JP5867670B2 - Method for decomposing and removing volatile organic compounds - Google Patents

Method for decomposing and removing volatile organic compounds Download PDF

Info

Publication number
JP5867670B2
JP5867670B2 JP2011066076A JP2011066076A JP5867670B2 JP 5867670 B2 JP5867670 B2 JP 5867670B2 JP 2011066076 A JP2011066076 A JP 2011066076A JP 2011066076 A JP2011066076 A JP 2011066076A JP 5867670 B2 JP5867670 B2 JP 5867670B2
Authority
JP
Japan
Prior art keywords
volatile organic
ozone
catalyst
silver
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011066076A
Other languages
Japanese (ja)
Other versions
JP2012200648A (en
Inventor
尾形 敦
敦 尾形
難波 哲哉
哲哉 難波
正己 菅澤
正己 菅澤
金 賢夏
賢夏 金
小菅 勝典
勝典 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011066076A priority Critical patent/JP5867670B2/en
Publication of JP2012200648A publication Critical patent/JP2012200648A/en
Application granted granted Critical
Publication of JP5867670B2 publication Critical patent/JP5867670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、作業環境、あるいは住環境等の大気環境中に含まれる揮発性有機化合物(以下、「VOC」ということもある。)をオゾン及び触媒を用いて分解除去する方法に関する。   The present invention relates to a method for decomposing and removing a volatile organic compound (hereinafter sometimes referred to as “VOC”) contained in an air environment such as a working environment or a living environment using ozone and a catalyst.

近年、化学工場等からの排ガスに含まれる有機化合物による環境汚染が問題となっており、これによる人体への悪影響が指摘されている。
また、大気汚染防止法の改正、及び一部施行により揮発性有機化合物の排出基準、環境基準が設定されるとともに、PRTR法の施行により事業所からの排出ガスの行政機関への報告義務が課されている。
In recent years, environmental pollution due to organic compounds contained in the exhaust gas from chemical factories has become a problem, and this has been pointed out to adversely affect the human body.
In addition, volatile organic compound emission standards and environmental standards have been set by amending and partially implementing the Air Pollution Control Law, and the enforcement of the PRTR Law imposes an obligation to report exhaust gas from establishments to administrative agencies. Has been.

このような揮発性有機化合物による環境汚染問題は、緊急性を要する社会問題となっており、今後、揮発性有機化合物の効率的な処理方法の開発、さらには揮発性有機化合物の処理技術の確立が期待されている。   Such environmental pollution problems caused by volatile organic compounds have become an urgent social problem, and in the future, development of efficient treatment methods for volatile organic compounds and establishment of technology for treating volatile organic compounds will be continued. Is expected.

従来より、揮発性有機化合物の除去方法として燃焼法や吸着法等が用いられてきた。しかしながら、室内環境及び中小規模の事業所からの排ガスは大気圧下、室温付近の領域で排出され、その濃度も数百ppm以下と低いため、排ガス中に含まれる揮発性有機化合物の除去方法として、この燃焼法や吸着法は必ずしも効率的な除去方法ではなかった。   Conventionally, combustion methods, adsorption methods, and the like have been used as methods for removing volatile organic compounds. However, exhaust gas from indoor environments and small and medium-sized establishments is discharged in the region near room temperature under atmospheric pressure, and its concentration is as low as several hundred ppm, so it is a method for removing volatile organic compounds contained in exhaust gas. The combustion method and the adsorption method are not always efficient removal methods.

一方、オゾンを酸化剤としたガス中有機化合物の処理技術は、冷蔵庫等の脱臭技術として既に実用化されており、ガス気流中の低濃度揮発性有機化合物の分解処理技術として報告されている。   On the other hand, a treatment technique for organic compounds in gas using ozone as an oxidizing agent has already been put into practical use as a deodorization technique for refrigerators and the like, and has been reported as a technique for decomposing low-concentration volatile organic compounds in a gas stream.

こうした分解除去方法に用いる触媒材料としては、例えば特許文献1には、マンガン、鉄、ニッケル、コバルト、クロム、モリブデン、鉛、タングステン、銅、バナジウムを活性アルミナに担持させた材料が提案されている。また、例えば特許文献2には、炭酸マンガンを触媒組成物に含有する触媒体が提案されている。また例えば特許文献3には、疎水性ゼオライトと酸化マンガンの複合酸化物を触媒として用いる揮発性有機化合物の分解除去方法が提案されている。さらに例えば非特許文献1には、酸化マンガンをシリカ、アルミナ、シリカ、チタニア、ジルコニア等の担体に担持した触媒材料が提案されている。   As a catalyst material used in such a decomposition and removal method, for example, Patent Document 1 proposes a material in which manganese, iron, nickel, cobalt, chromium, molybdenum, lead, tungsten, copper, and vanadium are supported on activated alumina. . For example, Patent Document 2 proposes a catalyst body containing manganese carbonate in a catalyst composition. For example, Patent Document 3 proposes a method for decomposing and removing volatile organic compounds using a composite oxide of hydrophobic zeolite and manganese oxide as a catalyst. Further, for example, Non-Patent Document 1 proposes a catalyst material in which manganese oxide is supported on a carrier such as silica, alumina, silica, titania, zirconia.

特開昭53−30978号公報Japanese Patent Laid-Open No. 53-30978 特開平5−317717号公報JP-A-5-317717 特開2007−222697号公報JP 2007-222697 A

Journal of Physical Chemistry, B 105, 4245−4253, (2001).Journal of Physical Chemistry, B 105, 4245-4253, (2001). Journal Of Catalysis, 227, 304−312, (2004).Journal Of Catalysis, 227, 304-312, (2004). Catalysis Communications, 8 557−560, (2007).Catalysis Communications, 8 557-560, (2007). 静電気学会講演論文集’ 09, p.195−198, (2009).Proceedings of the Electrostatic Society of Japan '09, p. 195-198, (2009).

しかしながら、多くの場合脱臭法として開発された経緯から、臭気程度のppm以下のオーダーでは有効と考えられていた触媒であっても、数十から数百ppmでの揮発性有機化合物の分解に用いた場合、ギ酸などの副生成物の発生が問題となっている(非特許文献2、3)。これらは二次的な環境汚染や臭気の原因になるほか、触媒機能の低下をもたらす原因物質でもある(非特許文献4)。   However, in many cases, it was used for the decomposition of volatile organic compounds at tens to hundreds of ppm, even if the catalyst was thought to be effective in the order of ppm or less of the odor level because it was developed as a deodorization method. If so, generation of by-products such as formic acid is a problem (Non-patent Documents 2 and 3). These cause secondary environmental pollution and odor, and are also causative substances that cause a decrease in catalyst function (Non-patent Document 4).

一方、中長期的には、触媒を構成する材料として有害重金属の使用制限についても考慮していく必要がある。例えば、特定化学物質に係わる規則状況では、「(重)クロム酸及びその塩」、「五酸化バナジウム」、「ニッケルカルボニル」、「マンガン及びその化合物」等が挙げられており、脱臭触媒として期待される触媒の活性元素のいくつかがこれに該当している。触媒そのものに毒性が無くとも製造・廃棄時の環境中への排出、すなわち「ライフサイクルにわたる環境リスク」が懸念され、これらの物質も将来的には「環境リスク」が問われる可能性がある。   On the other hand, in the medium to long term, it is necessary to consider restrictions on the use of toxic heavy metals as materials constituting the catalyst. For example, in the regulations related to specific chemical substances, “(bi) chromic acid and its salts”, “vanadium pentoxide”, “nickel carbonyl”, “manganese and its compounds” and the like are expected. This is the case with some of the active elements of the catalysts produced. Even if the catalyst itself is not toxic, there are concerns about the release into the environment at the time of production and disposal, that is, “environmental risk over the life cycle”, and there is a possibility that these substances will also be asked for “environmental risk” in the future.

本発明は、上記課題を解決するためになされたものであって、その目的は、高温だけでなく室温付近の低温においても、ガス中の揮発性有機化合物をオゾン及び環境リスクの少ない触媒により効率良く酸化分解して二酸化炭素に転換することができるとともに、ギ酸等の有機副生成物の生成を抑制することのできる揮発性有機化合物の分解除去方法を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object thereof is to improve the efficiency of volatile organic compounds in gas by ozone and a catalyst with less environmental risk not only at high temperatures but also at low temperatures around room temperature. An object of the present invention is to provide a method for decomposing and removing a volatile organic compound that can be well oxidized and decomposed into carbon dioxide and can suppress the formation of organic by-products such as formic acid.

本発明者らは、室温付近の低温でもガス気流中の揮発性有機化合物を簡便にオゾン分解除去できる方法について鋭意検討した結果、酸化ジルコニウムに銀ナノ粒子を担持した触媒を用いることにより、揮発性有機化合物を極めて効率よく分解除去できる方法を見出し、本発明を完成させた。   As a result of intensive studies on a method for easily ozonolysis-removing volatile organic compounds in a gas stream even at a low temperature around room temperature, the present inventors have found that by using a catalyst having silver nanoparticles supported on zirconium oxide, The present inventors have found a method capable of decomposing and removing organic compounds very efficiently and completed the present invention.

上記課題を解決するための本発明に係る揮発性有機化合物の分解除去方法は、酸化ジルコニウムに対して数平均粒径が0.7nm〜11.5nmの銀ナノ粒子を1.0重量%〜20重量%担持した触媒とオゾンを用いて揮発性有機化合物を分解し除去することを特徴とする。
The method for decomposing and removing a volatile organic compound according to the present invention for solving the above-mentioned problem is that 1.0% by weight to 20% by weight of silver nanoparticles having a number average particle size of 0.7 nm to 11.5 nm with respect to zirconium oxide. It is characterized by decomposing and removing volatile organic compounds by using a catalyst and ozone supported by weight%.

この発明によれば、担体である酸化ジルコニウムに対して銀ナノ粒子を1.0重量%〜20重量%担持しているので、安定して定期的な再生処理が可能となり、揮発性有機化合物をオゾンにより酸化分解して効率的に二酸化炭素に転換することができる。また、燃焼触媒で必要とされた元素であった高価な白金族系元素を必要とせず、より安価な材料を使うことができる。   According to the present invention, since silver nanoparticles are supported in an amount of 1.0% to 20% by weight with respect to zirconium oxide as a carrier, stable and regular regeneration treatment is possible, and volatile organic compounds are added. It can be efficiently converted to carbon dioxide by oxidative decomposition with ozone. Further, an expensive platinum group element, which is an element required for the combustion catalyst, is not required, and a cheaper material can be used.

本発明に係る揮発性有機化合物の分解除去方法において、前記揮発性有機化合物を温度80℃〜150℃において分解除去することが好ましい。   In the method for decomposing and removing a volatile organic compound according to the present invention, the volatile organic compound is preferably decomposed and removed at a temperature of 80 ° C to 150 ° C.

この発明によれば、オゾンを用いて、従来の燃焼触媒では実現できなかった150℃以下の温度でガス気流中の揮発性有機化合物を効率よく分解除去することができる。   According to this invention, volatile organic compounds in a gas stream can be efficiently decomposed and removed using ozone at a temperature of 150 ° C. or lower, which could not be realized with a conventional combustion catalyst.

本発明に係る揮発性有機化合物の分解除去方法において、前記揮発性有機化合物を、1ppm〜500ppmとすることが好ましい。   In the method for decomposing and removing a volatile organic compound according to the present invention, the volatile organic compound is preferably 1 ppm to 500 ppm.

この発明によれば、1ppm〜500ppmの揮発性有機化合物を分解除去することができるので、作業環境の改善のみならず、快適空間を求める一般住環境や医療現場での臭気対策にも適用できる。   According to the present invention, 1 ppm to 500 ppm of volatile organic compounds can be decomposed and removed, so that the present invention can be applied not only to improvement of the working environment but also to countermeasures for odors in a general living environment or a medical site where a comfortable space is required.

この発明によれば、数平均粒径が0.7nm〜11.5nmの銀ナノ粒子を酸化ジルコニウムに担持するので、揮発性有機物の分解除去はもちろん、分解除去に先立ってオゾンなしでも低濃度の揮発性有機物を吸着除去することができる。   According to the present invention, since silver nanoparticles having a number average particle size of 0.7 nm to 11.5 nm are supported on zirconium oxide, not only decomposition and removal of volatile organic substances but also low concentration even without ozone prior to decomposition and removal. Volatile organic substances can be removed by adsorption.

本発明に係る揮発性有機化合物の分解除去方法において、前記揮発性有機化合物が、ベンゼン、トルエン、キシレン、エチルベンゼン、エチレンオキシド、アセトアルデヒド、ホルムアルデヒド及びジクロロメタンから選択された1種又は2種以上であることが好ましい。   In the method for decomposing and removing a volatile organic compound according to the present invention, the volatile organic compound may be one or more selected from benzene, toluene, xylene, ethylbenzene, ethylene oxide, acetaldehyde, formaldehyde, and dichloromethane. preferable.

この発明によれば、他の芳香族、含酸素、塩素化炭化水素類に対して効率よく分解し除去することができる。   According to this invention, other aromatic, oxygen-containing, chlorinated hydrocarbons can be efficiently decomposed and removed.

本発明に係る揮発性有機化合物の分解除去方法によれば、銀ナノ粒子を酸化ジルコニウムに担持させた複合酸化物を触媒として使用することにより、ガス気流中の揮発性有機化合物を極めて効率よく二酸化炭素に変換できるとともに、ギ酸等の有機副生成物の生成を抑制することができる。   According to the method for decomposing and removing a volatile organic compound according to the present invention, by using a composite oxide in which silver nanoparticles are supported on zirconium oxide as a catalyst, the volatile organic compound in the gas stream can be oxidized very efficiently. While being able to convert into carbon, the production | generation of organic by-products, such as formic acid, can be suppressed.

本発明の実施例において使用する反応システム図である。It is a reaction system figure used in the Example of this invention. 本発明の実施例に係るトルエン分解性能のグラフである。It is a graph of the toluene decomposition performance which concerns on the Example of this invention. 本発明の実施例に係るトルエン分解性能のグラフである。It is a graph of the toluene decomposition performance which concerns on the Example of this invention. 本発明の実施例に係るトルエン分解性能、吸着性能のグラフである。It is a graph of toluene decomposition performance and adsorption performance concerning the example of the present invention. 本発明の実施例に係るギ酸発生抑制のグラフである。It is a graph of formic acid generation | occurrence | production suppression which concerns on the Example of this invention. 本発明の実施例に係るトルエンの分解に必要なオゾン量を示すグラフである。It is a graph which shows the amount of ozone required for decomposition | disassembly of toluene which concerns on the Example of this invention. 本発明の実施例に係る触媒表面の電子顕微鏡写真である。It is an electron micrograph of the catalyst surface which concerns on the Example of this invention.

以下、本発明に係る揮発性有機化合物の分解除去方法について図面を参照しつつ説明する。なお、本発明の技術的範囲は以下の実施形態に限定解釈されるものではない。   Hereinafter, a method for decomposing and removing a volatile organic compound according to the present invention will be described with reference to the drawings. The technical scope of the present invention is not limited to the following embodiments.

本発明に係る揮発性有機化合物の分解除去方法で使用する触媒は、酸化ジルコニウムを担体とし、これに銀ナノ粒子を担持して得られる複合酸化物である。複合酸化物とは、酸化ジルコニウムと銀ナノ粒子が単に物理的な混合状態にあるものではなく、化学的な結合状態・相互作用をもったものをいう。   The catalyst used in the method for decomposing and removing volatile organic compounds according to the present invention is a composite oxide obtained by using zirconium oxide as a carrier and supporting silver nanoparticles on this. A composite oxide is not a compound in which zirconium oxide and silver nanoparticles are merely in a physical mixed state but a compound having a chemically bonded state / interaction.

酸化ジルコニウムは、実際に上記触媒が使用される温度、具体的には25℃〜150℃において、揮発性有機化合物の吸着能力の高いものが望ましい。   Zirconium oxide is preferably one having a high adsorption capacity for volatile organic compounds at the temperature at which the catalyst is actually used, specifically at 25 to 150 ° C.

酸化ジルコニウムは、ZrOの組成をもつ熱的に安定なものであればよい。酸化ジルコニウムの比表面積は、10m/g〜100m/g、好ましくは35m/g〜100m/gである。比表面積がこの範囲にあると、担体である酸化ジルコニウムに銀粒子を担持させた場合に、銀粒子をナノサイズの大きさに維持できる。 Zirconium oxide may be any thermally stable material having a composition of ZrO 2 . The specific surface area of the zirconium oxide, 10m 3 / g~100m 3 / g , preferably from 35m 3 / g~100m 3 / g. When the specific surface area is within this range, when silver particles are supported on zirconium oxide as a carrier, the silver particles can be maintained in a nano-sized size.

銀ナノ粒子における銀は0価と+1価の酸化数を取るが、本発明においては反応雰囲気下、酸化還元が容易に起こるため、反応開始時にはいずれの価数の銀でも使用できる。   Silver in the silver nanoparticle takes 0-valent and + 1-valent oxidation numbers. In the present invention, since oxidation and reduction easily occur in the reaction atmosphere, silver of any valence can be used at the start of the reaction.

銀ナノ粒子は、数平均粒径が0.7nm〜11.5nm、好ましくは1.0nm〜7.5であるナノ粒子を用いることが好ましい。数平均粒径がこの範囲にあると、揮発性有機物の分解除去はもちろん、分解除去に先立ってオゾンなしでも低濃度の揮発性有機物を吸着除去できるという効果も得られる。数平均粒径は電子顕微鏡写真を任意の枚数測定し、拡大コピーしノギスで個々の銀ナノ粒子の直径を実測(長径と短径の相乗平均値)し集計した。   As the silver nanoparticles, it is preferable to use nanoparticles having a number average particle diameter of 0.7 nm to 11.5 nm, preferably 1.0 nm to 7.5. When the number average particle size is in this range, not only the volatile organic substances are decomposed and removed, but also the effect that the low concentration volatile organic substances can be adsorbed and removed without ozone prior to the decomposition and removal. The number average particle diameter was obtained by measuring an arbitrary number of electron micrographs, enlarging and copying the diameter of each silver nanoparticle with a vernier caliper (the geometric mean value of the major axis and the minor axis) and tabulating.

酸化ジルコニウムと銀ナノ粒子の使用割合は、酸化ジルコニウムに対して銀ナノ粒子1.0重量%〜20重量%、好ましくは3.0重量%〜20重量%である。銀ナノ粒子が酸化ジルコニウムに対して1.0重量%未満であると触媒表面上で銀ナノ粒子として存在しない可能性があり、少なくとも触媒作用を十分発揮することができない。また20重量%を超えるとミクロンオーダーの銀ナノ粒子の塊が生じ、触媒作用をもたないため、非効率な銀が増加することになる。   The proportion of zirconium oxide and silver nanoparticles used is 1.0% to 20% by weight, preferably 3.0% to 20% by weight, based on zirconium oxide. If the silver nanoparticles are less than 1.0% by weight based on zirconium oxide, they may not exist as silver nanoparticles on the catalyst surface, and at least the catalytic action cannot be sufficiently exhibited. On the other hand, when the amount exceeds 20% by weight, a lump of micron-order silver nanoparticles is formed and has no catalytic action, so that inefficient silver increases.

オゾンの製造方法としては、放電式、発光式、水分解方式等が一般的に用いられる。オゾンは対象とする揮発性有機化合物に対して5モル〜15モル、好ましくは6モル〜12モル共存させることが好ましい。この範囲にあると部分酸化生成物であるCOやHCOOHもCOへ完全酸化が可能となる。 As a method for producing ozone, a discharge method, a light emission method, a water decomposition method, or the like is generally used. It is preferable that ozone is allowed to coexist with 5 to 15 mol, preferably 6 to 12 mol with respect to the target volatile organic compound. Within this range, CO and HCOOH as partial oxidation products can be completely oxidized to CO 2 .

揮発性有機化合物を反応温度80℃〜200℃、好ましくは80℃〜150℃において分解除去することが好ましい。温度が80℃未満であると触媒活性を低下させる表面吸着種が蓄積するため、定期的な再生処理が必要とされるが、温度が200℃を超えるとオゾンそのものが分解しはじめ、また通常の熱触媒反応もはじまり、触媒の効果が低くなる。従って、オゾンを効率よく使用する観点から反応温度150℃以下が好ましい。このような反応温度でガス中、例えば事業所からの排ガス中の揮発性有機化合物をオゾンの存在下、酸化分解除去して速やかに二酸化炭素に変換できる揮発性有機化合物の分解除去方法として極めて有効である。   It is preferable to decompose and remove the volatile organic compound at a reaction temperature of 80 ° C to 200 ° C, preferably 80 ° C to 150 ° C. If the temperature is less than 80 ° C., surface adsorbed species that reduce the catalytic activity accumulate, so periodic regeneration treatment is required. However, if the temperature exceeds 200 ° C., ozone itself begins to decompose, Thermal catalytic reaction also begins, and the catalytic effect is reduced. Therefore, a reaction temperature of 150 ° C. or lower is preferable from the viewpoint of efficiently using ozone. Extremely effective as a method for decomposing and removing volatile organic compounds in gas, such as exhaust gas from offices, at such a reaction temperature, by oxidizing and removing them in the presence of ozone to quickly convert them into carbon dioxide. It is.

また揮発性有機化合物は1ppm〜500ppm、好ましくは1ppm〜200ppm以下である。揮発性有機化合物が1ppm未満であるとオゾンがあれば当該触媒でなくとも(たとえば担体のZrOだけでも)容易に除去できるため本発明の効果が薄れ、500ppmを超えるとオゾンなしの触媒自己燃焼反応が起こる可能性があり、オゾンを共存させる効果がなくなる。 Moreover, a volatile organic compound is 1 ppm-500 ppm, Preferably it is 1 ppm-200 ppm or less. If the volatile organic compound is less than 1 ppm, ozone can be easily removed even if it is not the catalyst (for example, only ZrO 2 of the carrier), so that the effect of the present invention is diminished. Reaction may occur and the effect of coexisting ozone is lost.

ガス中に含まれる揮発性有機化合物としては、ベンゼン、トルエン、キシレン、エチルベンゼン、エチレンオキシド、アセトアルデヒド、ホルムアルデヒド、ジクロロメタン等から選択された1種又は2種以上であることが好ましい。具体的には芳香族、含酸素、塩素化炭化水素等の揮発性有機化合物を分解除去することができる。   The volatile organic compound contained in the gas is preferably one or more selected from benzene, toluene, xylene, ethylbenzene, ethylene oxide, acetaldehyde, formaldehyde, dichloromethane and the like. Specifically, volatile organic compounds such as aromatic, oxygen-containing and chlorinated hydrocarbons can be decomposed and removed.

銀ナノ粒子を酸化ジルコニウムに担持させた複合酸化物を調製するためには、前駆体となる銀錯体を水もしくはアルコール、ケトン、カルボン酸等の有機溶媒あるいはこれらの混合溶媒系にあらかじめ溶解しておき、次いで酸化ジルコニウムに含浸担持する方法等を採用すればよい。その後乾燥し、200〜500℃の温度で酸化雰囲気下、焼成して本発明に係る複合酸化物としての触媒を得ることができる。得られた触媒の形状は、粉末状、ペレット状、ゲル状、ハニカム型構造体等いずれであってもよい。   In order to prepare a composite oxide in which silver nanoparticles are supported on zirconium oxide, a silver complex as a precursor is dissolved in water or an organic solvent such as alcohol, ketone or carboxylic acid or a mixed solvent system thereof in advance. Then, a method of impregnating and supporting zirconium oxide may be employed. Thereafter, the catalyst is dried and calcined in an oxidizing atmosphere at a temperature of 200 to 500 ° C. to obtain a catalyst as a composite oxide according to the present invention. The shape of the obtained catalyst may be any of powder, pellet, gel, honeycomb structure and the like.

このようにして得られた、銀ナノ粒子を担持した酸化ジルコニウム触媒を円筒型のリアクタに入れ、揮発性有機化合物及びオゾンを含むガス気流をリアクタに導入する。オゾン自体は人体に有害であるが、残留オゾンは触媒量を調整することにより完全に分解し、分子状酸素に変換される。   The thus obtained zirconium oxide catalyst carrying silver nanoparticles is put into a cylindrical reactor, and a gas stream containing volatile organic compounds and ozone is introduced into the reactor. Although ozone itself is harmful to the human body, residual ozone is completely decomposed and converted into molecular oxygen by adjusting the amount of catalyst.

以下、本発明について実施例と比較例を示して具体的に説明する。これらの記載により本発明を制限するものではない。   Hereinafter, the present invention will be described in detail with reference to examples and comparative examples. These descriptions do not limit the present invention.

(実施例1)
酸化ジルコニウム(ZrO)3.0gに最終組成で銀の担持量が5重量%になるよう銀イオンが溶け込んだ硝酸銀水溶液100gを入れ、十分撹拌した後、一昼夜静置する。その後、ロータリーエバポレーターを用いて40℃で水蒸気を除き、120℃の乾燥機試料を十分乾燥させる。その後、空気中毎分10℃の昇温速度で500℃まで昇温し、10時間焼成させ、銀の担持量、5重量%の酸化ジルコニウム(Ag/ZrO)触媒を得た。
Example 1
100 g of an aqueous solution of silver nitrate in which silver ions are dissolved so that the supported amount of silver is 5% by weight is added to 3.0 g of zirconium oxide (ZrO 2 ), and after sufficient stirring, the mixture is allowed to stand overnight. Thereafter, the water vapor is removed at 40 ° C. using a rotary evaporator, and the dryer sample at 120 ° C. is sufficiently dried. Thereafter, the temperature was raised to 500 ° C. at a rate of 10 ° C. per minute in the air and calcined for 10 hours to obtain a 5 wt% zirconium oxide (Ag / ZrO 2 ) catalyst.

(比較例1)
酸化ジルコニウムを酸化アルミニウム(Al)に変更した以外は、実施例1と同様にして5重量%の銀を担持した酸化アルミニウム(Ag/Al)触媒を調製した。
(Comparative Example 1)
Except for changing the zirconium oxide aluminum oxide (Al 2 O 3), Example 1 aluminum oxide carrying 5 wt% silver in the same manner as (Ag / Al 2 O 3) to prepare a catalyst.

(比較例2)
酸化ジルコニウムを酸化チタン(TiO)に変更した以外は、実施例1と同様にして5重量%の銀を担持した酸化チタン(Ag/TiO)触媒を調製した。
(Comparative Example 2)
A titanium oxide (Ag / TiO 2 ) catalyst supporting 5% by weight of silver was prepared in the same manner as in Example 1 except that the zirconium oxide was changed to titanium oxide (TiO 2 ).

(比較例3)
酸化ジルコニウムを酸化ケイ素(SiO)に変更した以外は、実施例1と同様にして5重量%の銀を担持した酸化ケイ素(Ag/SiO)触媒を調製した。
(Comparative Example 3)
A silicon oxide (Ag / SiO 2 ) catalyst supporting 5% by weight of silver was prepared in the same manner as in Example 1 except that zirconium oxide was changed to silicon oxide (SiO 2 ).

(比較例4)
酸化ジルコニウムを酸化マグネシウム(MgO)に変更した以外は、実施例1と同様にして5重量%の銀を担持した酸化マグネシウム(Ag/MgO)触媒を調製した。
(Comparative Example 4)
A magnesium oxide (Ag / MgO) catalyst supporting 5% by weight of silver was prepared in the same manner as in Example 1 except that zirconium oxide was changed to magnesium oxide (MgO).

[測定結果と評価]
(トルエンの分解)
実施例1、比較例1〜4で得られた触媒を用いてオゾンを酸化剤としたトルエンの分解反応を固定床流通系により行った。反応システムの概略図を図1に示す。
トルエンを200ppm含む窒素ガス、純窒素ガス、及び純酸素ガスを混合して反応ガスを調製し、それぞれのガス流量はサーマルマスフローコントローラー(TH3610、本間理研社製)で制御した。
[Measurement results and evaluation]
(Decomposition of toluene)
Using the catalysts obtained in Example 1 and Comparative Examples 1 to 4, the decomposition reaction of toluene using ozone as an oxidizing agent was performed by a fixed bed flow system. A schematic diagram of the reaction system is shown in FIG.
Nitrogen gas containing 200 ppm of toluene, pure nitrogen gas, and pure oxygen gas were mixed to prepare a reaction gas, and each gas flow rate was controlled by a thermal mass flow controller (TH3610, manufactured by Honma Riken).

オゾンは純酸素を原料として沿面放電式のオゾン発生器(石英管型内部コイル放電極式)により合成した。オゾン濃度はオゾンモニター(EG550、荏原実業社製)により測定した。   Ozone was synthesized with a creeping discharge type ozone generator (quartz tube type internal coil discharge electrode type) using pure oxygen as a raw material. The ozone concentration was measured with an ozone monitor (EG550, manufactured by Sugawara Jitsugyo Co., Ltd.).

上記の触媒をあらかじめ酸素気流中で1時間加熱処理(500℃)し、触媒の前処理を行った。反応ガスの分析は長光路(2.4m)のガスセルを装填した赤外分光光度計(FTS−135、バイオラッド製)によった。反応条件はトルエン濃度200ppm、オゾン濃度1000ppm、酸素濃度20%、ガス流量500ml/min、触媒量0.2g、反応温度100℃とした。   The catalyst was pretreated in advance in an oxygen stream for 1 hour (500 ° C.) to pretreat the catalyst. The analysis of the reaction gas was performed by an infrared spectrophotometer (FTS-135, manufactured by Bio-Rad) equipped with a gas cell having a long optical path (2.4 m). The reaction conditions were a toluene concentration of 200 ppm, an ozone concentration of 1000 ppm, an oxygen concentration of 20%, a gas flow rate of 500 ml / min, a catalyst amount of 0.2 g, and a reaction temperature of 100 ° C.

図2に実施例1、比較例1〜4の触媒を用いてトルエンを分解したときの除去率(%)を示す。条件は初期オゾン濃度250〜2000ppmである。同図中、黒三角は実施例1、白丸は比較例1、黒丸は比較例2、白三角は比較例3、白逆三角は比較例4である。   FIG. 2 shows the removal rate (%) when toluene was decomposed using the catalysts of Example 1 and Comparative Examples 1-4. The condition is an initial ozone concentration of 250 to 2000 ppm. In the figure, the black triangle is Example 1, the white circle is Comparative Example 1, the black circle is Comparative Example 2, the white triangle is Comparative Example 3, and the white inverted triangle is Comparative Example 4.

また、表1に実施例1、比較例1〜4について、初期オゾン濃度1000ppmの条件でトルエン分解したときのトルエン分解率(%)、CO選択率(%)、炭素の物質収支(%)、オゾン消費率(%)、ギ酸(HCOOH)生成量(ppm)を示す。 Table 1 shows toluene decomposition rate (%), CO 2 selectivity (%), and carbon material balance (%) when toluene was decomposed under the conditions of initial ozone concentration of 1000 ppm for Example 1 and Comparative Examples 1 to 4. , Ozone consumption rate (%), formic acid (HCOOH) production (ppm).

図2より初期オゾン濃度の上昇に伴ってトルエン分解率が向上した。100℃の反応温度においてもガス気流中には二酸化炭素、一酸化炭素のみが生成物として観測され、ギ酸の生成は全く見られなかった。比較例1〜4と実施例1とを比較すると、実施例1が初期オゾン濃度1000〜2000ppmの範囲で高いトルエン除去率を示すことがわかる。ここで、炭素収支は式(1)で定義される。   As shown in FIG. 2, the toluene decomposition rate improved with the increase in the initial ozone concentration. Even at a reaction temperature of 100 ° C., only carbon dioxide and carbon monoxide were observed as products in the gas stream, and no formic acid was produced. Comparing Comparative Examples 1 to 4 and Example 1, it can be seen that Example 1 exhibits a high toluene removal rate in the range of the initial ozone concentration of 1000 to 2000 ppm. Here, the carbon balance is defined by equation (1).

[化1]
炭素収支=(二酸化炭素+一酸化炭素の生成量+ギ酸の生成量)/(トルエン分解量)×7・・・・(1)
[Chemical 1]
Carbon balance = (carbon dioxide + carbon monoxide production + formic acid production) / (toluene decomposition) x 7 (1)

表1の測定結果より、実施例1では炭素収支は97%以上となっており、ほぼ定量的にトルエンが二酸化炭素、一酸化炭素に変換することがわかった。これらはベンゼン、キシレンでも類似の反応性を示している。また、比較例1及び比較例2の触媒では数十ppmのギ酸が生成しているが、実施例1の触媒ではギ酸の生成を完全に抑制できることが証明された。   From the measurement results in Table 1, it was found that in Example 1, the carbon balance was 97% or more, and toluene was quantitatively converted to carbon dioxide and carbon monoxide. These also show similar reactivity with benzene and xylene. Moreover, although several tens ppm of formic acid was produced | generated with the catalyst of the comparative example 1 and the comparative example 2, it was proved that the production | generation of formic acid can be suppressed completely with the catalyst of Example 1.

(実施例2)
銀の担持量を0.5重量%に変更した以外は、実施例1と同様にして銀を担持した酸化アルミニウム(0.5−Ag/ZrO)触媒を調製した。
(Example 2)
An aluminum oxide (0.5-Ag / ZrO 2 ) catalyst supporting silver was prepared in the same manner as in Example 1 except that the supported amount of silver was changed to 0.5% by weight.

(実施例3)
銀の担持量を1.0重量%に変更した以外は、実施例1と同様にして銀を担持した酸化アルミニウム(1.0−Ag/ZrO)触媒を調製した。
(Example 3)
An aluminum oxide (1.0-Ag / ZrO 2 ) catalyst supporting silver was prepared in the same manner as in Example 1 except that the amount of silver supported was changed to 1.0% by weight.

(実施例4)
銀の担持量を3.0重量%に変更した以外は、実施例1と同様にして銀を担持した酸化アルミニウム(3.0−Ag/ZrO)触媒を調製した。
Example 4
An aluminum oxide (3.0-Ag / ZrO 2 ) catalyst supporting silver was prepared in the same manner as in Example 1 except that the amount of silver supported was changed to 3.0% by weight.

(実施例5)
銀の担持量を10重量%に変更した以外は、実施例1と同様にして銀を担持した酸化アルミニウム(10−Ag/ZrO)触媒を調製した。
(Example 5)
An aluminum oxide (10-Ag / ZrO 2 ) catalyst supporting silver was prepared in the same manner as in Example 1 except that the amount of silver supported was changed to 10% by weight.

(実施例6)
銀の担持量を20重量%に変更した以外は、実施例1と同様にして銀を担持した酸化アルミニウム(20−Ag/ZrO)触媒を調製した。
(Example 6)
An aluminum oxide (20-Ag / ZrO 2 ) catalyst supporting silver was prepared in the same manner as in Example 1 except that the amount of silver supported was changed to 20% by weight.

(比較例5)
酸化ジルコニウム(ZrO)は市販の試薬(商品名:RSC−Hi、第一希元素社製)を用いた。
(Comparative Example 5)
As the zirconium oxide (ZrO 2 ), a commercially available reagent (trade name: RSC-Hi, manufactured by Daiichi Rare Element Co., Ltd.) was used.

[測定結果と評価]
(再度のトルエンの分解)
実施例1、比較例1〜4で得られた触媒を用いてオゾンを酸化剤としたトルエンの分解反応を上記で行った方法と同様にして行った。
[Measurement results and evaluation]
(Toluene decomposition again)
Using the catalysts obtained in Example 1 and Comparative Examples 1 to 4, the decomposition reaction of toluene using ozone as an oxidizing agent was performed in the same manner as described above.

図3に実施例1〜6、比較例5の触媒を用いてトルエンを分解したときの除去率(%)を示す。条件は初期オゾン濃度250ppm〜2000ppmである。同図中、白四角は実施例1、黒丸は実施例2、白三角は実施例3、黒三角は実施例4、黒四角は実施例5、白逆三角は実施例6である。 FIG. 3 shows the removal rate (%) when toluene was decomposed using the catalysts of Examples 1 to 6 and Comparative Example 5. The condition is an initial ozone concentration of 250 ppm to 2000 ppm. In the figure, the white square is Example 1, the black circle is Example 2, the white triangle is Example 3, the black triangle is Example 4, the black square is Example 5, and the white inverted triangle is Example 6.

図3より、銀の担持量が1.0重量%以上で高いトルエン除去能力を示し、銀の担持量が3.0重量%以上では極めて高いトルエンの除去能力を有することがわかる。   From FIG. 3, it can be seen that a high toluene removal ability is exhibited when the supported amount of silver is 1.0% by weight or more, and a very high removal ability of toluene is obtained when the supported amount of silver is 3.0% by weight or more.

図4は反応温度100℃、初期オゾン濃度1000ppmでのトルエン除去率(%)と反応開始前に測定した100℃における0.2gの各種触媒へのトルエン吸着量(モル)を示す。同図中、白丸はトルエン除去率(%)を示し、黒丸はトルエン吸着量(モル)を示す。   FIG. 4 shows the toluene removal rate (%) at a reaction temperature of 100 ° C. and an initial ozone concentration of 1000 ppm and the toluene adsorption amount (mole) on 0.2 g of various catalysts at 100 ° C. measured before the start of the reaction. In the figure, white circles indicate the toluene removal rate (%), and black circles indicate the toluene adsorption amount (mol).

図4より、担持量が低い場合には、トルエン転化率が低く、かつトルエン吸着量も増えておらず、ZrO表面の特性が強く反映されていることがわかる。銀の担持量が3.0重量%以上20重量%以下あればトルエン転化率も50%以上に達し、トルエン吸着量も無担持の6倍以上と銀の効果が期待できることがわかる。 FIG. 4 shows that when the loading amount is low, the toluene conversion rate is low and the toluene adsorption amount is not increased, and the characteristics of the ZrO 2 surface are strongly reflected. It can be seen that when the supported amount of silver is 3.0% by weight or more and 20% by weight or less, the toluene conversion rate reaches 50% or more, and the amount of toluene adsorbed is 6 times or more of the unsupported amount, and the silver effect can be expected.

これらの測定結果から、銀ナノ粒子の担持は酸化ジルコニウムの持つトルエンの吸着能力を飛躍的に高め、触媒表面上での反応基質であるトルエンとオゾンから生じた活性酸素種の反応場を効率的に供給できることがわかる。   From these measurement results, the loading of silver nanoparticles dramatically increases the adsorption ability of toluene possessed by zirconium oxide, and the reaction field of reactive oxygen species generated from toluene and ozone, which are reaction substrates, on the catalyst surface is improved. It can be seen that can be supplied.

(ギ酸量の測定)
実施例1〜6の触媒についてギ酸量を測定した。測定には、長光路(2.4m)のガスセルを装填した赤外分光光度計(FTS−135、バイオラッド製)を用いた。
(Measurement of formic acid content)
The amount of formic acid was measured for the catalysts of Examples 1-6. For the measurement, an infrared spectrophotometer (FTS-135, manufactured by Bio-Rad) equipped with a gas cell having a long optical path (2.4 m) was used.

図5に実施例1〜6の触媒で観測されたギ酸量(ppm)を示す。同図中、白四角は実施例1、黒丸は実施例2、白三角は実施例3、黒三角は実施例4、黒四角は実施例5、白逆三角は実施例6である。   FIG. 5 shows the amount of formic acid (ppm) observed with the catalysts of Examples 1-6. In the figure, the white square is Example 1, the black circle is Example 2, the white triangle is Example 3, the black triangle is Example 4, the black square is Example 5, and the white inverted triangle is Example 6.

図5より銀の担持量が0.5重量%の触媒では初期オゾン濃度とともにギ酸が副生成物として発生することがわかる。銀の担持量が1.0重量%の触媒では初期オゾン量を大きくすると減少する傾向は見られる。銀の担持量が3.0重量%、5.0重量%、10重量%、20重量%の触媒では、ギ酸の生成を完全に抑制することができた。   FIG. 5 shows that formic acid is generated as a by-product with the initial ozone concentration in the catalyst having a silver loading of 0.5% by weight. A catalyst having a silver loading of 1.0% by weight shows a tendency to decrease when the initial ozone amount is increased. With the catalysts having a silver loading of 3.0 wt%, 5.0 wt%, 10 wt%, and 20 wt%, the formation of formic acid could be completely suppressed.

(オゾン必要量の測定)
トルエンを分解したときのトルエン1分子を除去するために必要なオゾン分子量を測定した。これは、式(2)のように反応前後で消費したオゾン量を除去されたトルエン量で除すことによって求めた。
[化2]
オゾン必要量=(消費オゾン量)/(トルエン分解量)・・・(2)
(Measurement of ozone requirement)
The ozone molecular weight necessary for removing one molecule of toluene when toluene was decomposed was measured. This was determined by dividing the amount of ozone consumed before and after the reaction by the amount of toluene removed as in equation (2).
[Chemical 2]
Required ozone amount = (Amount of ozone consumed) / (Toluene decomposition amount) (2)

図6に実施例1〜6の触媒を用いてトルエンを分解したときのトルエン1分子を除去するために必要なオゾン分子の量(オゾン必要量)を示す。条件は、初期オゾン濃度250ppm〜2000ppmで行った。同図中、白四角は実施例1、黒丸は実施例2、白三角は実施例3、黒三角は実施例4、黒四角は実施例5、白逆三角は実施例6である。   FIG. 6 shows the amount of ozone molecules (ozone required amount) necessary for removing one molecule of toluene when toluene is decomposed using the catalysts of Examples 1 to 6. The conditions were an initial ozone concentration of 250 ppm to 2000 ppm. In the figure, the white square is Example 1, the black circle is Example 2, the white triangle is Example 3, the black triangle is Example 4, the black square is Example 5, and the white inverted triangle is Example 6.

図6より、銀の担持量が1.0重量%以上の触媒ではトルエンに対し7〜10分子必要であることがわかる。ただし、銀の担持量が1.0重量%では同等量のオゾンが消費されながら、ギ酸の発生が抑制できないことから、トルエンからギ酸を副生することなく二酸化炭素へ分解するのに必要な活性酸素種をオゾンから生成させるためには、酸化ジルコニウム担体に3.0重量%以上の銀ナノ粒子の担持が必要であることがわかる。   FIG. 6 shows that a catalyst having a silver loading of 1.0% by weight or more requires 7 to 10 molecules relative to toluene. However, when the amount of silver supported is 1.0% by weight, the same amount of ozone is consumed, but the generation of formic acid cannot be suppressed. Therefore, the activity required for decomposing from formic acid to carbon dioxide without by-producting it. It can be seen that in order to generate oxygen species from ozone, it is necessary to support 3.0% by weight or more of silver nanoparticles on the zirconium oxide support.

揮発性有機物質(VOC)を分解するのに必要なオゾン量は、ベンゼン、キシレン、ジクロロメタンにおいても、それぞれの1分子VOCを分解するため、約10分子のオゾンが必要であった。   As for the amount of ozone necessary for decomposing volatile organic substances (VOC), about 10 molecules of ozone are necessary for decomposing one molecule of VOC in benzene, xylene and dichloromethane.

本発明である揮発性有機物質(VOC)のオゾンを用いた接触酸化法に用いる触媒は、単なる銀と酸化ジルコニウムの組み合わせでは、二次有機副生成物の発生を抑制することをできないことを示している。酸化ジルコニウムと強く相互作用を持った数ナノ程度の銀ナノ粒子が同酸化物上に分散度良く、一定量担持させた材料の調製が必要である。   The catalyst used in the catalytic oxidation method using volatile organic substance (VOC) ozone according to the present invention shows that the combination of mere silver and zirconium oxide cannot suppress the generation of secondary organic by-products. ing. It is necessary to prepare a material in which silver nanoparticles of several nanometers having a strong interaction with zirconium oxide are supported on the oxide with a high degree of dispersion and a certain amount.

(電子顕微鏡による測定)
電子顕微鏡(EM−002B、TOPCON社製)により銀ナノ粒子の観察を行った。その結果を図7に示す。図7は、電子顕微鏡で撮影した触媒表面の銀の様子(存在状態)を示す写真である。図7より、2nm〜3nmの銀ナノ粒子が酸化ジルコニア表面に分散担持していることが確認できた。銀の担持量が0.5重量%の触媒は、担持量が少ないため視野内に銀ナノ粒子を確認することができなかった。一方、担持量を増やすとごく一部に極端に粗大化した銀ナノ粒子(銀の塊)が観測されることはあるが、いずれの試料でも広範囲に数nmの銀ナノ粒子の存在が確認された。ただし、粗大化した銀ナノ粒子は担体の酸化ジルコニウムとの相互作用が低く触媒活性がないか著しく低いものと思われる。
(Measurement by electron microscope)
Silver nanoparticles were observed with an electron microscope (EM-002B, manufactured by TOPCON). The result is shown in FIG. FIG. 7 is a photograph showing the state (existence state) of silver on the catalyst surface taken with an electron microscope. From FIG. 7, it was confirmed that silver nanoparticles of 2 nm to 3 nm were dispersed and supported on the surface of zirconia oxide. A catalyst having a silver loading of 0.5% by weight could not confirm silver nanoparticles in the field of view because the loading was small. On the other hand, when the loading is increased, extremely coarse silver nanoparticles (silver lump) may be observed in a small part, but the presence of silver nanoparticles of several nanometers is confirmed in a wide range in any sample. It was. However, it is considered that the coarsened silver nanoparticles have a low interaction with zirconium oxide as a carrier and have no catalytic activity or are extremely low.

また、Ag/ZrO触媒に比べ活性が低いAg/TiO上にも同程度の大きさの銀ナノ粒子が観測されることから、単純な粒径だけでなく、ZrO担体と強い相互作用を持った銀ナノ粒子がこれらの特徴を与えるものと考えられる。 In addition, since silver nanoparticles of the same size are observed on Ag / TiO 2 which is less active than Ag / ZrO 2 catalyst, not only simple particle size but also strong interaction with ZrO 2 support It is considered that the silver nanoparticles having the above-mentioned properties give these characteristics.

1 窒素ガス
2 酸素ガス
3 流量制御装置
4 トルエン
5 オゾン発生器
6 電気炉
7 触媒
8 長光路ガスセル
9 FT−IR分光光度計
10 オゾン濃度計
DESCRIPTION OF SYMBOLS 1 Nitrogen gas 2 Oxygen gas 3 Flow control apparatus 4 Toluene 5 Ozone generator 6 Electric furnace 7 Catalyst 8 Long light path gas cell 9 FT-IR spectrophotometer 10 Ozone concentration meter

Claims (4)

酸化ジルコニウムに対して数平均粒径が0.7nm〜11.5nmの銀ナノ粒子を1.0重量%〜20重量%担持した触媒とオゾンを用いて揮発性有機化合物を分解し除去することを特徴とする揮発性有機化合物の分解除去方法。 Volatile organic compounds are decomposed and removed using a catalyst carrying 1.0 to 20% by weight of silver nanoparticles having a number average particle size of 0.7 to 11.5 nm with respect to zirconium oxide and ozone. A method for decomposing and removing volatile organic compounds. 前記揮発性有機化合物を温度80℃〜150℃において分解除去する、請求項1に記載の揮発性有機化合物の分解除去方法。   The method for decomposing and removing a volatile organic compound according to claim 1, wherein the volatile organic compound is decomposed and removed at a temperature of 80C to 150C. 前記揮発性有機化合物を、1ppm〜500ppmとする、請求項1又は2に記載の揮発性有機化合物の分解除去方法。   The method for decomposing and removing a volatile organic compound according to claim 1 or 2, wherein the volatile organic compound is 1 ppm to 500 ppm. 前記揮発性有機化合物が、ベンゼン、トルエン、キシレン、エチルベンゼン、エチレンオキシド、アセトアルデヒド、ホルムアルデヒド、及びジクロロメタンから選択された1種又は2種以上である、請求項1〜のいずれか1項に記載の揮発性有機化合物の分解除去方法。 The volatile organic compound according to any one of claims 1 to 3 , wherein the volatile organic compound is one or more selected from benzene, toluene, xylene, ethylbenzene, ethylene oxide, acetaldehyde, formaldehyde, and dichloromethane. Of removing organic organic compounds.
JP2011066076A 2011-03-24 2011-03-24 Method for decomposing and removing volatile organic compounds Expired - Fee Related JP5867670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011066076A JP5867670B2 (en) 2011-03-24 2011-03-24 Method for decomposing and removing volatile organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011066076A JP5867670B2 (en) 2011-03-24 2011-03-24 Method for decomposing and removing volatile organic compounds

Publications (2)

Publication Number Publication Date
JP2012200648A JP2012200648A (en) 2012-10-22
JP5867670B2 true JP5867670B2 (en) 2016-02-24

Family

ID=47182179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066076A Expired - Fee Related JP5867670B2 (en) 2011-03-24 2011-03-24 Method for decomposing and removing volatile organic compounds

Country Status (1)

Country Link
JP (1) JP5867670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195734A1 (en) * 2021-03-16 2022-09-22 パナソニックホールディングス株式会社 Material for capturing gas and kit for manufacturing vacuum insulation member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004097908A (en) * 2002-09-06 2004-04-02 National Institute Of Advanced Industrial & Technology Method of decomposing volatile organic substance contained in gas
JP5030139B2 (en) * 2006-08-25 2012-09-19 独立行政法人産業技術総合研究所 Method for promoting low temperature oxidation using noble metal nanoparticles supported metal oxide catalyst
JP2010222646A (en) * 2009-03-24 2010-10-07 Dainippon Screen Mfg Co Ltd Nanoparticle deposition apparatus
JP2010275250A (en) * 2009-05-29 2010-12-09 Hosokawa Micron Corp Cosmetic

Also Published As

Publication number Publication date
JP2012200648A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
Kim et al. Effect of Pt particle size and valence state on the performance of Pt/TiO2 catalysts for CO oxidation at room temperature
Liu et al. Removing surface hydroxyl groups of Ce-modified MnO2 to significantly improve its stability for gaseous ozone decomposition
Venezia et al. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts
Park et al. Effect of sulfur on Mn/Ti catalysts prepared using chemical vapor condensation (CVC) for low-temperature NO reduction
CN108671917B (en) Catalyst for efficiently catalyzing VOCs waste gas degradation at low temperature and preparation method thereof
Huang et al. Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
TWI442972B (en) The method of preparation of cerium oxide supported gold-palladium catalysts and its application in destruction of volatile organic compounds
JP4831405B2 (en) Method for decomposing and removing volatile organic compounds
JP2007229559A (en) Catalyst for decomposing ethylene
CN103551141A (en) Pt/MOx catalyst and application thereof in toluene catalytic combustion
Soni et al. Abatement of formaldehyde with photocatalytic and catalytic oxidation: A review
Zhang et al. Insights into the reaction mechanism of toluene oxidation by isotope dynamic experiment and the kinetics over MCeZr/TiO2 (M= Cu, Mn, Ni, Co and Fe) catalysts
WO2005087371A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
JP4997627B2 (en) Visible light responsive photocatalyst
KR100722429B1 (en) Preparation method of nano size copper-manganese complex oxide catalyst and the catalyst prepared by the method
JP5867670B2 (en) Method for decomposing and removing volatile organic compounds
JP4048775B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP2012187457A (en) Catalyst for selective reduction of nitrogen oxide, and method for production thereof
JP6225807B2 (en) VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same
JP6071110B2 (en) VOC decomposition removal catalyst and VOC decomposition removal method using the same
JP4283144B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2005296880A (en) Active oxygen occlusion substance, and its production method
JP2008006328A (en) Photocatalyst comprising visible light responsive composite oxide semiconductor
Kominami et al. Direct solvothermal formation of nanocrystalline TiO 2 on porous SiO 2 adsorbent and photocatalytic removal of nitrogen oxides in air over TiO 2–SiO 2 composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5867670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees