and antimony can also be used in the form of a vanadium antimonate compound. The vanadium antimonate introduced into the active composition of at least one layer can be produced by the reaction of any vanadium with an antimonate compound. Direct reaction of the oxide to form mixed acid or vanadium antimonate is preferred.
アンチモン酸バナジウムは、アンチモンに対するバナジウムの様々なモル比を有することができ、また任意にさらなるバナジウム又はアンチモン化合物を含み、さらにバナジウム又はアンチモン化合物と混合して用いられ得る。 The vanadium antimonate can have various molar ratios of vanadium to antimony and optionally includes additional vanadium or antimony compounds and can be used in admixture with vanadium or antimony compounds.
可能なリン源は、特に、リン酸、亜リン酸、次亜リン酸、リン酸アンモニウム又はリン酸エステルであり、特に、リン酸二水素アンモニウムである。可能なセシウム源は、その酸化物若しくは水素化物、又は、酸化物へと熱的に転化され得るカルボン酸塩、特に、酢酸塩、マロン酸塩若しくはシュウ酸塩、炭酸塩、炭酸水素塩、硫酸塩又は硝酸塩等の塩である。 Possible phosphorus sources are in particular phosphoric acid, phosphorous acid, hypophosphorous acid, ammonium phosphate or phosphate esters, in particular ammonium dihydrogen phosphate. Possible cesium sources include their oxides or hydrides, or carboxylates that can be thermally converted to oxides, in particular acetates, malonates or oxalates, carbonates, bicarbonates, sulfuric acids. A salt such as a salt or nitrate.
任意の添加物であるセシウム及びリンとは別に、触媒の活性及び選択性にその活性を低下させ、或いは増大させること等により影響を与えるプロモーターとして作用する多くの他の酸化物化合物の少量を、触媒活性組成物に含ませることができる。そのようなプロモーターの例は、アルカリ金属であり、特に、上述のセシウム並びに酸化物又は水素化物の形態で通常用いられるリチウム、カリウム及びルビジウムであり、タリウム(I)酸化物、酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化ニッケル、酸化コバルト、酸化マンガン、酸化スズ、酸化銀、酸化銅、酸化クロム、酸化モリブデン、酸化タングステン、酸化イリジウム、酸化タンタル、酸化ニオブ、酸化ヒ素、酸化アンチモン、酸化セリウムである。 Apart from the optional additives cesium and phosphorus, a small amount of many other oxide compounds that act as promoters that affect the activity and selectivity of the catalyst by reducing or increasing its activity, etc. It can be included in the catalytically active composition. Examples of such promoters are alkali metals, in particular lithium, potassium and rubidium which are usually used in the form of cesium and oxides or hydrides mentioned above, thallium (I) oxide, aluminum oxide, zirconium oxide. Iron oxide, nickel oxide, cobalt oxide, manganese oxide, tin oxide, silver oxide, copper oxide, chromium oxide, molybdenum oxide, tungsten oxide, iridium oxide, tantalum oxide, niobium oxide, arsenic oxide, antimony oxide, cerium oxide .
上述のプロモーターの中で、触媒活性組成物に基づいて0.01〜0.50質量%の量の添加物としてのニオブ及びタングステンの酸化物が好ましい。 Of the above promoters, niobium and tungsten oxides as additives in an amount of 0.01 to 0.50% by weight based on the catalytically active composition are preferred.
被覆触媒の層は、任意に上述のプロモーター成分源を含むTiO2及びV2O5の懸濁液を流動化担体上に噴霧することにより有利に施される。被覆作業の前に、懸濁物質の凝集物の分散のために及び均質な懸濁液を得るために、懸濁液は好ましくは十分に長時間、例えば、2〜30時間、特に、12〜25時間攪拌される。懸濁液は、典型的に20〜50質量%の固形分を有する。懸濁媒体は、一般に水性であり、例えば、水自体又はメタノール、エタノール、イソプロパノール、ホルムアミド等の水混和性有機溶媒との水性混合物である。 The layer of coated catalyst is advantageously applied by spraying a suspension of TiO 2 and V 2 O 5 optionally containing the aforementioned promoter component sources onto a fluidized support. Prior to the coating operation, the suspension is preferably sufficiently long, for example 2 to 30 hours, in particular 12 to 12 to disperse the aggregates of suspended material and to obtain a homogeneous suspension. Stir for 25 hours. The suspension typically has a solid content of 20-50% by weight. The suspending medium is generally aqueous, for example water itself or an aqueous mixture with a water-miscible organic solvent such as methanol, ethanol, isopropanol, formamide.
一般に、有機バインダー、好ましくはコポリマー、有利にアクリル酸−マレイン酸、酢酸ビニル−ビニルラウレート、酢酸ビニル−アクリレート、スチレン−アクリレート又は酢酸ビニル−エチレンの水性分散液の形態で懸濁液に添加される。バインダーは、例えば、35〜65質量%の固形分を有する水性分散液として市販されている。そのような使用されるバインダー分散液の量は、懸濁液の質量に対して一般に2〜45質量%、好ましくは5〜35質量%、特に好ましくは7〜20質量%である。 In general, an organic binder, preferably a copolymer, is advantageously added to the suspension in the form of an aqueous dispersion of acrylic acid-maleic acid, vinyl acetate-vinyl laurate, vinyl acetate-acrylate, styrene-acrylate or vinyl acetate-ethylene. The The binder is commercially available, for example, as an aqueous dispersion having a solid content of 35 to 65% by mass. The amount of binder dispersion used is generally from 2 to 45% by weight, preferably from 5 to 35% by weight, particularly preferably from 7 to 20% by weight, based on the weight of the suspension.
担体は、上昇ガス流、特に、大気中で、例えば、流動床又は移動床装置中で流動化される。装置は、通常、流動化ガスが浸漬管を介して底部又は上部から導入される円錐形又は球形の容器を含む。懸濁液は、流動床へとノズルを介して上部から、側部から、又は下部から噴霧される。浸漬管の中央に又は同心円状に配置された上昇管の使用が有利である。 The support is fluidized in an ascending gas stream, in particular in the atmosphere, for example in a fluidized bed or moving bed apparatus. The apparatus typically comprises a conical or spherical container into which fluidizing gas is introduced from the bottom or top via a dip tube. The suspension is sprayed into the fluidized bed from the top, from the side or from the bottom via a nozzle. The use of risers arranged in the center of the dip tube or concentrically is advantageous.
担体粒子を上方へ運搬する比較的高いガス速度は上昇管の範囲内で優勢である。外側のリングでは、そのガス速度は緩められた速度を少しだけ上回っている。粒子はこうして循環方式で垂直に移動する。好適な流動床装置は、例えば、DE−A4006935に記載されている。 The relatively high gas velocity that carries the carrier particles upwards prevails within the riser. In the outer ring, the gas velocity is slightly above the relaxed velocity. The particles thus move vertically in a circulating manner. A suitable fluid bed apparatus is described, for example, in DE-A 4006935.
触媒活性組成物での触媒担体の被覆の際、20〜500℃の被覆温度が一般に採用され、被覆は大気圧下又は減圧下で実施され得る。一般に、被覆は0〜200℃で実施され、好ましくは20〜150℃、特に60〜120℃で実施される。 When coating the catalyst support with the catalytically active composition, a coating temperature of 20 to 500 ° C. is generally employed and the coating can be carried out under atmospheric pressure or under reduced pressure. In general, the coating is carried out at 0 to 200 ° C., preferably 20 to 150 ° C., in particular 60 to 120 ° C.
触媒活性組成物の層厚は、一般に0.02〜0.2mmであり、好ましくは0.05〜0.15mmである。触媒における活性組成物の割合は、通常5〜25質量%、主に7〜15質量%である。 The layer thickness of the catalytically active composition is generally 0.02 to 0.2 mm, preferably 0.05 to 0.15 mm. The ratio of the active composition in the catalyst is usually 5 to 25% by mass, mainly 7 to 15% by mass.
こうして得られたプレ触媒の200℃超〜500℃の温度での熱処理の結果として、バインダーは熱分解及び/又は燃焼の結果として施された層から放出される。熱処理は、好ましくは気相酸化反応器中でその場で実施される。 As a result of the heat treatment of the precatalyst thus obtained at temperatures above 200 ° C. to 500 ° C., the binder is released from the applied layer as a result of pyrolysis and / or combustion. The heat treatment is preferably performed in situ in a gas phase oxidation reactor.
種々の触媒の区切られた層の代わりに、複数の層の間で偽連続的な遷移を得ることもまた可能であり、そうして、一の層から次の層への変わり目に連続触媒の混合物を含む区域を挿入することによりアルカリ金属含量の効果的な均一な減少を得ることができる。 It is also possible to obtain a pseudo-continuous transition between multiple layers instead of different catalyst delimited layers, so that the continuous catalyst transitions from one layer to the next By inserting a zone containing the mixture, an effective and uniform reduction of the alkali metal content can be obtained.
触媒層Aの床長は、好ましくは反応器内全触媒充填高さの10〜50%の範囲であり、特に好ましくは15〜30%の範囲である。触媒層A及びB、又は、A、B及びCの床高さは、有利に全触媒充填高さの60〜95%の範囲である。典型的な反応器は250cm〜350cmの充填高さを有する。触媒層はまた、所望であれば、複数の反応器に亘って分配することができる。 The bed length of the catalyst layer A is preferably in the range of 10 to 50%, particularly preferably in the range of 15 to 30% of the total catalyst filling height in the reactor. The bed height of catalyst layers A and B or A, B and C is preferably in the range of 60 to 95% of the total catalyst loading height. A typical reactor has a packing height of 250 cm to 350 cm. The catalyst layer can also be distributed across multiple reactors if desired.
本発明に係る触媒は、標準立方メートル当たり80〜100gの範囲の総負荷及び毎時約4標準立方メートルの空気流で、ナフタレン又はo−キシレン/ナフタレン混合物を無水フタル酸に酸化させるために特に好適である。 The catalyst according to the invention is particularly suitable for oxidizing naphthalene or o-xylene / naphthalene mixtures to phthalic anhydride at a total load in the range of 80-100 g per standard cubic meter and an air flow of about 4 standard cubic meters per hour. .
本発明は、さらに少なくとも3個の層触媒を含む多層触媒を用いてナフタレン又はo−キシレン/ナフタレン混合物を無水フタル酸に酸化させる方法であって、
各層が、酸化バナジウム及び二酸化チタンを含み、且つ
a)一の触媒層Aのアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに後から続く触媒層Zが、触媒層Aのアルカリ金属含量の0〜10%のアルカリ金属含量を有し、
c)触媒層AとZとの間に位置する触媒層が触媒層Aのアルカリ金属含量の30〜90%のアルカリ金属含量を有し、各触媒層のアルカリ金属含量が流れ方向の次の層のアルカリ金属含量より高くなるように選択されたアルカリ金属含量を有する方法を提供する。
The present invention is a method of oxidizing naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride using a multilayer catalyst further comprising at least three layer catalysts,
Each layer comprises vanadium oxide and titanium dioxide, and a) the alkali metal content of one catalyst layer A is the highest,
b) the catalyst layer Z that follows the catalyst layer A in the flow direction has an alkali metal content of 0 to 10% of the alkali metal content of the catalyst layer A;
c) The catalyst layer located between the catalyst layers A and Z has an alkali metal content of 30 to 90% of the alkali metal content of the catalyst layer A, and the alkali metal content of each catalyst layer is the next layer in the flow direction. A process having an alkali metal content selected to be higher than the alkali metal content of the present invention.
本発明の好ましい実施の形態は、4層触媒を用いてナフタレン又はo−キシレン/ナフタレン混合物を無水フタル酸に酸化させる方法であって、
各触媒層が酸化バナジウム及び二酸化チタンを含み、且つ
その触媒層のアルカリ金属含量が、
a)一の触媒層Aのアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに続く触媒層Bが、触媒層Aのアルカリ金属含量の60〜90%のアルカリ金属含量を有し、
c)流れ方向で触媒層Bに続く触媒層Cが、触媒層Aのアルカリ金属含量の30〜59%のアルカリ金属含量を有し、
d)流れ方向で触媒層Cに続く触媒層Zが、触媒層Aのアルカリ金属含量の0〜10%のアルカリ金属含量を有するように選択された方法である。
A preferred embodiment of the present invention is a method of oxidizing naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride using a four-layer catalyst comprising:
Each catalyst layer contains vanadium oxide and titanium dioxide, and the alkali metal content of the catalyst layer is
a) One catalyst layer A has the highest alkali metal content,
b) Catalyst layer B following catalyst layer A in the flow direction has an alkali metal content of 60 to 90% of the alkali metal content of catalyst layer A;
c) the catalyst layer C following the catalyst layer B in the flow direction has an alkali metal content of 30 to 59% of the alkali metal content of the catalyst layer A;
d) The process is selected such that the catalyst layer Z following the catalyst layer C in the flow direction has an alkali metal content of 0 to 10% of the alkali metal content of the catalyst layer A.
さらに本発明は、ナフタレン又はo−キシレン/ナフタレン混合物を無水フタル酸に酸化させるための、少なくとも3個の触媒層を含む多層触媒の使用方法であって、
各層が、酸化バナジウム及び二酸化チタンを含み、且つ
a)一の触媒層Aのアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに後から続く触媒層Zが、触媒層Aのアルカリ金属含量の0〜10%のアルカリ金属含量を有し、
c)触媒層AとZの間に位置する触媒層が触媒層Aのアルカリ金属含量の30〜90%のアルカリ金属含量を有し、各触媒層のアルカリ金属含量が流れ方向の次の触媒層のアルカリ金属含量よりも高くなるように選択されたアルカリ金属含量を有する多層触媒の使用方法を提供する。
The present invention further provides a method for using a multi-layer catalyst comprising at least three catalyst layers for oxidizing naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride, comprising:
Each layer comprises vanadium oxide and titanium dioxide, and a) the alkali metal content of one catalyst layer A is the highest,
b) the catalyst layer Z that follows the catalyst layer A in the flow direction has an alkali metal content of 0 to 10% of the alkali metal content of the catalyst layer A;
c) The catalyst layer located between the catalyst layers A and Z has an alkali metal content of 30 to 90% of the alkali metal content of the catalyst layer A, and the alkali metal content of each catalyst layer is the next catalyst layer in the flow direction. A method of using a multi-layer catalyst having an alkali metal content selected to be higher than the alkali metal content of the present invention is provided.
本発明の好ましい実施の形態は、ナフタレン又はo−キシレン/ナフタレン混合物を無水フタル酸に酸化させるための4層触媒の使用方法であって、
各触媒層が酸化バナジウム及び二酸化チタンを含み、且つ
その触媒層のアルカリ金属含量が
a)一の触媒層Aのアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに続く触媒層Bが、触媒層Aのアルカリ金属含量の60〜90%のアルカリ金属含量を有し、
c)流れ方向で触媒層Bに続く触媒層Cが、触媒層Aのアルカリ金属含量の30〜59%のアルカリ金属含量を有し、
d)流れ方向で触媒層Cに続く触媒層Zが、触媒層Aのアルカリ金属含量の0〜10%のアルカリ金属含量を有するように選択された4層触媒の使用方法である。
A preferred embodiment of the present invention is a method of using a four-layer catalyst to oxidize naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride,
Each catalyst layer contains vanadium oxide and titanium dioxide, and the alkali metal content of the catalyst layer is a) the alkali metal content of one catalyst layer A is the highest,
b) Catalyst layer B following catalyst layer A in the flow direction has an alkali metal content of 60 to 90% of the alkali metal content of catalyst layer A;
c) the catalyst layer C following the catalyst layer B in the flow direction has an alkali metal content of 30 to 59% of the alkali metal content of the catalyst layer A;
d) Use of a four-layer catalyst selected such that the catalyst layer Z following the catalyst layer C in the flow direction has an alkali metal content of 0 to 10% of the alkali metal content of the catalyst layer A.
第1触媒層CL1の製造:
流動床塗布装置内で、外径8mm、長さ6mm及び壁厚1.5mmのステアタイト(ケイ酸マグネシウム)リング2000gに、662.8gのアナターゼ(Fuji TA 100C、BET表面積20m2/g)、29.52gの五酸化バナジウム、78.48gのシュウ酸、0.62gの硫酸カリウム、8.31gの硫酸セシウム、1.39gの五酸化ニオブ、0.79gのリン酸二水素アンモニウム、212.9gのホルムアミド、1000gの水及び67.5gのバインダー(49.4質量%の固形分を有する水性ポリマー溶液としての75/25の質量比のアクリル酸−マレイン酸コポリマー;このバインダーの製造はEP1091806に記載されている)の懸濁液900gを90℃で噴霧した。
Production of the first catalyst layer CL1:
In a fluidized bed coater, a steatite (magnesium silicate) ring 2000 g having an outer diameter of 8 mm, a length of 6 mm and a wall thickness of 1.5 mm, 662.8 g of anatase (Fuji TA 100C , BET surface area of 20 m 2 / g), 29.52 g vanadium pentoxide, 78.48 g oxalic acid, 0.62 g potassium sulfate, 8.31 g cesium sulfate, 1.39 g niobium pentoxide, 0.79 g ammonium dihydrogen phosphate, 212.9 g Formamide, 1000 g water and 67.5 g binder (75/25 weight ratio acrylic acid-maleic acid copolymer as an aqueous polymer solution having a solids content of 49.4% by weight; the preparation of this binder is described in EP1091806 900 g) of the suspension was sprayed at 90 ° C.
このように施された触媒活性組成物は、0.03質量%のリン(Pとして計算)、4.22質量%のバナジウム(V2O5として計算)、0.87質量%のセシウム(Csとして計算)、0.2質量%のNb(Nb2O5として計算)、0.04質量%のK(Kとして計算)及び94.68質量%の二酸化チタンを含んでいた。450℃で1時間焼成後の活性組成物含量は8.9%であった。 The catalytically active composition thus applied consists of 0.03% by weight phosphorus (calculated as P), 4.22% by weight vanadium (calculated as V 2 O 5 ), 0.87% by weight cesium (Cs ), 0.2 wt% Nb (calculated as Nb 2 O 5 ), 0.04 wt% K (calculated as K) and 94.68 wt% titanium dioxide. The active composition content after firing at 450 ° C. for 1 hour was 8.9%.
第2触媒層CL2の製造:
触媒を、CL1と比較して懸濁液の組成を変更することにより製造した。こうして施された触媒活性組成物は、0.03質量%のリン(Pとして計算)、4.22質量%のバナジウム(V2O5として計算)、0.67質量%のセシウム(Csとして計算)、0.2質量%のNb(Nb2O5として計算)、0.03質量%のK(Kとして計算)及び94.85質量%の二酸化チタンを含んでいた。450℃で1時間焼成後の活性組成物含量は8.8%であった。
Production of second catalyst layer CL2:
The catalyst was prepared by changing the composition of the suspension compared to CL1. The catalytically active composition thus applied was 0.03% by weight phosphorus (calculated as P), 4.22% by weight vanadium (calculated as V 2 O 5 ), 0.67% by weight cesium (calculated as Cs). ), 0.2 wt% Nb (calculated as Nb 2 O 5 ), 0.03 wt% K (calculated as K) and 94.85 wt% titanium dioxide. The active composition content after calcination at 450 ° C. for 1 hour was 8.8%.
第3触媒層CL3の製造:
触媒を、CL1と比較して懸濁液の組成を変更することにより製造した。こうして施された触媒活性組成物は、0.03質量%のリン(Pとして計算)、4.22質量%のバナジウム(V2O5として計算)、0.45質量%のセシウム(Csとして計算)、0.2質量%のNb(Nb2O5として計算)、0.02質量%のK(Kとして計算)及び95.1質量%の二酸化チタンを含んでいた。450℃で1時間焼成後の活性組成物の含量は9.0質量%であった。
Production of third catalyst layer CL3:
The catalyst was prepared by changing the composition of the suspension compared to CL1. The catalytically active composition thus applied was 0.03% by weight phosphorus (calculated as P), 4.22% by weight vanadium (calculated as V 2 O 5 ), 0.45% by weight cesium (calculated as Cs). ), calculated as Nb (Nb 2 O 5 of 0.2 wt%) contained 0.02 wt% of K (calculated as K), and 95.1 wt% titanium dioxide. The content of the active composition after baking at 450 ° C. for 1 hour was 9.0% by mass.
第4触媒層CL4の製造:
触媒を、CL1と比較して懸濁液の組成を変更することにより製造した。こうして施された触媒活性物質は、0.02質量%のリン(Pとして計算)、4.22質量%のバナジウム(V2O5として計算)、0.00質量%のセシウム(Csとして計算)、0.2質量%のNb(Nb2O5として計算)、0.00質量%のK(Kとして計算)及び95.56質量%の二酸化チタンを含んでいた。450℃で1時間焼成後の活性組成物の含量は9.6質量%であった。
Production of fourth catalyst layer CL4:
The catalyst was prepared by changing the composition of the suspension compared to CL1. The catalytically active material thus applied was 0.02% by weight phosphorus (calculated as P), 4.22% by weight vanadium (calculated as V 2 O 5 ), 0.00% by weight cesium (calculated as Cs) , (calculated as Nb 2 O 5) 0.2 wt% of Nb, contained 0.00 (calculated as K) wt% K and 95.56% by weight of titanium dioxide. The content of the active composition after baking at 450 ° C. for 1 hour was 9.6% by mass.
o−キシレンの無水フタル酸への酸化の説明
o−キシレンの無水フタル酸への接触酸化は、25mmの管の内径を有し、且つ塩浴を用いて冷却される管型反応器中で実施した。温度プロファイルを記録するために、その反応管は熱電対を備えていた。標準立方メートル当たり0〜85gのo−キシレン(純度約99質量%)負荷又はナフタレン(純度約97.5質量%)負荷を有する毎時4.0標準立方メートルの空気をその管に通した。PAn収率を反応器の出口ガスで測定し、100%の純粋なo−キシレン又は100%の純粋なナフタレンに対する質量%で記録した(反応したo−キシレン又はナフタレン(kg)当たりのPAn(kg))。
Description of the oxidation of o-xylene to phthalic anhydride The catalytic oxidation of o-xylene to phthalic anhydride is carried out in a tubular reactor having a 25 mm tube inner diameter and cooled using a salt bath. did. The reaction tube was equipped with a thermocouple to record the temperature profile. 4.0 standard cubic meters of air per hour with 0-85 g o-xylene (purity approx. 99 wt.%) Load or naphthalene (purity approx. 97.5 wt.%) Load per standard cubic meter was passed through the tube. The PAn yield was measured at the outlet gas of the reactor and recorded as mass% relative to 100% pure o-xylene or 100% pure naphthalene (PAn (kg per reacted o-xylene or naphthalene (kg)) )).
結果及び例
例1(本発明による):
床長分布:ステアタイト予備床/CL1/CL2/CL3/CL4 5cm/80cm/80cm/90cm/90cm
標準立方メートル当たり80gのナフタレン負荷、毎時4標準立方メートルの空気及び360℃の塩浴温度で、105.6質量%のPAn収率及びそれぞれ0.00質量%と0.53質量%のフタリドとナフトキノン含量が達成された。標準立方メートル当たり80gの総負荷でo−キシレンとナフタレンの50:50の混合物、毎時4標準立方メートル及び362℃の塩浴温度で、110.1質量%のPAn収率及びそれぞれ0.06質量%と0.41質量%のフタリドとナフトキノン含量が達成された。標準立方メートル当たり30gのナフタレン負荷及び標準立方メートル当たり55gのo−キシレン負荷(総負荷:標準立方メートル当たり85g)、毎時4標準立方メートルの空気及び362℃の塩浴温度で、111.0質量%のPAn収率及びそれぞれ0.11質量%と0.34質量%のフタリドとナフトキノン含量が達成された。したがって、毎時4標準立方メートルの空気で、標準立方メートル当たり少なくとも80gの総負荷で、高PAn収率及び良好な製品範囲(フタリド及びナフトキノンの低い収率)を維持する一方で、o−キシレン/ナフタレン比を0:100%〜65:35%の範囲で変更することができた。ホットスポット温度は、全ての供給組成物で450℃未満であった。
Results and examples Example 1 (according to the invention):
Floor length distribution: Steatite preliminary floor / CL1 / CL2 / CL3 / CL4 5 cm / 80 cm / 80 cm / 90 cm / 90 cm
With a naphthalene load of 80 g per standard cubic meter, 4 standard cubic meters of air per hour and a salt bath temperature of 360 ° C., a PAn yield of 105.6% by weight and a phthalide and naphthoquinone content of 0.00% and 0.53% by weight, respectively. Was achieved. With a total load of 80 g per standard cubic meter, a 50:50 mixture of o-xylene and naphthalene, 4 standard cubic meters per hour and a salt bath temperature of 362 ° C., 110.1% by weight PAn yield and 0.06% by weight respectively. A phthalide and naphthoquinone content of 0.41% by weight was achieved. 111.0 wt% PAn yield at 30 g naphthalene load per standard cubic meter and 55 g o-xylene load per standard cubic meter (total load: 85 g per standard cubic meter), 4 standard cubic meters of air per hour and a salt bath temperature of 362 ° C. And phthalide and naphthoquinone contents of 0.11% and 0.34% by weight, respectively, were achieved. Therefore, o-xylene / naphthalene ratio while maintaining high PAn yield and good product range (low yield of phthalide and naphthoquinone) with 4 standard cubic meters of air per hour and a total load of at least 80 g per standard cubic meter In the range of 0: 100% to 65: 35%. The hot spot temperature was less than 450 ° C. for all feed compositions.
例2(本発明によらない):
床長分布:ステアタイト予備床/CL1/CL2/CL3/CL4 20cm/100cm/0cm/90cm/100cm
標準立方メートル当たり80gのナフタレン負荷、毎時4標準立方メートルの空気及び358℃の塩浴温度で、104.7質量%のPAn収率及びそれぞれ0.00質量%と0.55質量%のフタリドとナフトキノン含量を達成した。標準立方メートル当たり80gの総負荷でo−キシレン及びナフタレンの50:50混合物、毎時4標準立方メートルの空気及び364℃の塩浴温度では、109.6質量%のPAn収率及びそれぞれ0.03質量%と0.31質量%のフタリドとナフタレン含量を達成した。ホットスポット温度は全ての供給組成物で450℃未満であった。供給組成物を標準立方メートル当たり30gのナフタレン負荷及び標準立方メートル当たり55gのo−キシレン負荷(総負荷:標準立方メートル当たり85g)にさらに変更した場合、ホットスポット温度は465℃超に上昇した。触媒は、この供給組成物で安定的に機能することができなかった。したがって、高PAn収率及び良好な製品範囲(フタリド及びナフトキノンの低収率)を得る必要がある場合は、標準立方メートル当たり少なくとも80gの総負荷で、毎時4標準立方メートルの空気で、o−キシレン/ナフタレン比は0:100%〜50:50%の範囲内でしか変更することができなかった。
Example 2 (not according to the invention):
Floor length distribution: Steatite preliminary floor / CL1 / CL2 / CL3 / CL4 20 cm / 100 cm / 0 cm / 90 cm / 100 cm
With a naphthalene load of 80 g per standard cubic meter, 4 standard cubic meters of air per hour and a salt bath temperature of 358 ° C., a PAn yield of 104.7% by mass and a phthalide and naphthoquinone content of 0.00% and 0.55% by mass, respectively. Achieved. With a total load of 80 g per standard cubic meter, a 50:50 mixture of o-xylene and naphthalene, 4 standard cubic meters of air per hour and a salt bath temperature of 364 ° C., 109.6% by weight PAn yield and 0.03% by weight respectively. A phthalide and naphthalene content of 0.31% by weight. The hot spot temperature was less than 450 ° C. for all feed compositions. When the feed composition was further changed to 30 g naphthalene load per standard cubic meter and 55 g o-xylene load per standard cubic meter (total load: 85 g per standard cubic meter), the hot spot temperature rose above 465 ° C. The catalyst could not function stably with this feed composition. Thus, if it is necessary to obtain a high PAn yield and a good product range (low yields of phthalide and naphthoquinone), at a total load of at least 80 grams per standard cubic meter and 4 standard cubic meters of air per hour, o-xylene / The naphthalene ratio could only be changed within the range of 0: 100% to 50: 50%.
Claims (6)
少なくとも3個の触媒層を含み、
各層が、酸化バナジウム及び二酸化チタン並びに各層における触媒活性組成物の合計量に基づいて0.01〜0.50質量%の量の酸化ニオブ(Nb 2 O 5 として計算)を含み、且つ
a)反応器内全触媒充填高さの15〜30%の範囲の床長を有する一の触媒層Aの質量基準のアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに後から続く触媒層Zが、触媒層Aの質量基準のアルカリ金属含量の0〜10%の質量基準のアルカリ金属含量を有し、且つ
c)触媒層AとZの間に位置する触媒層が触媒層Aの質量基準のアルカリ金属含量の30〜90%の質量基準のアルカリ金属含量を有し、各触媒層の質量基準のアルカリ金属含量が流れ方向の次の触媒層の質量基準のアルカリ金属含量よりも高くなるように選択されたアルカリ金属含量を有することを特徴とする多層触媒。 A multilayer catalyst for oxidizing naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride,
Including at least three catalyst layers;
Each layer comprises a niobium oxide of the total amount 0.01 to 0.50 wt% of the amount based on the catalytically active composition in vanadium oxide and titanium dioxide and layers (calculated as Nb 2 O 5), and a) reacting The alkali metal content based on mass of one catalyst layer A having a bed length in the range of 15 to 30% of the total catalyst filling height in the vessel is the highest,
b) the catalyst layer Z following the catalyst layer A in the flow direction has a mass-based alkali metal content of 0-10% of the mass-based alkali metal content of the catalyst layer A, and c) the catalyst layer A catalyst layer disposed between the Z has an alkali metal content of 30% to 90% of the weight of the alkali metal content of the mass of the catalyst layer a, the direction of the next alkali metal content of the mass of each catalyst layer flows A multilayer catalyst characterized by having an alkali metal content selected to be higher than the mass-based alkali metal content of said catalyst layer.
前記触媒層の質量基準のアルカリ金属含量が、
a)反応器内全触媒充填高さの15〜30%の範囲の床長を有する一の触媒層Aの質量基準のアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに続く触媒層Bが、触媒層Aの質量基準のアルカリ金属含量の60〜90%の質量基準のアルカリ金属含量を有し、
c)流れ方向で触媒層Bに続く触媒層Cが、触媒層Aの質量基準のアルカリ金属含量の30〜59%の質量基準のアルカリ金属含量を有し、
d)流れ方向で触媒層Cに続く触媒層Zが、触媒層Aの質量基準のアルカリ金属含量の0〜10%の質量基準のアルカリ金属含量を有するように選択された多層触媒。 A multilayer catalyst according to claim 1 having four layers,
The alkali metal content based on the mass of the catalyst layer is
a) The mass-based alkali metal content of one catalyst layer A having the bed length in the range of 15 to 30% of the total catalyst filling height in the reactor is the highest,
b) a catalyst layer followed by a catalyst layer A in the flow direction B has an alkali metal content of 60% to 90% of the weight of the alkali metal content of the mass of the catalyst layer A,
c) the catalyst layer C following the catalyst layer B in the flow direction has an alkali metal content on a mass basis of 30 to 59% of the alkali metal content on a mass basis of the catalyst layer A;
catalyst layer Z followed catalyst layer C in d) flow direction, selected multilayer catalyst so as to have an alkali metal content of 0% of the weight of the alkali metal content of the mass of the catalyst layer A.
各層が、酸化バナジウム及び二酸化チタン並びに各層における触媒活性組成物の合計量に基づいて0.01〜0.50質量%の量の酸化ニオブ(Nb 2 O 5 として計算)を含み、且つ
a)反応器内全触媒充填高さの15〜30%の範囲の床長を有する一の触媒層Aの質量基準のアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに後から続く触媒層Zが、触媒層Aの質量基準のアルカリ金属含量の0〜10%の質量基準のアルカリ金属含量を有し、
c)触媒層AとZとの間に位置する触媒層が触媒層Aの質量基準のアルカリ金属含量の30〜90%の質量基準のアルカリ金属含量を有し、各触媒層の質量基準のアルカリ金属含量が流れ方向の次の触媒層の質量基準のアルカリ金属含量よりも高くなるように選択されたアルカリ金属含量を有することを特徴とする方法。 A method of oxidizing naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride using a multilayer catalyst comprising at least three catalyst layers,
Each layer comprises a niobium oxide of the total amount 0.01 to 0.50 wt% of the amount based on the catalytically active composition in vanadium oxide and titanium dioxide and layers (calculated as Nb 2 O 5), and a) reacting The alkali metal content based on mass of one catalyst layer A having a bed length in the range of 15 to 30% of the total catalyst filling height in the vessel is the highest,
b) The catalyst layer Z that follows the catalyst layer A in the flow direction has an alkali metal content on a mass basis of 0 to 10% of the alkali metal content on a mass basis of the catalyst layer A,
c) has an alkali metal content of 30% to 90% of the weight of the alkali metal content of the weight of the catalyst layer is the catalyst layer A located between the catalyst layer A and Z, alkali mass of each catalyst layer A method having an alkali metal content selected such that the metal content is higher than the mass-based alkali metal content of the next catalyst layer in the flow direction.
前記触媒層の質量基準のアルカリ金属含量が、
a)反応器内全触媒充填高さの15〜30%の範囲の床長を有する一の触媒層Aの質量基準のアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに続く触媒層Bが、触媒層Aの質量基準のアルカリ金属含量の60〜90%の質量基準のアルカリ金属含量を有し、
c)流れ方向で触媒層Bに続く触媒層Cが、触媒層Aの質量基準のアルカリ金属含量の30〜59%の質量基準のアルカリ金属含量を有し、
d)流れ方向で触媒層Cに続く触媒層Zが、触媒層Aの質量基準のアルカリ金属含量の0〜10%の質量基準のアルカリ金属含量を有するように選択された方法。 The method of claim 3, wherein a four-layer catalyst is used,
The alkali metal content based on the mass of the catalyst layer is
a) The mass-based alkali metal content of one catalyst layer A having the bed length in the range of 15 to 30% of the total catalyst filling height in the reactor is the highest,
b) a catalyst layer followed by a catalyst layer A in the flow direction B has an alkali metal content of 60% to 90% of the weight of the alkali metal content of the mass of the catalyst layer A,
c) the catalyst layer C following the catalyst layer B in the flow direction has an alkali metal content on a mass basis of 30 to 59% of the alkali metal content on a mass basis of the catalyst layer A;
How catalyst layer Z is selected to have an alkali metal content of 0% of the weight of the alkali metal content of the mass of the catalyst layer A followed by the catalyst layer C in d) the flow direction.
各層が、酸化バナジウム及び二酸化チタン並びに各層における触媒活性組成物の合計量に基づいて0.01〜0.50質量%の量の酸化ニオブ(Nb 2 O 5 として計算)を含み、且つ
a)反応器内全触媒充填高さの15〜30%の範囲の床長を有する一の触媒層Aの質量基準のアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに後から続く触媒層Zが、触媒層Aの質量基準のアルカリ金属含量の0〜10%の質量基準のアルカリ金属含量を有し、且つ
c)触媒層AとZと間に位置する触媒層が触媒層Aの質量基準のアルカリ金属含量の30〜90%の質量基準のアルカリ金属含量を有し、各触媒層の質量基準のアルカリ金属含量が流れ方向の次の触媒層の質量基準のアルカリ金属含量より高くなるように選択されたアルカリ金属含量を有することを特徴とする使用方法。 A method for using a multilayer catalyst comprising at least three catalyst layers for oxidizing naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride, comprising:
Each layer comprises a niobium oxide of the total amount 0.01 to 0.50 wt% of the amount based on the catalytically active composition in vanadium oxide and titanium dioxide and layers (calculated as Nb 2 O 5), and a) reacting The alkali metal content based on mass of one catalyst layer A having a bed length in the range of 15 to 30% of the total catalyst filling height in the vessel is the highest,
b) the catalyst layer Z following the catalyst layer A in the flow direction has a mass-based alkali metal content of 0-10% of the mass-based alkali metal content of the catalyst layer A, and c) the catalyst layer A catalyst layer located between Z and has an alkali metal content of 30% to 90% of the weight of the alkali metal content of the mass of the catalyst layer a, the direction of the next alkali metal content of the mass of each catalyst layer flows A method of use characterized by having an alkali metal content selected to be higher than the alkali metal content of the catalyst layer based on mass .
各触媒層が酸化バナジウム及び二酸化チタン並びに各層における触媒活性組成物の合計量に基づいて0.01〜0.50質量%の量の酸化ニオブ(Nb 2 O 5 として計算)を含み、且つ
前記各触媒層の質量基準のアルカリ金属含量が、
a)反応器内全触媒充填高さの15〜30%の範囲の床長を有する一の触媒層Aの質量基準のアルカリ金属含量が最も高く、
b)流れ方向で触媒層Aに続く触媒層Bが、触媒層Aの質量基準のアルカリ金属含量の60〜90%の質量基準のアルカリ金属含量を有し、
c)流れ方向で触媒層Bに続く触媒層Cが、触媒層Aの質量基準のアルカリ金属含量の30〜59%の質量基準のアルカリ金属含量を有し、
d)流れ方向で触媒層Cに続く触媒層Zが、触媒層Aの質量基準のアルカリ金属含量の0〜10%の質量基準のアルカリ金属含量を有するように選択されたことを特徴とする使用方法。 A method of using a four-layer catalyst for oxidizing naphthalene or an o-xylene / naphthalene mixture to phthalic anhydride, comprising:
Each catalyst layer comprises vanadium oxide and titanium dioxide and niobium oxide in an amount of 0.01 to 0.50 mass% ( calculated as Nb 2 O 5 ) based on the total amount of catalytically active composition in each layer , and The alkali metal content based on the mass of the catalyst layer is
a) The mass-based alkali metal content of one catalyst layer A having the bed length in the range of 15 to 30% of the total catalyst filling height in the reactor is the highest,
b) a catalyst layer followed by a catalyst layer A in the flow direction B has an alkali metal content of 60% to 90% of the weight of the alkali metal content of the mass of the catalyst layer A,
c) the catalyst layer C following the catalyst layer B in the flow direction has an alkali metal content on a mass basis of 30 to 59% of the alkali metal content on a mass basis of the catalyst layer A;
Use of the catalyst layer Z followed catalyst layer C in d) the flow direction, characterized in that it is selected to have an alkali metal content of 0% of the weight of the alkali metal content of the mass of the catalyst layer A Method.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10167826 | 2010-06-30 | ||
EP10167826.6 | 2010-06-30 | ||
PCT/IB2011/052831 WO2012001620A1 (en) | 2010-06-30 | 2011-06-28 | Multilayer catalyst for preparing phthalic anhydride and process for preparing phthalic anhydride |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013537476A JP2013537476A (en) | 2013-10-03 |
JP5879342B2 true JP5879342B2 (en) | 2016-03-08 |
Family
ID=45401470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013517626A Expired - Fee Related JP5879342B2 (en) | 2010-06-30 | 2011-06-28 | Multilayer catalyst for producing phthalic anhydride and method for producing phthalic anhydride |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5879342B2 (en) |
DE (1) | DE112011102205A5 (en) |
WO (1) | WO2012001620A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3470138A1 (en) * | 2017-10-10 | 2019-04-17 | Opti-Innovations Limited | Catalyst fuel additive |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5673543A (en) * | 1979-11-19 | 1981-06-18 | Nippon Shokubai Kagaku Kogyo Co Ltd | Catalyst for production of phthalic anhydride |
TW415939B (en) * | 1996-10-23 | 2000-12-21 | Nippon Steel Chemical Co | Gas-phase oxidization process and process for the preparation of phthalic anhydride |
DE10323818A1 (en) * | 2003-05-23 | 2004-12-09 | Basf Ag | Catalyst systems for the production of phthalic anhydride |
DE10323817A1 (en) * | 2003-05-23 | 2004-12-09 | Basf Ag | Process for the preparation of phthalic anhydride |
RU2007122282A (en) * | 2004-11-18 | 2008-12-27 | БАСФ Акциенгезельшафт (DE) | APPLICATION OF MIXTURES OF TITANIUM DIOXIDE FOR PRODUCING CATALYSTS |
EP2012918A1 (en) * | 2006-04-12 | 2009-01-14 | Basf Se | Catalyst system for preparing carboxylic acids and/or carboxylic anhydrides |
EP1852413A1 (en) * | 2006-04-27 | 2007-11-07 | Basf Aktiengesellschaft | Process for gas phase oxidation with the use of a moderator layer |
EP2024085A1 (en) * | 2006-05-19 | 2009-02-18 | Basf Se | Catalyst system for the manufacture of carboxylic acids and/or carboxylic acid anhydrides |
CN101472680A (en) * | 2006-06-20 | 2009-07-01 | 巴斯夫欧洲公司 | Catalyst system and method for producing carboxylic acids and/or carboxylic acid anhydrides |
-
2011
- 2011-06-28 DE DE112011102205T patent/DE112011102205A5/en not_active Ceased
- 2011-06-28 JP JP2013517626A patent/JP5879342B2/en not_active Expired - Fee Related
- 2011-06-28 WO PCT/IB2011/052831 patent/WO2012001620A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE112011102205A5 (en) | 2013-06-27 |
WO2012001620A1 (en) | 2012-01-05 |
CN102958605A (en) | 2013-03-06 |
JP2013537476A (en) | 2013-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8859459B2 (en) | Multilayer catalyst for preparing phthalic anhydride and process for preparing phthalic anhydride | |
KR100553285B1 (en) | Multilayered Shell Catalysts for Catalytic Gaseous Phase Oxidation of Aromatic Hydrocarbons | |
JP5973436B2 (en) | Catalyst for oxidizing o-xylene and / or naphthalene to phthalic anhydride | |
US7371893B2 (en) | Production of aldehydes, carboxylic acids and/or carboxylic acid anhydrides by means of catalysts containing vanadium oxide, titanium dioxide, and antimony oxide | |
JP2013511377A (en) | Multilayer catalyst for producing carboxylic acid and / or carboxylic anhydride having vanadium antimonate in at least one catalyst layer, and method for producing phthalic anhydride having low hot spot temperature | |
JPH08318160A (en) | Supported catalyst for gas phase oxidation reaction | |
KR20070086369A (en) | Use of titanium dioxide mixtures for producing catalysts | |
US9029289B2 (en) | Catalyst for preparing carboxylic acids and/or carboxylic anhydrides | |
JP2009541245A (en) | Catalyst system and process for producing carboxylic acid and / or carboxylic anhydride | |
US20070135302A1 (en) | Mehtod for the production of a catalyst for gas-phase oxidations by the coating of support materials in a fluid bed apparatus | |
TWI423955B (en) | Process for gas phase oxidation using a moderator layer | |
JP2016529219A (en) | Method for producing phthalic anhydride | |
ZA200601747B (en) | Catalyst for gas phase oxidations | |
US20110230668A1 (en) | Catalyst for gas phase oxidations based on low-sulfur and low-calcium titanium dioxide | |
MXPA06002874A (en) | Gas phase oxidation catalyst with defined vanadium oxide particle size distribution. | |
US10710054B2 (en) | Multi-zoned catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride | |
JP6563410B2 (en) | Catalyst system for oxidizing o-xylol and / or naphthalene to phthalic anhydride | |
US9212157B2 (en) | Catalyst for the oxidation of o-xylene and/or naphthalene to phthalic anhydride | |
JP6466429B2 (en) | Method for starting a gas phase oxidation reactor | |
JP5879342B2 (en) | Multilayer catalyst for producing phthalic anhydride and method for producing phthalic anhydride | |
JP5856089B2 (en) | Titanium dioxide based gas phase oxidation catalyst with low sulfur and calcium content | |
KR20160132914A (en) | Catalyst arrangement with optimized void fraction for the production of phthalic acid anhydride | |
JP2015530228A (en) | Catalyst for producing carboxylic acid and / or carboxylic anhydride | |
CN102958605B (en) | For preparing the multi-layer catalyst of phthalic anhydride and preparing the method for phthalic anhydride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140703 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20150914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5879342 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |