JP5877393B2 - High CO resistance anode material for polymer electrolyte fuel cell - Google Patents
High CO resistance anode material for polymer electrolyte fuel cell Download PDFInfo
- Publication number
- JP5877393B2 JP5877393B2 JP2011260234A JP2011260234A JP5877393B2 JP 5877393 B2 JP5877393 B2 JP 5877393B2 JP 2011260234 A JP2011260234 A JP 2011260234A JP 2011260234 A JP2011260234 A JP 2011260234A JP 5877393 B2 JP5877393 B2 JP 5877393B2
- Authority
- JP
- Japan
- Prior art keywords
- cerium oxide
- anode material
- polymer electrolyte
- electrolyte fuel
- platinum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Catalysts (AREA)
Description
本発明は高分子形燃料電池(PEFC)に関し、特に改質ガスを燃料とする場合に不可避であるCOに対する耐性の大きなアノード材料を提供することに関する。 The present invention relates to a polymer fuel cell (PEFC), and more particularly to providing an anode material having high resistance to CO, which is inevitable when a reformed gas is used as a fuel.
PEFCは、その高効率、清浄度により、更には100℃未満の動作温度においてさえも高い電力密度を有するにもかかわらず軽量であることにより、電気自動車や住宅用熱電併給システムのための代替電源として大いに関心を集めている(非特許文献1〜3)。改質ガスで動作する純粋な白金(Pt)アノード触媒を使用する従来のPEFCの性能は、Ptサイトの一酸化炭素(CO)被毒によってひどく劣化する。ほとんどの改質燃料は5〜100ppm程度のCOを含んでいて、これによりPt表面の被毒が簡単に起こりえるため、CO耐性を向上させることは、重要な課題である。 PEFC is an alternative power source for electric vehicles and residential combined heat and power systems due to its high efficiency, cleanliness, and light weight despite having high power density even at operating temperatures below 100 ° C (Non-Patent Documents 1 to 3). The performance of conventional PEFCs using a pure platinum (Pt) anode catalyst operating with reformed gas is severely degraded by carbon monoxide (CO) poisoning of Pt sites. Since most reformed fuels contain about 5 to 100 ppm of CO, which can easily cause poisoning of the Pt surface, improving CO resistance is an important issue.
高CO耐性の白金−ルテニウム(Pt−Ru)アノードや白金−モリブデン(Pt−Mo)アノードがPEFC応用分野で知られている。しかしながら、こうした合金系電極は、白金その他の金属が、電荷移動を促進するために用いる導電性カーボンと直接接触するために、次第に導電性炭素を酸化してしまい、炭素は炭酸ガスになり消失する。この結果、白金−ルテニウムなどの合金は、凝集を起こし、次第に性能が低下する欠点を有していた。また、この欠点にくわえ、白金−ルテニウムや白金は、PEFCと電極界面が強酸性になることから、酸性溶液中への溶解がおこり、燃料電池の長期安定性を大きく損ねるという欠点を有していた。 High CO resistant platinum-ruthenium (Pt-Ru) anodes and platinum-molybdenum (Pt-Mo) anodes are known in the PEFC application field. However, such an alloy-based electrode gradually oxidizes conductive carbon because platinum and other metals are in direct contact with the conductive carbon used to promote charge transfer, and the carbon disappears as carbon dioxide gas. . As a result, alloys such as platinum-ruthenium have a drawback of causing aggregation and gradually decreasing performance. In addition to this disadvantage, platinum-ruthenium and platinum have the disadvantage that the PEFC and electrode interface become strongly acidic, so that they dissolve in an acidic solution and greatly impair the long-term stability of the fuel cell. It was.
本願発明者は白金−酸素−セリウム(Pt−O−Ce)界面を有し、白金表面を部分的にセリウム膜で覆う形となる白金−酸化セリウム(Pt/CeOx)ナノ粒子/Cアノード材料を作製することで、活性金属表面の酸性溶液中への溶出を抑制し、あわせて、電荷移動を促進するために含まれる導電性炭素と活性金属の直接の接触を妨げることで、導電性炭素材料のCO2への変化をさまたげ、長期安定性と高CO耐性とを併せ持つ白金表面を得た(非特許文献4)。 The present inventor has developed a platinum-cerium oxide (Pt / CeOx) nanoparticle / C anode material having a platinum-oxygen-cerium (Pt-O-Ce) interface and partially covering the platinum surface with a cerium film. Conductive carbon material by suppressing elution of active metal surface into acidic solution and preventing direct contact between conductive carbon and active metal contained to promote charge transfer. The platinum surface which has both long-term stability and high CO tolerance was obtained (Non-Patent Document 4).
本発明の課題は、上述した従来技術の問題点を解消し、純粋なPtを使用したCO被毒耐性の高いPEFC用アノード材料を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an anode material for PEFC having high resistance to CO poisoning using pure Pt.
本発明の一側面によれば、白金ナノ粒子を担持させた酸化セリウムナノワイヤー及び炭素粒子を含む高分子電解質形燃料電池用高CO耐性アノード材料が与えられる。
ここで、前記酸化セリウムナノワイヤーの直径は10〜100nmの範囲であってよい。
また、前記酸化セリウムナノワイヤーの長さは1000〜5000nmの範囲であってよい。
また、前記白金ナノ粒子の直径は2〜20nmの範囲であってよい。
また、前記酸化セリウムは化学式CeOxで表され、ここでxは1.5〜2.0であってよい。
また、前記白金ナノ粒子の担持量は0.1〜5重量%であってよい。
According to one aspect of the present invention, there is provided a high CO resistant anode material for polymer electrolyte fuel cells, comprising cerium oxide nanowires carrying platinum nanoparticles and carbon particles.
Here, the diameter of the cerium oxide nanowire may be in a range of 10 to 100 nm.
The length of the cerium oxide nanowire may be in the range of 1000 to 5000 nm.
The platinum nanoparticles may have a diameter of 2 to 20 nm.
The cerium oxide may be represented by the chemical formula CeO x , where x may be 1.5 to 2.0.
In addition, the supported amount of the platinum nanoparticles may be 0.1 to 5% by weight.
本発明により、本願発明者によるものを含む従来のPEFC用アノード材料に比べて更に高い電極活性及び電極表面の比表面積が得られる。なお、CO耐性が低いと電極活性が向上しないため、ここで電極活性が高いということは当然CO耐性が改善されていることを含んでいる。 According to the present invention, higher electrode activity and specific surface area of the electrode surface can be obtained as compared with conventional anode materials for PEFC including those by the present inventors. In addition, since electrode activity does not improve when CO tolerance is low, the fact that electrode activity is high here means that CO tolerance is improved.
上述した本願発明者のPt/CeOxナノ粒子/Cアノード材料の研究結果から、本願発明者は、Pt−O−Ce界面が高CO耐性白金表面を得るための本質的な役割を果たしているとの知見を得て、これに基いて本発明のPt/CeOxナノワイヤー/Cアノード材料を発明するに至った。 From the above-described research results of the present inventors' Pt / CeO x nanoparticles / C anode material, the present inventors have found that the Pt-O-Ce interface plays an essential role for obtaining a high CO resistant platinum surface. Based on this knowledge, the present inventors have invented the Pt / CeO x nanowire / C anode material of the present invention.
ここでCeOxについて説明すれば、白金の上ではCe2O3とCeO2が混在している。Ce2O3はCeO1.5と書くことができるため、ここにおけるxの範囲は、1.5から2.0までの範囲を取る。また、CeOxナノワイヤーのサイズは、直径が10〜100nm程度、長さが1000〜5000nm程度が好適である。 Here, CeO x will be described. Ce 2 O 3 and CeO 2 are mixed on platinum. Since Ce 2 O 3 can be written as CeO 1.5 , the range of x here ranges from 1.5 to 2.0. The CeO x nanowires preferably have a diameter of about 10 to 100 nm and a length of about 1000 to 5000 nm.
なお、Pt担持量は、工業的には30%とか50%といった量を使用するが、Ptは高価であるので、大量に使用することは好ましくない。また、本発明においては、Pt量を多くするとPt同士が凝集してしまいPt−酸化セリウム界面の生成が少なくなるので、Ptの利用効率が低下する。従って本発明においてはアノード材料中のPt担持量を5重量%以下0.1重量%以上とするのが最適であると考えられる。0.3〜0.5wt%でも十分に効果がでれば,市販のアノードに比較して100倍ものPt利用効率が得られることになる。 The amount of Pt supported is industrially 30% or 50%, but since Pt is expensive, it is not preferable to use a large amount. In the present invention, when the amount of Pt is increased, Pt aggregates and the generation of the Pt-cerium oxide interface is reduced, so that the Pt utilization efficiency is lowered. Therefore, in the present invention, it is considered optimal that the amount of Pt supported in the anode material is 5 wt% or less and 0.1 wt% or more. If a sufficient effect is obtained even at 0.3 to 0.5 wt%, a Pt utilization efficiency that is 100 times that of a commercially available anode can be obtained.
以下に本発明の実施例を説明するが、当然ながら本発明はこのような特定の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is naturally not limited to such specific examples.
[酸化セリウムナノワイヤーの合成]
先ず、酸化セリウムナノワイヤーを以下の手順によって合成した。
1.塩化セリウム(CeCl3・7H2O)0.45g(1mM)、尿素4.5g(25mM)及び臭化セチルトリメチルアンモニウム(CTAB)(4mM)に無水エタノール15mlを加えて1時間攪拌した。
2.攪拌物をオートクレーブに移し、その中で80℃で4日間保持した。
3.濾過して得られた酸化セリウムナノワイヤーを水で3回、次にエタノールで3回洗浄し、窒素雰囲気中で乾燥した。
[Synthesis of cerium oxide nanowires]
First, cerium oxide nanowires were synthesized by the following procedure.
1. Cerium chloride (CeCl 3 · 7H 2 O) 0.45g (1mM), and stirred for 1 hour over anhydrous ethanol 15ml urea 4.5 g (25 mM) and cetyltrimethylammonium bromide (CTAB) (4mM).
2. The agitation was transferred to an autoclave where it was kept at 80 ° C. for 4 days.
3. The cerium oxide nanowires obtained by filtration were washed 3 times with water, then 3 times with ethanol, and dried in a nitrogen atmosphere.
上の手順により合成された酸化セリウムナノワイヤーの各種の倍率のSEM像を図1に示す。このようにして得られた酸化セリウムナノワイヤーのサイズは直径が10〜100nm程度、長さが1000〜5000nm程度であった。 FIG. 1 shows SEM images at various magnifications of the cerium oxide nanowires synthesized by the above procedure. The size of the cerium oxide nanowire thus obtained was about 10 to 100 nm in diameter and about 1000 to 5000 nm in length.
[Ptナノ粒子を酸化セリウムナノワイヤーに担持させる]
以下の手順により、酸化セリウムナノワイヤー上に広い範囲の量でPtナノ粒子を担持させた。なお、Ptナノ粒子の直径は好ましくは2〜20nm、より好ましくは10nm程度とするのがよい。
[Pt nanoparticles supported on cerium oxide nanowires]
A wide range of amounts of Pt nanoparticles were supported on cerium oxide nanowires by the following procedure. The diameter of the Pt nanoparticles is preferably 2 to 20 nm, more preferably about 10 nm.
4.酸化セリウムナノワイヤー5mgに水10mlを加えて1時間攪拌した。 4). 10 ml of water was added to 5 mg of cerium oxide nanowires and stirred for 1 hour.
5.テトラクロロ白金(II)酸カリウム(K2PtCl4)六水和物を無水エタノール(特級試薬)に溶解した溶液2mlを添加して一晩攪拌した。所望の白金担持量により、以下の濃度のK2PtCl4溶液を使用した。ここで、酸化セリウムナノワイヤーの白金担持量は以下のように定義される。
(担持されている白金の重量)/((酸化セリウムナノワイヤーの重量)+(白金の重量))×100重量%
(後述するカーボンを添加してアノード材料とした後の白金担持量の定義とは異なることに注意されたい)
5). 2 ml of a solution of potassium tetrachloroplatinate (II) hexahydrate (K 2 PtCl 4 ) hexahydrate dissolved in absolute ethanol (special grade reagent) was added and stirred overnight. Depending on the desired platinum loading, the following concentration of K 2 PtCl 4 solution was used. Here, the platinum carrying amount of the cerium oxide nanowire is defined as follows.
(Weight of platinum carried) / ((weight of cerium oxide nanowire) + (weight of platinum)) × 100 wt%
(Note that this is different from the definition of the amount of platinum supported after the addition of carbon, which will be described later, to make an anode material.)
白金担持量 水10ml中の白金の重量
0.1重量% 0.010mg/10ml
0.2重量% 0.021mg/10ml
0.5重量% 0.053mg/10ml
1重量% 0.10mg/10ml
2重量% 0.21mg/10ml
5重量% 0.53mg/10ml
10重量% 1.06mg/10ml
50重量% 5.32mg/10ml
Amount of platinum supported Weight of platinum in 10 ml of water 0.1 wt% 0.010 mg / 10 ml
0.2% by weight 0.021mg / 10ml
0.5% by weight 0.053mg / 10ml
1% by weight 0.10mg / 10ml
2% by weight 0.21mg / 10ml
5% by weight 0.53mg / 10ml
10% by weight 1.06mg / 10ml
50% by weight 5.32 mg / 10 ml
6.濃度0.037mg/10ml(100mM)の水素化ホウ素ナトリウム水溶液を添加して1時間攪拌した。 6). A sodium borohydride aqueous solution having a concentration of 0.037 mg / 10 ml (100 mM) was added and stirred for 1 hour.
7.水で3回洗浄した後、エタノール中で3500rpmで15分間の遠心分離を3回行った。 7). After washing with water three times, centrifugation for 15 minutes at 3500 rpm in ethanol was performed three times.
8.回収した酸化セリウムナノワイヤーを窒素雰囲気中で乾燥した。 8). The collected cerium oxide nanowires were dried in a nitrogen atmosphere.
このようにして作製した1重量%、2重量%、及び5重量%Pt担持酸化セリウムナノワイヤーのSEM像を夫々図2〜図4に示す。これらのSEM像より、何れのPt量の場合でも、ナノワイヤー表面にPtナノ粒子が担持されていることが観測できた。 2 to 4 show SEM images of the 1 wt%, 2 wt%, and 5 wt% Pt-supported cerium oxide nanowires thus prepared, respectively. From these SEM images, it was observed that Pt nanoparticles were supported on the nanowire surface in any Pt amount.
[Ptナノ粒子担持酸化セリウムナノワイヤーにカーボンブラックを混合する]
最終的なアノード材料Pt/CeOxナノワイヤー/Cを作製するため、上のステップ8で得られたPtナノ粒子担持酸化セリウムナノワイヤーに、以下のようにして炭素を添加した。
[Carbon black is mixed with cerium oxide nanowire supporting Pt nanoparticles]
In order to prepare the final anode material Pt / CeO x nanowire / C, carbon was added to the Pt nanoparticle-supported cerium oxide nanowire obtained in Step 8 above as follows.
9.所定量カーボンブラックをとって、無水エタノールを溶媒にして、ボールミルを用いて、ステップ8で得られたPtナノ粒子担持酸化セリウムナノワイヤーとともに12時間混合した。 9. A predetermined amount of carbon black was taken and mixed with the Pt nanoparticle-supported cerium oxide nanowire obtained in Step 8 for 12 hours using a ball mill using anhydrous ethanol as a solvent.
[耐CO特性の測定]
上のようにして作製したアノード材料を使用してメタノール酸化活性を示すサイクリック・ボルタモグラムを測定した結果を図5及び図6に示す。ここで、図5及び図6は夫々Pt担持量が5重量%及び1重量%の上記アノード材料を使用した場合の測定結果である。アノード材料中の白金担持量は以下のように定義される。
(担持されている白金の重量)/((酸化セリウムナノワイヤーの重量)+(白金の重量)+(カーボンの重量))×100重量%
[Measurement of CO resistance]
The results of measuring a cyclic voltammogram showing methanol oxidation activity using the anode material produced as described above are shown in FIGS. Here, FIG. 5 and FIG. 6 show the measurement results when the anode materials having Pt loadings of 5 wt% and 1 wt% are used, respectively. The amount of platinum supported in the anode material is defined as follows.
(Weight of platinum carried) / ((weight of cerium oxide nanowire) + (weight of platinum) + (weight of carbon)) × 100 wt%
これらの図に示すサイクリック・ボルタモグラムにおいて、ピークトップが0.85V vs.RHE付近に有るピークは低電位から高電位側に電位を掃引した際に記録されるピークであり、メタノール酸化反応が順次進み、プロトンが生成する際に現れるものであると考えられている。一方、ピークトップが0.6V vs.RHE付近にあるピークは、逆に、電位を高電位から低電位に走引した場合に現れるピークであって、電極表面上で反応できなかったメタノールがプロトンの生成反応を伴わずに酸化分解することを示すと考えられている。図5と図6のいずれにおいても、これらの2つのピークのうち、プロトン生成を伴う酸化反応に対応する0.85V vsRHE付近のピークの方がプロトン生成しない反応に対応する0.6V vsRHE付近のピークに比べてかなり大きなピーク面積を有していることが判る。このことは、この測定で使用したアノード材料のCO耐性が高いことを示している。 In the cyclic voltammograms shown in these figures, the peak top is 0.85 V vs.. The peak in the vicinity of RHE is a peak recorded when the potential is swept from the low potential to the high potential side, and is considered to appear when the methanol oxidation reaction proceeds in sequence and protons are generated. On the other hand, the peak top is 0.6 V vs. On the contrary, the peak in the vicinity of RHE is a peak that appears when the potential is run from a high potential to a low potential, and methanol that could not react on the electrode surface is oxidatively decomposed without a proton generation reaction. It is thought to show that. 5 and 6, among these two peaks, the peak near 0.85 V vs RHE corresponding to the oxidation reaction accompanied by proton generation is closer to 0.6 V vs RHE corresponding to the reaction not generating protons. It can be seen that the peak area is considerably larger than the peak. This indicates that the anode material used in this measurement has high CO resistance.
以上説明したように、本発明によれば、CO耐性の大きなPt触媒を使用したPEFC用のアノードを提供することができるので、改質ガスを使用するPEFCシステムに使用するCO変成器の変成能力に高度なものを要求する必要がなくなったり、あるいは改質ガスが微量のCOしか含有していない場合にはCO変成器を省略することも可能になる。従って、本発明はPEFCシステムの小型化、単純化に大いに貢献することが期待される。更に、市販のアノード材料に比較してPt利用効率を大幅に向上させることができる。 As described above, according to the present invention, it is possible to provide an anode for PEFC using a Pt catalyst having high CO resistance. Therefore, the transformation capacity of a CO transformer used in a PEFC system using reformed gas is provided. It is possible to omit the CO converter when the advanced gas does not need to be demanded or the reformed gas contains only a small amount of CO. Therefore, the present invention is expected to greatly contribute to the miniaturization and simplification of the PEFC system. Furthermore, Pt utilization efficiency can be greatly improved as compared with commercially available anode materials.
Claims (5)
メタノール酸化活性を示すサイクリック・ボルタモグラム中でプロトン生成を伴う酸化反応に対応するピーク面積がプロトン生成しない反応に対応するピーク面積よりも大きい
高分子電解質形燃料電池用高CO耐性アノード材料。 Platinum nanoparticles 0.1-5 wt% supported cerium oxide nanowires and carbon particles was seen including,
In the cyclic voltammogram showing methanol oxidation activity, the peak area corresponding to the oxidation reaction accompanied by proton generation is larger than the peak area corresponding to the reaction not generating protons . High CO-tolerant anode for polymer electrolyte fuel cell material.
1または2に記載の高分子電解質形燃料電池用高CO耐性アノード材料。 The length of the said cerium oxide nanowire is the range of 1000-5000 nm, The high CO tolerance anode material for polymer electrolyte fuel cells of Claim 1 or 2.
の高分子電解質形燃料電池用高CO耐性アノード材料。 The high-CO-resistant anode material for polymer electrolyte fuel cells according to any one of claims 1 to 3, wherein the platinum nanoparticles have a diameter of 2 to 20 nm.
項1から4の何れかに記載の高分子電解質形燃料電池用高CO耐性アノード材料。
5. The high-CO-resistant anode material for polymer electrolyte fuel cells according to claim 1, wherein the cerium oxide is represented by a chemical formula CeOx, where x is 1.5 to 2.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011260234A JP5877393B2 (en) | 2011-11-29 | 2011-11-29 | High CO resistance anode material for polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011260234A JP5877393B2 (en) | 2011-11-29 | 2011-11-29 | High CO resistance anode material for polymer electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013114915A JP2013114915A (en) | 2013-06-10 |
JP5877393B2 true JP5877393B2 (en) | 2016-03-08 |
Family
ID=48710270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011260234A Expired - Fee Related JP5877393B2 (en) | 2011-11-29 | 2011-11-29 | High CO resistance anode material for polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5877393B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6638879B2 (en) * | 2015-01-22 | 2020-01-29 | 国立研究開発法人物質・材料研究機構 | Trace amount platinum-supported ceria nanowire, method for producing the same, and use thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5382673B2 (en) * | 2006-04-25 | 2014-01-08 | 独立行政法人物質・材料研究機構 | Cerium oxide nanotube and method for producing the same |
JP5686988B2 (en) * | 2009-05-04 | 2015-03-18 | シャープ株式会社 | Catalyst layer used for membrane electrode assembly for fuel cell, membrane electrode assembly for fuel cell using the same, fuel cell, and production method thereof |
-
2011
- 2011-11-29 JP JP2011260234A patent/JP5877393B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013114915A (en) | 2013-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kadirgan et al. | Preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation | |
Chen et al. | PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell | |
JP3861146B2 (en) | Anode catalyst for fuel cell | |
CN101455970B (en) | Preparation method of carbon supported core-shell Ni-Pt particles for direct methanol fuel cells | |
CN101664685A (en) | Low-platinum high active core-shell structure catalyst and preparation method thereof | |
TW200812698A (en) | Catalyst | |
Khorasani-Motlagh et al. | Investigation of the nanometals (Ni and Sn) in platinum binary and ternary electrocatalysts for methanol electrooxidation | |
JP2006190686A (en) | Pt/ru alloy catalyst, its manufacturing method, electrode for fuel cell, and fuel cell | |
Peng et al. | Bimetallic Pt3Mn nanowire network structures with enhanced electrocatalytic performance for methanol oxidation | |
JP2007273340A (en) | High-durability electrode catalyst for fuel cell, and fuel cell using the same | |
Neto et al. | Preparation and characterization of Pt–Rare Earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation | |
Kakati et al. | Ru decorated Pt nanoparticles by a modified polyol process for enhanced catalytic activity for methanol oxidation | |
Kumar et al. | Palladium-ruthenium alloy nanoparticles dispersed on CoWO4-doped graphene for enhanced methanol electro-oxidation | |
de Moura Souza et al. | Methane activation at low temperature in an acidic electrolyte using PdAu/C, PdCu/C, and PdTiO 2/C electrocatalysts for PEMFC | |
Habibi et al. | Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media | |
Habibi et al. | Electrooxidation of formic acid and formaldehyde on the Fe3O4@ Pt core-shell nanoparticles/carbon-ceramic electrode | |
US8273679B2 (en) | Porous catalyst for a fuel cell and method for producing the catalyst thereof | |
Chai et al. | Heterogeneous Ir3Sn–CeO2/C as alternative Pt-free electrocatalysts for ethanol oxidation in acidic media | |
Xu | A comparative study on electrocatalytic performance of PtAu/C and PtRu/C nanoparticles for methanol oxidation reaction | |
Hu et al. | Construction of ultrathin PdPtSn nanosheet for alcohol oxidation reaction | |
Zhou et al. | Low carbon alcohol fuel electrolysis of hydrogen generation catalyzed by a novel and effective Pt–CoTe/C bifunctional catalyst system | |
Kazan-Kaya et al. | Investigation of ethanol fuel electrooxidation reaction on Ni-CeO2NRs anode electrocatalyst in alkaline media | |
JP2008041498A (en) | Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell | |
Zhao et al. | Oxygen-vacancy Ce-MoO3 nanosheets loaded Pt nanoparticles for super-efficient photoelectrocatalytic oxidation of methanol | |
Yang et al. | Synthesis of high-performance low-Pt (1 1 1)-loading catalysts for ORR by interaction between solution and nonthermal plasma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5877393 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |