JP5869399B2 - Channel member, heat exchanger using the same, and semiconductor device - Google Patents

Channel member, heat exchanger using the same, and semiconductor device Download PDF

Info

Publication number
JP5869399B2
JP5869399B2 JP2012076847A JP2012076847A JP5869399B2 JP 5869399 B2 JP5869399 B2 JP 5869399B2 JP 2012076847 A JP2012076847 A JP 2012076847A JP 2012076847 A JP2012076847 A JP 2012076847A JP 5869399 B2 JP5869399 B2 JP 5869399B2
Authority
JP
Japan
Prior art keywords
side wall
flow path
bottom plate
path member
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012076847A
Other languages
Japanese (ja)
Other versions
JP2013207200A (en
Inventor
阿部 裕一
裕一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012076847A priority Critical patent/JP5869399B2/en
Publication of JP2013207200A publication Critical patent/JP2013207200A/en
Application granted granted Critical
Publication of JP5869399B2 publication Critical patent/JP5869399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、流路部材およびこれを用いた熱交換器ならびに半導体装置に関する。   The present invention relates to a flow path member, a heat exchanger using the same, and a semiconductor device.

近年、ハイブリッド自動車や電気自動車の急速な普及に伴い、インバータ装置や、交流−直流電力変換装置などのパワーモジュールと呼ばれる半導体装置が多く用いられようになってきている。   In recent years, with the rapid spread of hybrid vehicles and electric vehicles, semiconductor devices called power modules such as inverter devices and AC-DC power converters have come to be frequently used.

そして、このような半導体装置は、車載用に限らず、多くは大電流のスイッチングを繰り返し高温となるため、半導体素子の機能を低下させないためには強制的な冷却が必要とされる。   Such semiconductor devices are not limited to in-vehicle use, and many of them repeatedly switch large currents to a high temperature. Therefore, forced cooling is required in order not to deteriorate the function of the semiconductor element.

特許文献1には、半導体部品が実装される回路基板を有するセラミック回路基板において、半導体部品が実装される回路基板に冷媒流路となる空隙部が形成されたことが開示されている。   Patent Document 1 discloses that in a ceramic circuit board having a circuit board on which a semiconductor component is mounted, a void portion serving as a refrigerant flow path is formed in the circuit board on which the semiconductor component is mounted.

特開2002-329938号公報Japanese Patent Laid-Open No. 2002-329938

しかしながら、特許文献1の回路基板は、全体が同一のセラミックからなることから、半導体部品が実装される場所の熱による影響を受けやすい。そのため、回路基板全体の温度が上昇し易く、電子部品による熱と流体との間での熱交換効率が低下しやすいという問題があった。   However, since the circuit board of Patent Document 1 is entirely made of the same ceramic, it is easily affected by heat at a place where a semiconductor component is mounted. For this reason, there is a problem that the temperature of the entire circuit board is likely to rise, and the heat exchange efficiency between the heat and fluid generated by the electronic component is likely to be lowered.

本発明は、上記課題を解決するために案出されたものであり、熱交換効率の低下を抑制し、流路部材の熱の影響を抑制した流路部材およびこれを用いた熱交換器ならびに半導体装置を提供することを目的とするものである。   The present invention has been devised in order to solve the above-mentioned problems, a flow path member that suppresses a decrease in heat exchange efficiency and suppresses the influence of heat of the flow path member, a heat exchanger using the same, and An object of the present invention is to provide a semiconductor device.

本発明の流路部材は、蓋体部と非可撓性材料からなる側壁部と可撓性材料である樹脂材料からなる底板部とを備え、前記蓋体部と前記側壁部と前記底板部とで内部に流体が流れる流路を構成してなり、前記蓋体部および前記側壁部の熱伝導率が、前記底板部の熱伝導率よりも高いことを特徴とするものである。
また、蓋体部とセラミックスの積層体からなる側壁部と底板部とを備え、
前記蓋体部と前記側壁部と前記底板部とで内部に流体が流れる流路を構成してなり、前記蓋体部および前記側壁部の熱伝導率が、前記底板部の熱伝導率よりも高いことを特徴とするものである。
The flow path member of the present invention includes a lid portion, a side wall portion made of an inflexible material, and a bottom plate portion made of a resin material that is a flexible material, and the lid portion, the side wall portion, and the bottom plate portion. And a flow path through which fluid flows, and the thermal conductivity of the lid and the side wall is higher than the thermal conductivity of the bottom plate.
In addition, a side wall portion and a bottom plate portion comprising a lid body and a laminate of ceramics,
The lid body part, the side wall part, and the bottom plate part constitute a flow path through which fluid flows, and the thermal conductivity of the lid body part and the side wall part is higher than the thermal conductivity of the bottom plate part. It is characterized by being high.

また、本発明の熱交換器は、上記構成の流路部材と、前記流路部材の前記蓋体部上に設けられた金属部材とを備えることを特徴とするものである。   Moreover, the heat exchanger of this invention is equipped with the flow-path member of the said structure, and the metal member provided on the said cover body part of the said flow-path member, It is characterized by the above-mentioned.

また、本発明の半導体装置は、上記構成の熱交換器の前記金属部材上に半導体素子が設けられていることを特徴とするものである。   The semiconductor device of the present invention is characterized in that a semiconductor element is provided on the metal member of the heat exchanger having the above-described configuration.

本発明の流路部材によれば、流路部材の蓋体部に電子部品を実装した場合には、蓋体部が受けた熱が効率良く側壁部に伝熱され、蓋体部と側壁部とで流体との熱交換ができるので、流体との熱交換効率の低下を抑制することができる。 According to the flow path member of the present invention, when an electronic component is mounted on the lid portion of the flow path member, heat lid portion has received heat is transferred efficiently side wall, the lid portion and the side wall portion Since heat exchange with the fluid can be performed, reduction in heat exchange efficiency with the fluid can be suppressed.

また、本発明の熱交換器は、上記構成の流路部材と、前記流路部材の前記蓋体部上に設けられた金属部材とを備えることから、蓋体部と側壁部とで金属部材との熱交換を効率良く行なうことができ、熱交換効率の高い熱交換器とすることができる。   Moreover, since the heat exchanger of this invention is equipped with the flow path member of the said structure and the metal member provided on the said cover body part of the said flow path member, it is a metal member by a cover body part and a side wall part. The heat exchange with can be performed efficiently, and a heat exchanger with high heat exchange efficiency can be obtained.

また、本発明の半導体装置は、上記構成の熱交換器の前記金属部材上に半導体素子が設けられていることから、シンプルな構造で半導体素子の温度上昇の抑制が可能な半導体装置とすることができる。   In addition, the semiconductor device of the present invention is a semiconductor device capable of suppressing the temperature rise of the semiconductor element with a simple structure because the semiconductor element is provided on the metal member of the heat exchanger having the above-described configuration. Can do.

本実施形態の流路部材の一例を示す、(a)は流路部材の斜視図であり、(b)は(a)に示すX−X線の部分断面図である。An example of the flow path member of this embodiment is shown, (a) is a perspective view of the flow path member, and (b) is a partial cross-sectional view taken along line XX shown in (a). 本実施形態の流路部材の他の一例を示し、(a)〜(c)は、図1(b)の破線で囲んだC部に相当する部分を拡大した部分断面図である。Another example of the flow path member of the present embodiment is shown, and (a) to (c) are partial cross-sectional views in which a portion corresponding to a C portion surrounded by a broken line in FIG. 本実施形態の流路部材のさらに他の一例を示す、(a)は流路部材の斜視図であり、(b)は積層体の側壁部を分解した平面図である。Another example of the flow path member of the present embodiment is shown, (a) is a perspective view of the flow path member, and (b) is a plan view in which the side wall portion of the laminate is disassembled. 図4は本実施形態の流路部材のさらに他の一例を示し、(a)は流路部材を構成する蓋体部、側壁部および底板部をねじで締結した状態の側面図であり、(b)は、かしめ部材で締結した状態の側面図である。FIG. 4 shows still another example of the flow path member of the present embodiment, and (a) is a side view of a state in which the lid part, the side wall part, and the bottom plate part constituting the flow path member are fastened with screws, b) is a side view of a state where it is fastened by a caulking member. 本実施形態の熱交換器の一例を示す、流路部材の蓋体部上に金属部材を設けてなる熱交換器の斜視図である。It is a perspective view of the heat exchanger which provides an example of the heat exchanger of this embodiment, and provides a metal member on the cover part of a flow-path member. 本実施形態の半導体装置の一例を示す、熱交換器の金属部材上に半導体素子を設けてなる半導体装置の斜視図である。It is a perspective view of the semiconductor device which provides an example of the semiconductor device of this embodiment, and provides a semiconductor element on the metal member of a heat exchanger.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明の流路部材の実施の形態の一例を、図1を用いて説明する。   An example of an embodiment of the flow path member of the present invention will be described with reference to FIG.

図1は、本実施形態の流路部材の一例を示す、(a)は流路部材の斜視図であり、(b)は(a)に示すX−X線の部分断面図である。なお、図1においては内部に複数の流路を有する流路部材を示している。   1A and 1B show an example of a flow path member of the present embodiment. FIG. 1A is a perspective view of the flow path member, and FIG. 1B is a partial cross-sectional view taken along line XX shown in FIG. FIG. 1 shows a flow path member having a plurality of flow paths inside.

図1(a)(b)に示すように、本実施形態の流路部材1は、蓋体部2と側壁部3と底板部4とを備え、この蓋体部2と側壁部3と底板部4とで、内部に気体または液体などの流体を流すための流路5が構成されている。   As shown in FIGS. 1A and 1B, the flow path member 1 of the present embodiment includes a lid portion 2, a side wall portion 3, and a bottom plate portion 4, and the lid portion 2, the side wall portion 3 and the bottom plate. The part 4 constitutes a flow path 5 for flowing a fluid such as a gas or a liquid therein.

そして、本実施形態の流路部材1によれば、蓋体部2および側壁部3の熱伝導率が、底板部4よりも高いことから、例えば、流路部材1の蓋体部2に電子部品を実装し、底板部4が載置される場所が高温となる場合でも、底板部4が受けた熱の影響を受けにくく、蓋体部2が電子部品から受けた熱が効率良く側壁部3に伝熱され、蓋体部2と側壁部3とで流体との熱交換ができる。それにより、流体との熱交換効率が低下することを抑制した流路部材1を提供できる。   And according to the flow path member 1 of this embodiment, since the heat conductivity of the cover body part 2 and the side wall part 3 is higher than the bottom plate part 4, for example, the cover body part 2 of the flow path member 1 has electrons. Even when the component is mounted and the place where the bottom plate portion 4 is placed becomes high temperature, the side plate is less affected by the heat received by the bottom plate portion 4 and the heat received by the lid portion 2 from the electronic component is efficiently 3, heat can be exchanged with the fluid between the lid 2 and the side wall 3. Thereby, the flow path member 1 which suppressed that the heat exchange efficiency with a fluid falls can be provided.

また、本実施形態の流路部材1において、流路5を複数有する場合には、それぞれの流路5を仕切る隔壁3bを有し、この隔壁3bは、側壁3と同じ態様であってもよい。   Moreover, in the flow path member 1 of this embodiment, when there are a plurality of flow paths 5, the flow path member 1 includes partition walls 3 b that partition the flow paths 5, and the partition walls 3 b may have the same mode as the side walls 3. .

そして、蓋体部2,側壁部3および底板部4の材質としては、セラミックスや樹脂、または、金属、さらには、これらの複合体や、多孔質体等の組合せで作製することができる
And as a material of the cover body part 2, the side wall part 3, and the baseplate part 4, it can produce with the combination of ceramics, resin, or a metal, these composites, a porous body, etc.

表1は、本実施形態で用いることができる材料の種類および具体的な材質の組合せを示したものであり、群No.1は蓋体部2および側壁部3がセラミックスで底板部4が樹脂、群No.2は蓋体部2,側壁部3および底板部4共にセラミックス、群No.3は蓋体部2,側壁部3および底板部4共に樹脂、群No.4は蓋体部2および側壁部3が金属で底板部4がセラミックス、さらに、群No.5は蓋体部2,側壁部3および底板部4共に金属の組合せで、具体的な一例として、表1に示すような材質を用いることができる。   Table 1 shows types of materials that can be used in the present embodiment and combinations of specific materials. 1 is that the lid 2 and the side wall 3 are ceramics, the bottom plate 4 is resin, the group No. 2 is a ceramic, group No. 2 for both the lid 2, the side wall 3 and the bottom plate 4. 3 is a resin, group No. 3 for both the lid 2, the side wall 3 and the bottom plate 4. 4, the lid 2 and the side wall 3 are metal, the bottom plate 4 is ceramic, and the group no. Reference numeral 5 denotes a combination of metals for the lid part 2, the side wall part 3 and the bottom plate part 4, and as a specific example, materials shown in Table 1 can be used.

Figure 0005869399
Figure 0005869399

本実施形態における流路部材1は、表1に示すように、群毎の蓋体部2および側壁部3のそれぞれを構成する材質の熱伝導率は、底板部4を構成する材質の熱伝導率よりも高いものをリストアップしている。   As shown in Table 1, in the flow path member 1 in the present embodiment, the thermal conductivity of the material constituting the lid part 2 and the side wall part 3 for each group is the thermal conductivity of the material constituting the bottom plate part 4. The ones that are higher than the rate are listed.

具体例としては、例えば、群No.2においては、蓋体部2,側壁部3および底板部4共に材質の種類はセラミックスとしているが、蓋体部2および側壁部3として用いることのできる材質として、熱伝導率の高い窒化アルミから熱伝導率の低いジルコニア・アルミナまでを例示し、これらと組み合わせる底板部4として用いることのできる材質として、アルミナ(アルミナ含有量95〜99.8質量%)から多孔質セラミックスまたは樹脂複合セラミックスまでを例示している。   As a specific example, for example, Group No. 2, both the lid part 2, the side wall part 3 and the bottom plate part 4 are made of ceramics, but as a material that can be used for the lid part 2 and the side wall part 3, aluminum nitride having a high thermal conductivity is used. Examples of zirconia / alumina with low thermal conductivity are shown, and examples of materials that can be used as the bottom plate part 4 to be combined with these are alumina (alumina content 95-99.8% by mass) to porous ceramics or resin composite ceramics. ing.

そして、本実施形態の流路部材1の蓋体部2,側壁部3および底板部4のそれぞれの材質は、蓋体部2および側壁部3を構成する材質の熱伝導率が、底板部4を構成する材質の熱伝導率よりも高くなるように適宜組み合わせて用いることができる。例えば、蓋体部2
および側壁部3の材質としてジルコニア・アルミナを用いる場合には、底板部4の材質としては、ジルコニアや多孔質セラミックスまたは樹脂複合セラミックスの何れかを用いればよい。
And each material of the cover part 2, the side wall part 3, and the bottom plate part 4 of the flow path member 1 of the present embodiment is such that the thermal conductivity of the material constituting the cover part 2 and the side wall part 3 is the bottom plate part 4. Can be used in appropriate combination so as to be higher than the thermal conductivity of the material constituting the. For example, the lid part 2
When zirconia / alumina is used as the material of the side wall part 3, the material of the bottom plate part 4 may be zirconia, porous ceramics, or resin composite ceramics.

なお、群No.2に示した材質は、耐熱性、機械的強度および耐食性が高く、高温環境下や酸およびアルカリなどの液体等に曝されても流路が損傷することを抑制できる材質である。   In addition, group No. The material shown in 2 is a material that has high heat resistance, mechanical strength, and corrosion resistance, and can suppress damage to the flow path even when exposed to a liquid such as an acid and an alkali in a high temperature environment.

流路部材1の蓋体部2,側壁部3および底板部4を、このような材質の組合せとして作製し、例えば、自動車のエンジン付近の上方に、流路部材1の底板部4が熱源に近接するように配設した場合には、蓋体部2および側壁部3の熱伝導率が底板部4の熱伝導率よりも高いことから、底板部4が受けた熱の影響を受けにくく、蓋体部2が電子部品から受けた熱が効率良く側壁部3に伝熱され、蓋体部2および側壁部3で流体との熱交換ができる。それにより、流体との熱交換効率が低下することを抑制した流路部材1を提供できる。   The lid part 2, the side wall part 3 and the bottom plate part 4 of the flow path member 1 are produced as a combination of such materials. For example, the bottom plate part 4 of the flow path member 1 is used as a heat source above the vicinity of the engine of the automobile. When disposed so as to be close to each other, the thermal conductivity of the lid body portion 2 and the side wall portion 3 is higher than the thermal conductivity of the bottom plate portion 4, so that it is not easily affected by the heat received by the bottom plate portion 4, The heat received by the lid part 2 from the electronic component is efficiently transferred to the side wall part 3, and the lid part 2 and the side wall part 3 can exchange heat with the fluid. Thereby, the flow path member 1 which suppressed that the heat exchange efficiency with a fluid falls can be provided.

また、流路5を仕切る隔壁3bを設けることによって流路を複数構成する場合には、側壁部3および隔壁3bは、蓋体部2よりも熱伝導率が高いことが好ましい。この様な構成とすることで、蓋体部2上に電子部品などの熱交換対象物を実装したときに、蓋体部2で受けた熱を、隔壁3bおよび側壁部3により伝熱することができるので、流路5を流れる流体との間で、効率良く熱交換を行なうことができる。さらに、流路部材1の構成として、側壁部3と隔壁3bとの熱伝導率は、流路部材1が周囲からの熱による影響を受けにくくするにあたり、隔壁3bの熱伝導率が側壁部3の熱伝導率より高い方が好ましい。   Further, when a plurality of flow paths are configured by providing the partition walls 3 b that partition the flow path 5, the side wall portions 3 and the partition walls 3 b preferably have higher thermal conductivity than the lid body portion 2. With such a configuration, when a heat exchange object such as an electronic component is mounted on the lid 2, the heat received by the lid 2 is transferred by the partition 3 b and the side wall 3. Therefore, heat exchange with the fluid flowing through the flow path 5 can be performed efficiently. Further, as the configuration of the flow path member 1, the thermal conductivity of the side wall 3 and the partition wall 3b is such that the thermal conductivity of the partition wall 3b is less affected by the heat from the surroundings. It is preferable that the thermal conductivity is higher.

特に、使用環境の温度もしくは熱交換対象物が、高温(300℃以上)であるときは、側
壁部3および底板部4の材質は、セラミックスまたは金属であることが好ましい。また、これより低温(300℃未満)であれば、セラミックス、金属に加え樹脂を用いることが好
ましい。
In particular, when the temperature of the use environment or the heat exchange target is high temperature (300 ° C. or higher), the material of the side wall 3 and the bottom plate 4 is preferably ceramic or metal. If the temperature is lower (less than 300 ° C.), it is preferable to use a resin in addition to ceramics and metals.

また、流路部材1の軽量化が求められる場合には、多孔質体のセラミックスや樹脂を用いればよく、たとえば、車載用のIGBTの流路部材としては、従来は、金属を主体として構成されていたが、耐熱性、耐食性さらには軽量化を考慮すれば、流路部材の少なくとも一部に多孔質セラミックスや樹脂複合セラミックスまたは、樹脂や多孔質樹脂を用いることが好ましい。   In addition, when it is required to reduce the weight of the flow path member 1, a porous ceramic or resin may be used. For example, as a flow path member of an in-vehicle IGBT, conventionally, a metal is mainly used. However, considering heat resistance, corrosion resistance, and weight reduction, it is preferable to use porous ceramics, resin composite ceramics, resin, or porous resin for at least a part of the flow path member.

また、蓋体部2の上に直接、半導体素子などの熱交換対象物を実装するときには、蓋体部2を構成する材質が、配線層を直接形成できるセラミックスであれば、金属である場合に比べ、絶縁物を介在させる必要がないことからシンプルな構造とすることができる。   Further, when a heat exchange object such as a semiconductor element is mounted directly on the lid part 2, if the material constituting the lid part 2 is a ceramic that can directly form a wiring layer, it is a metal. In comparison, since there is no need to interpose an insulator, a simple structure can be achieved.

図2は、本実施形態の流路部材の他の一例を示し、(a)〜(c)は、図1(b)の破線で囲んだC部に相当する部分を拡大した部分断面図である。   FIG. 2 shows another example of the flow path member of the present embodiment, and (a) to (c) are partial cross-sectional views in which a portion corresponding to a C portion surrounded by a broken line in FIG. 1 (b) is enlarged. is there.

本実施形態の流路部材1は、側壁部3が非可撓性材料からなり、底板部4が可撓性材料からなることが好ましい。このような構成とすることによって、流路部材1の組み立て工程において、蓋体部2と側壁部3と底板部4との接合時に、ねじ締め付けなどにより加圧することで、図2(a)に示すように、非可撓性である側壁部3は、側壁部3よりも可撓性である底板部4に食い込んで接合される。   In the flow path member 1 of the present embodiment, it is preferable that the side wall portion 3 is made of an inflexible material and the bottom plate portion 4 is made of a flexible material. By adopting such a configuration, in the assembly process of the flow path member 1, when the lid body portion 2, the side wall portion 3, and the bottom plate portion 4 are joined, pressurization is performed by screw tightening or the like, so that FIG. As shown, the non-flexible side wall 3 bites into and joins the bottom plate 4 that is more flexible than the side wall 3.

つまり、側壁部3と底板部4との接合部8に、凹または凸の形状を事前に形成しなくても、加圧接合することにより側壁部3が底板部4に食い込み、流路5に接する側壁部3の内面3aの一部が底板部4で覆れた接合部8となる。このようにして作製した流路部材1
は、繰り返し使用することによって熱応力が発生しても、側壁部3と底板部4との接合部8に隙間が発生することを抑制できる。それにより、流路5に高い圧力の流体を流しても流路部材1が破壊されにくく、密閉性の高い流路部材1とすることができる。
That is, the side wall portion 3 bites into the bottom plate portion 4 by pressure bonding without forming a concave or convex shape in advance in the joint portion 8 between the side wall portion 3 and the bottom plate portion 4, and enters the flow path 5. A part of the inner surface 3 a of the side wall portion 3 that comes into contact with the bottom plate portion 4 becomes the joint portion 8. The flow path member 1 produced in this way
Even if thermal stress is generated by repeated use, it is possible to suppress the occurrence of a gap in the joint portion 8 between the side wall portion 3 and the bottom plate portion 4. Thereby, even if a high-pressure fluid is allowed to flow through the flow path 5, the flow path member 1 is not easily destroyed, and the flow path member 1 with high sealing performance can be obtained.

また(b)に示すように、底板部4と側壁部3との接合部8に隣接して部分的に底板部4を凸形状にして内面3aと接するようにすることや、(c)に示すように、底板部4と側壁部3との接合部8における底板部4側を凹形状若しくは、側壁部3側の先端を凸形状とし、これらの側壁部3と底板部4と、蓋体部2とを加圧し接合すると、側壁部3の底板部4との接合部8における食い込み量は大きくなる。それにより、さらに密閉性が高く、破壊のおそれの少ない流路部材1とすることができる。   Further, as shown in (b), the bottom plate part 4 is partially convex adjacent to the joint 8 between the bottom plate part 4 and the side wall part 3 so as to be in contact with the inner surface 3a. As shown, the bottom plate portion 4 side of the joint portion 8 between the bottom plate portion 4 and the side wall portion 3 has a concave shape, or the tip on the side wall portion 3 side has a convex shape, and these side wall portions 3, bottom plate portion 4, and lid When the part 2 is pressed and joined, the amount of biting in the joint part 8 with the bottom plate part 4 of the side wall part 3 increases. As a result, the flow path member 1 having higher sealing properties and less risk of breakage can be obtained.

ここで、底板部4の可撓性材料としては、樹脂材料や金属材料があり、側壁部3の非可撓性材料としては、底板部4が樹脂材料であるときには、剛性の高いセラミックス、樹脂複合セラミックス、または、金属材料を用いることができる。また、底板部4がアルミニウム系の金属材料の場合は、側壁部3としては銅または銅合金などの金属材料またはセラミックスを用いることができる。   Here, the flexible material of the bottom plate portion 4 includes a resin material or a metal material, and the non-flexible material of the side wall portion 3 includes a highly rigid ceramic or resin when the bottom plate portion 4 is a resin material. Composite ceramics or metal materials can be used. Further, when the bottom plate portion 4 is made of an aluminum-based metal material, a metal material such as copper or a copper alloy or ceramics can be used for the side wall portion 3.

また、本実施形態の流路部材1において、流路5を複数有する場合には、それぞれの流路5を構成する隔壁3bについても側壁部3と同様であり、隔壁3bの内面の一部が底板部4と接していることが好ましい。それにより、複数の流路5を有する流路部材において、隣り合う流路5間の隔壁3bと底板部4との接合部8が破壊することを抑制できる。あわせて、流路5の隔壁部3bの厚み(幅)を薄くすることも可能となり、熱交換効率の高い流路部材1とすることができる。   Moreover, in the flow path member 1 of this embodiment, when there are a plurality of flow paths 5, the partition walls 3b constituting each flow path 5 are the same as the side wall portions 3, and part of the inner surface of the partition walls 3b It is preferable to be in contact with the bottom plate part 4. Thereby, in the flow path member having the plurality of flow paths 5, it is possible to suppress the breakage of the joint portion 8 between the partition wall 3 b and the bottom plate portion 4 between the adjacent flow paths 5. In addition, the thickness (width) of the partition wall 3b of the flow path 5 can be reduced, and the flow path member 1 having high heat exchange efficiency can be obtained.

また、本実施形態の流路部材は、底板部4の可撓性材料として樹脂材料を用いることが好ましい。それにより、セラミックスや金属材料により作製された側壁部3を用いて、蓋体部2と側壁部3と底板部4とを加圧接合したときに、側壁部3が可撓性のある樹脂材料の底板部4に食い込んで接合されることから、側壁部3の内面3aの一部が底板部4で覆われた形状となる。それにより、流路部材1に繰り返し熱応力が加わっても接合部8に隙間が生じることを抑制でき、高い圧力の流体を流しても流路5が破壊しにくく、密閉性の高い流路部材1とすることができる。   Moreover, it is preferable that the flow path member of this embodiment uses a resin material as a flexible material of the bottom plate part 4. Thus, when the lid part 2, the side wall part 3, and the bottom plate part 4 are pressure-bonded using the side wall part 3 made of ceramics or metal material, the side wall part 3 is a flexible resin material. Therefore, a part of the inner surface 3 a of the side wall portion 3 is covered with the bottom plate portion 4. Thereby, even if a thermal stress is repeatedly applied to the flow path member 1, it is possible to suppress the formation of a gap in the joint portion 8. 1 can be used.

そして、さらに、底板部4を樹脂材料により形成した場合であれば、樹脂材料の熱伝導率が、銅などの金属や炭化珪素や窒化アルミニウムなどのセラミックスの熱伝導率に比べ1/2000〜1/100程度と遙かに低い熱伝導率であるから、例えば、流路部材1を発熱体
の上面に当接するように設けたときに、底板部4が発熱体の熱を拾受することを抑制できる。それにより、発熱体の熱が底板部4を伝わって流体に影響し、電子部品から受けた熱と流体との熱交換が低下することを抑制でき、熱交換効率の高い流路部材1とすることができる。
Further, if the bottom plate portion 4 is formed of a resin material, the thermal conductivity of the resin material is 1/2000 to 1 compared to the thermal conductivity of a metal such as copper or a ceramic such as silicon carbide or aluminum nitride. For example, when the flow path member 1 is provided so as to come into contact with the upper surface of the heating element, the bottom plate portion 4 picks up the heat of the heating element. Can be suppressed. Thereby, it can suppress that the heat of a heat generating body is transmitted to the baseplate part 4, affects a fluid, and heat exchange with the heat received from the electronic component and a fluid falls, and it is set as the flow path member 1 with high heat exchange efficiency. be able to.

ここで、底板部4に用いられる樹脂材料としては、POM(ポリオキシメチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、ナイロン、PP(ポリプロピレン)、PE(ポリエチレン)、PMMA(ポリメタクリル酸メチル)、PET(ポリエチレンテレフタレート)、ポリエーテルイミド系樹脂、ポリブチレンテレフタレート系樹脂、ポリアミド系樹脂、ポリフェニレンサルファイド(PPS)系樹脂、ポリフェニレンエーテル系樹脂、PEEK(ポリエーテルエーテルケトン)、ポリフェニレンエーテル系樹脂−スチレン系樹脂−ポリアミド系樹脂混合樹脂、フッ素系樹脂および、ポリカーボネート(PC)系樹脂などがあるが、耐熱性、耐食性に富むPPS系樹脂やPEEKが好ましく、より好ましくは、耐熱性の高いPC系樹脂である。   Here, as a resin material used for the baseplate part 4, POM (polyoxymethylene), ABS (acrylonitrile butadiene styrene), nylon, PP (polypropylene), PE (polyethylene), PMMA (polymethyl methacrylate), PET (polyethylene terephthalate), polyetherimide resin, polybutylene terephthalate resin, polyamide resin, polyphenylene sulfide (PPS) resin, polyphenylene ether resin, PEEK (polyether ether ketone), polyphenylene ether resin-styrene There are resin-polyamide resin mixed resin, fluorine resin, polycarbonate (PC) resin, etc., but PPS resin and PEEK having high heat resistance and corrosion resistance are preferable, more preferably high heat resistance. It is a C-based resin.

図3は、本実施形態の流路部材のさらに他の一例を示す、(a)は流路部材の斜視図であり、(b)は積層体の側壁部を分解した平面図である。   3A and 3B show still another example of the flow path member of the present embodiment, in which FIG. 3A is a perspective view of the flow path member, and FIG. 3B is a plan view in which a side wall portion of the laminate is exploded.

図3(a)に示すように、本実施形態の流路部材21は、蓋体部2と底板部4間に介在する側壁部3が、セラミックグリーンシートからなる複数の板状体7(ここでは、3層の板状体7からなる例を示す。)が積層されて焼成された積層体からなっている。   As shown in FIG. 3A, the flow path member 21 of the present embodiment includes a plurality of plate-like bodies 7 (here, the side wall part 3 interposed between the lid part 2 and the bottom plate part 4 is made of ceramic green sheets). Then, the example which consists of the plate-shaped body 7 of 3 layers is shown.) It consists of the laminated body which was laminated | stacked and baked.

側壁部3をこの様な積層構造とすることによって、複雑な流路5の形成を容易に行なうことができ、また、耐熱性、耐食性、さらに、耐圧性のいずれにも富む流路部材21とすることができる。   By forming the side wall portion 3 in such a laminated structure, the complicated flow path 5 can be easily formed, and the flow path member 21 having high heat resistance, corrosion resistance, and pressure resistance is provided. can do.

例えば、流路5が単純な形状であれば、押出成形等で容易に加工できるものの、流路5を平面視したときの形状が、図3(b)に示す波線状のような複雑な形状の場合には、押出成形では加工できず、また、流路5間の幅が狭い場合も、耐熱性、耐食性および耐圧性を確保することが難しい場合がある。それゆえ、このような形状の流路5を設けようとする場合においては、未焼成のセラミックグリーンシートの平板に所望の流路5となる貫通孔5aを形成した板状体7を、積層して焼成することにより作製すればよい。   For example, if the channel 5 has a simple shape, it can be easily processed by extrusion molding or the like, but the shape when the channel 5 is viewed in plan is a complicated shape such as a wavy line shown in FIG. In this case, it cannot be processed by extrusion, and it may be difficult to ensure heat resistance, corrosion resistance and pressure resistance even when the width between the flow paths 5 is narrow. Therefore, when the flow channel 5 having such a shape is to be provided, a plate-like body 7 in which a through hole 5a to be a desired flow channel 5 is formed is laminated on a flat plate of an unfired ceramic green sheet. And then firing.

図4は本実施形態の流路部材のさらにその他の一例を示し、(a)は流路部材を構成する蓋体部、側壁部および底板部をねじで締結した状態の側面図であり、(b)は、かしめ部材で締結した状態の側面図である。   FIG. 4 shows still another example of the flow path member of the present embodiment, and (a) is a side view of the state in which the lid portion, the side wall portion, and the bottom plate portion constituting the flow path member are fastened with screws. b) is a side view of a state where it is fastened by a caulking member.

図4(a)に示す流路部材31は、蓋体部2と側壁部3と底板部4との、それぞれの間にパッキン11を挟み、これらにねじ孔9を開け、ねじ10によって、積層した蓋体部2と側壁部3と底板部4とを螺合している。図4(b)に示す流路部材41は、蓋体部2と側壁部3と底板部4との長手方向の両端部を、かしめ材12によって接合している。   The flow path member 31 shown in FIG. 4A is formed by sandwiching a packing 11 between the lid body part 2, the side wall part 3 and the bottom plate part 4, opening a screw hole 9 in these parts, and laminating with screws 10 The lid portion 2, the side wall portion 3, and the bottom plate portion 4 are screwed together. In the flow path member 41 shown in FIG. 4B, both end portions in the longitudinal direction of the lid portion 2, the side wall portion 3, and the bottom plate portion 4 are joined by the caulking material 12.

上述において、セラミックグリーンシートの板状体7を積層して焼成することによって一体化した側壁部3を得る例を示したが、個々の板状体7を焼成しセラミック板を重ね合わせ、蓋体部2と底板部4でこれらを狭持し、それらをねじ止めや、かしめ部材などにより一括して接合、固定してもよい。但し、この場合は、板状体7間にはパッキン11を挟み込む必要がある。また、この他に、金属材料とセラミックスの接合には、ろう材を用いてもよく、蓋体部2と側壁部3とがセラミックスのときには、各々が未焼成の成形体で接合した接合部8にセラミックスグリーンシート作製時の泥漿と同一のものを密着液として用いて塗布し、積層・加圧し、所定の温度で焼成することによって一体化することがより好ましい。   In the above description, the example in which the side wall portion 3 is obtained by laminating and firing the ceramic green sheet plate bodies 7 is shown. However, the individual plate bodies 7 are fired and the ceramic plates are overlapped, and the lid body. These may be sandwiched between the portion 2 and the bottom plate portion 4 and joined and fixed together by screwing or caulking members. However, in this case, it is necessary to sandwich the packing 11 between the plate-like bodies 7. In addition, a brazing material may be used for joining the metal material and the ceramic. When the lid portion 2 and the side wall portion 3 are made of ceramic, each joint portion 8 is joined by an unfired molded body. It is more preferable to apply the same slurry as that used when producing the ceramic green sheet as an adhesion liquid, laminate, pressurize, and fire at a predetermined temperature for integration.

また、蓋体部2および側壁部3の未焼成の成形体は、各々が異なるセラミックスであってもよく、この場合には、密着液の焼結温度は、それぞれのセラミックスの焼結温度の中間になるものであれば、接合強度の低下などの問題を少なくすることができる。   Further, the green body of the lid portion 2 and the side wall portion 3 may be made of different ceramics. In this case, the sintering temperature of the adhesion liquid is intermediate between the sintering temperatures of the ceramics. If it becomes, it can reduce problems, such as a fall of joint strength.

ここで、パッキン11は、耐熱性および耐食性に富むフッ素ゴムやシリコーンゴム、アクリルゴムまたはブチルゴムなどを用いることが好ましい。   Here, the packing 11 is preferably made of fluorine rubber, silicone rubber, acrylic rubber, butyl rubber, or the like that has high heat resistance and corrosion resistance.

次に、本実施形態の熱交換器について、図5を用いて説明する。   Next, the heat exchanger of this embodiment is demonstrated using FIG.

図5は本実施形態の熱交換器の一例を示す、流路部材の蓋体部上に金属部材を設けてなる熱交換器の斜視図である。   FIG. 5 is a perspective view of a heat exchanger in which a metal member is provided on the lid portion of the flow path member, showing an example of the heat exchanger of the present embodiment.

本実施形態の熱交換器101は、本実施形態の流路部材1の蓋体部2の上面に金属部材102
を設けている。これにより、蓋体部2と金属部材102との熱交換を効率的に行なうことが
でき、熱交換効率の高い熱交換器101とすることができる。
The heat exchanger 101 of the present embodiment has a metal member 102 on the upper surface of the lid portion 2 of the flow path member 1 of the present embodiment.
Is provided. Thereby, heat exchange between the lid 2 and the metal member 102 can be performed efficiently, and the heat exchanger 101 with high heat exchange efficiency can be obtained.

次に、本実施形態の半導体装置について、図6を用いて説明する。   Next, the semiconductor device of this embodiment will be described with reference to FIG.

図6は本実施形態の半導体装置の一例を示す、熱交換器の金属部材上に半導体素子を設けてなる半導体装置の斜視図である。   FIG. 6 is a perspective view of a semiconductor device in which a semiconductor element is provided on a metal member of a heat exchanger, showing an example of the semiconductor device of this embodiment.

本実施形態の半導体装置201は、本実施形態の熱交換器101に半導体素子202を実装した
ことから、底板部4が載置される場所が高温となる場合でも、底板部4が受けた熱の影響を受けにくく、金属部材102を通して蓋体部2が電子部品から受けた熱が効率良く側壁部
3に伝熱され、蓋体部2と側壁部3とで流体との熱交換ができる。それにより、流体との熱交換効率が低下することを抑制し、半導体素子202の温度を効率良く低下させることが
できる半導体装置201とすることができる。
Since the semiconductor device 201 of the present embodiment has the semiconductor element 202 mounted on the heat exchanger 101 of the present embodiment, the heat received by the bottom plate portion 4 even when the place where the bottom plate portion 4 is placed becomes high temperature. The heat received by the lid part 2 from the electronic component through the metal member 102 is efficiently transferred to the side wall part 3, and the lid part 2 and the side wall part 3 can exchange heat with the fluid. Thereby, it is possible to suppress the heat exchange efficiency with the fluid from being lowered, and to obtain the semiconductor device 201 capable of efficiently reducing the temperature of the semiconductor element 202.

また、半導体素子202自身または外部から繰り返し熱応力が加わったときでも、熱応力
を吸収軽減できる熱交換器を用いていることから、流路が破壊することを抑制し、流体と流路部材1との高い熱交換効率があり、半導体素子202の機能低下を抑制することができ
る。
Moreover, even when the thermal stress is repeatedly applied from the semiconductor element 202 itself or from the outside, the heat exchanger that can absorb and reduce the thermal stress is used. Therefore, it is possible to suppress deterioration of the function of the semiconductor element 202.

また、図5および6のそれぞれの熱交換器101、半導体装置201の例では、蓋体部2の上面に直接金属部材102に設けている例で記載しているが、蓋体部2が絶縁性の低いもので
形成されている場合には、絶縁性の高いもの例えば、(セラミックスの薄板や、アルミニウムを電解処理して表面にアルミナ酸化膜を生成したアルミニウムの薄板等、ポリイミド等耐熱性の高い樹脂をコーティングした金属部材、ガラスコーティング等)を蓋体部2と金属部材102との間に介在させて用いればよい。
Further, in the examples of the heat exchanger 101 and the semiconductor device 201 in FIGS. 5 and 6, an example in which the metal member 102 is directly provided on the upper surface of the lid body portion 2 is described, but the lid body portion 2 is insulated. If it is made of a material having low properties, it is highly heat-resistant, such as polyimide (such as a ceramic thin plate or an aluminum thin plate in which an aluminum oxide film is formed by electrolytic treatment of aluminum). A metal member coated with a high resin, glass coating, or the like) may be used by interposing between the lid part 2 and the metal member 102.

1、21、31、41:流路部材
2:蓋体部
3:側壁部、3a:内面、3b:隔壁
4:底板部
5:流路、5a:貫通孔
7:板状体
8:接合部
9:ねじ孔
10:ねじ
11:パッキン
12:かしめ部材
101:熱交換器
102:金属部材
201:半導体装置
202:半導体素子
1, 21, 31, 41: Channel member 2: Cover part 3: Side wall part, 3a: Inner surface, 3b: Partition wall 4: Bottom plate part 5: Channel, 5a: Through hole 7: Plate body 8: Joint part 9: Screw hole
10: Screw
11: Packing
12: Caulking material
101: Heat exchanger
102: Metal parts
201: Semiconductor device
202: Semiconductor element

Claims (4)

蓋体部と非可撓性材料からなる側壁部と可撓性材料である樹脂材料からなる底板部とを備え、
前記蓋体部と前記側壁部と前記底板部とで内部に流体が流れる流路を構成してなり、前記蓋体部および前記側壁部の熱伝導率が、前記底板部の熱伝導率よりも高いことを特徴とする流路部材。
A lid portion, a side wall portion made of an inflexible material, and a bottom plate portion made of a resin material that is a flexible material ;
The lid body part, the side wall part, and the bottom plate part constitute a flow path through which fluid flows, and the thermal conductivity of the lid body part and the side wall part is higher than the thermal conductivity of the bottom plate part. A channel member characterized by being high.
蓋体部とセラミックスの積層体からなる側壁部と底板部とを備え、A side wall portion and a bottom plate portion comprising a lid body and a laminate of ceramics are provided,
前記蓋体部と前記側壁部と前記底板部とで内部に流体が流れる流路を構成してなり、前記蓋体部および前記側壁部の熱伝導率が、前記底板部の熱伝導率よりも高いことを特徴とする流路部材。The lid body part, the side wall part, and the bottom plate part constitute a flow path through which fluid flows, and the thermal conductivity of the lid body part and the side wall part is higher than the thermal conductivity of the bottom plate part. A channel member characterized by being high.
請求項1または請求項に記載の流路部材と、前記流路部材の前記蓋体部上に設けられた金属部材とを備えることを特徴とする熱交換器。 A heat exchanger comprising the flow path member according to claim 1 or 2 and a metal member provided on the lid portion of the flow path member. 請求項に記載の熱交換器の前記金属部材上に半導体素子が設けられていることを特徴とする半導体装置。 A semiconductor device, wherein a semiconductor element is provided on the metal member of the heat exchanger according to claim 3 .
JP2012076847A 2012-03-29 2012-03-29 Channel member, heat exchanger using the same, and semiconductor device Active JP5869399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012076847A JP5869399B2 (en) 2012-03-29 2012-03-29 Channel member, heat exchanger using the same, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076847A JP5869399B2 (en) 2012-03-29 2012-03-29 Channel member, heat exchanger using the same, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2013207200A JP2013207200A (en) 2013-10-07
JP5869399B2 true JP5869399B2 (en) 2016-02-24

Family

ID=49525965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076847A Active JP5869399B2 (en) 2012-03-29 2012-03-29 Channel member, heat exchanger using the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5869399B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3326988B1 (en) * 2015-08-28 2019-11-06 Kyocera Corporation Flow path member
WO2017104830A1 (en) * 2015-12-18 2017-06-22 京セラ株式会社 Flow path member and semiconductor module
BR112021026005A2 (en) * 2019-06-21 2022-02-08 Mitsui Chemicals Inc Cooling device and structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528376B2 (en) * 1994-11-30 2004-05-17 住友電気工業株式会社 Substrate manufacturing method
JP2001215092A (en) * 2000-02-01 2001-08-10 Matsushita Electric Ind Co Ltd Lamination-type heat exchanger
JP4985382B2 (en) * 2007-12-21 2012-07-25 株式会社デンソー Semiconductor cooling structure
JP5531573B2 (en) * 2008-12-09 2014-06-25 日本軽金属株式会社 Method for joining resin member and metal member, method for manufacturing liquid cooling jacket, and liquid cooling jacket

Also Published As

Publication number Publication date
JP2013207200A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5968425B2 (en) Channel member, heat exchanger using the same, and semiconductor device
CN111108819B (en) Electric device and method for manufacturing electric device
JP6871183B2 (en) Heat dissipation structure and battery with it
CN108604718B (en) Composite sheet and battery pack using same
JP5714119B2 (en) Channel member, heat exchanger using the same, semiconductor device, and semiconductor manufacturing apparatus
JP6060078B2 (en) heater
TWI579986B (en) A power module substrate with heat sink
KR101572787B1 (en) Heat dissipation device and semiconductor device
US9730310B2 (en) Metal-ceramic substrate
CN108475666B (en) Power module
JP6235695B2 (en) Method for manufacturing waterproof electronic device
KR20140040865A (en) Electrical heating unit, heating device for a vehicle, and method for producing a heating unit
US10037837B2 (en) Resistor and method for manufacturing resistor
JP2012528471A (en) Cooled electrical component unit
US11495842B2 (en) Heat dissipating structure and battery provided with the same
KR20090004738A (en) Heat dissipation plate for semiconductor package and semiconductor device
JP5869399B2 (en) Channel member, heat exchanger using the same, and semiconductor device
JP2017524248A (en) COOLING DEVICE, COOLING DEVICE MANUFACTURING METHOD, AND POWER CIRCUIT
GB2536051A (en) Heatsink
JP2014017483A (en) Power semiconductor module having at least one conforming element reducing stress
CN108140706B (en) Light emitting module with refrigerator and method for manufacturing light emitting module with refrigerator
US9871006B2 (en) Semiconductor module having a solder-bonded cooling unit
JP2010070412A (en) Graphite composite sheet
JPWO2020158739A1 (en) Heat dissipation member and electronic device equipped with it
JP7359647B2 (en) Power semiconductor device and method for manufacturing power semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160107

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5869399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150