JP5874105B2 - Trivalent chromium chemical conversion solution particularly suitable for zinc-nickel alloy plating and tin-zinc alloy plating - Google Patents

Trivalent chromium chemical conversion solution particularly suitable for zinc-nickel alloy plating and tin-zinc alloy plating Download PDF

Info

Publication number
JP5874105B2
JP5874105B2 JP2011139509A JP2011139509A JP5874105B2 JP 5874105 B2 JP5874105 B2 JP 5874105B2 JP 2011139509 A JP2011139509 A JP 2011139509A JP 2011139509 A JP2011139509 A JP 2011139509A JP 5874105 B2 JP5874105 B2 JP 5874105B2
Authority
JP
Japan
Prior art keywords
zinc
pka
alloy plating
chemical conversion
carboxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011139509A
Other languages
Japanese (ja)
Other versions
JP2013007081A (en
Inventor
利昭 牧野
利昭 牧野
聡史 板東
聡史 板東
小池 克博
克博 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Hyomen Kagaku KK
Original Assignee
Nippon Hyomen Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hyomen Kagaku KK filed Critical Nippon Hyomen Kagaku KK
Priority to JP2011139509A priority Critical patent/JP5874105B2/en
Publication of JP2013007081A publication Critical patent/JP2013007081A/en
Application granted granted Critical
Publication of JP5874105B2 publication Critical patent/JP5874105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は亜鉛部材、亜鉛合金部材、亜鉛めっき品又は亜鉛合金めっき品上に三価クロム化成処理皮膜を形成するための薬剤とその方法に関する。本発明は特に亜鉛合金めっき上の化成処理皮膜を形成するのに有効である薬剤とその方法に関する。   The present invention relates to a chemical and a method for forming a trivalent chromium chemical conversion coating on a zinc member, a zinc alloy member, a galvanized product or a zinc alloy plated product. The present invention relates to a drug and a method thereof which are particularly effective for forming a chemical conversion film on zinc alloy plating.

一般的に鉄系材料・部品の防錆方法として亜鉛又は亜鉛系合金めっき(例えば亜鉛−鉄合金めっき、亜鉛−ニッケル合金めっき、スズ−亜鉛合金めっき)が広く利用されている。しかし、亜鉛はさびやすい金属であり、そのまま使用すると亜鉛の錆である白錆がすぐに発生してしまうため、さらに保護皮膜を形成させることが一般的である。   Generally, zinc or zinc-based alloy plating (for example, zinc-iron alloy plating, zinc-nickel alloy plating, tin-zinc alloy plating) is widely used as a rust prevention method for iron-based materials and parts. However, zinc is a metal that is easily rusted, and white rust, which is rust of zinc, is generated immediately when used as it is, so that it is common to form a protective film.

化成処理皮膜の分野においては、かつて6価クロメートが多用されていたが、環境問題等の理由により現在は3価クロム化成皮膜処理が主流となっている。その例として特開2003−166074、特開2003−313675、特開2004−10937などが挙げられる。しかし、いずれも亜鉛−ニッケル合金めっきに適用したときには十分な性能を発揮しない。一方、亜鉛−ニッケル合金めっきにも対応した3価クロム化成皮膜の例として特開2005−240068が挙げられるが、白錆範囲の拡大が遅くとも白錆発生が早いという部分で性能面ではまだまだ満足できるものではなく、特にニッケル共析率10〜25%という比較的高い場合には外観及び耐食性の面で安定して満足のいく性能が得られない欠点があった。また、スズ−亜鉛合金めっきに対する3価クロム化成皮膜処理に関しては、現時点では亜鉛又は他の亜鉛系合金めっきに用いられる3価クロム化成皮膜処理をそのまま適用して各メーカーの要求する耐食性等の基準をクリアできる場合が大半であるためほとんど研究がなされてこなかった経緯がある。しかし将来的には現時点で既に達成されている以上の高い耐食性が要求され、スズ−亜鉛合金めっきに適した化成皮膜処理が必要になると考えられる。   In the field of chemical conversion coatings, hexavalent chromate was once widely used, but for the reasons such as environmental problems, trivalent chromium chemical conversion coatings are currently mainstream. Examples thereof include JP 2003-166074, JP 2003-313675, JP 2004-10937, and the like. However, none of them exhibits sufficient performance when applied to zinc-nickel alloy plating. On the other hand, Japanese Patent Application Laid-Open No. 2005-240068 can be cited as an example of a trivalent chromium conversion coating corresponding to zinc-nickel alloy plating. However, even if the expansion of the white rust range is slow, white rust generation is early and the performance is still satisfactory. However, when the nickel eutectoid rate is relatively high, such as 10 to 25%, there is a defect that stable and satisfactory performance cannot be obtained in terms of appearance and corrosion resistance. In addition, regarding the trivalent chromium conversion coating treatment for tin-zinc alloy plating, at present, the standard of corrosion resistance, etc. required by each manufacturer by directly applying the trivalent chromium conversion coating treatment used for zinc or other zinc-based alloy plating. Since most of the cases can be cleared, there is a history that has hardly been studied. However, in the future, higher corrosion resistance than that which has already been achieved at the present time is required, and it is considered that a chemical conversion film treatment suitable for tin-zinc alloy plating is required.

特開2003−166074号公報JP 2003-166074 A 特開2003−313675号公報JP 2003-313675 A 特開2004−10937号公報JP 2004-10937 A 特開2005−240068号公報Japanese Patent Laid-Open No. 2005-240068

本発明は亜鉛及び亜鉛系合金めっき、特に亜鉛ニッケル合金めっき、スズ亜鉛合金めっきに適した3価クロム化成処理皮膜を形成するための化成処理液、化成処理方法、化成処理を施した製品に関する。   The present invention relates to a chemical conversion treatment solution, a chemical conversion treatment method, and a chemical-treated product for forming a trivalent chromium chemical conversion coating suitable for zinc and zinc-based alloy plating, particularly zinc-nickel alloy plating and tin-zinc alloy plating.

本発明者らは三価クロム化成皮膜処理液に含有されることがあるカルボン酸に着目した。以前より化成皮膜処理液にカルボン酸を添加する効果に外観、耐食性等の向上があることは知られていた。しかし、複数のカルボン酸を意図的に使い分けることについて検討が行われた例は非常に少なく、複数種類のカルボン酸の使用を検討する例はあっても、それはカルボン酸という単一のグループから複数のカルボン酸をただピックアップしているに過ぎなかった。   The present inventors paid attention to carboxylic acid that may be contained in the trivalent chromium chemical conversion coating solution. It has been known for some time that the effect of adding carboxylic acid to a chemical conversion coating solution has improved appearance, corrosion resistance, and the like. However, there have been very few examples of intentional use of multiple carboxylic acids, and there are examples that consider the use of multiple types of carboxylic acids. The carboxylic acid was simply picked up.

本発明では各カルボン酸の酸性度に着目し、酸性度に一定以上の差を有する複数のカルボン酸を意図的に併用することで、合金めっき、特に亜鉛ニッケル合金めっきに対して安定的に高性能な化成皮膜を得ることに成功した。亜鉛系合金めっき、特に亜鉛ニッケル合金めっきの場合には亜鉛とニッケルの反応性の違いなどの理由により通常の三価クロム化成皮膜処理を均一に施すことが困難であり、満足のいく外観と耐食性を得られる方法が無かった。また、ニッケル共析率が高くなるほど(すなわち亜鉛共析率が低くなるほど)均一外観を得る事が困難になり、特に10%を越える高ニッケル共析率のめっき皮膜に対して良好な外観および耐食性を安定的に得られる方法は存在しなかった。原理は不明だが酸性度に差のある二種類以上のカルボン酸を同時に使用することで複数種類の金属を含有する合金めっきで各金属の反応性などの差異による影響を最小化することができたと考えられる。   In the present invention, paying attention to the acidity of each carboxylic acid, by intentionally using a plurality of carboxylic acids having a certain difference or more in acidity, it is possible to stably increase the resistance to alloy plating, particularly zinc-nickel alloy plating. We succeeded in obtaining a high performance chemical conversion film. In the case of zinc-based alloy plating, especially zinc-nickel alloy plating, it is difficult to uniformly apply the usual trivalent chromium conversion coating due to the difference in reactivity between zinc and nickel, and satisfactory appearance and corrosion resistance There was no way to get it. In addition, the higher the nickel eutectoid rate (that is, the lower the zinc eutectoid rate), the more difficult it is to obtain a uniform appearance, and particularly good appearance and corrosion resistance for plating films with a high nickel eutectoid rate exceeding 10%. There is no method that can stably obtain the above. Although the principle is unknown, it is possible to minimize the influence of differences in the reactivity of each metal in alloy plating containing multiple types of metals by using two or more types of carboxylic acids with different acidities at the same time. Conceivable.

また、更にアルカリ金属、アルカリ土類金属、チタン、ジルコニウム、バナジウム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、金、銀、銅、錫及びアルミニウムよりなる群から選択される1種以上の金属を含有することもケイ素化合物を含有することも可能であり、特に制限は存在しない。また、洗浄、活性化等を目的として界面活性剤、無機酸イオン、水酸化物、金属イオン等を含有する処理液を用いて前処理すること及び耐食性、外観等を考慮しオーバーコートを施すことも可能である。   Furthermore, one or more metals selected from the group consisting of alkali metals, alkaline earth metals, titanium, zirconium, vanadium, molybdenum, tungsten, manganese, iron, cobalt, nickel, gold, silver, copper, tin, and aluminum It is also possible to contain a silicon compound, and there is no particular limitation. In addition, pretreatment with a treatment liquid containing a surfactant, inorganic acid ions, hydroxides, metal ions, etc. for the purpose of cleaning, activation, etc., and overcoat in consideration of corrosion resistance, appearance, etc. Is also possible.

本発明は(A)三価クロム、(B)カルボン酸又はその誘導体を二種以上、(C)塩化物イオン、塩素の酸素酸イオン、硫酸イオン、硝酸イオンから選択される一種以上を含有し、(B)群に含まれるカルボン酸のカルボキシル基の数を合計すると3以上であり、カルボキシル基のうち、最もpKaの小さなカルボキシル基と当該カルボキシル基と同一分子内にあるものを除き、次にpKaの大きなカルボキシル基のpKaの差が1.2以上である化成皮膜処理液亜鉛系合金めっき用化成皮膜処理液に関する。
また、カルボキシル基が二つ以上あるカルボン酸にあっては解離段が複数あることになるが、その場合は最もpKaの低い解離段1を一つ目のカルボキシル基のpKa、次にpKaの低い解離段2を二つ目のカルボキシル基のpKa、以下同様とみなす。
The present invention contains (A) trivalent chromium, (B) two or more carboxylic acids or derivatives thereof, and (C) one or more selected from chloride ions, chlorine oxyacid ions, sulfate ions, and nitrate ions. , (B) and in the number of carboxyl groups of a carboxylic acid total of the three or more contained group of carboxyl group, except those in the most pKa smaller carboxyl group and the carboxyl group within the same molecule, then The present invention relates to a chemical conversion coating solution for a zinc-based alloy plating in which the difference in pKa of carboxyl groups having a large pKa is 1.2 or more.
In addition, in a carboxylic acid having two or more carboxyl groups, there are a plurality of dissociation stages. In this case, the dissociation stage 1 having the lowest pKa is the pKa of the first carboxyl group, and then the pKa is low. Dissociation stage 2 is regarded as the pKa of the second carboxyl group, and so on.

各成分の濃度に特に制限は無いが三価クロムは0.01〜4g/L、(C)群に属するアニオンは5〜100g/Lが好適である。2種類以上含有するカルボン酸の適する濃度に制限はないがカルボン酸イオン濃度の合計が0.1〜15g/Lが好適であり、さらに好ましくは0.5〜10g/Lである。亜鉛ニッケル合金めっきではニッケル共析率や用いるカルボン酸の種類によって好適な濃度が変化する。しかし、全体的には最もpKaの低い、言い換えるならもっとも酸性度の高いカルボキシル基の濃度を高く設定すると良好な結果をもたらす場合が多く、(最もpKaの小さいカルボン酸又はその誘導体):(その他のカルボン酸又はその誘導体の合計)の重量比が1.5:1〜100:1である場合が好適であり、より望ましくは2:1〜50:1である。   Although there is no restriction | limiting in particular in the density | concentration of each component, 0.01-4 g / L is preferable for trivalent chromium, and 5-100 g / L for the anion which belongs to the (C) group is suitable. Although there is no restriction | limiting in the suitable density | concentration of the carboxylic acid contained 2 or more types, 0.1-15 g / L of the sum total of carboxylate ion density | concentration is suitable, More preferably, it is 0.5-10 g / L. In zinc-nickel alloy plating, the preferred concentration varies depending on the nickel eutectoid rate and the type of carboxylic acid used. However, setting the concentration of the carboxyl group having the lowest pKa, in other words, the most acidic, in many cases, often gives good results (a carboxylic acid having the smallest pKa or a derivative thereof): (Other The weight ratio of the carboxylic acid or its derivative) is preferably 1.5: 1 to 100: 1, more preferably 2: 1 to 50: 1.

処理液のpHについては特に制限は無いがpH0.5〜6.0が好適であり、さらに、本発明の効果を十分に発揮するためには高pHがより好適である場合が多いため、pH2.5〜6.0が好適であり、さらにはpH3.5〜5.0がより好適である。温度は10〜50℃が好適である。処理時間は目的によっても異なるが10〜120秒が好適であり、より好ましくは20〜90秒である。処理対象となる金属は亜鉛又は亜鉛系合金めっきであれば制限は無いが、本発明は合金めっき、特に特定の金属の重量が、めっき中の金属の合計重量の95%以下で優れた効果を発揮し、90%以下で特に優れた効果を発揮する。   Although there is no restriction | limiting in particular about the pH of a process liquid, pH 0.5-6.0 is suitable, Furthermore, in order to fully exhibit the effect of this invention, since high pH is more suitable in many cases, pH 2 0.5 to 6.0 is preferable, and pH 3.5 to 5.0 is more preferable. The temperature is preferably 10 to 50 ° C. The treatment time varies depending on the purpose, but is preferably 10 to 120 seconds, more preferably 20 to 90 seconds. The metal to be treated is not limited as long as it is zinc or zinc-based alloy plating, but the present invention is excellent in alloy plating, particularly when the weight of a specific metal is 95% or less of the total weight of metals in plating. Exerts a particularly excellent effect at 90% or less.

本発明で使用できる上記(B)群に含まれるカルボン酸には次の物が含まれるがそれに限定されない。シュウ酸(pKa1.04,3.82)、クエン酸(pKa2.9,4.35,5.69)、コハク酸(pKa3.99,5.2)、酒石酸(pKa2.87,3.97)、マロン酸(pKa2.6,5.29)、乳酸(pKa3.64)、酢酸(pKa4.57)、マレイン酸(pKa1.84,5.83)、リンゴ酸(pKa3.23,4.77)等が含まれるがこれらに限定されない。しかし、これらは単独では十分な効果を生じないので、それらの内から、上記の条件を満足する組合せのものを選択しなければならない。なお、ここに表示したpKaの数値は改訂5版化学便覧基礎編(丸善株式会社)の記載を参考にした。   Carboxylic acids included in group (B) that can be used in the present invention include, but are not limited to, the following. Oxalic acid (pKa 1.04, 3.82), citric acid (pKa 2.9, 4.35, 5.69), succinic acid (pKa 3.99, 5.2), tartaric acid (pKa 2.87, 3.97) , Malonic acid (pKa 2.6, 5.29), lactic acid (pKa 3.64), acetic acid (pKa 4.57), maleic acid (pKa 1.84, 5.83), malic acid (pKa 3.23, 4.77) Etc., but are not limited to these. However, since these alone do not produce sufficient effects, a combination satisfying the above conditions must be selected from them. In addition, the numerical value of pKa displayed here referred to the description of the revised 5th edition chemical manual basics (Maruzen Co., Ltd.).

以下、本発明の効果が最も顕著に現れる亜鉛ニッケル合金めっき及びスズ亜鉛合金めっきを主体とした実施例により本発明を説明する。試験は試験片を脱脂、酸浸漬などの適当な前処理を行い、亜鉛めっき(ハイパージンク;日本表面化学(株))、亜鉛鉄合金めっき(ストロンジンク;日本表面化学(株))、亜鉛ニッケル合金めっき(要求されるNi共析率によりストロンNiジンク、ハイNiジンク;いずれも日本表面化学(株)を使い分け)、およびスズ亜鉛合金めっき(TZ−400;日本表面化学(株))のいずれかを施し、適切な前処理を施した後に三価クロム化成処理をいった。pH調整は硫酸、硝酸、塩酸から選択される適切な酸及び水酸化ナトリウムにより行った。めっきの膜厚はいずれのめっきも8〜10μm、耐食性評価はJIS Z 2731に従う塩水噴霧試験を行った。   Hereinafter, the present invention will be described with reference to examples mainly composed of zinc-nickel alloy plating and tin-zinc alloy plating in which the effects of the present invention are most prominent. In the test, the test piece is subjected to appropriate pretreatment such as degreasing and acid dipping, galvanizing (Hyper Zinc; Nippon Surface Chemical Co., Ltd.), zinc iron alloy plating (Strong Zinc; Nippon Surface Chemical Co., Ltd.), zinc nickel Alloy plating (Stron Ni zinc, High Ni zinc depending on the required Ni eutectoid rate; both use Nihon Surface Chemical Co., Ltd.) and tin zinc alloy plating (TZ-400; Nihon Surface Chemical Co., Ltd.) After applying appropriate pretreatment, trivalent chromium conversion treatment was performed. The pH was adjusted with a suitable acid selected from sulfuric acid, nitric acid and hydrochloric acid and sodium hydroxide. The plating film thickness was 8 to 10 μm for any plating, and the corrosion resistance evaluation was a salt spray test according to JIS Z2731.

実施例1 亜鉛めっき品を硫酸クロム3g/L、硝酸クロム3g/L、硝酸ナトリウム15g/L、硝酸コバルト3g/L、バナジン酸アンモン2g/L、塩化ニッケル1g/L、クエン酸1g/L、シュウ酸8g/Lを含む処理液に浸漬し処理を行った。温度30℃、浸漬時間40秒、pH2.0の条件で行った。水洗、乾燥後、良好な外観の皮膜を得た。耐食性試験では240時間白錆なしだった。   Example 1 A galvanized product was made of chromium sulfate 3 g / L, chromium nitrate 3 g / L, sodium nitrate 15 g / L, cobalt nitrate 3 g / L, vanadate ammonium 2 g / L, nickel chloride 1 g / L, citric acid 1 g / L, The treatment was performed by dipping in a treatment solution containing 8 g / L of oxalic acid. This was performed under the conditions of a temperature of 30 ° C., an immersion time of 40 seconds, and a pH of 2.0. After washing with water and drying, a film having a good appearance was obtained. In the corrosion resistance test, there was no white rust for 240 hours.

実施例2 亜鉛鉄合金めっき品(鉄共析率0.5%)を硫酸クロム2g/L、硝酸クロム2g/L、硝酸ナトリウム10g/L、塩化コバルト2.5g/L、硫酸ニッケル0.5g/L、コハク酸1g/L、シュウ酸8g/Lを含む処理液に浸漬し処理を行った。温度35℃、浸漬時間40秒、pH2.2の条件で行った。水洗、乾燥後、良好な外観の皮膜を得た。耐食性試験では360時間白錆なしだった。   Example 2 A zinc-iron alloy plated product (iron eutectoid rate of 0.5%) was chromium sulfate 2 g / L, chromium nitrate 2 g / L, sodium nitrate 10 g / L, cobalt chloride 2.5 g / L, nickel sulfate 0.5 g. / L, succinic acid 1 g / L, oxalic acid 8 g / L was immersed in a treatment solution for treatment. It was performed under the conditions of a temperature of 35 ° C., an immersion time of 40 seconds, and a pH of 2.2. After washing with water and drying, a film having a good appearance was obtained. In the corrosion resistance test, there was no white rust for 360 hours.

実施例3 亜鉛ニッケル合金めっき品のニッケル共析率、浴組成についても大幅に変動させながら化成処理を行った。以下、ニッケル共析率15%のめっき品に対し、塩化クロム2.5g/L、硝酸カリウム8g/L、硝酸コバルト5g/L、硫酸ニッケル1g/L、シュウ酸8g/L、酒石酸1g/Lを含む処理液に浸漬し、処理を行った。温度30℃、浸漬時間40秒、pH4.0の条件で行った。水洗、乾燥後、良好な外観の皮膜を得た。耐食性試験では720時間白錆無しだった。   Example 3 The chemical conversion treatment was performed while greatly varying the nickel eutectoid rate and the bath composition of the zinc-nickel alloy plated product. Hereinafter, for a plated product with a nickel eutectoid rate of 15%, chromium chloride 2.5 g / L, potassium nitrate 8 g / L, cobalt nitrate 5 g / L, nickel sulfate 1 g / L, oxalic acid 8 g / L, tartaric acid 1 g / L It was immersed in the processing liquid containing and processed. It was performed under the conditions of a temperature of 30 ° C., an immersion time of 40 seconds, and a pH of 4.0. After washing with water and drying, a film having a good appearance was obtained. In the corrosion resistance test, there was no white rust for 720 hours.

以下、実施例3を基準とし、特定の条件を大幅に変動させて化成処理を行った。
実施例4:塩化クロム濃度0.3g/L、実施例5:塩化クロム濃度20g/L、実施例6:硝酸カリウムを硝酸ナトリウムに変更、実施例7:硝酸カリウム0.5g/L、実施例8:硝酸カリウム40g/L、実施例9:硝酸コバルトなし、実施例10:硝酸コバルト30g/L、実施例11:硫酸ニッケルなし、実施例12:硫酸ニッケル10g/L、実施例13:シュウ酸0.5g/L、実施例14:シュウ酸14g/L、実施例15:酒石酸0.05g/L、実施例16:酒石酸8g/L、実施例17:酒石酸をクエン酸に変更、実施例18:酒石酸をマロン酸に変更、実施例19:酒石酸を乳酸に変更、実施例20:酒石酸をコハク酸に変更、実施例21:酒石酸を酢酸に変更、実施例22:シュウ酸をマレイン酸に、酒石酸をリンゴ酸に変更、実施例23:シュウ酸をマロン酸に、酒石酸をコハク酸に変更、実施例24:シュウ酸をリンゴ酸に、酒石酸を酪酸に変更、実施例25:温度15℃に変更、実施例26:温度50℃に変更、実施例27:pH2.5に変更、実施例28:pH3.5に変更、実施例29:pH5.0に変更、実施例30:pH6.0に変更、実施例31:処理時間20秒に変更、実施例32:処理時間90秒に変更して試験を行った。外観は全て良好であり、耐食性も実施例4、9、25、30、31は600時間白錆なし、その他は全て720時間白錆なしだった。
In the following, the chemical conversion treatment was performed with the specific conditions varied greatly with Example 3 as a reference.
Example 4: Chromium chloride concentration 0.3 g / L, Example 5: Chromium chloride concentration 20 g / L, Example 6: Potassium nitrate is changed to sodium nitrate, Example 7: Potassium nitrate 0.5 g / L, Example 8: Potassium nitrate 40 g / L, Example 9: No cobalt nitrate, Example 10: Cobalt nitrate 30 g / L, Example 11: No nickel sulfate, Example 12: Nickel sulfate 10 g / L, Example 13: Oxalic acid 0.5 g / L, Example 14: Oxalic acid 14 g / L, Example 15: Tartaric acid 0.05 g / L, Example 16: Tartaric acid 8 g / L, Example 17: Tartaric acid was changed to citric acid, Example 18: Tartaric acid Example 19: Tartaric acid changed to lactic acid, Example 20: Tartaric acid changed to succinic acid, Example 21: Tartaric acid changed to acetic acid, Example 22: Oxalic acid changed to maleic acid, Tartaric acid changed to malonic acid Change to oxalic acid, Example 23: Change oxalic acid to malonic acid, tartaric acid to succinic acid, Example 24: change oxalic acid to malic acid, tartaric acid to butyric acid, Example 25: change temperature to 15 ° C, Example 26: Temperature changed to 50 ° C, Example 27: Changed to pH 2.5, Example 28: Changed to pH 3.5, Example 29: Changed to pH 5.0, Example 30: Changed to pH 6.0, Example 31: The test was performed by changing the processing time to 20 seconds, and Example 32: changing the processing time to 90 seconds. The appearance was all good, and the corrosion resistance of Examples 4, 9, 25, 30, and 31 was no white rust for 600 hours, and the others were all white rust for 720 hours.

比較例として、実施例3から酒石酸を除いた他は同一条件で実施例3を行い、これを比較例1とした。結果、120時間で白錆が発生した。外観も実施例3〜32のいずれよりもムラが目立つものだった。以上より、カルボン酸を併用しない場合、外観や耐食性が低下する。   As a comparative example, Example 3 was carried out under the same conditions except that tartaric acid was removed from Example 3, and this was designated as Comparative Example 1. As a result, white rust occurred in 120 hours. The appearance was also more noticeable than in any of Examples 3 to 32. As mentioned above, when not using carboxylic acid together, the appearance and corrosion resistance are reduced.

実施例3〜32と同様の試験をニッケル共析率5、7、10、20、25%(すなわち亜鉛共析率75〜95%)の亜鉛ニッケル合金めっき品に対しても行った。外観は全て良好、耐食性はニッケル共析率5%、25%の場合、全て600時間白錆発生なし、7、10、20%の場合、実施例4,9,25,30,31に対応する条件で600時間白錆発生なし、それ以外に対応する条件では720時間白錆発生なしであった。一方、比較例1をこれらのニッケル共析率の亜鉛ニッケル合金めっきに対して行った場合、ニッケル共析率5、7、10%の場合には120時間で白錆発生、20、25%の場合には96時間で白錆発生した。外観もいずれの比較例においても、ムラが目立つものであった。   The same tests as in Examples 3 to 32 were also performed on zinc-nickel alloy plated products having nickel eutectoid rates of 5, 7, 10, 20, and 25% (that is, zinc eutectoid rate of 75 to 95%). Appearance is all good, corrosion resistance is 5% for nickel eutectoid, 25%, no white rust for 600 hours, 7, 10, 20% corresponds to Examples 4, 9, 25, 30, 31 Under conditions, no white rust was generated for 600 hours, and under other conditions, white rust was not generated for 720 hours. On the other hand, when Comparative Example 1 was performed on zinc nickel alloy plating with these nickel eutectoid rates, white rust was generated in 120 hours when the nickel eutectoid rate was 5, 7, 10%, and 20, 25%. In some cases, white rust occurred in 96 hours. The appearance was also uneven in any of the comparative examples.

スズ亜鉛合金めっき品についても化成処理を行った。スズ共析率75%のめっき品に対し、塩化クロム2.5g/L、硝酸カリウム8g/L、硝酸コバルト5g/L、硫酸ニッケル1g/L、シュウ酸8g/L、酒石酸1g/Lを含む処理液に浸漬し、処理を行った。温度30℃、浸漬時間40秒、pH4.0の条件で行った。水洗、乾燥後、良好な外観の皮膜を得た。耐食性試験では240時間白錆無し、800時間赤錆なしだった。
一方、酒石酸を除いた場合には72時間で白錆発生し、240時間で赤錆発生した。
Chemical conversion treatment was also performed on tin-zinc alloy plated products. For a plated product with a tin eutectoid rate of 75%, a treatment containing 2.5 g / L of chromium chloride, 8 g / L of potassium nitrate, 5 g / L of cobalt nitrate, 1 g / L of nickel sulfate, 8 g / L of oxalic acid, and 1 g / L of tartaric acid It was immersed in the liquid and processed. It was performed under the conditions of a temperature of 30 ° C., an immersion time of 40 seconds, and a pH of 4.0. After washing with water and drying, a film having a good appearance was obtained. In the corrosion resistance test, there was no white rust for 240 hours and no red rust for 800 hours.
On the other hand, when tartaric acid was removed, white rust was generated in 72 hours and red rust was generated in 240 hours.

Claims (10)

(A)三価クロム、(B)カルボン酸又はその誘導体を二種以上、(C)塩化物イオン、塩素の酸素酸イオン、硫酸イオン、硝酸イオンから選択される一種以上を含有し、(B)群に含まれるカルボン酸のカルボキシル基の数を合計すると3以上であり、最もpKaの小さなカルボキシル基とのpKaの差が1.2以上であって当該最もpKaの小さなカルボキシル基とは別種の分子内にあり、その分子内では最もpKaの小さいカルボキシル基を有し、pHが4〜6の範囲内である亜鉛系合金めっき用化成皮膜処理液。   (A) Two or more types of trivalent chromium, (B) carboxylic acid or derivatives thereof, (C) one or more types selected from chloride ions, oxyacid ions of chlorine, sulfate ions, nitrate ions, ) When the total number of carboxyl groups of the carboxylic acid included in the group is 3 or more, the difference in pKa from the carboxyl group having the smallest pKa is 1.2 or more, which is different from the carboxyl group having the smallest pKa. A chemical conversion film treatment solution for zinc-based alloy plating having a carboxyl group having the smallest pKa in the molecule and having a pH in the range of 4-6. (A)三価クロム、(B)カルボン酸又はその誘導体を二種以上、(C)塩化物イオン、塩素の酸素酸イオン、硫酸イオン、硝酸イオンから選択される一種以上を含有し、(B)群に含まれるカルボン酸のカルボキシル基の数を合計すると3以上であり、最もpKaの小さなカルボキシル基とのpKaの差が1.2以上であって当該最もpKaの小さなカルボキシル基とは別種の分子内にあり、その分子内では最もpKaの小さいカルボキシル基を有し、pHが2.2〜6の範囲内であり、キノリン系化合物及びその誘導体を含まない、亜鉛系合金めっき用化成皮膜処理液。   (A) Two or more types of trivalent chromium, (B) carboxylic acid or derivatives thereof, (C) one or more types selected from chloride ions, oxyacid ions of chlorine, sulfate ions, nitrate ions, ) When the total number of carboxyl groups of the carboxylic acid included in the group is 3 or more, the difference in pKa from the carboxyl group having the smallest pKa is 1.2 or more, which is different from the carboxyl group having the smallest pKa. Chemical film treatment for zinc-based alloy plating that is in a molecule, has a carboxyl group with the smallest pKa in the molecule, has a pH in the range of 2.2 to 6, and does not contain quinoline-based compounds and derivatives thereof liquid. pHが4〜6の範囲内である請求項2に記載の化成皮膜処理液。   The chemical conversion film treatment solution according to claim 2, wherein the pH is in the range of 4-6. 請求項1〜3のいずれか1項に記載の最もpKaの小さなカルボキシル基を有する分子内において二番目にpKaの小さなカルボキシル基と請求項1〜3のいずれか1項に記載のカルボキシル基とのpKaの差が0.4以上である請求項1〜3のいずれか1項に記載の化成皮膜処理液。   The carboxyl group having the smallest pKa in the molecule having the smallest pKa according to any one of claims 1 to 3 and the carboxyl group according to any one of claims 1 to 3 The chemical conversion film treatment solution according to any one of claims 1 to 3, wherein the difference in pKa is 0.4 or more. 最もpKaの小さいカルボン酸又はその誘導体:その他のカルボン酸又はその誘導体の重量比が1.5:1〜100:1である請求項1〜4のいずれか1項に記載の化成皮膜処理液。   5. The chemical conversion film treatment solution according to claim 1, wherein the weight ratio of the carboxylic acid having the smallest pKa or derivative thereof: other carboxylic acid or derivative thereof is 1.5: 1 to 100: 1. さらにアルカリ金属、アルカリ土類金属、チタン、ジルコニウム、バナジウム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、金、銀、銅、錫及びアルミニウムよりなる群から選択される1種以上の金属を含有する請求項1〜5のいずれか1項に記載の化成皮膜処理液。   Furthermore, it contains one or more metals selected from the group consisting of alkali metals, alkaline earth metals, titanium, zirconium, vanadium, molybdenum, tungsten, manganese, iron, cobalt, nickel, gold, silver, copper, tin and aluminum The chemical film treatment liquid according to any one of claims 1 to 5. 処理対象となる金属が亜鉛系合金めっきであり、めっき層に最も存在量の大きい金属の、めっき層に存在する金属全体に対する存在比が95%以下である請求項1〜6のいずれか1項に記載の化成皮膜処理液。   The metal to be treated is zinc-based alloy plating, and the abundance ratio of the metal having the largest abundance in the plating layer with respect to the entire metal in the plating layer is 95% or less. The chemical film treatment liquid described in 1. 処理対象となる金属が亜鉛ニッケル合金めっきである請求項7に記載の化成皮膜処理液。   The conversion coating solution according to claim 7, wherein the metal to be treated is zinc-nickel alloy plating. 請求項1〜8のいずれか1項に記載の化成皮膜処理液を用いる化成皮膜形成方法。   A chemical conversion film forming method using the chemical conversion film treatment liquid according to claim 1. 亜鉛系合金めっき品を製造するための方法であって、
請求項9に記載の方法を用いて、亜鉛系合金めっき品に化成皮膜が形成される、該方法
A method for producing a zinc-based alloy plating product,
The method in which a chemical conversion film is formed on a zinc-based alloy plated article using the method according to claim 9.
JP2011139509A 2011-06-23 2011-06-23 Trivalent chromium chemical conversion solution particularly suitable for zinc-nickel alloy plating and tin-zinc alloy plating Active JP5874105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139509A JP5874105B2 (en) 2011-06-23 2011-06-23 Trivalent chromium chemical conversion solution particularly suitable for zinc-nickel alloy plating and tin-zinc alloy plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139509A JP5874105B2 (en) 2011-06-23 2011-06-23 Trivalent chromium chemical conversion solution particularly suitable for zinc-nickel alloy plating and tin-zinc alloy plating

Publications (2)

Publication Number Publication Date
JP2013007081A JP2013007081A (en) 2013-01-10
JP5874105B2 true JP5874105B2 (en) 2016-03-02

Family

ID=47674668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139509A Active JP5874105B2 (en) 2011-06-23 2011-06-23 Trivalent chromium chemical conversion solution particularly suitable for zinc-nickel alloy plating and tin-zinc alloy plating

Country Status (1)

Country Link
JP (1) JP5874105B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446233B2 (en) * 2004-03-03 2010-04-07 ディップソール株式会社 Covalent friction coefficient reducing agent for trivalent chromate treatment solution, trivalent chromate treatment solution and production method thereof, trivalent chromate coating with reduced overall friction coefficient and production method thereof

Also Published As

Publication number Publication date
JP2013007081A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP2003171778A (en) Method for forming protective film of metal, and protective film of metal
US10260151B2 (en) Treatment liquid for trivalent chromium conversion coating and treatment method of metal substrate
EP2492372A1 (en) Aqueous solution and method for the formation of a passivation layer
WO2009002471A2 (en) Method of forming a multilayer, corrosion-resistant finish
JP2020506292A (en) Method for improving corrosion resistance by electrolytic passivation of outermost chromium layer or outermost chromium alloy layer
JP2005248233A (en) Agent for reducing overall friction coefficient of film for tervalent chromate treatment solution, tervalent chromate treatment solution, its production method, tervalent chromate film having reduced overall friction coefficient and its production method
US9206321B2 (en) Trivalent chromium-conversion processing solution containing aluminum-modified colloidal silica
JP5549837B2 (en) Rust treatment solution for rust prevention of chromium plating film and rust prevention treatment method
JP5605632B2 (en) Finishing agent for chemical conversion film containing no hexavalent chromium
JP5867761B2 (en) Blackening solution for black Cr-Co alloy plating film
US9915006B2 (en) Reactive-type chemical conversion treatment composition and production method of member with chemical conversion coated surface
JP2005126797A (en) Trivalent chromate liquid, and method of forming hexavalent chromium-free corrosion resistant film on zinc-nickel alloy plating using the liquid
JP5336742B2 (en) Chemical conversion treatment method for forming a trivalent chromium chemical conversion coating having good heat and corrosion resistance on zinc or zinc alloy plating
JP6283857B2 (en) Black fastening member for vehicles with excellent corrosion resistance and black appearance
JP5584922B2 (en) Trivalent chromium chemical conversion treatment solution for forming a trivalent chromium chemical conversion coating on zinc or zinc alloy plating
JP4846988B2 (en) Finishing agent for chemical conversion film containing no hexavalent chromium
JP5061395B2 (en) Hexavalent chromium-free film-forming agent and method for zinc or zinc-nickel alloy plating
JP5874105B2 (en) Trivalent chromium chemical conversion solution particularly suitable for zinc-nickel alloy plating and tin-zinc alloy plating
JP4384471B2 (en) Method of forming hexavalent chromium-free corrosion-resistant film on zinc-nickel alloy plating
JP4794248B2 (en) Surface treatment agent for zinc or zinc alloy products
JP2008121101A (en) Rust-preventing liquid for metal surface plated with zinc or zinc alloy, and method for forming rust-preventing film on the metal surface
JP6028165B2 (en) High pH trivalent chromium colored conversion coating solution and processing method
JP2003328148A (en) Method of forming protective film on surface of steel and treatment composition therefor
JP6101921B2 (en) Pretreatment liquid for coating and coating method
JP2009270137A (en) Aqueous conversion treatment solution for forming chromium-free chemical conversion coating on plated film of zinc or zinc alloy, and chromium-free chemical conversion coating obtained from the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5874105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250