JP5871221B2 - Method for producing anhydrous sugar - Google Patents

Method for producing anhydrous sugar Download PDF

Info

Publication number
JP5871221B2
JP5871221B2 JP2009053068A JP2009053068A JP5871221B2 JP 5871221 B2 JP5871221 B2 JP 5871221B2 JP 2009053068 A JP2009053068 A JP 2009053068A JP 2009053068 A JP2009053068 A JP 2009053068A JP 5871221 B2 JP5871221 B2 JP 5871221B2
Authority
JP
Japan
Prior art keywords
glucose
anhydrous sugar
catalyst
solid acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009053068A
Other languages
Japanese (ja)
Other versions
JP2010202626A (en
Inventor
海老谷 幸喜
幸喜 海老谷
敦 高垣
敦 高垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP2009053068A priority Critical patent/JP5871221B2/en
Publication of JP2010202626A publication Critical patent/JP2010202626A/en
Application granted granted Critical
Publication of JP5871221B2 publication Critical patent/JP5871221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、グルコース等の単糖から無水糖を製造する方法に関する。   The present invention relates to a method for producing anhydrosugars from monosaccharides such as glucose.

近年、二酸化炭素排出抑制や化石資源エネルギーから再生可能エネルギーへの転換の観点からバイオマスの有効利用が注目されている。
特に、今後は非食系バイオマス(木質系)の変換が求められている。
木質系バイオマスの多くを占めるセルロースは、加水分解により糖化し、単糖のグルコースに変換した後にバイオ燃料や各種化合物の出発原料として利用されている。
この中で、グルコースを脱水することにより得られる無水糖は抗ガン剤原料、生分解性ポリマー原料、光学分割剤等に利用されている非常に価値の高い化合物である。
これまでに提案されている無水糖の合成方法は、セルロースの熱分解、グルコースの熱分解に関するものが殆どである(特許文献1〜6,非特許文献1)。
しかし、セルロース,グルコースを高温で熱分解し、無水糖を得る方法では、高温での専用の耐熱性装置が必要であることや、高い収率を得るには急激に加熱し、数秒から数分間の反応後にまた急激な冷却が必要であるために反応制御が難しい問題がある。
In recent years, effective use of biomass has attracted attention from the viewpoint of suppressing carbon dioxide emissions and switching from fossil resource energy to renewable energy.
In particular, conversion of non-food biomass (woody) is required in the future.
Cellulose occupying most of woody biomass is saccharified by hydrolysis and converted to monosaccharide glucose, and then used as a starting material for biofuels and various compounds.
Of these, anhydrous sugar obtained by dehydrating glucose is a very valuable compound used as an anticancer agent raw material, a biodegradable polymer raw material, an optical resolution agent, and the like.
Most of the methods for synthesizing anhydrosugars proposed so far are related to pyrolysis of cellulose and pyrolysis of glucose (Patent Documents 1 to 6, Non-Patent Document 1).
However, the method of thermally decomposing cellulose and glucose at high temperature to obtain anhydrous sugar requires a dedicated heat-resistant device at high temperature, and in order to obtain a high yield, it is heated rapidly, and it takes several seconds to several minutes. Since rapid cooling is necessary again after the reaction, there is a problem that reaction control is difficult.

特開平3−75210号公報JP-A-3-75210 特開2003−342289号公報JP 2003-342289 A 特開2006−28040号公報JP 2006-28040 A 特開2007−106685号公報JP 2007-106685 A 特開2007−217386号公報JP 2007-217386 A PCT WO2008/084705公開公報PCT WO2008 / 084705 Publication

J. Wood Sci. Vol.47(2001), P502-506J. Wood Sci. Vol.47 (2001), P502-506

本発明は、上記従来技術の熱分解法に内在する技術的課題に鑑みて、分離回収が容易な固体触媒を用い、穏やかな反応条件下にて無水糖を得る新規合成法の提供を目的とする。   In view of the technical problems inherent in the above-described conventional thermal decomposition method, the present invention aims to provide a novel synthesis method for obtaining anhydrous sugar under mild reaction conditions using a solid catalyst that is easy to separate and recover. To do.

本発明は、非プロトン性極性溶媒中にて、固体酸触媒の存在下、単糖から無水糖を得ることを特徴とする。
グルコースを基質とすると、レボグルコサン(アンヒドログルコピラノース:1,6−anhydro−β−D−glucopyranose,以下、AGPと称する。)及び1,6−アンヒドログルコフラノース(1,6−anhydro−β−D−glucofuranose,以下、AGFと称する。)が得られる。
The present invention is characterized in that an anhydrous sugar is obtained from a monosaccharide in the presence of a solid acid catalyst in an aprotic polar solvent.
When glucose is used as a substrate, levoglucosan (anhydroglucopyranose: 1,6-anhydro-β-D-glucopyranose, hereinafter referred to as AGP) and 1,6-anhydroglucofuranose (1,6-anhydro-β- D-glucofuranose (hereinafter referred to as AGF)).

この場合の反応スキームを下記反応式(A)に示す。

Figure 0005871221
The reaction scheme in this case is shown in the following reaction formula (A).
Figure 0005871221

固体酸触媒は、固体酸として作用するものであれば特に限定はないが、酸触媒用のイオン交換樹脂が好ましい。
固体酸触媒としては例えば、下記化学式(1)に示すアンバーリスト−15(ローム・アンド・ハース株式会社、アンバーリストは登録商標)及び、化学式(2)で示すナフィオン(登録商標,デュポン社)が挙げられる。

Figure 0005871221
Figure 0005871221
The solid acid catalyst is not particularly limited as long as it acts as a solid acid, but an ion exchange resin for an acid catalyst is preferable.
Examples of the solid acid catalyst include Amberlist-15 (Rohm and Haas Co., Amberlist is a registered trademark) represented by the following chemical formula (1) and Nafion (registered trademark, DuPont) represented by the chemical formula (2). Can be mentioned.
Figure 0005871221
Figure 0005871221

本発明は、固体酸触媒を用いたことにより、グルコース等の単糖を基質として、非プロトン性極性溶媒中にて、穏やかな反応条件下で、高収率に無水糖を得ることができる。
また、固体酸触媒を用いたことにより、反応後に中和、分離回収が不要で触媒はそのまま再利用できる。
In the present invention, by using a solid acid catalyst, an anhydrous sugar can be obtained in a high yield under mild reaction conditions in an aprotic polar solvent using a monosaccharide such as glucose as a substrate.
Further, by using a solid acid catalyst, neutralization and separation / recovery are unnecessary after the reaction, and the catalyst can be reused as it is.

本発明に係るプロセスの特徴を以下実験結果に基づいて説明するが、これに限定されるものではない。   The characteristics of the process according to the present invention will be described below based on experimental results, but the present invention is not limited to this.

(実験1)
各種溶媒3ml中にグルコース0.1g、固体酸触媒アンバーリスト−15,0.1gを加え、所定温度にて3時間反応させた結果を表1に示す。

Figure 0005871221
(Experiment 1)
Table 1 shows the results of adding 0.1 g of glucose and 15 g of solid acid catalyst Amberlyst-15, 0.1 g to 3 ml of various solvents and reacting at a predetermined temperature for 3 hours.
Figure 0005871221

表中、NMPはN−メチルピロリドン、DMFはN,N−ジメチルホルムアミド、DMIは1,3−ジメチル−2−イミダゾリジノン、DMSOはジメチルスルホキシドを示す。
この結果、いずれの非プロトン性極性溶媒を使用してもレボグルコサン(AGP)及び1,6−アンヒドログルコフラノース(AGF)がそれぞれ収率10〜34%,9〜30%の高い収率で得られ、フルクトースやHMF(5−ヒドロキシメチルフルフラール)の生成は確認されなかった。
なお、分析は高速液体クロマトグラフ(HPLC,カラムBio−rad社製,Aminex HPX−87X)を用いた。
In the table, NMP represents N-methylpyrrolidone, DMF represents N, N-dimethylformamide, DMI represents 1,3-dimethyl-2-imidazolidinone, and DMSO represents dimethyl sulfoxide.
As a result, levoglucosan (AGP) and 1,6-anhydroglucofuranose (AGF) were obtained in high yields of 10 to 34% and 9 to 30%, respectively, regardless of which aprotic polar solvent was used. The production of fructose and HMF (5-hydroxymethylfurfural) was not confirmed.
In addition, the analysis used the high performance liquid chromatograph (HPLC, the column Bio-rad company make, Aminex HPX-87X).

(実験2)
次に触媒の影響を確認すべく、溶媒としてDMF 3mlを用い、グルコース0.1gに対して各触媒0.1g加え、100℃、3時間反応させた結果を表2に示す。
なお、アンバーリスト−15を用いて、反応温度を120℃にすると、AGP収率33%、AGF収率30%に向上した。
(Experiment 2)
Next, in order to confirm the influence of the catalyst, 3 ml of DMF was used as a solvent, 0.1 g of each catalyst was added to 0.1 g of glucose, and the results of reaction at 100 ° C. for 3 hours are shown in Table 2.
In addition, when the reaction temperature was set to 120 ° C. using Amberlyst-15, the AGP yield was improved to 33% and the AGF yield to 30%.

Figure 0005871221
Figure 0005871221

表中、p−TsOHはp−トルエンスルホン酸を示し、HSO,HClとともに均一系の触媒である。
また、HZSM−5,HYはゼオライトを示す。
In the table, p-TsOH represents p-toluenesulfonic acid, and is a homogeneous catalyst together with H 2 SO 4 and HCl.
HZSM-5 and HY represent zeolite.

実験2から、触媒及び反応温度の影響が大きいことが明らかになったので、触媒の量とグルコースの量との比をモル比1:3と同一にして各反応温度で3時間反応させた結果を表3に示す。   Experiment 2 revealed that the influence of the catalyst and the reaction temperature was large, so that the reaction was carried out for 3 hours at each reaction temperature with the same ratio of the catalyst and glucose as the molar ratio of 1: 3. Is shown in Table 3.

Figure 0005871221
Figure 0005871221

この結果、固体酸触媒アンバーリスト−15,及びナフィオンNR50は選択率が高いことが明らかになった。   As a result, it was revealed that the solid acid catalyst Amberlyst-15 and Nafion NR50 have high selectivity.

Claims (2)

非プロトン性極性溶媒中にて、単糖と下記化学式(1)で示される固体酸触媒を加え、反応温度100〜120℃にて反応させることで、
単糖から無水糖を得ることを特徴とする無水糖の製造方法。
Figure 0005871221
In an aprotic polar solvent, a monosaccharide and a solid acid catalyst represented by the following chemical formula (1) are added and reacted at a reaction temperature of 100 to 120 ° C.
A method for producing anhydrosugar, which comprises obtaining anhydrosugar from a monosaccharide.
Figure 0005871221
グルコースからレボグルコサンと1,6−アンヒドログルコフラノースとを得ることを特徴とする請求項1記載の無水糖の製造方法。   The method for producing anhydrosugar according to claim 1, wherein levoglucosan and 1,6-anhydroglucofuranose are obtained from glucose.
JP2009053068A 2009-03-06 2009-03-06 Method for producing anhydrous sugar Expired - Fee Related JP5871221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053068A JP5871221B2 (en) 2009-03-06 2009-03-06 Method for producing anhydrous sugar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053068A JP5871221B2 (en) 2009-03-06 2009-03-06 Method for producing anhydrous sugar

Publications (2)

Publication Number Publication Date
JP2010202626A JP2010202626A (en) 2010-09-16
JP5871221B2 true JP5871221B2 (en) 2016-03-01

Family

ID=42964480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053068A Expired - Fee Related JP5871221B2 (en) 2009-03-06 2009-03-06 Method for producing anhydrous sugar

Country Status (1)

Country Link
JP (1) JP5871221B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109651423A (en) 2018-12-29 2019-04-19 宁波卢米蓝新材料有限公司 A kind of dibenzo-heterocyclic compound and its preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101093A (en) * 1988-10-07 1990-04-12 Agency Of Ind Science & Technol Purification of levoglucosan
JP5131801B2 (en) * 2005-10-12 2013-01-30 独立行政法人産業技術総合研究所 Method for producing anhydrosugar
JP5267964B2 (en) * 2006-02-20 2013-08-21 独立行政法人産業技術総合研究所 Method for producing anhydrosugar
JP2009067730A (en) * 2007-09-14 2009-04-02 Tokyo Institute Of Technology Method for producing anhydrosugar, organic acid and furfural

Also Published As

Publication number Publication date
JP2010202626A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US9969669B2 (en) Method for producing muconic acids and furans from aldaric acids
Breeden et al. Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural
US11078173B2 (en) Process for producing 5-hydroxymethylfurfural in the presence of an organic dehydration catalyst and a chloride source
US20070173651A1 (en) Two-stage dehydration of sugars
CN113861139A (en) Method for preparing 5-hydroxymethylfurfural
EP2985280A1 (en) A process for synthesis of furfural or derivatives thereof
Nie et al. Efficient production of 5-hydroxymethylfurfural (HMF) from D-fructose and inulin with graphite derivatives as the catalysts
WO2019170204A1 (en) Synthesis of precursors of 2,5-furandicarboxylic acid
KR102642070B1 (en) Process for the preparation of 5-hydroxymethylfurfural in the presence of a Lewis acid catalyst and/or a heterogeneous base catalyst and a homogeneous organic Brønsted acid catalyst in the presence of at least one aprotic polar solvent
JP7085474B2 (en) A method for producing 5-hydroxymethylfurfural in the presence of a catalyst of a homogeneous sulfonic acid system in the presence of at least one aprotic polar solvent.
JP5871221B2 (en) Method for producing anhydrous sugar
CN116529232A (en) Process for producing levulinic acid
US20220162178A1 (en) Process for the recovery of solvent and isolation of humin materials and compositions thereof
US9802910B2 (en) Method for preparing 5-hydroxymethyl-2-furfural using acid catalyst in presence of ethylene glycol-based compound solvent derived from biomass
KR102420908B1 (en) Method of Producing Anhydrosugar Alcohols by Two-Step Hydrothermal Reaction
US9682912B2 (en) Method for preparing levulinic acid using solid acid catalyst in presence of ethylene glycol-based compound solvent derived from biomass
KR102560488B1 (en) Method of preparing 5-acyloxymethyl-2-furfural from d-fructose using immobilized enzyme and solid acid catalyst
JP7278315B2 (en) Method for producing 5-alkoxymethylfurfural
CN112543754B (en) Process development for the synthesis of 5-hydroxymethylfurfural (5-HMF) from carbohydrates
US20200207731A1 (en) Synthesis of furan acids from xylonic acid
CN115397961A (en) Metal-free catalyst and hydrogen process for the selective reduction of aldehydes of differently substituted furans to methyl groups
CN117567400A (en) Method for directly preparing 5-hydroxymethylfurfural from glucose by adopting eutectic solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140812

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160105

R150 Certificate of patent or registration of utility model

Ref document number: 5871221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees