JP5878387B2 - Antistatic coating floor - Google Patents
Antistatic coating floor Download PDFInfo
- Publication number
- JP5878387B2 JP5878387B2 JP2012023274A JP2012023274A JP5878387B2 JP 5878387 B2 JP5878387 B2 JP 5878387B2 JP 2012023274 A JP2012023274 A JP 2012023274A JP 2012023274 A JP2012023274 A JP 2012023274A JP 5878387 B2 JP5878387 B2 JP 5878387B2
- Authority
- JP
- Japan
- Prior art keywords
- floor
- antistatic
- antistatic coating
- coating floor
- outermost surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011248 coating agent Substances 0.000 title description 121
- 238000000576 coating method Methods 0.000 title description 121
- 238000002156 mixing Methods 0.000 claims description 43
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 33
- 239000011324 bead Substances 0.000 claims description 33
- 229920005989 resin Polymers 0.000 claims description 31
- 239000011347 resin Substances 0.000 claims description 31
- 230000003746 surface roughness Effects 0.000 claims description 29
- 239000011342 resin composition Substances 0.000 claims description 28
- 239000011230 binding agent Substances 0.000 claims description 22
- 239000006258 conductive agent Substances 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 description 45
- 239000000463 material Substances 0.000 description 27
- 229920000049 Carbon (fiber) Polymers 0.000 description 26
- 239000004917 carbon fiber Substances 0.000 description 26
- 239000000835 fiber Substances 0.000 description 21
- 239000010410 layer Substances 0.000 description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 21
- 238000009408 flooring Methods 0.000 description 17
- 239000002245 particle Substances 0.000 description 17
- 239000002904 solvent Substances 0.000 description 16
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 230000005611 electricity Effects 0.000 description 12
- 230000003068 static effect Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 230000001771 impaired effect Effects 0.000 description 9
- 230000003796 beauty Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000003973 paint Substances 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000007655 standard test method Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 102100033806 Alpha-protein kinase 3 Human genes 0.000 description 1
- 101710082399 Alpha-protein kinase 3 Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ZEASXVYVFFXULL-UHFFFAOYSA-N amezinium metilsulfate Chemical compound COS([O-])(=O)=O.COC1=CC(N)=CN=[N+]1C1=CC=CC=C1 ZEASXVYVFFXULL-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Floor Finish (AREA)
Description
本発明は、帯電防止機能を備えた帯電防止塗り床に関するものである。 The present invention relates to an antistatic coating floor having an antistatic function.
工場をはじめとする各種生産設備等の床として、単層の、または多層構造の塗り床が広く採用されている。かかる塗り床は、工場等で使用する薬品や溶剤に対する耐性に優れている必要がある。
また、例えば半導体素子等の電子部品の製造工程に使用するクリーンルーム等の、高度の防塵性能が要求される床や、あるいは有機溶剤やガス等を取り扱うため静電気スパークの発生を高度に防止することが求められる床などに適用する塗り床は、前記耐性に加えて、電気抵抗値(漏洩抵抗値)が低く帯電を防止する機能(帯電防止機能)を有している必要もある。
Single-layer or multi-layer coated floors are widely used as floors for various production facilities such as factories. Such a coated floor needs to have excellent resistance to chemicals and solvents used in factories and the like.
In addition, for example, clean rooms used in the manufacturing process of electronic components such as semiconductor elements, floors that require a high level of dust resistance, or handling of organic solvents and gases are required to prevent the occurrence of static electricity sparks. In addition to the above-mentioned resistance, the coated floor applied to the floor to be used must have a function of preventing electric charge (antistatic function) having a low electrical resistance value (leakage resistance value).
これは、漏洩抵抗値の高い絶縁体からなる塗り床は、作業者がその上を歩行するだけで帯電しやすい上、帯電によって塗り床それ自体や作業者に蓄積される静電気を漏洩しにくいためである。
そこで、前記電子部品の製造工場等に施工する塗り床には、蓄積された静電気の作用で作業者の体に付着した埃等がクリーンルーム内に持ち込まれたり、電子部品の製造工程に混入したりするのを防止するいわゆる防塵性能を付与するべく、上記のように帯電防止機能を有していることが求められる。
This is because a painted floor made of an insulator with a high leakage resistance value is easy to be charged when an operator walks on it, and it is difficult to leak static electricity accumulated in the painted floor itself or the worker due to charging. It is.
Therefore, dust that adheres to the operator's body due to the accumulated static electricity is brought into the clean room or mixed in the manufacturing process of the electronic component on the floor to be constructed in the electronic component manufacturing factory or the like. In order to provide a so-called dustproof performance for preventing this, it is required to have an antistatic function as described above.
また近年、作業者が床上を歩いたり作業したりした際に発生する静電気それ自体によって電子部品が破壊されることをも防止するため、前記塗り床(帯電防止塗り床)には、これまでに比べてより一層高い帯電防止機能を有していることが求められるようにもなってきている。
例えば100V以下の静電気で破壊される電子部品を扱う工場では、床上を歩いたり作業したりした際の帯電により作業者に蓄積される静電気の電位、いわゆる人体帯電電位を数十V以下に抑えることができる帯電防止機能を有していることが求められる。
In recent years, in order to prevent electronic components from being destroyed by static electricity generated when an operator walks or works on the floor, the coating floor (antistatic coating floor) In comparison with this, it has been required to have a higher antistatic function.
For example, in a factory that handles electronic parts that are destroyed by static electricity of 100 V or less, the potential of static electricity accumulated in the worker by charging when walking or working on the floor, the so-called human body charging potential is suppressed to tens of volts or less. It is required to have an antistatic function capable of
これらの要求を満足する帯電防止塗り床を形成しうる塗り床材としては、例えば有機溶剤や水等の溶剤に、ベースとなるバインダ樹脂、導電性付与剤、その他の添加剤を配合して調製される、ペイントタイプの塗り床材が知られている。
前記ペイントタイプの塗り床材とは、比較的低粘度で、例えばローラや刷毛等によって塗布することができ、1回の塗布によって、例えば0.5mm以下程度の厚みに塗布されるタイプの塗り床材を指す。
As a flooring material that can form an antistatic coating floor that satisfies these requirements, it is prepared by blending a binder resin, a conductivity imparting agent, and other additives as a base with a solvent such as an organic solvent or water. Paint-type flooring materials are known.
The paint-type coating floor material has a relatively low viscosity and can be applied by, for example, a roller or a brush, and can be applied to a thickness of, for example, about 0.5 mm or less by a single application. Refers to wood.
前記ペイントタイプで、かつ導電性付与剤が配合された塗り床材によれば、溶剤の蒸発による体積減少によって、形成後の帯電防止塗り床中で導電性付与剤同士を密に接触させることでその接点を増加させて、電気が流れる良好な道筋を構成することができる。そのため比較的少量の導電性付与剤の配合によって帯電防止塗り床の漏洩抵抗値を十分に低下させて、当該帯電防止塗り床に適度な帯電防止機能を付与することができる(例えば特許文献1等参照)。 According to the paint flooring and the coating floor material in which the conductivity-imparting agent is blended, the conductivity-imparting agent is brought into intimate contact with each other in the antistatic coating floor after the formation by reducing the volume by evaporation of the solvent. By increasing the number of contacts, a good path through which electricity flows can be constructed. For this reason, the leakage resistance value of the antistatic coating floor can be sufficiently reduced by adding a relatively small amount of the conductivity-imparting agent, and an appropriate antistatic function can be imparted to the antistatic coating floor (for example, Patent Document 1). reference).
しかし自動搬送車やフォークリフト、リーチフォークなどの輸送手段を導入している工場の床などでは、特に前記輸送手段のタイヤなどから高い荷重を受けたり、あるいは作業者が頻繁に通行したりする特定の領域で、帯電防止塗り床が局部的に摩耗して帯電防止機能が比較的短期間で失われたり、それによって露出したコンクリート等の下地から埃等が発生したりしやすいという問題がある。特に、前記ペイントタイプの塗り床材からなる帯電防止塗り床は厚みが小さいため、これらの問題を生じやすい。 However, on the floors of factories that have introduced transportation means such as automated guided vehicles, forklifts, reach forks, etc., there are specific loads that receive high loads, especially from tires of the transportation means, or where workers frequently pass. In this region, there is a problem that the antistatic coating floor is locally worn and the antistatic function is lost in a relatively short period of time, and dust or the like is likely to be generated from the exposed ground such as concrete. In particular, since the antistatic coating floor made of the paint type coating floor material has a small thickness, these problems are likely to occur.
また近年、特に有機溶剤を多量に含む前記ペイントタイプの塗り床材は、現場施工時の臭気の問題や換気確保の問題等もあって敬遠されつつあるという問題もある。
これに対し、流しのべタイプの塗り床材(以下「流しのべ塗り床材」と記載する場合がある。)を用いれば、強度や耐久性に優れた塗り床を形成することができる。
前記流しのべ塗り床材とは、例えばエポキシ樹脂等の硬化性のバインダ樹脂を主体とし、基本的に溶剤を含まないか、もしくはペイントタイプのものに比べて少量の溶剤しか含まず、比較的高粘度で、通常は金ゴテなどを使用して塗り拡げて塗布(流しのべ塗布)するタイプの塗り床材であって、1回の塗布によって、例えば0.5〜2mm程度の厚みに塗布することができる塗り床材を指す。
In recent years, the paint-type flooring material containing a large amount of an organic solvent has also been evaded due to problems such as odor and construction of ventilation during field construction.
On the other hand, when a sink type coating floor material (hereinafter sometimes referred to as “a sinking floor coating material”) is used, a coating floor having excellent strength and durability can be formed.
The sink flooring material is mainly composed of, for example, a curable binder resin such as an epoxy resin, and basically does not contain a solvent, or contains a small amount of solvent compared to a paint type, and relatively It is a high-viscosity type flooring material that is usually spread and applied using a gold trowel, etc. (spreading pan application), and is applied to a thickness of, for example, about 0.5 to 2 mm by a single application. Refers to the flooring material that can be.
前記流しのべ塗り床材によれば、上記のように厚塗りが可能である上、溶剤の蒸発による体積減少が小さいため厚みが大きいことと、硬化性のバインダ樹脂の硬化物からなることとが相まって十分な強度を有し、前記特定の領域において局部的に摩耗したり失われたりしにくい耐久性に優れた塗り床を形成することができる。
また流しのべ塗り床材は、前記のように基本的に溶剤を含まないか、もしくはペイントタイプのものに比べて少量の溶剤しか含まないため、現場施工時の臭気の問題や換気確保の問題等を生じにくいという利点もある。
According to the sink flooring material, it is possible to apply a thick coating as described above, and because the volume reduction due to evaporation of the solvent is small, the thickness is large, and it is made of a cured product of a curable binder resin. In combination, it is possible to form a coated floor having sufficient strength and having excellent durability that is not easily worn or lost locally in the specific region.
In addition, as mentioned above, sink flooring materials do not contain solvent basically or contain a small amount of solvent compared to paint type, so there are odor problems and ventilation problems at the construction site. There is also an advantage that it does not easily occur.
前記流しのべ塗り床材からなる塗り床に帯電防止機能を付与するべく漏洩抵抗値を低下させるためには、例えば黒鉛、導電性カーボンブラック、金属粉、金属繊維等の導電性付与剤を配合するのが一般的である。
しかし流しのべ塗り床材は、前記のようにペイントタイプのものに比べて溶剤の蒸発による体積減少が小さいため、形成後の帯電防止塗り床中で導電性付与材同士を接触させて形成できる接点の数が少ない。
In order to reduce the leakage resistance value in order to give an antistatic function to the floor made of the above-mentioned floor pan coating material, for example, a conductivity imparting agent such as graphite, conductive carbon black, metal powder, metal fiber, etc. is blended. It is common to do.
However, as described above, since the volume reduction due to the evaporation of the solvent is smaller than that of the paint type as described above, it can be formed by bringing the conductivity-imparting materials into contact with each other in the antistatic coating floor after formation. There are few contacts.
そのため、導電性付与剤をペイントタイプのものと同等程度の割合で配合しただけでは、電気が流れる良好な道筋を構成して帯電防止塗り床の漏洩抵抗値を低下させる効果が十分に得られず、前記帯電防止塗り床に適度な帯電防止機能を付与できないという問題がある。
帯電防止塗り床の漏洩抵抗値を十分に低下させるためには、導電性付与剤の配合割合を増加させて、前記接点の数を増加させることが考えられる。
Therefore, just adding the conductivity-imparting agent at a rate equivalent to that of the paint type does not provide a sufficient effect of reducing the leakage resistance value of the antistatic coating floor by constituting a good path through which electricity flows. There is a problem that an appropriate antistatic function cannot be imparted to the antistatic coating floor.
In order to sufficiently reduce the leakage resistance value of the antistatic coating floor, it is conceivable to increase the number of the contacts by increasing the blending ratio of the conductivity imparting agent.
しかしその場合には、帯電防止塗り床が黒色(黒鉛や導電性カーボンブラックを含有させた場合)、または金属固有の色調(金属粉や金属繊維を含有させた場合)となったり、表面のツヤが失われたりして、その外観や美装性が損なわれるという問題がある。
また導電性付与剤の配合割合を増加させるほど、相対的にバインダ樹脂の配合割合が少なくなるため、前記流しのべ塗り床材によって形成する帯電防止塗り床に特に求められる、先に説明した強度や耐久性が低下するという問題もある。
However, in that case, the antistatic coating floor may be black (when graphite or conductive carbon black is included), or it may have a unique color tone (when metal powder or metal fiber is included), or it may have a glossy surface. There is a problem in that the appearance and appearance are impaired.
Further, as the blending ratio of the conductivity-imparting agent is increased, the blending ratio of the binder resin is relatively reduced, so that the above-described strength is particularly required for the antistatic coating floor formed by the above-mentioned non-stick coating floor material. There is also a problem that durability is lowered.
特許文献2には、流しのべ塗り床材の導電性付与剤として、例えばチタン酸カリウム(ウィスカー)の表面を酸化スズ、アンチモン等の導電性物質でコートしたもの等の、白色導電性繊維を用いること、それによって外観や美装性を損なうことなしに、帯電防止塗り床の漏洩抵抗値を低下させることが記載されている。
しかし発明者の検討によると、前記白色導電性繊維は、先に説明した従来の導電性付与剤と機能的には変わりがないため、特に人体帯電電位を数十V以下に抑えることができる高い帯電防止機能を有する帯電防止塗り床を形成するには、やはりその配合割合を、ペイントタイプのものよりも増加させる必要がある。そのため、前記白色導電性繊維は白色であるため帯電防止塗り床の色調には影響を生じないものの、その表面のツヤが失われたり、強度や耐久性が低下したりするという問題を解決することはできない。
In Patent Document 2, white conductive fibers such as those in which the surface of potassium titanate (whisker) is coated with a conductive substance such as tin oxide and antimony are used as the conductivity imparting agent for the sink floor coating. It is described that the leakage resistance value of the antistatic coating floor is lowered without using it, thereby impairing the appearance and appearance.
However, according to the inventor's study, the white conductive fiber is not functionally different from the conventional conductivity-imparting agent described above, so that the human body charging potential can be suppressed to tens of volts or less. In order to form an antistatic coating floor having an antistatic function, it is necessary to increase the blending ratio as compared with the paint type. Therefore, although the white conductive fiber is white, it does not affect the color tone of the antistatic coated floor, but it solves the problem that the gloss of the surface is lost or the strength and durability are reduced. I can't.
本発明の目的は、外観や美装性に優れる上、十分な強度と耐久性とを有しており、しかも従来に比べて帯電防止機能に優れた、新規な帯電防止塗り床を提供することにある。 An object of the present invention is to provide a novel antistatic coated floor which has excellent appearance and beauty, has sufficient strength and durability, and has an antistatic function as compared with the conventional one. It is in.
人体帯電電位PHは、発生する静電気の電荷量Q1、漏洩する電荷量Q2、および人体の静電容量CHと、式(1):
PH=(Q1−Q2)/CH (1)
に示す関係にある。人体帯電電位PHを小さくするには、人体の静電容量CH、または漏洩する電荷量Q2を大きくするか、または発生する電荷量Q1を小さくすればよい。
The human body charging potential P H is the amount of electrostatic charge Q 1 generated, the amount of leaked charge Q 2 , and the human body capacitance C H : Equation (1):
P H = (Q 1 −Q 2 ) / C H (1)
The relationship is shown in To reduce the body charging potential P H may be smaller charge amount Q 1 of either increase body capacitance C H, or the amount of charge Q 2 to which leakage or generated.
ただし人体の静電容量CHは、概ね100〜150PF程度で変えることができない。そのため従来は、漏洩する電荷量Q2を大きくするべく、先に説明したように導電性付与剤の配合割合を増加させることで帯電防止塗り床の漏洩抵抗値を低下させていたが、前記のようにその効果には限界があり、前記配合割合を増加させるほど、帯電防止塗り床の外観や美装性が損なわれたり、強度や耐久性が低下したりするといった問題を生じやすくなる傾向があった。 However the capacitance C H of the human body, not generally can vary about 100~150PF. Therefore conventionally, in order to increase the amount of charge Q 2 to which leakage has been reduced the leakage resistance of the antistatic coating bed by increasing the mixing ratio of conductive agent as described above, of the Thus, there is a limit to the effect, and as the blending ratio is increased, the appearance and appearance of the antistatic coating floor are impaired, and the problem that the strength and durability tend to be reduced tends to occur. there were.
そこで発明者は、前記電荷量Q2を増加させることに代えて、あるいは電荷量Q2を増加させることに加えて、発生する電荷量Q1を小さくすること、つまり静電気の発生それ自体を抑えることを検討した。
二つの物体が触れるとき、静電気は、接触、剥離、および摩擦によって発生する。前記二つの物体の接触面積を小さくするほど、前記接触、剥離、および摩擦によって発生する静電気の電荷量を小さくすることができる。
Therefore, the inventors have, instead of increasing the charge amount Q 2, or in addition to increasing the amount of charge Q 2, reducing the amount of charge Q 1 of generating, suppress i.e. generation of static electricity itself I examined that.
When two objects touch, static electricity is generated by contact, peeling, and friction. The smaller the contact area between the two objects, the smaller the amount of static electricity generated by the contact, delamination and friction.
発明者は、この理論を帯電防止塗り床に適用し、当該帯電防止塗り床の最表面に微細な凹凸を形成して、作業者の靴底等との接触面積を小さくすることにより、前記式(1)中の電荷量Q1を小さくして人体帯電電位PHを低減することを考えた。
その結果、帯電防止塗り床の最表面に微細な凹凸を形成するには、当該最表面に位置する層のもとになる流しのべ塗り床材等の樹脂組成物中に、バインダ樹脂、導電性付与剤等とともにアクリルビーズを配合すればよいことを見出した。
The inventor applies this theory to an antistatic coating floor, forms fine irregularities on the outermost surface of the antistatic coating floor, and reduces the contact area with the shoe sole of the operator, thereby reducing the above formula. (1) to reduce the charge amount to Q 1 in thought to reduce the human body charging potential P H.
As a result, in order to form fine irregularities on the outermost surface of the antistatic coating floor, a binder resin, a conductive resin, etc. are contained in a resin composition such as a non-stick flooring material that is the basis of the layer located on the outermost surface. It has been found that acrylic beads may be blended together with a property-imparting agent and the like.
そこで、前記アクリルビーズの配合によって形成される凹凸の大きさについてさらに検討した結果、前記凹凸の大きさを、帯電防止塗り床の最表面の表面粗さRaで表して0.1μm以上、0.5μm以下の範囲内とすればよいことを見出し、本発明を完成するに至った。
したがって本発明は、バインダ樹脂、導電性付与剤、およびアクリルビーズを含む樹脂組成物からなり、最表面に位置する層を少なくとも含み、前記最表面の表面粗さRaが0.1μm以上、0.5μm以下であることを特徴とする帯電防止塗り床である。
Therefore, as a result of further investigation on the size of the irregularities formed by the blending of the acrylic beads, the size of the irregularities is expressed by the surface roughness Ra of the outermost surface of the antistatic coating floor, 0.1 μm or more, and 0.0. The inventors have found that the thickness may be within a range of 5 μm or less, and have completed the present invention.
Accordingly, the present invention is Ba inductor resin, conductive agent, and a resin composition comprising an acrylic bead, comprising at least a layer located on the outermost surface, the surface roughness Ra of the outermost surface 0.1μm or more, 0 It is an antistatic coating floor characterized by being 5 μm or less.
前記本発明の帯電防止塗り床において、最表面の表面粗さRaが前記範囲内に限定されるのは、下記の理由による。
すなわち帯電防止塗り床の最表面の表面粗さRaが0.1μm未満では、前記最表面に凹凸を形成することによる、当該最表面と作業者の靴底等との接触面積を小さくして、両者間の接触、剥離、および摩擦によって発生する電荷量Q1を小さくし、それによって人体帯電電位PHを低減する効果が得られない。
In the antistatic coating floor of the present invention, the surface roughness Ra of the outermost surface is limited to the above range for the following reason.
That is, when the surface roughness Ra of the outermost surface of the antistatic coating floor is less than 0.1 μm, the contact area between the outermost surface and the shoe sole of the operator is reduced by forming irregularities on the outermost surface, contact between them, peeling, and the charge amount Q 1 generated by friction is reduced, thereby not to obtain the effect of reducing body charging potential P H.
一方、表面粗さRaが0.5μmを超える場合には、前記最表面の凹凸が大きくなりすぎてツヤが失われて、帯電防止塗り床の外観や美装性が損なわれてしまう。
これに対し、帯電防止塗り床の最表面の表面粗さRaを前記範囲内とすることで、帯電防止塗り床の良好な外観や美装性を維持しながら、前記最表面と作業者の靴底等との接触面積を小さくして、両者間の接触、剥離、および摩擦によって発生する電荷量Q1を小さくし、それによって人体帯電電位PHを低減することが可能となる。
On the other hand, when the surface roughness Ra exceeds 0.5 μm, the unevenness of the outermost surface becomes too large and the gloss is lost, and the appearance and appearance of the antistatic coating floor are impaired.
In contrast, by setting the surface roughness Ra of the outermost surface of the antistatic coating floor within the above range, the outermost surface and the shoe of the operator are maintained while maintaining the good appearance and beauty of the antistatic coating floor. the contact area between the bottom and the like by reducing the contact therebetween, peeling, and the charge amount Q 1 generated by friction is reduced, thereby allowing to reduce the human body charging potential P H.
なお本発明では、前記表面粗さRaを、日本工業規格JIS B0601:2001「製品の幾何特性仕様(GPS)−表面性状:輪郭曲線方式−用語,定義及び表面性状パラメータ」において規定された粗さ曲線の算術平均粗さRaでもって表すこととする。
前記本発明の帯電防止塗り床のもとになる樹脂組成物における、アクリルビーズの配合割合は、バインダ樹脂100質量部あたり6質量部以上、50質量部以下であるのが好ましい。
In the present invention, the surface roughness Ra is the roughness specified in Japanese Industrial Standard JIS B0601: 2001 “Product Geometrical Specification (GPS) —Surface Property: Contour Curve Method—Terminology, Definition, and Surface Property Parameter”. It will be expressed by the arithmetic average roughness Ra of the curve.
The blending ratio of the acrylic beads in the resin composition that is the basis of the antistatic coating floor of the present invention is preferably 6 parts by mass or more and 50 parts by mass or less per 100 parts by mass of the binder resin.
アクリルビーズの配合割合が前記範囲未満では、当該アクリルビーズの平均粒径や、樹脂組成物の、単位面積あたりの塗布量等によっても異なるものの、前記樹脂組成物を下地上に塗布して形成された層からなる、帯電防止塗り床の最表面の表面粗さRaが前記範囲未満となって、前記最表面に凹凸を形成することで作業者の靴底等との接触面積を小さくして、両者間の接触、剥離、および摩擦によって発生する電荷量Q1を小さくし、それによって人体帯電電位PHを低減する効果が十分に得られないおそれがある。 When the blending ratio of the acrylic beads is less than the above range, the resin composition is formed on the base, although it varies depending on the average particle diameter of the acrylic beads and the coating amount of the resin composition per unit area. and a layer, the surface roughness Ra of the outermost surface of the antistatic coating bed becomes less than the above range, by reducing the contact area between the operator of the sole such as by forming irregularities on the outermost surface, contact between them, peeling, and reduces the amount of charge Q 1 generated by friction, whereby the effect of reducing the body charging potential P H may not be sufficiently obtained.
一方、配合割合が前記範囲を超える場合には、前記帯電防止塗り床の最表面の表面粗さRaが前記範囲を超え、前記最表面のツヤが失われて、帯電防止塗り床の外観や美装性が損なわれるおそれがある。また、相対的にバインダ樹脂の配合割合が少なくなるため、帯電防止塗り床の強度や耐久性が低下するおそれもある。
これに対し、アクリルビーズの配合割合を前記6質量部以上、50質量部以下の範囲内とすることで、帯電防止塗り床の良好な外観や美装性、あるいは十分な強度や耐久性を維持しながら、前記最表面と作業者の靴底等との接触面積を小さくして、両者間の接触、剥離、および摩擦によって発生する電荷量Q1を小さくし、人体帯電電位PHを低減する効果をさらに向上することが可能となる。
On the other hand, when the blending ratio exceeds the above range, the surface roughness Ra of the outermost surface of the antistatic coating floor exceeds the range, the gloss of the outermost surface is lost, and the appearance and beauty of the antistatic coating floor are lost. Wearability may be impaired. Further, since the blending ratio of the binder resin is relatively reduced, the strength and durability of the antistatic coating floor may be lowered.
On the other hand, by maintaining the blending ratio of the acrylic beads within the range of 6 parts by mass or more and 50 parts by mass or less, the good appearance and appearance of the antistatic coated floor, or sufficient strength and durability are maintained. while the by reducing the contact area between the shoe sole or the like of the outermost surface and the operator, the contact between the two, small peeling, and the charge amount Q 1 generated by friction, reducing body charging potential P H The effect can be further improved.
前記本発明の帯電防止塗り床は、漏洩抵抗値が1×109Ω未満であるのが好ましい。
漏洩抵抗値が前記範囲以上では、たとえ帯電防止塗り床の最表面に、前記所定の表面粗さRaの範囲を満足する凹凸を形成して、作業者の靴底等との接触面積を小さくしたとしても、漏洩する電荷量Q2が小さすぎるため、人体帯電電位PHを低減する効果が得られないおそれがある。
The antistatic coating floor of the present invention preferably has a leakage resistance value of less than 1 × 10 9 Ω.
When the leakage resistance value is equal to or greater than the above range, unevenness that satisfies the range of the predetermined surface roughness Ra is formed on the outermost surface of the antistatic coating floor to reduce the contact area with the shoe sole of the operator. as well, since the charge amount Q 2 to which leaking is too small, there is a possibility that the effect of reducing body charging potential P H can not be obtained.
なお前記電荷量Q2を大きくして人体帯電電位PHを小さくするという原理原則からすると、前記漏洩抵抗値は、前記範囲内でも小さければ小さいほど好ましい。ただし、漏電による事故等を防いで安全性を向上することを考慮すると、前記漏洩抵抗値は、前記範囲内でも2.5×104Ω以上であるのが好ましい。この値は、200Vの交流電流が作業者の体を通って帯電防止塗り床に流れる場合を想定し、その際に10mA以下の電流しか流さないための最小の漏洩抵抗値に相当する。体を流れる電流値が10mAを超えると、筋肉が収縮して支配力を失い、危険性が高まるためである。 Note From principles of reducing the amount of charge Q 2 to increase to the human body charging potential P H, the leakage resistance is preferably as small as possible even within the above range. However, in consideration of improving safety by preventing accidents due to electric leakage, the leakage resistance value is preferably 2.5 × 10 4 Ω or more even within the above range. This value assumes the case where an alternating current of 200 V flows through the worker's body to the antistatic coating floor, and corresponds to the minimum leakage resistance value for flowing only a current of 10 mA or less. This is because when the value of current flowing through the body exceeds 10 mA, the muscle contracts and loses control power, increasing the risk.
本発明によれば、外観や美装性に優れる上、十分な強度と耐久性とを有しており、しかも従来に比べて帯電防止機能に優れた、新規な帯電防止塗り床を提供することができる。 According to the present invention, it is possible to provide a novel antistatic coating floor that has excellent appearance and beauty, has sufficient strength and durability, and is superior in antistatic function as compared with conventional ones. Can do.
本発明は、バインダ樹脂、導電性付与剤、およびアクリルビーズを含む樹脂組成物からなり最表面に位置する層を少なくとも含み、前記最表面の表面粗さRaが0.1μm以上、0.5μm以下であることを特徴とする帯電防止塗り床である。
《樹脂組成物》
〈バインダ樹脂〉
バインダ樹脂としては、特に現場施工において、加熱を必要とせずに室温(5〜35℃)程度で硬化反応させることができる2液硬化型樹脂、湿気硬化型樹脂、ラジカル重合性樹脂等が好ましい。
The present invention, bus inductor resin, conductive agent, and at least includes a layer located on the outermost surface of a resin composition containing the acrylic beads, the surface roughness Ra of the outermost surface 0.1μm or more, 0.5 [mu] m An antistatic coating floor characterized by the following.
<Resin composition>
<Binder resin>
The binder resin is preferably a two-component curable resin, a moisture curable resin, a radical polymerizable resin, or the like that can be cured and reacted at about room temperature (5-35 ° C.) without requiring heating, particularly in field construction.
また樹脂組成物に配合する溶剤の量を極力少なくしたり、溶剤の配合を省略したりすることを考慮すると、前記バインダ樹脂は、硬化前に液状を呈する液状樹脂であるのが好ましい。
かかる硬化性のバインダ樹脂としては、例えばエポキシ樹脂、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ビニルエステル樹脂等の1種または2種以上が挙げられる。
In consideration of minimizing the amount of the solvent to be blended in the resin composition or omitting the blending of the solvent, the binder resin is preferably a liquid resin that exhibits a liquid state before being cured.
Examples of the curable binder resin include one or more of epoxy resin, urethane resin, acrylic resin, polyester resin, vinyl ester resin, and the like.
特に帯電防止塗り床に高い強度を付与して、先に説明した特定の領域等において局部的に摩耗したり失われたりしにくくすることや、樹脂組成物に配合する溶剤の量を極力少なくしたり、溶剤の配合を省略したりすること等を考慮すると液状のエポキシ樹脂、特に液状で、かつ硬化剤と配合して硬化反応させることができる2液硬化型のエポキシ樹脂が好ましい。 In particular, high strength is imparted to the antistatic coating floor to make it difficult to be locally worn or lost in the specific areas described above, and to reduce the amount of solvent to be blended in the resin composition as much as possible. In view of omitting the blending of the solvent and the like, a liquid epoxy resin, particularly a two-component curable epoxy resin which is liquid and can be cured and reacted with a curing agent is preferable.
〈導電性付与剤〉
導電性付与剤としては、樹脂組成物に配合されて、帯電防止塗り床の漏洩抵抗値を、例えば先に説明した2.5×104Ω以上、1×109Ω未満の範囲内に調整しうる従来公知の種々の導電性付与剤が、いずれも使用可能である。特に、導電性付与剤として炭素繊維と導電性酸化亜鉛粉末とを併用するのが好ましい。
<Conductivity imparting agent>
As a conductivity imparting agent, blended in the resin composition, the leakage resistance value of the antistatic coating floor is adjusted, for example, within the range of 2.5 × 10 4 Ω or more and less than 1 × 10 9 Ω described above. Any of various conventionally known conductivity imparting agents that can be used can be used. In particular, it is preferable to use carbon fiber and conductive zinc oxide powder in combination as a conductivity imparting agent.
(炭素繊維)
炭素繊維としては、その製造原料で分類されるPAN系、PITCH系のいずれの炭素繊維を用いることもできる。
前記炭素繊維は、導電性付与剤として、帯電防止塗り床の漏洩抵抗値を前記範囲内に調整する機能に加えて、形成した帯電防止塗り床の最表面にその末端を突出させて接点(電極)として機能させて、前記最表面に接する作業者の靴底等との良好な通電を確保する働きもする。そのため、導電性付与剤として前記炭素繊維を用いることにより、帯電防止塗り床の帯電防止性能を、より一層向上することができる。
(Carbon fiber)
As the carbon fiber, any of PAN-based and PITCH-based carbon fibers classified by the production raw material can be used.
The carbon fiber, as a conductivity imparting agent, has a function of adjusting the leakage resistance value of the antistatic coating floor within the above-mentioned range, and the end of the carbon fiber protrudes to the outermost surface of the formed antistatic coating floor to form a contact (electrode ) To ensure good energization with the shoe sole of the worker in contact with the outermost surface. Therefore, the antistatic performance of the antistatic coating floor can be further improved by using the carbon fiber as a conductivity imparting agent.
前記炭素繊維は、平均繊維長が0.1mm以上、1.0mm以下であるのが好ましい。
平均繊維長が前記範囲未満では、炭素繊維を配合することによる、前記メカニズムによって帯電防止塗り床の帯電防止性能を向上する効果が十分に得られないおそれがある。また、炭素繊維の平均繊維長を前記範囲内とするためには、例えば長繊維状の炭素繊維や、前記長繊維状の炭素繊維を短くカットしたチョップドファイバー、ミドルファイバー等を、さらに粉砕するのが一般的であるが、かかる粉砕によって、平均繊維長が前記範囲未満であるごく短い炭素繊維を安定に生産性良く製造するのが容易でないためでもある。
The carbon fiber preferably has an average fiber length of 0.1 mm or more and 1.0 mm or less.
If the average fiber length is less than the above range, there is a possibility that the effect of improving the antistatic performance of the antistatic coating floor by the above mechanism due to the blending of carbon fibers may not be sufficiently obtained. Further, in order to set the average fiber length of the carbon fibers within the above range, for example, the long fiber carbon fiber, the chopped fiber obtained by cutting the long fiber carbon fiber short, the middle fiber, and the like are further pulverized. However, this is also because it is not easy to stably produce extremely short carbon fibers having an average fiber length less than the above range by such grinding.
一方、平均繊維長が前記範囲を超える場合には、炭素繊維の黒色が、形成後の帯電防止塗り床の最表面において目立つようになって、当該帯電防止塗り床の外観や美装性が損なわれるおそれがある。
なお、炭素繊維を配合することによる、前述した帯電防止塗り床の帯電防止性能を向上する効果をさらに向上することを考慮すると、炭素繊維の平均繊維長は、前記範囲内でも0.3mm以上であるのが好ましい。また帯電防止塗り床の外観や美装性をさらに向上することを考慮すると、前記平均繊維長は、前記範囲内でも0.9mm以下であるのが好ましい。
On the other hand, when the average fiber length exceeds the above range, the black color of the carbon fiber becomes conspicuous on the outermost surface of the antistatic coating floor after formation, and the appearance and appearance of the antistatic coating floor are impaired. There is a risk of being.
In consideration of further improving the above-described effect of improving the antistatic performance of the antistatic coating floor by blending the carbon fiber, the average fiber length of the carbon fiber is 0.3 mm or more even within the above range. Preferably there is. In consideration of further improving the appearance and appearance of the antistatic coating floor, the average fiber length is preferably 0.9 mm or less even within the above range.
前記炭素繊維の配合割合は、バインダ樹脂100質量部あたり0.1質量部以上であるのが好ましく、2質量部以下であるのが好ましい。
配合割合が前記範囲未満では、炭素繊維を配合することによる、前記メカニズムによって帯電防止塗り床の帯電防止性能を向上する効果が十分に得られないおそれがある。
一方、配合割合が前記範囲を超える場合には、炭素繊維の黒色が、形成後の帯電防止塗り床の最表面において目立つようになって、当該帯電防止塗り床の外観や美装性が損なわれるおそれがある。また、相対的にバインダ樹脂の配合割合が少なくなるため、帯電防止塗り床の強度や耐久性が低下するおそれもある。
The blending ratio of the carbon fibers is preferably 0.1 parts by mass or more and preferably 2 parts by mass or less per 100 parts by mass of the binder resin.
When the blending ratio is less than the above range, there is a possibility that the effect of improving the antistatic performance of the antistatic coating bed by the above mechanism due to the blending of carbon fiber may not be sufficiently obtained.
On the other hand, when the blending ratio exceeds the above range, the black color of the carbon fiber becomes conspicuous on the outermost surface of the antistatic coating floor after formation, and the appearance and appearance of the antistatic coating floor are impaired. There is a fear. Further, since the blending ratio of the binder resin is relatively reduced, the strength and durability of the antistatic coating floor may be lowered.
なお、炭素繊維を配合することによる、前述した帯電防止塗り床の帯電防止性能を向上する効果をさらに向上することを考慮すると、炭素繊維の配合割合は、前記範囲内でも0.2質量部以上であるのが好ましい。また帯電防止塗り床の外観や美装性、あるいは強度や耐久性をさらに向上することを考慮すると、前記配合割合は、前記範囲内でも1.5質量部以下、特に0.7質量部以下であるのが好ましい。 In consideration of further improving the above-described effect of improving the antistatic performance of the antistatic coating floor by blending the carbon fiber, the blending ratio of the carbon fiber is 0.2 parts by mass or more even within the above range. Is preferred. In consideration of further improving the appearance and appearance, or the strength and durability of the antistatic coating floor, the blending ratio is 1.5 parts by mass or less, particularly 0.7 parts by mass or less, even within the above range. Preferably there is.
(導電性酸化亜鉛粉末)
導電性酸化亜鉛粉末としては、酸化亜鉛に、例えばアルミニウム、ガリウム等の異種元素をドープすることでN型半導体化したもの等、種々の導電性の酸化亜鉛の粉末がいずれも使用可能である。
前記導電性酸化亜鉛粉末としては、例えばハクスイテック(株)製の23−K〔体積抵抗率:100〜500Ω・cm、比表面積4〜10m2/g〕、パゼットGK−40〔体積抵抗率:20〜100Ω・cm、比表面積30〜50m2/g〕等の1種または2種以上が挙げられる。なお体積抵抗率は、粉体を10MPaで圧縮した状態での測定値である。
(Conductive zinc oxide powder)
As the conductive zinc oxide powder, any of various conductive zinc oxide powders can be used, such as zinc oxide made into an N-type semiconductor by doping different elements such as aluminum and gallium.
Examples of the conductive zinc oxide powder include 23-K (volume resistivity: 100 to 500 Ω · cm, specific surface area 4 to 10 m 2 / g) manufactured by Hakusui Tech Co., Ltd., and passette GK-40 (volume resistivity: 20). ˜100 Ω · cm, specific surface area 30˜50 m 2 / g] and the like. The volume resistivity is a value measured in a state where the powder is compressed at 10 MPa.
前記導電性酸化亜鉛粉末は、導電性付与剤として、帯電防止塗り床の漏洩抵抗値を前記範囲内に調整する機能に加えて、隣り合う炭素繊維間に介在して、前記炭素繊維間の電気接続を確保する働きもする。そのため、導電性付与剤として前記炭素繊維とともに導電性酸化亜鉛粉末を併用することにより、帯電防止塗り床の帯電防止性能を、より一層向上することができる。 In addition to the function of adjusting the leakage resistance value of the antistatic coating floor within the above range, the conductive zinc oxide powder is interposed between adjacent carbon fibers as an electrical conductivity imparting agent, It also serves to secure the connection. Therefore, the antistatic performance of the antistatic coating floor can be further improved by using a conductive zinc oxide powder together with the carbon fiber as a conductivity imparting agent.
しかも導電性酸化亜鉛粉末は白色で、帯電防止塗り床の外観や美装性を損なうおそれもない。
前記導電性酸化亜鉛粉末の配合割合は、バインダ樹脂100質量部あたり50質量部以上であるのが好ましく、120質量部以下であるのが好ましい。
配合割合が前記範囲未満では、導電性酸化亜鉛粉末を配合することによる、前記メカニズムによって帯電防止塗り床の帯電防止性能を向上する効果が十分に得られないおそれがある。
Moreover, the conductive zinc oxide powder is white and does not impair the appearance and appearance of the antistatic coating floor.
The blending ratio of the conductive zinc oxide powder is preferably 50 parts by mass or more and preferably 120 parts by mass or less per 100 parts by mass of the binder resin.
If the blending ratio is less than the above range, there is a possibility that the effect of improving the antistatic performance of the antistatic coated floor by the above mechanism by blending the conductive zinc oxide powder may not be sufficiently obtained.
一方、配合割合が前記範囲を超える場合には、最表面のツヤが失われて、帯電防止塗り床の外観や美装性が損なわれるおそれがある。また、相対的にバインダ樹脂の配合割合が少なくなるため、前記帯電防止塗り床の強度や耐久性が低下するおそれもある。
〈アクリルビーズ〉
帯電防止塗り床の最表面に凹凸を形成するためのアクリルビーズとしては、特に樹脂組成物に含まれる溶剤や架橋前のバインダ樹脂等に対する耐性に優れるとともに、耐候性にも優れた架橋アクリルビーズ、中でも帯電防止塗り床の外観や美装性を損なうおそれの少ない無色透明や白色の架橋アクリルビーズが好適に使用される。
On the other hand, when the blending ratio exceeds the above range, the outermost surface gloss may be lost, and the appearance and appearance of the antistatic coating floor may be impaired. Moreover, since the blending ratio of the binder resin is relatively reduced, the strength and durability of the antistatic coating floor may be lowered.
<Acrylic beads>
As an acrylic bead for forming irregularities on the outermost surface of the antistatic coating floor, in particular, a cross-linked acrylic bead excellent in resistance to a solvent contained in the resin composition, a binder resin before cross-linking, etc., and excellent in weather resistance, Among these, colorless transparent and white crosslinked acrylic beads are preferably used, which are less likely to impair the appearance and appearance of the antistatic coating floor.
前記架橋アクリルビーズとしては、例えば根上工業(株)製のアートパール(登録商標)SE−006T〔平均粒径:6μm〕、G−800透明〔平均粒径:6μm〕、GR−800透明〔平均粒径:6μm〕、GR−600透明〔平均粒径:10μm〕、G−400透明〔平均粒径:15μm〕、GR−400透明〔平均粒径:15μm〕、GR−300透明〔平均粒径:22μm〕、GS−350T〔平均粒径:30μm〕、GR−200透明〔平均粒径:32μm〕、SE−050T〔平均粒径:46μm〕、SE−090T〔平均粒径:110μm〕、GR−50W〔平均粒径:120μm〕等が挙げられる。 Examples of the crosslinked acrylic beads include Art Pearl (registered trademark) SE-006T (average particle size: 6 μm), G-800 transparent [average particle size: 6 μm], and GR-800 transparent [average] manufactured by Negami Kogyo Co., Ltd. Particle size: 6 μm], GR-600 transparent [average particle size: 10 μm], G-400 transparent [average particle size: 15 μm], GR-400 transparent [average particle size: 15 μm], GR-300 transparent [average particle size] : 22 μm], GS-350T [average particle size: 30 μm], GR-200 transparent [average particle size: 32 μm], SE-050T [average particle size: 46 μm], SE-090T [average particle size: 110 μm], GR -50 W [average particle diameter: 120 μm] and the like.
帯電防止塗り床の、最表面の表面粗さRaは、前記アクリルビーズの平均粒径や、樹脂組成物への配合割合、さらには樹脂組成物の、単位面積あたりの塗布量等を調整することにより、任意に変化させることができる。そのため所定の配合割合、および塗布量を設定した際に、先に説明した0.1μm以上、0.5μm以下の範囲内の所定の表面粗さRaを有する帯電防止塗り床を形成するのに適した平均粒径を有するアクリルビーズの1種または2種以上を、前記アクリルビーズの中から選択して使用するのが好ましい。 The surface roughness Ra of the outermost surface of the antistatic coating floor is adjusted by adjusting the average particle diameter of the acrylic beads, the blending ratio in the resin composition, and the coating amount of the resin composition per unit area. Can be changed arbitrarily. Therefore, it is suitable for forming an antistatic coated floor having a predetermined surface roughness Ra within the range of 0.1 μm or more and 0.5 μm or less as described above when a predetermined blending ratio and application amount are set. It is preferable to use one or more acrylic beads having an average particle diameter selected from the acrylic beads.
前記アクリルビーズの配合割合は、バインダ樹脂100質量部あたり6質量部以上、50質量部以下であるのが好ましい。
アクリルビーズの配合割合が前記範囲未満では、上記のようにアクリルビーズの平均粒径や、樹脂組成物の、単位面積あたりの塗布量等によっても異なるものの、前記樹脂組成物を下地上に塗布して形成された層からなる、帯電防止塗り床の最表面の表面粗さRaが前記範囲未満となって、前記最表面に凹凸を形成することで作業者の靴底等との接触面積を小さくして、両者間の接触、剥離、および摩擦によって発生する電荷量Q1を小さくし、それによって人体帯電電位PHを低減する効果が十分に得られないおそれがある。
The blending ratio of the acrylic beads is preferably 6 parts by mass or more and 50 parts by mass or less per 100 parts by mass of the binder resin.
When the blending ratio of the acrylic beads is less than the above range, the resin composition is applied on the base, although the average particle diameter of the acrylic beads and the coating amount of the resin composition per unit area are different as described above. The surface roughness Ra of the outermost surface of the antistatic coated floor comprising the layers formed in this manner is less than the above range, and the contact area with the shoe sole of the operator is reduced by forming irregularities on the outermost surface. to the contact therebetween, peeling, and reduces the amount of charge Q 1 generated by friction, whereby the effect of reducing the body charging potential P H may not be sufficiently obtained.
一方、配合割合が前記範囲を超える場合には、前記帯電防止塗り床の最表面の表面粗さRaが前記範囲を超え、前記最表面のツヤが失われて、帯電防止塗り床の外観や美装性が損なわれるおそれがある。また、相対的にバインダ樹脂の配合割合が少なくなるため、帯電防止塗り床の強度や耐久性が低下するおそれもある。
これに対し、アクリルビーズの配合割合を前記6質量部以上、50質量部以下の範囲内とすることで、帯電防止塗り床の良好な外観や美装性、あるいは十分な強度や耐久性を維持しながら、前記帯電防止塗り床の最表面と作業者の靴底等との接触面積を小さくして、両者間の接触、剥離、および摩擦によって発生する電荷量Q1を小さくし、人体帯電電位PHを低減する効果をさらに向上することが可能となる。
On the other hand, when the blending ratio exceeds the above range, the surface roughness Ra of the outermost surface of the antistatic coating floor exceeds the range, the gloss of the outermost surface is lost, and the appearance and beauty of the antistatic coating floor are lost. Wearability may be impaired. Further, since the blending ratio of the binder resin is relatively reduced, the strength and durability of the antistatic coating floor may be lowered.
On the other hand, by maintaining the blending ratio of the acrylic beads within the range of 6 parts by mass or more and 50 parts by mass or less, the good appearance and appearance of the antistatic coated floor, or sufficient strength and durability are maintained. while, to reduce the contact area between the operator of the sole such as the outermost surface of the antistatic coating bed, the contact between the two, to reduce flaking, and the charge amount Q 1 generated by friction, the body charged potential Furthermore it is possible to improve the effect of reducing the P H.
〈その他〉
前記樹脂組成物には、さらにバインダ樹脂を硬化反応させるための硬化剤や、当該樹脂組成物を例えば流しのべ塗り床材として下地上に塗布する際にその粘度、および流動性を調整するための溶剤、反応性希釈剤、形成する帯電防止塗り床を着色するためのトナー等を、適宜の割合で配合することができる。前記トナーは、顔料等の着色剤の、樹脂組成物中への分散性を高めるために、前記着色剤を、バインダ樹脂とともに粉末化したものである。
<Others>
The resin composition further includes a curing agent for curing the binder resin, and for adjusting the viscosity and fluidity when the resin composition is applied on a base as, for example, a non-stick flooring material. The solvent, the reactive diluent, the toner for coloring the antistatic coating to be formed, and the like can be blended at an appropriate ratio. The toner is obtained by pulverizing the colorant together with a binder resin in order to improve the dispersibility of the colorant such as a pigment in the resin composition.
樹脂組成物は、そのポットライフ等を考慮すると、前記硬化剤を除く各成分を配合した主剤と、前記硬化剤の2液タイプとして供給して施工現場において、前記主剤と硬化剤とを所定の割合で配合するようにするのが好ましい。
《帯電防止塗り床》
本発明の帯電防止塗り床は、前記樹脂組成物を、例えば流しのべ塗り床材として下地上に流し述べ塗布し、硬化させて形成された、前記帯電防止塗り床の最表面に位置する層を少なくとも含み、前記最表面の表面粗さRaが0.1μm以上、0.5μm以下であることを特徴とするものである。例えば前記2液タイプの樹脂組成物の場合は、その主剤と硬化剤とを、前記のように施工現場において、所定の割合で配合して流し延べ塗り床材等を調製し、それを下地上に流しのべ塗布等して硬化させることによって、前記層が形成される。
In consideration of the pot life and the like, the resin composition is supplied as a two-component type of a main agent containing each component excluding the curing agent and the curing agent, and at the construction site, the main agent and the curing agent are predetermined. It is preferable to mix them in proportions.
《Antistatic coating floor》
The antistatic coating floor of the present invention is a layer located on the outermost surface of the antistatic coating floor, which is formed by, for example, pouring, applying, and curing the resin composition on a base as a sink coating floor material. The surface roughness Ra of the outermost surface is not less than 0.1 μm and not more than 0.5 μm . For example, in the case of the two-component resin composition, the base agent and the curing agent are mixed at a predetermined ratio at the construction site as described above to prepare a cast flooring material and the like on the foundation. The layer is formed by, for example, applying a non-stick coating and curing.
本発明の構成は単層の、または多層構造を有する種々の帯電防止塗り床に適用可能である。すなわち、前記アクリルビーズを含む樹脂組成物を塗布し、硬化させて形成した層単層で帯電防止塗り床を形成してもよい。この場合は、前記層が自ずと帯電防止塗り床の最表面に位置する層となる。
また前記層を含む多層構造の帯電防止塗り床を構成してもよい。当該多層構造の帯電防止塗り床においては、その最表面に位置する層を、前記アクリルビーズを含む樹脂組成物を塗布し、硬化させて形成した層とする。
The configuration of the present invention is applicable to various antistatic coating floors having a single layer or a multilayer structure. That is, the acrylic beads resin composition was applied containing, may form an antistatic coating floor layer single layer formed by curing. In this case, the layer is naturally a layer located on the outermost surface of the antistatic coating floor.
Moreover, you may comprise the antistatic coating floor of the multilayer structure containing the said layer. The Antistatic coating floors of a multi-layer structure, the layer positioned on the outermost surface is coated with a resin composition containing the acrylic beads, it shall be the layer formed by curing.
いずれの場合にも、前記層の機能、すなわち前記層中に含まれるアクリルビーズの機能により、帯電防止塗り床の最表面の表面粗さRaが0.1μm以上、0.5μm以下となる凹凸を形成して、外観や美装性に優れる上、十分な強度と耐久性とを有しており、しかも従来に比べて帯電防止機能に優れた帯電防止塗り床を得ることができる。
前記帯電防止塗り床の最表面の表面粗さRaが前記範囲内に限定されるのは、下記の理由による。
In any case, due to the function of the layer, that is, the function of the acrylic beads contained in the layer, the surface roughness Ra of the outermost surface of the antistatic coating floor is not less than 0.1 μm and not more than 0.5 μm. It is possible to obtain an antistatic coated floor that is excellent in appearance and appearance, has sufficient strength and durability, and has an antistatic function as compared with the conventional one.
The reason why the surface roughness Ra of the outermost surface of the antistatic coating floor is limited to the above range is as follows.
すなわち帯電防止塗り床の最表面の表面粗さRaが0.1μm未満では、前記最表面に凹凸を形成することによる、当該最表面と作業者の靴底等との接触面積を小さくして、両者間の接触、剥離、および摩擦によって発生する電荷量Q1を小さくし、それによって人体帯電電位PHを低減する効果が得られない。
一方、表面粗さRaが0.5μmを超える場合には、前記最表面の凹凸が大きくなりすぎてツヤが失われて、帯電防止塗り床の外観や美装性が損なわれてしまう。
That is, when the surface roughness Ra of the outermost surface of the antistatic coating floor is less than 0.1 μm, the contact area between the outermost surface and the shoe sole of the operator is reduced by forming irregularities on the outermost surface, contact between them, peeling, and the charge amount Q 1 generated by friction is reduced, thereby not to obtain the effect of reducing body charging potential P H.
On the other hand, when the surface roughness Ra exceeds 0.5 μm, the unevenness of the outermost surface becomes too large and the gloss is lost, and the appearance and appearance of the antistatic coating floor are impaired.
これに対し、帯電防止塗り床の最表面の表面粗さRaを前記範囲内とすることで、帯電防止塗り床の良好な外観や美装性を維持しながら、前記最表面と作業者の靴底等との接触面積を小さくして、両者間の接触、剥離、および摩擦によって発生する電荷量Q1を小さくし、それによって人体帯電電位PHを低減することが可能となる。具体的には、帯電防止塗り床に良好な帯電防止機能を付与して、前記人体帯電電位PHを50V以下、特に好ましくは30V以下に低減することができる。 In contrast, by setting the surface roughness Ra of the outermost surface of the antistatic coating floor within the above range, the outermost surface and the shoe of the operator are maintained while maintaining the good appearance and beauty of the antistatic coating floor. the contact area between the bottom and the like by reducing the contact therebetween, peeling, and the charge amount Q 1 generated by friction is reduced, thereby allowing to reduce the human body charging potential P H. Specifically, by applying a good antistatic function antistatic coating bed, the body charged potential P H to 50V or less, particularly preferably can be reduced to 30V or less.
前記人体帯電電位PHを、本発明では、温度23℃、相対湿度50%の環境下、日本工業規格JIS C61340−4−5:2007「静電気−特定応用のための標準的試験方法−人体と組み合わせた履物及び床システムの静電気防止性能の評価方法」に記載の「6.4 帯電性の測定」に則って測定した値でもって表すこととする。
なお帯電防止塗り床の最表面の表面粗さRaは、その外観や美装性をできるだけ良好な状態に維持しながら、人体帯電電位PHをより一層低下させることを考慮すると、前記範囲内でも0.11μm以上であるのが好ましく、0.45μm以下、特に0.30μm以下であるのが好ましい。
The human body charged potential P H, in the present invention, the temperature 23 ° C., under a relative humidity of 50%, Japanese Industrial Standard JIS C61340-4-5: 2007 "Electrostatic - Standard Test Method for particular applications - and the human body It shall be expressed by the value measured in accordance with “6.4 Measurement of electrification” described in “Evaluation method of antistatic performance of footwear and floor system in combination”.
Note the surface roughness Ra of the antistatic coating the outermost surface of the bed, while maintaining its appearance and YoshiSosei the best possible conditions, considering that more to further reduce the human body charging potential P H, even within the range It is preferably 0.11 μm or more, preferably 0.45 μm or less, particularly preferably 0.30 μm or less.
また前記帯電防止塗り床は、漏洩抵抗値が1×109Ω未満であるのが好ましい。
漏洩抵抗値が前記範囲以上では、たとえ帯電防止塗り床の最表面に、前記所定の表面粗さRaの範囲を満足する凹凸を形成して、作業者の靴底等との接触面積を小さくしたとしても、漏洩する電荷量Q2が小さすぎるため、人体帯電電位PHを低減する効果が得られないおそれがある。
Further, the antistatic coating floor preferably has a leakage resistance value of less than 1 × 10 9 Ω.
When the leakage resistance value is equal to or greater than the above range, unevenness that satisfies the range of the predetermined surface roughness Ra is formed on the outermost surface of the antistatic coating floor to reduce the contact area with the shoe sole of the operator. as well, since the charge amount Q 2 to which leaking is too small, there is a possibility that the effect of reducing body charging potential P H can not be obtained.
なお前記電荷量Q2を大きくして人体帯電電位PHを小さくするという原理原則からすると、前記漏洩抵抗値は、前記範囲内でも小さければ小さいほど好ましい。ただし、漏電による事故等を防いで安全性を向上することを考慮すると、前記漏洩抵抗値は、前記範囲内でも2.5×104Ω以上であるのが好ましい。この値は、200Vの交流電流が作業者の体を通って帯電防止塗り床に流れる場合を想定し、その際に10mA以下の電流しか流さないための最小の漏洩抵抗値に相当する。体を流れる電流値が10mAを超えると、筋肉が収縮して支配力を失い、危険性が高まるためである。 Note From principles of reducing the amount of charge Q 2 to increase to the human body charging potential P H, the leakage resistance is preferably as small as possible even within the above range. However, in consideration of improving safety by preventing accidents due to electric leakage, the leakage resistance value is preferably 2.5 × 10 4 Ω or more even within the above range. This value assumes the case where an alternating current of 200 V flows through the worker's body to the antistatic coating floor, and corresponds to the minimum leakage resistance value for flowing only a current of 10 mA or less. This is because when the value of current flowing through the body exceeds 10 mA, the muscle contracts and loses control power, increasing the risk.
なお帯電防止塗り床の漏洩抵抗値を、本発明では、温度23℃、相対湿度50%の環境下、絶縁抵抗計と電極とを用いて、日本工業規格JIS C61340−4−1:2008「静電気−第4−1部:特定応用のための標準的な試験方法−床仕上げ材及び施工床の電気抵抗」所載の測定方法に則って測定した値でもって表すこととする。
前記漏洩抵抗値は、導電性付与剤やアクリルビーズの、樹脂組成物への配合割合、あるいは樹脂組成物の、単位面積あたりの塗布量等を調整することにより、任意に変化させることができる。
In the present invention, the leakage resistance value of the antistatic coating floor is determined using the Japanese Industrial Standard JIS C61340-4-1: 2008 “Static Electricity” using an insulation resistance meter and electrodes in an environment of a temperature of 23 ° C. and a relative humidity of 50%. -Part 4-1: Standard test method for specific application-Electrical resistance of flooring materials and construction floors "It shall be expressed by the value measured according to the measurement method.
The leakage resistance value can be arbitrarily changed by adjusting the blending ratio of the conductivity-imparting agent and acrylic beads to the resin composition, or the coating amount of the resin composition per unit area.
《実施例1》
〈樹脂組成物の調製〉
(主剤)
バインダ樹脂としては、2液硬化型の液状のエポキシ樹脂〔三菱化学(株)製のjER(登録商標)828、25℃での粘度:12〜15Pa・s、エポキシ当量:184〜194〕を用いた。
Example 1
<Preparation of resin composition>
(Main agent)
As the binder resin, a two-component curable liquid epoxy resin [jER (registered trademark) 828 manufactured by Mitsubishi Chemical Corporation, viscosity at 25 ° C .: 12 to 15 Pa · s, epoxy equivalent: 184 to 194] is used. It was.
導電性付与剤としては、炭素繊維としてのチョップドファイバー〔三菱樹脂(株)製のダイアリード(登録商標)K6371T、繊維長:6mm〕を平均繊維長が0.7mmとなるように粉砕したものと、導電性酸化亜鉛粉末〔前出のハクスイテック(株)製の23−K、体積抵抗率:100〜500Ω、比表面積:4〜10m2/g〕とを併用した。
なお炭素繊維の平均繊維長は、デジタルマイクロスコープ〔ライカマイクロシステムズ社製のLeica DVM5000〕を用いて撮影した画像からランダムにn=100のサンプルの繊維長を測定した値の平均値として求めた。
As the conductivity imparting agent, chopped fiber as carbon fiber [DIALEAD (registered trademark) K6331T manufactured by Mitsubishi Plastics, fiber length: 6 mm] is pulverized so that the average fiber length is 0.7 mm. , Conductive zinc oxide powder [23-K, Huxitec Co., Ltd., volume resistivity: 100 to 500Ω, specific surface area: 4 to 10 m 2 / g described above] was used in combination.
The average fiber length of the carbon fibers was determined as an average value of values obtained by randomly measuring the fiber lengths of n = 100 samples from an image taken using a digital microscope (Leica DVM5000 manufactured by Leica Microsystems).
また、アクリルビーズとしては架橋アクリルビーズ〔前出の根上工業(株)製のアートパール(登録商標)SE−090T、平均粒径:110μm〕を用いた。
さらにトナーとしては、御国色素(株)製のSET T−26を用いた。
前記エポキシ樹脂100質量部に、炭素繊維0.5質量部、導電性酸化亜鉛粉末100質量部、アクリルビーズ6質量部、トナー10質量部、および溶剤としてのベンジルアルコール20質量部を配合し、撹拌機〔新東科学(株)製のヘイドン(登録商標)スリーワンモータ〕を用いて1200rpmで混合して、流し延べ塗り床材の主剤を調製した。
As the acrylic beads, cross-linked acrylic beads [Art Pearl (registered trademark) SE-090T, manufactured by Negami Kogyo Co., Ltd., average particle size: 110 μm] were used.
Further, SET T-26 manufactured by Mikuni Dye Co., Ltd. was used as the toner.
100 parts by mass of the epoxy resin is mixed with 0.5 parts by mass of carbon fiber, 100 parts by mass of conductive zinc oxide powder, 6 parts by mass of acrylic beads, 10 parts by mass of toner, and 20 parts by mass of benzyl alcohol as a solvent, and stirred. Using a machine (Haidon (registered trademark) Three-One Motor manufactured by Shinto Kagaku Co., Ltd.), mixing was carried out at 1200 rpm to prepare a base material for a cast-on flooring material.
(硬化剤)
硬化剤としては、大都産業(株)製の商品名ダイトクラールX−6045を用いた。
〈帯電防止塗り床のサンプルの作製〉
(導電性プライマ)
導電性プライマとして、住友ゴム工業(株)製のSL333A(主剤)とSL333B(硬化剤)とを、質量比4:1で混合したものを用いた。
(Curing agent)
As a curing agent, Daito Sangyo Co., Ltd. trade name Daitokural X-6045 was used.
<Preparation of antistatic coated floor sample>
(Conductive primer)
As the conductive primer, a mixture of SL333A (main agent) and SL333B (curing agent) manufactured by Sumitomo Rubber Industries, Ltd. at a mass ratio of 4: 1 was used.
(下地)
下地としては、スレート板の上に、前記導電性プライマを、ローラを用いて、単位面積あたりの塗布量が110±5g/m2となるように塗布したのち硬化させてプライマ層を形成したものを用意した。
(サンプルの作製)
先に調製した流しのべ塗り床材の主剤と硬化剤とを、前記主剤中のエポキシ樹脂100質量部あたりの硬化剤の配合割合が45質量部となるように配合し、混合して流しのべ塗り床材を調製した。
(Base)
As a base, a primer layer is formed by applying the conductive primer on a slate plate using a roller so that the coating amount per unit area is 110 ± 5 g / m 2 and then curing. Prepared.
(Sample preparation)
The main agent and the curing agent of the previously prepared sink flooring material are mixed so that the mixing ratio of the curing agent per 100 parts by mass of the epoxy resin in the main agent is 45 parts by mass, and mixed to flow. A bedding flooring was prepared.
次いで前記流しのべ塗り床材を、前記下地の、プライマ層を形成した上に、金ゴテを用いて、単位面積あたりの塗布量が1350±10g/m2となるように流し延べ塗布したのち硬化させて、帯電防止塗り床のサンプルを作製した。
《比較例1》
主剤にアクリルビーズを配合しなかったこと以外は、前記実施例1と同様にして流しのべ塗り床材の主剤と硬化剤とを調製し、帯電防止塗り床のサンプルを作製した。
Next, after the above-mentioned base layer primer layer is formed and the above-mentioned primer layer is formed by using a gold trowel, it is cast and applied so that the coating amount per unit area becomes 1350 ± 10 g / m 2. Cured to prepare a sample of an antistatic coating.
<< Comparative Example 1 >>
Except that the acrylic beads were not blended in the main agent, the main agent and the curing agent of the non-stick coating floor material were prepared in the same manner as in Example 1 to prepare a sample of the antistatic coating floor.
《実施例2〜5、比較例2、3》
主剤におけるアクリルビーズの配合割合を、当該主剤中のエポキシ樹脂100質量部あたり2質量部(比較例2)、10質量部(実施例2)、15質量部(実施例3)、30質量部(実施例4)、50質量部(実施例5)、および70質量部(比較例3)としたこと以外は、前記実施例1と同様にして流しのべ塗り床材の主剤と硬化剤とを調製し、帯電防止塗り床のサンプルを作製した。
<< Examples 2 to 5, Comparative Examples 2 and 3 >>
The mixing ratio of the acrylic beads in the main agent is 2 parts by mass (Comparative Example 2), 10 parts by mass (Example 2), 15 parts by mass (Example 3), 30 parts by mass (100 parts by mass) of the epoxy resin in the main agent. Example 4) The main component and the curing agent of the non-stick flooring material were prepared in the same manner as in Example 1 except that 50 parts by mass (Example 5) and 70 parts by mass (Comparative Example 3) were used. A sample of an antistatic coating floor was prepared.
《実施例6、8》
流しのべ塗り床材を、単位面積あたりの塗布量が1000±10g/m2(実施例6)、2700±10g/m2(実施例8)となるように流し延べ塗布したこと以外は実施例1と同様にして帯電防止塗り床のサンプルを作製した。
《実施例7、9》
流しのべ塗り床材を、単位面積あたりの塗布量が1000±10g/m2(実施例7)、2700±10g/m2(実施例9)となるように流し延べ塗布したこと以外は実施例5と同様にして帯電防止塗り床のサンプルを作製した。
<< Examples 6 and 8 >>
Implemented except that the spreader floor coating was applied so that the coating amount per unit area was 1000 ± 10 g / m 2 (Example 6) and 2700 ± 10 g / m 2 (Example 8). A sample of an antistatic coating floor was prepared in the same manner as in Example 1.
<< Examples 7 and 9 >>
Implemented except that the spreader floor coating was applied so that the coating amount per unit area was 1000 ± 10 g / m 2 (Example 7) and 2700 ± 10 g / m 2 (Example 9). A sample of an antistatic coated floor was prepared in the same manner as in Example 5.
《表面粗さ測定》
前記各実施例、比較例で作製した帯電防止塗り床のサンプルの表面の表面形状を、表面粗さ計〔(株)東京精密製の表面粗さ形状測定機サーフコム(登録商標)130A〕を用いて、評価長さ:3.2mm、測定速度:0.3mm/秒、カットオフ値:0.8mm、傾斜補正、直線補正、カットオフ比300の条件で測定した結果から、先に説明した粗さ曲線の算術平均粗さRaを求めた。なお測定は、1つのサンプルの表面の任意の10箇所で実施し、その中央値(Median)を、そのサンプルの表面粗さRaとした。
<Surface roughness measurement>
The surface shape of the surface of the antistatic coated floor sample prepared in each of the above examples and comparative examples was measured using a surface roughness meter [Surface Com (registered trademark) 130A manufactured by Tokyo Seimitsu Co., Ltd.]. From the results measured under the conditions of evaluation length: 3.2 mm, measurement speed: 0.3 mm / second, cut-off value: 0.8 mm, tilt correction, straight line correction, and cut-off ratio 300, The arithmetic average roughness Ra of the roughness curve was determined. The measurement was performed at any 10 locations on the surface of one sample, and the median value (Median) was defined as the surface roughness Ra of the sample.
《人体帯電電位測定》
前記各実施例、比較例で作製した帯電防止塗り床のサンプルの人体帯電電位PHを、先に説明した測定方法によって測定した。測定には、春日電機(株)製の人体電位計KSD−4000を用いた。
人体帯電電位PHは、30V以下のものを帯電防止機能極めて良好(◎)、30Vを超え50V以下のものを帯電防止機能良好(○)、50Vを超えるものを帯電防止機能不良(×)として評価した。
<Measurement of charged body potential>
Wherein each of the embodiments, the body charging potential P H of the sample of the antistatic coating bed prepared in Comparative Example were measured by the measuring method described above. For the measurement, a human body electrometer KSD-4000 manufactured by Kasuga Electric Co., Ltd. was used.
Body charging potential P H as 30V following the antistatic function very well as (◎), 30V good antistatic function those following 50V exceeded (○), those in excess of 50V antistatic malfunction (×) evaluated.
《美装性評価》
前記各実施例、比較例で作製した帯電防止塗り床のサンプルの表面の60°光沢度を、光沢度計〔日本電色工業(株)製のPG−1〕を用いて測定した。なお測定は、1つのサンプルの表面の任意の10箇所で実施し、その中央値(Median)を、そのサンプルの光沢度とした。
<Evaluation of beauty>
The 60 ° glossiness of the surface of the antistatic coated floor sample prepared in each of the examples and comparative examples was measured using a gloss meter [PG-1 manufactured by Nippon Denshoku Industries Co., Ltd.]. The measurement was carried out at any 10 locations on the surface of one sample, and the median value (Median) was used as the glossiness of the sample.
そして前記光沢度が70以上のものを美装性極めて良好(◎)、70未満で50以上のものを美装性良好(○)、50未満のものをツヤなし美装性不良(×)として評価した。
《漏洩抵抗値測定》
前記各実施例、比較例で作製した帯電防止塗り床のサンプルの、表面の漏洩抵抗値を、先に説明した測定方法によって測定した。絶縁抵抗計としては、ミドリ安全(株)製の抵抗計テラオームメーターを用いた。
When the glossiness is 70 or more, the appearance is very good ()), when it is less than 70, the appearance is good (◯), and when it is less than 50, the appearance is poor (x). evaluated.
<Leakage resistance measurement>
The leakage resistance value of the surface of the antistatic coated floor sample produced in each of the above Examples and Comparative Examples was measured by the measurement method described above. As the insulation resistance meter, a resistance meter tera ohm meter manufactured by Midori Safety Co., Ltd. was used.
《総合判定》
前記人体帯電電位、および美装性がともに◎であったものを極めて良好(◎)、少なくとも一方が○であったものを良好(○)、少なくとも一方が×であったものを不良(×)として評価した。
以上の結果を表1〜表3に示す。
"Comprehensive judgment"
The case where the human body charging potential and the cosmetic appearance were both ◎ was very good (◎), at least one was ○ (good), and at least one was bad (×). As evaluated.
The above results are shown in Tables 1 to 3.
表1〜表3の実施例1〜9、比較例1〜3の結果より、流し延べ塗り床材にアクリルビーズを配合して帯電防止塗り床の最表面の表面粗さRaを0.1μm以上、0.5μm以下の範囲内とすることにより、前記帯電防止塗り床の良好な外観や美装性を維持しながら、前記最表面と作業者の靴底等との接触面積を小さくして人体帯電電位PHを低減できること、すなわち前記帯電防止塗り床に、優れた帯電防止機能を付与できることが判った。 From the results of Examples 1 to 9 and Comparative Examples 1 to 3 in Tables 1 to 3, the surface roughness Ra of the outermost surface of the antistatic coating floor is 0.1 μm or more by blending acrylic beads with the cast floor coating material. In the range of 0.5 μm or less, the contact area between the outermost surface and the shoe sole of the operator is reduced while maintaining the good appearance and beauty of the antistatic coated floor. can reduce the charging potential P H, that is, the antistatic coating bed, it was found that can impart excellent antistatic function.
また実施例1〜9の結果より、前記良好な特性を有する帯電防止塗り床を得るためには、アクリルビーズの配合割合を、エポキシ樹脂100質量部あたり6質量部以上、50質量部以下の範囲内、漏洩抵抗値を2.5×104Ω以上、1×109Ω未満の範囲内とするのが好ましいことが判った。
さらに実施例1〜9の結果より、前記各特性に特に優れた帯電防止塗り床を得るためには、表面粗さRaを、前記範囲内でも0.11μm以上、0.45μm以下、特に0.30μm以下の範囲内とするのが好ましいことが判った。
Moreover, in order to obtain the antistatic coating floor which has the said favorable characteristic from the result of Examples 1-9, the mixture ratio of an acrylic bead is the range of 6 to 50 mass parts per 100 mass parts of epoxy resins. Among them, it was found that the leakage resistance value is preferably in the range of 2.5 × 10 4 Ω or more and less than 1 × 10 9 Ω.
Furthermore, from the results of Examples 1 to 9, in order to obtain an antistatic coated floor having particularly excellent properties, the surface roughness Ra is 0.11 μm or more and 0.45 μm or less, particularly 0. It was found that it is preferable to set the thickness within a range of 30 μm or less.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012023274A JP5878387B2 (en) | 2012-02-06 | 2012-02-06 | Antistatic coating floor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012023274A JP5878387B2 (en) | 2012-02-06 | 2012-02-06 | Antistatic coating floor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013159979A JP2013159979A (en) | 2013-08-19 |
JP5878387B2 true JP5878387B2 (en) | 2016-03-08 |
Family
ID=49172479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012023274A Active JP5878387B2 (en) | 2012-02-06 | 2012-02-06 | Antistatic coating floor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5878387B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1171537A (en) * | 1997-08-29 | 1999-03-16 | Asahi Chem Ind Co Ltd | Electroconductive coating material composition for floor and electroconductive floor material |
JP2007211172A (en) * | 2006-02-10 | 2007-08-23 | Hitachi Chem Co Ltd | Water based antistatic coating composition and antistatic coating film using the same |
JP2008063810A (en) * | 2006-09-07 | 2008-03-21 | Chisso Corp | Antistatic floor material |
JP2010163550A (en) * | 2009-01-16 | 2010-07-29 | Yokohama Rubber Co Ltd:The | Conductive composition and antistatic material using this |
-
2012
- 2012-02-06 JP JP2012023274A patent/JP5878387B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013159979A (en) | 2013-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016509740A (en) | Coating system with protection against electrostatic discharge | |
JP2013040446A (en) | Floor coating material formed through flow-spreading technique and antistatic coated floor | |
JP4833728B2 (en) | Antistatic coating floor and coating agent | |
KR20170078440A (en) | Conductive coating materials for access floor system and coating method thereof | |
JP2007211172A (en) | Water based antistatic coating composition and antistatic coating film using the same | |
JP5946668B2 (en) | Epoxy resin coating flooring | |
RU2621806C2 (en) | Powder coating applying method | |
JP5878387B2 (en) | Antistatic coating floor | |
JP5878391B2 (en) | Antistatic coating floor | |
EP1694782B1 (en) | Electrically conductive floor coverings | |
JPH062417A (en) | Method of constructing floor coated with anti-static paint | |
JP5122755B2 (en) | Water-based conductive primer composition | |
CN205392915U (en) | Novel antistatic coating | |
JP2014208723A (en) | Flow application coating and coated floor | |
CN108329776A (en) | A kind of Environment-friendlycarbon carbon fiber/polypropylene acid conductive coating | |
JP2007291844A (en) | Conductive coated floor and construction method | |
JP5624856B2 (en) | Antistatic coating floor | |
JP2017031699A (en) | Antistatic floor and building comprising the same | |
JP2017002193A (en) | Conductive coating floor paint and conductive coating floor | |
JP2011115975A (en) | Antistatic sheet | |
JP2005097512A (en) | Conductive composition, primer, coating material for floor, and method for applying the same | |
JP2017031700A (en) | Antistatic floor and building comprising the same | |
CN107816195A (en) | A kind of flat painting type antistatic floor of epoxy resin | |
JP5433557B2 (en) | Water-based conductive primer | |
JP2016223252A (en) | Conductive coated floor and building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5878387 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |