JP5864363B2 - Resistance welding apparatus and resistance welding method - Google Patents

Resistance welding apparatus and resistance welding method Download PDF

Info

Publication number
JP5864363B2
JP5864363B2 JP2012124344A JP2012124344A JP5864363B2 JP 5864363 B2 JP5864363 B2 JP 5864363B2 JP 2012124344 A JP2012124344 A JP 2012124344A JP 2012124344 A JP2012124344 A JP 2012124344A JP 5864363 B2 JP5864363 B2 JP 5864363B2
Authority
JP
Japan
Prior art keywords
main electrode
electrode
auxiliary
main
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012124344A
Other languages
Japanese (ja)
Other versions
JP2013248634A (en
Inventor
庸介 比留間
庸介 比留間
後藤 彰
彰 後藤
孝洋 森田
孝洋 森田
達郎 池田
達郎 池田
宮坂 慎一
慎一 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012124344A priority Critical patent/JP5864363B2/en
Publication of JP2013248634A publication Critical patent/JP2013248634A/en
Application granted granted Critical
Publication of JP5864363B2 publication Critical patent/JP5864363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、抵抗溶接装置及び抵抗溶接方法に関する。詳しくは、複数の板材を重ね合わせたワークを抵抗溶接する抵抗溶接装置及び抵抗溶接方法に関する。   The present invention relates to a resistance welding apparatus and a resistance welding method. More specifically, the present invention relates to a resistance welding apparatus and a resistance welding method for resistance welding a workpiece in which a plurality of plate materials are overlapped.

従来、複数の板材を重ね合わせたワークの接合に抵抗溶接が利用されている。抵抗溶接では、重ね合わせたワークを一対の主電極で挟んで加圧し、所定以上の加圧力を維持した状態で主電極間に主電流を流す。すると、通電により発生するジュール熱でワーク材が溶融し、主電極間の板材の界面に板材の溶融物であるナゲットが生成する。その後、加圧状態を維持しつつ通電を停止することにより、ナゲットが冷却固化して板材が溶接される。   Conventionally, resistance welding is used for joining workpieces in which a plurality of plate materials are stacked. In resistance welding, the superimposed workpieces are pressed between a pair of main electrodes, and a main current is passed between the main electrodes in a state in which a predetermined pressure or more is maintained. Then, the work material is melted by Joule heat generated by energization, and a nugget that is a melt of the plate material is generated at the interface of the plate material between the main electrodes. Thereafter, by stopping energization while maintaining the pressurized state, the nugget is cooled and solidified, and the plate material is welded.

例えば自動車分野等では、厚くて硬い複数の高張力鋼板等を積層した後、さらに、薄くて柔らかい軟鋼板等を重ね合わせたワークが用いられる。このようなワークを抵抗溶接する場合、ワークの外側に位置する最薄板材とそれに隣接する板材との間のナゲットが十分に成長せず、最薄板材とそれに隣接する板材を十分に接合できないことがある。そこで、最薄板材側に補助電極を設けてワークに当接させ、主電極間のみならず、主電極からこの補助電極に補助電流を流す技術が知られている。この技術によれば、最薄板材側において、補助電流によりナゲットの成長を促進できる。   For example, in the automobile field or the like, a work is used in which a plurality of thick and hard high-tensile steel plates are stacked, and further, thin and soft soft steel plates are stacked. When such a workpiece is resistance welded, the nugget between the thinnest plate material located outside the workpiece and the adjacent plate material does not grow sufficiently, and the thinnest plate material and the adjacent plate material cannot be joined sufficiently. There is. Therefore, a technique is known in which an auxiliary electrode is provided on the thinnest plate material side and brought into contact with a workpiece, and an auxiliary current is passed from the main electrode to the auxiliary electrode as well as between the main electrodes. According to this technique, the growth of the nugget can be promoted by the auxiliary current on the thinnest plate material side.

また、抵抗溶接の際に、溶接部位以外の板材間において、いわゆる無効電流が流れる場合があり、この無効電流により溶接部位におけるナゲットの成長が阻害されて板材同士を十分に接合できないことがある。そこで、例えば主電極を囲むように補助電極を設け、この補助電極をワークに当接させた状態で、主電極間に主電流を流すとともに、主電極から補助電極に補助電流を流す技術が提案されている(特許文献1参照)。この技術によれば、予めワークを加熱することなく、補助電流により溶接部周辺の電位が高められる結果、無効電流を抑制して溶接部位におけるナゲットの成長を促進できる。   In addition, during resistance welding, a so-called reactive current may flow between plate members other than the welded portion, and the reactive current may inhibit nugget growth at the welded portion, and the plate members may not be sufficiently joined together. Therefore, for example, a technique has been proposed in which an auxiliary electrode is provided so as to surround the main electrode, and a main current flows between the main electrodes while the auxiliary electrode is in contact with the work, and an auxiliary current flows from the main electrode to the auxiliary electrode. (See Patent Document 1). According to this technique, the potential around the welded portion is increased by the auxiliary current without heating the workpiece in advance. As a result, the reactive current is suppressed and the growth of the nugget at the welded portion can be promoted.

特開2011−194465号公報JP 2011-194465 A

ところで、抵抗溶接では、主電流として大電流を流すところ、主電極の熱容量は小さいため、通電中は発熱により主電極がかなりの高温状態となる。また、主電極がかなりの高温状態となるため、通電を遮断した後も、主電極の温度が十分に低下するまでに長時間を要する。そのため、主電極が劣化して短寿命化するという問題があった。   By the way, in resistance welding, when a large current is passed as the main current, the heat capacity of the main electrode is small, so that the main electrode is in a considerably high temperature state due to heat generation during energization. Further, since the main electrode is in a considerably high temperature state, it takes a long time for the temperature of the main electrode to sufficiently decrease even after the current supply is cut off. Therefore, there is a problem that the main electrode is deteriorated and the life is shortened.

本発明は上記に鑑みてなされたものであり、その目的は、主電極が高温状態となるのを抑制でき、主電極を長寿命化できる抵抗溶接装置及び抵抗溶接方法を提供することにある。   This invention is made | formed in view of the above, The objective is to provide the resistance welding apparatus and resistance welding method which can suppress that a main electrode will be in a high temperature state, and can prolong the life of a main electrode.

上記目的を達成するため本発明は、複数の板材(例えば、後述の板材W1(薄板),W2(厚板),W3(厚板))を重ね合わせたワーク(例えば、後述のワークW)を抵抗溶接する抵抗溶接装置(例えば、後述のスポット溶接装置1)であって、前記ワークに当接する第1主電極(例えば、後述の第1主電極121)と、当該第1主電極とは反対側から前記ワークに当接し且つ前記第1主電極とは逆の極性を有する第2主電極(例えば、後述の第2主電極131)と、前記第1主電極及び前記第2主電極のうちいずれか一方の主電極に隣接して前記ワークに当接し且つ前記第1主電極とは逆の極性を有する補助電極(例えば、後述の補助電極122,122)と、前記第1主電極、前記第2主電極及び前記補助電極により前記ワークを挟持加圧した状態で、前記第1主電極と前記第2主電極との間に主電流(例えば、後述の主電流D1)を流すとともに、前記第1主電極と前記補助電極との間に補助電流(例えば、後述の補助電流D2)を流す通電手段(例えば、後述の制御装置100,電源,可変抵抗)と、前記補助電流を遮断した後、前記補助電極を前記隣接する主電極に当接させることで、当該主電極の熱容量を増加させる熱容量増加手段(例えば、後述の制御装置100,当接部124,124,第1シリンダ機構127,127,回動軸125,125)と、を備えることを特徴とする抵抗溶接装置を提供する。   In order to achieve the above object, the present invention provides a work (for example, a work W described later) obtained by superposing a plurality of plate materials (for example, a plate material W1 (thin plate), W2 (thick plate), W3 (thick plate) described later). A resistance welding apparatus (for example, a spot welding apparatus 1 to be described later) for resistance welding, and a first main electrode (for example, a first main electrode 121 to be described later) that contacts the workpiece is opposite to the first main electrode. A second main electrode (for example, a second main electrode 131 described later) that contacts the workpiece from the side and has a polarity opposite to that of the first main electrode; and the first main electrode and the second main electrode An auxiliary electrode (for example, auxiliary electrodes 122 and 122 described later) that is in contact with the workpiece and has a polarity opposite to that of the first main electrode, adjacent to one of the main electrodes, the first main electrode, The workpiece is clamped by the second main electrode and the auxiliary electrode In a pressed state, a main current (for example, a main current D1 described later) flows between the first main electrode and the second main electrode, and an auxiliary current flows between the first main electrode and the auxiliary electrode. (For example, a control device 100, a power supply, and a variable resistor, which will be described later) for passing a current (for example, an auxiliary current D2 described later) Thus, heat capacity increasing means for increasing the heat capacity of the main electrode (for example, a control device 100 described later, contact portions 124 and 124, first cylinder mechanisms 127 and 127, rotating shafts 125 and 125) is provided. A resistance welding apparatus is provided.

本発明では、先ず、主電極間に主電流を流すとともに、主電極と補助電極間に補助電流を流した後、補助電流を遮断する。ここで、抵抗溶接の際には、主電極には大電流を流す一方で、補助電極には小電流を流すのが通常である。主電極及び補助電極いずれもその熱容量は小さいところ、補助電流を遮断した時点では、大電流が流れていたあるいは流れている主電極はかなりの高温状態である一方で、小電流が流れていた補助電極は主電極に比べると低温状態である。
そこで、本発明では、補助電流を遮断した後、隣接する高温状態の主電極に、当該主電極に比べて低温状態の補助電極を当接させることで、その主電極の熱容量を増加させる。これにより、補助電流を遮断した時点において、主電流を通電中である場合には、主電極の温度の上昇を抑制でき、主電流の通電が遮断されている場合には、主電極の冷却を促進できる。従って、本発明によれば、主電極が高温状態となるのを抑制でき、主電極を長寿命化できる。
In the present invention, first, a main current is passed between main electrodes, and an auxiliary current is passed between the main electrode and the auxiliary electrode, and then the auxiliary current is cut off. Here, in resistance welding, a large current is usually passed through the main electrode, while a small current is passed through the auxiliary electrode. The heat capacity of both the main electrode and the auxiliary electrode is small. At the time when the auxiliary current was cut off, a large current was flowing or the flowing main electrode was in a considerably high temperature state, but a small current was flowing. The electrode is at a lower temperature than the main electrode.
Therefore, in the present invention, after the auxiliary current is interrupted, the auxiliary electrode in the low temperature state is brought into contact with the adjacent main electrode in the high temperature state to increase the heat capacity of the main electrode. As a result, when the main current is energized at the time when the auxiliary current is interrupted, the temperature rise of the main electrode can be suppressed, and when the energization of the main current is interrupted, the main electrode is cooled. Can promote. Therefore, according to this invention, it can suppress that a main electrode becomes a high temperature state, and can extend the life of a main electrode.

特に、補助電極を第1主電極に隣接して最薄板側からワークに当接させ、最薄板材側で補助電流を流してナゲットの成長を促進する場合のように、主電極が発熱中心の近傍で主電極への伝熱量が多い場合に、本発明の効果が高められる。
また、例えば自動車のモヒカン部等の狭い部位を溶接するために、主電極が小径で熱容量が特に小さい場合にも、本発明の効果が高められる。また、モヒカン部の溶接では主電極の径が制限されるとともに、溶接時の主電極周囲のクリアランスが制限されるため、従来は単純に主電極を大径化するという対策が取れなかったところ、本発明によれば、モヒカン溝方向から補助電極を主電極に接近させて当接させることができるため、従来のような制約がない。
また本発明によれば、補助電極を主電極に当接させる構成であるため、従来の主電極をそのまま継続して使用できる。そのため、例えば主電極に熱容量を増加させる部材を取り付けた場合のように、主電極のチップドレスが困難になることがない。
In particular, when the auxiliary electrode is brought into contact with the workpiece from the thinnest plate side adjacent to the first main electrode, and the auxiliary current is supplied to the thinnest plate material side to promote nugget growth, the main electrode has a center of heat generation. The effect of the present invention is enhanced when the amount of heat transfer to the main electrode is large in the vicinity.
Further, for example, in order to weld a narrow portion such as a mohawk portion of an automobile, the effect of the present invention is enhanced even when the main electrode has a small diameter and a particularly small heat capacity. In addition, since the diameter of the main electrode is limited in welding of the mohawk part, and the clearance around the main electrode at the time of welding is limited, it has been impossible to take measures to simply increase the diameter of the main electrode in the past, According to the present invention, since the auxiliary electrode can be brought close to and brought into contact with the main electrode from the Mohawk groove direction, there is no restriction as in the prior art.
According to the present invention, since the auxiliary electrode is in contact with the main electrode, the conventional main electrode can be used as it is. Therefore, the chip dressing of the main electrode does not become difficult as in the case where a member for increasing the heat capacity is attached to the main electrode.

また本発明は、複数の板材(例えば、後述の板材W1(薄板),W2(厚板),W3(厚板))を重ね合わせたワーク(例えば、後述のワークW)を抵抗溶接する抵抗溶接方法であって、第1主電極(例えば、後述の第1主電極121)を前記ワークに当接させ、前記第1主電極とは逆の極性を有する第2主電極(例えば、後述の第2主電極131)を前記第1主電極とは反対側から前記ワークに当接させ、前記第1主電極とは逆の極性を有する補助電極(例えば、後述の補助電極122,122)を前記第1主電極及び前記第2主電極のうちいずれか一方の主電極に隣接して前記ワークに当接させ、且つ、前記第1主電極、前記第2主電極及び前記補助電極により前記ワークを挟持加圧する工程と、前記第1主電極と前記第2主電極との間に主電流(例えば、後述の主電流D1)を流すとともに、前記第1主電極と前記補助電極との間に補助電流(例えば、後述の補助電流D2)を流す通電工程と、前記補助電流を遮断した後、前記補助電極を前記隣接する主電極に当接させることで、当該主電極の熱容量を増加させる熱容量増加工程と、を備えることを特徴とする抵抗溶接方法を提供する。   The present invention also provides resistance welding for resistance welding of a workpiece (for example, workpiece W described later) in which a plurality of plate materials (for example, plate materials W1 (thin plate), W2 (thick plate), W3 (thick plate) described later) are overlapped. A first main electrode (for example, a first main electrode 121 described later) is brought into contact with the workpiece, and a second main electrode (for example, a first main electrode described later) having a polarity opposite to that of the first main electrode. 2 main electrodes 131) are brought into contact with the workpiece from the side opposite to the first main electrodes, and auxiliary electrodes having a polarity opposite to that of the first main electrodes (for example, auxiliary electrodes 122 and 122 described later) are The first main electrode and the second main electrode are brought into contact with the work adjacent to one of the main electrodes, and the work is moved by the first main electrode, the second main electrode, and the auxiliary electrode. Between the first main electrode and the second main electrode; An energization step of flowing a main current (for example, a main current D1 described later) and flowing an auxiliary current (for example, an auxiliary current D2 described later) between the first main electrode and the auxiliary electrode, and cutting off the auxiliary current And a heat capacity increasing step of increasing the heat capacity of the main electrode by bringing the auxiliary electrode into contact with the adjacent main electrode, thereby providing a resistance welding method.

この抵抗溶接方法の発明によれば、上記抵抗溶接装置の発明と同様の効果が奏される。   According to the invention of the resistance welding method, the same effect as that of the invention of the resistance welding apparatus can be obtained.

本発明によれば、主電極が高温状態となるのを抑制でき、主電極を長寿命化できる抵抗溶接装置及び抵抗溶接方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it can suppress that a main electrode becomes a high temperature state, and can provide the resistance welding apparatus and resistance welding method which can prolong the life of a main electrode.

本発明の一実施形態に係るスポット溶接装置の構成を示す側面図である。It is a side view which shows the structure of the spot welding apparatus which concerns on one Embodiment of this invention. 上記実施形態に係るスポット溶接装置の可動電極部の構成を示す側面図である。It is a side view which shows the structure of the movable electrode part of the spot welding apparatus which concerns on the said embodiment. 上記実施形態に係る一対の補助電極の構成を示す斜視図である。It is a perspective view which shows the structure of a pair of auxiliary electrode which concerns on the said embodiment. 上記実施形態に係る一対の補助電極を第1主電極に当接させたときの状態を示す側面図である。It is a side view which shows a state when a pair of auxiliary electrode which concerns on the said embodiment is made to contact | abut to a 1st main electrode. 上記実施形態に係るスポット溶接装置をモヒカン部の溶接に適用し、一対の補助電極を第1主電極に当接させたときの状態を示す平面図である。It is a top view which shows a state when applying the spot welding apparatus which concerns on the said embodiment to welding of a mohawk part, and making a pair of auxiliary electrode contact | abut to a 1st main electrode.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態に係る抵抗溶接装置としてのスポット溶接装置1の構成を示す側面図である。本実施形態に係るスポット溶接装置1は、ロボットアーム80の先端に取り付けられた電動式のスポット溶接装置である。
スポット溶接装置1は、3枚の板材W1(薄板)、W2(厚板)及びW3(厚板)を重ね合わせたワークWを、後述する第1主電極及び第2主電極で挟んで加圧し、この状態でこれら主電極間に通電することでワークWを溶接するものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a side view showing a configuration of a spot welding apparatus 1 as a resistance welding apparatus according to an embodiment of the present invention. The spot welding apparatus 1 according to the present embodiment is an electric spot welding apparatus attached to the tip of a robot arm 80.
The spot welding apparatus 1 presses a workpiece W obtained by superposing three plate materials W1 (thin plate), W2 (thick plate), and W3 (thick plate) between a first main electrode and a second main electrode described later. In this state, the work W is welded by energizing between these main electrodes.

スポット溶接装置1は、ロボットアーム80の先端に設けられた支持部90により支持されたスポット溶接ガン10と、このスポット溶接ガン10を制御する制御装置100と、を備える。   The spot welding apparatus 1 includes a spot welding gun 10 supported by a support portion 90 provided at the tip of a robot arm 80 and a control device 100 that controls the spot welding gun 10.

支持部90は、支持ブラケット91を含んで構成される。この支持ブラケット91は、上板91aと、この上板91aに平行な下板91bと、を備える。これら上板91aと下板91bの間には、ガイドバー92が橋架されている。   The support part 90 includes a support bracket 91. The support bracket 91 includes an upper plate 91a and a lower plate 91b parallel to the upper plate 91a. A guide bar 92 is bridged between the upper plate 91a and the lower plate 91b.

ガイドバー92には、その軸方向に摺動自在な支持板93が取り付けられている。支持板93は、ロボットアーム80側から上板91a及び下板91bに対して平行に延び、その先端側でスポット溶接ガン10を支持する。支持板93の基端側の上面には、筐体状の支持体94が設けられている。上板91aと支持体94の間には、ガイドバー92に巻回された第1コイルスプリング95が介装されている。同様に、下板91bと支持板93の間には、ガイドバー92に巻回された第2コイルスプリング96が介装されている。   A support plate 93 slidable in the axial direction is attached to the guide bar 92. The support plate 93 extends in parallel to the upper plate 91a and the lower plate 91b from the robot arm 80 side, and supports the spot welding gun 10 on the tip side. A casing-like support body 94 is provided on the upper surface on the base end side of the support plate 93. A first coil spring 95 wound around the guide bar 92 is interposed between the upper plate 91a and the support 94. Similarly, a second coil spring 96 wound around the guide bar 92 is interposed between the lower plate 91 b and the support plate 93.

スポット溶接ガン10は、上記の支持板93に支持されることで、支持部90に対して相対的に昇降可能となっている。スポット溶接ガン10は、溶接ガン本体11と、溶接ガン本体11の先端に設けられた電極部15と、を備える。
溶接ガン本体11は、その上部に設けられたサーボモータ16と、このサーボモータ16に連結された図示しない送りねじ機構と、を備える。
電極部15は、可動電極部120と、固定電極部130と、を含んで構成される。
The spot welding gun 10 can be moved up and down relative to the support portion 90 by being supported by the support plate 93. The spot welding gun 10 includes a welding gun main body 11 and an electrode portion 15 provided at the tip of the welding gun main body 11.
The welding gun body 11 includes a servo motor 16 provided on the upper portion thereof, and a feed screw mechanism (not shown) connected to the servo motor 16.
The electrode unit 15 includes a movable electrode unit 120 and a fixed electrode unit 130.

可動電極部120は、溶接ガン本体11の先端から下方に突出し、送りねじ機構に連結されたロッド12の先端に支持されている。可動電極部120は、サーボモータ16により送りねじ機構を介してロッド12が上下動(図1のA2方向又はA1方向に移動)することで、後述する固定電極部130に対して進退可能となっている。可動電極部120は第1主電極121と、この第1主電極121を挟んで隣接して設けられた一対の補助電極122,122と、を備える。   The movable electrode portion 120 protrudes downward from the tip of the welding gun body 11 and is supported by the tip of the rod 12 connected to the feed screw mechanism. The movable electrode portion 120 can move forward and backward with respect to the fixed electrode portion 130 to be described later when the rod 12 moves up and down (moves in the A2 direction or the A1 direction in FIG. 1) via the feed screw mechanism by the servo motor 16. ing. The movable electrode unit 120 includes a first main electrode 121 and a pair of auxiliary electrodes 122 and 122 provided adjacent to each other with the first main electrode 121 interposed therebetween.

固定電極部130は、溶接ガン本体11の先端に連結された連結部14から下方に延びるC形ヨーク13の先端に支持されている。固定電極部130は、第2主電極131を備える。
上記可動電極部120と固定電極部130は、ワークWを挟んで対向配置される。
The fixed electrode portion 130 is supported by the tip of the C-shaped yoke 13 that extends downward from the connecting portion 14 connected to the tip of the welding gun body 11. The fixed electrode unit 130 includes a second main electrode 131.
The movable electrode portion 120 and the fixed electrode portion 130 are disposed to face each other with the workpiece W interposed therebetween.

図2は、本実施形態に係るスポット溶接装置1の可動電極部120の構成を示す側面図である。図2に示すように、可動電極部120が備える第1主電極121及び一対の補助電極122,122は、所定の間隔ごとにワークWの面方向に沿って配置される。
第1主電極121は、円柱状であり、その先端はドーム状(球面状)となっている。第1主電極121は、第2主電極131と略同一径である。第1主電極121は、ワークWを挟んで第2主電極131に対向して配置され、ワークWは、これら第1主電極121と第2主電極131により加圧、挟持される。
FIG. 2 is a side view showing the configuration of the movable electrode portion 120 of the spot welding apparatus 1 according to the present embodiment. As shown in FIG. 2, the first main electrode 121 and the pair of auxiliary electrodes 122, 122 included in the movable electrode unit 120 are arranged along the surface direction of the workpiece W at predetermined intervals.
The first main electrode 121 has a cylindrical shape, and its tip has a dome shape (spherical shape). The first main electrode 121 has substantially the same diameter as the second main electrode 131. The first main electrode 121 is disposed to face the second main electrode 131 with the work W interposed therebetween, and the work W is pressed and sandwiched by the first main electrode 121 and the second main electrode 131.

補助電極122は、L字状の補助電極本体123と、これら補助電極本体123の先端側に設けられ、第1主電極121と当接する当接部124と、を備える。
補助電極本体123は、その先端側に配置された円柱状の垂直部123Aと、基端側に配置された円柱状の水平部123Bと、を含んで構成される。垂直部123Aの先端はドーム状(球面状)となっており、その径は、第1主電極121及び第2主電極131よりも小径である。ワークWは、これら一対の補助電極122,122の垂直部123A,123Aによっても加圧される。
The auxiliary electrode 122 includes an L-shaped auxiliary electrode main body 123 and an abutting portion 124 that is provided on the distal end side of the auxiliary electrode main body 123 and contacts the first main electrode 121.
The auxiliary electrode main body 123 includes a columnar vertical portion 123A disposed on the distal end side thereof, and a columnar horizontal portion 123B disposed on the proximal end side. The tip of the vertical portion 123A has a dome shape (spherical shape), and the diameter thereof is smaller than that of the first main electrode 121 and the second main electrode 131. The workpiece W is also pressurized by the vertical portions 123A and 123A of the pair of auxiliary electrodes 122 and 122.

垂直部123Aと水平部123Bの連結部には、垂直部123Aの軸方向に略直交し且つ水平部123Bの軸方向に略直交する方向の回動軸125が設けられている。一対の補助電極122,122は、回動軸125,125により、第1主電極121側に向かって回動可能に可動電極部本体126に軸支されている。   The connecting portion between the vertical portion 123A and the horizontal portion 123B is provided with a rotation shaft 125 in a direction substantially orthogonal to the axial direction of the vertical portion 123A and substantially orthogonal to the axial direction of the horizontal portion 123B. The pair of auxiliary electrodes 122 and 122 are pivotally supported by the movable electrode main body 126 by the rotation shafts 125 and 125 so as to be rotatable toward the first main electrode 121 side.

水平部123Bの基端側には、この水平部123Bの基端側をワークW側(図2の下方)に押圧する第1シリンダ機構127が設けられている。第1シリンダ機構127のロッド部127Aの先端は、ドーム状(球面状)に形成されている。これにより、補助電極122は、第1シリンダ機構127の駆動力でロッド部127Aが下方に向かって前進し、水平部123Bの基端側を下方に押圧することで、垂直部123Aの先端側が第1主電極121側に接近する方向に回動可能となっている。なお、第1シリンダ機構127は、制御装置100により制御される。   A first cylinder mechanism 127 is provided on the base end side of the horizontal portion 123B to press the base end side of the horizontal portion 123B toward the workpiece W (downward in FIG. 2). The tip of the rod portion 127A of the first cylinder mechanism 127 is formed in a dome shape (spherical shape). Thereby, the auxiliary electrode 122 is moved forward by the rod portion 127A by the driving force of the first cylinder mechanism 127 and presses the base end side of the horizontal portion 123B downward, so that the distal end side of the vertical portion 123A is the first side. It can be rotated in a direction approaching the one main electrode 121 side. The first cylinder mechanism 127 is controlled by the control device 100.

また、垂直部123Aのうち、当接部124よりも上側は、コイルスプリングを介して可動電極部本体126に接続されている。これにより、補助電極122は、第1シリンダ機構127の駆動力が付与されると、コイルスプリング129の付勢力に抗して垂直部123Aの先端側が第1主電極121側に接近する方向に回動する。また、補助電極122は、第1シリンダ機構127の駆動力が解除されると、コイルスプリング129の付勢力により垂直部123Aの先端側が第1主電極121から離隔する方向に回動し、元の位置に戻る。   Further, in the vertical portion 123A, the upper side of the contact portion 124 is connected to the movable electrode portion main body 126 via a coil spring. As a result, when the driving force of the first cylinder mechanism 127 is applied, the auxiliary electrode 122 rotates in a direction in which the front end side of the vertical portion 123A approaches the first main electrode 121 side against the biasing force of the coil spring 129. Move. In addition, when the driving force of the first cylinder mechanism 127 is released, the auxiliary electrode 122 rotates in a direction in which the leading end side of the vertical portion 123A is separated from the first main electrode 121 by the urging force of the coil spring 129. Return to position.

また、可動電極部本体126には、第1主電極121とは独立して、可動電極部本体126及び一対の補助電極122,122をワークWに対して進退可能とする第2シリンダ機構128が設けられている。これにより、一対の補助電極122,122は、この第2シリンダ機構128の駆動力で、第1主電極121とは独立して、ワークWに対して進退可能となっている。即ち、一対の補助電極122,122は、第1主電極121に対して、相対的に昇降可能となっている。なお、第2シリンダ機構128は、制御装置100により制御される。   In addition, the movable electrode portion main body 126 has a second cylinder mechanism 128 that allows the movable electrode portion main body 126 and the pair of auxiliary electrodes 122 and 122 to advance and retreat with respect to the workpiece W independently of the first main electrode 121. Is provided. Accordingly, the pair of auxiliary electrodes 122 and 122 can be advanced and retracted with respect to the workpiece W independently of the first main electrode 121 by the driving force of the second cylinder mechanism 128. That is, the pair of auxiliary electrodes 122 and 122 can be moved up and down relative to the first main electrode 121. Note that the second cylinder mechanism 128 is controlled by the control device 100.

図3は、本実施形態に係る一対の補助電極122,122の構成を示す斜視図である。図3に示すように、当接部124は、補助電極本体123の垂直部123Aから第1主電極121に向かって略水平方向に延びる板状の部材である。当接部124の先端部は、ワークW側(下方)に向かうに従い第1主電極121から離隔する方向に傾斜して形成されている。また、その先端部には、第1主電極121の外周形状に対応した半円柱状の凹部124Aが設けられている。これにより、一対の補助電極122,122が第1主電極121側に向かって回動したときに、当接部124の先端部が第1主電極121の外周に嵌合するようになっている。   FIG. 3 is a perspective view showing a configuration of the pair of auxiliary electrodes 122 and 122 according to the present embodiment. As shown in FIG. 3, the contact portion 124 is a plate-like member extending in a substantially horizontal direction from the vertical portion 123 </ b> A of the auxiliary electrode body 123 toward the first main electrode 121. The front end portion of the contact portion 124 is formed to be inclined in a direction away from the first main electrode 121 toward the workpiece W side (downward). In addition, a semi-cylindrical recess 124 </ b> A corresponding to the outer peripheral shape of the first main electrode 121 is provided at the tip. As a result, when the pair of auxiliary electrodes 122 and 122 rotate toward the first main electrode 121, the tip end of the contact portion 124 is fitted to the outer periphery of the first main electrode 121. .

図4は、上記実施形態に係る一対の補助電極122,122を第1主電極121に当接させたときの状態を示す側面図である。図4に示すように、一対の補助電極122,122の当接部124,124の先端面同士が当接するまで、一対の補助電極122,122は第1主電極121側に向かって回動可能となっている。このとき、当接部124,124の凹部124A,124Aは、第1主電極121の外周に嵌合することで、第1主電極121の熱容量を増加させることが可能となっている。なお本実施形態では、当接部124,124は、補助電極本体123,123と同一の材質で構成されており、熱伝導性に優れる。   FIG. 4 is a side view showing a state when the pair of auxiliary electrodes 122 and 122 according to the above embodiment are brought into contact with the first main electrode 121. As shown in FIG. 4, the pair of auxiliary electrodes 122 and 122 can turn toward the first main electrode 121 side until the tip surfaces of the contact portions 124 and 124 of the pair of auxiliary electrodes 122 and 122 come into contact with each other. It has become. At this time, the recesses 124 </ b> A and 124 </ b> A of the contact portions 124 and 124 are fitted to the outer periphery of the first main electrode 121, thereby increasing the heat capacity of the first main electrode 121. In the present embodiment, the contact portions 124 and 124 are made of the same material as the auxiliary electrode bodies 123 and 123, and are excellent in thermal conductivity.

図1に戻って、以上の構成を備える可動電極部120及び固定電極部130には、図示しない電源が接続される。具体的には、電源の正極が第1主電極121に接続され、その負極が第2主電極131及び一対の補助電極122,122に接続される。このため、電源から第1主電極121を経てワークWに流入する溶接電流は、第2主電極131に向かう主電流D1と、一対の補助電極122,122にそれぞれ向かう補助電流D2,D2とに分岐する。
なお、各電流経路中には、図示しない可変抵抗が設けられており、制御装置100による制御のもとで、電流量の調節の他、通電の開始や遮断が可能となっている。
Returning to FIG. 1, a power source (not shown) is connected to the movable electrode unit 120 and the fixed electrode unit 130 having the above-described configuration. Specifically, the positive electrode of the power source is connected to the first main electrode 121, and the negative electrode is connected to the second main electrode 131 and the pair of auxiliary electrodes 122 and 122. For this reason, the welding current flowing into the workpiece W from the power source through the first main electrode 121 is divided into a main current D1 going to the second main electrode 131 and auxiliary currents D2 and D2 going to the pair of auxiliary electrodes 122 and 122, respectively. Branch.
In addition, a variable resistor (not shown) is provided in each current path, and under the control of the control device 100, in addition to adjusting the current amount, energization can be started and interrupted.

一般に、第1主電極121と第2主電極131の間だけ主電流を通電した場合、厚板の抵抗値は大きい傾向にあることから、W2及びW3間の方に偏ってナゲットが成長する。一方、薄板であるW1の抵抗値が小さい傾向にあることから、W1及びW2間における接触抵抗が小さくなり、W1及びW2間に十分なジュール熱を発生させることができないため、W1及びW2間を十分に接合できない。
この点、本実施形態では、主電流D1と補助電流D2,D2に分岐して溶接電流が流れる結果、W1及びW2間の電流密度を高められる。これにより、W1及びW2間の単位体積当たりの入熱量も大きくなり、W1及びW2間においてナゲットが十分に成長する結果、十分な接合が可能となっている。
In general, when a main current is applied only between the first main electrode 121 and the second main electrode 131, the resistance value of the thick plate tends to be large, so that the nugget grows biased toward W2 and W3. On the other hand, since the resistance value of W1, which is a thin plate, tends to be small, the contact resistance between W1 and W2 becomes small, and sufficient Joule heat cannot be generated between W1 and W2. It cannot be joined sufficiently.
In this respect, in the present embodiment, the main current D1 and the auxiliary currents D2 and D2 are branched and the welding current flows, so that the current density between W1 and W2 can be increased. As a result, the amount of heat input per unit volume between W1 and W2 also increases, and as a result of sufficient growth of the nugget between W1 and W2, sufficient bonding is possible.

次に、本実施形態に係るスポット溶接装置1の動作について説明する。
先ず、可動電極部120を固定電極部130に対して離間させた状態で、ロボットアーム80及び支持部90の動作により、ワークWの溶接部位にスポット溶接ガン10を移動させる。具体的には、第2主電極131がワークWの溶接部位の下面に当接する位置に、スポット溶接ガン10を移動させる。
Next, operation | movement of the spot welding apparatus 1 which concerns on this embodiment is demonstrated.
First, the spot welding gun 10 is moved to the welding site of the workpiece W by the operation of the robot arm 80 and the support unit 90 in a state where the movable electrode unit 120 is separated from the fixed electrode unit 130. Specifically, the spot welding gun 10 is moved to a position where the second main electrode 131 comes into contact with the lower surface of the welding portion of the workpiece W.

次いで、制御装置100によりサーボモータ16を制御して、送りねじ機構の作用で可動電極部120をワークWに対して前進させる。このとき、可動電極部120の補助電極122,122については、第1主電極121よりも予め後退させておく。
すると、第1主電極121の先端部が、ワークWの上面に当接する。これにより、ワークWは、第1主電極121と第2主電極131とにより加圧されて挟持される。
その後、制御装置100により第2シリンダ機構128を制御して、一対の補助電極122,122をワークWに対して前進させて、その各先端部をワークWの溶接部位の上面に当接させる。これにより、ワークWは、一対の補助電極122,122によっても加圧される。
Next, the servo motor 16 is controlled by the control device 100, and the movable electrode portion 120 is advanced with respect to the workpiece W by the action of the feed screw mechanism. At this time, the auxiliary electrodes 122 and 122 of the movable electrode unit 120 are retracted in advance from the first main electrode 121.
Then, the tip of the first main electrode 121 comes into contact with the upper surface of the workpiece W. As a result, the workpiece W is pressed and clamped by the first main electrode 121 and the second main electrode 131.
Thereafter, the control device 100 controls the second cylinder mechanism 128 to advance the pair of auxiliary electrodes 122 and 122 relative to the workpiece W, and abuts each tip portion on the upper surface of the welded portion of the workpiece W. Thereby, the workpiece W is also pressurized by the pair of auxiliary electrodes 122 and 122.

次いで、制御装置100により電源を制御して、溶接電流を供給する。すると、第1主電極121から第2主電極131に向かって主電流D1が流れるとともに、第1主電極121から一対の補助電極122,122に向かって補助電流D2,D2が流れる。これにより、W2及びW3間でナゲットが成長するとともに、W1及びW2間においても、主電流D1と補助電流D2,D2とによって電流密度が高められ、入熱量が大きくなることでナゲットの成長が促進される。   Next, the control device 100 controls the power source to supply a welding current. Then, a main current D1 flows from the first main electrode 121 toward the second main electrode 131, and auxiliary currents D2, D2 flow from the first main electrode 121 toward the pair of auxiliary electrodes 122, 122. As a result, the nugget grows between W2 and W3, and also between W1 and W2, the current density is increased by the main current D1 and the auxiliary currents D2 and D2, and the amount of heat input increases to promote the growth of the nugget. Is done.

次いで、W1及びW2間においてナゲットが十分に成長したところで、制御装置100により電源及び可変抵抗を制御して、補助電流D2,D2を遮断する。主電流D1については、W2及びW3間におけるナゲットの成長具合に応じて、通電を継続又は遮断する。補助電流D2,D2を遮断した後、制御装置100により第2シリンダ機構128を制御して、一対の補助電極122,122をワークWに対して後退させて、その各先端部をワークWの上面から離隔させる。   Next, when the nugget is sufficiently grown between W1 and W2, the control device 100 controls the power source and the variable resistance to cut off the auxiliary currents D2 and D2. As for the main current D1, energization is continued or interrupted according to the growth state of the nugget between W2 and W3. After the auxiliary currents D2 and D2 are cut off, the control device 100 controls the second cylinder mechanism 128 to retract the pair of auxiliary electrodes 122 and 122 with respect to the workpiece W, and the respective leading end portions are placed on the upper surface of the workpiece W. Separate from.

次いで、制御装置100により第1シリンダ機構127,127を制御して、一対の補助電極122,122を、回動軸125,125を中心として第1主電極121に向かって回動させる。このとき、一対の補助電極122,122の当接部124,124の先端面同士が当接するまで、コイルスプリング129の付勢力に抗して一対の補助電極122,122を回動させる。すると、当接部124,124の凹部124A,124Aが、第1主電極121の外周に嵌合することで、第1主電極121の熱容量が増加する。これにより、主電流D1を通電中である場合には、第1主電極121の温度の上昇を抑制でき、主電流D1の通電が遮断されている場合には、第1主電極121の冷却が促進される。   Next, the control device 100 controls the first cylinder mechanisms 127 and 127 to rotate the pair of auxiliary electrodes 122 and 122 toward the first main electrode 121 about the rotation shafts 125 and 125. At this time, the pair of auxiliary electrodes 122 and 122 are rotated against the urging force of the coil spring 129 until the tip surfaces of the contact portions 124 and 124 of the pair of auxiliary electrodes 122 and 122 come into contact with each other. Then, the concave portions 124 </ b> A and 124 </ b> A of the contact portions 124 and 124 are fitted to the outer periphery of the first main electrode 121, so that the heat capacity of the first main electrode 121 is increased. Thereby, when the main current D1 is being energized, the temperature increase of the first main electrode 121 can be suppressed, and when the energization of the main current D1 is interrupted, the first main electrode 121 is cooled. Promoted.

主電流D1を通電中である場合には、制御装置100により電源を制御して、溶接電流の供給を停止する。次いで、制御装置100によりサーボモータ16を制御して、送りねじ機構の作用で可動電極部120をワークWに対して後退させる。これにより、ナゲットが冷却固化し、ワークWが溶接される。   When the main current D1 is being energized, the control device 100 controls the power supply to stop the supply of the welding current. Next, the servo motor 16 is controlled by the control device 100 and the movable electrode portion 120 is moved backward with respect to the workpiece W by the action of the feed screw mechanism. As a result, the nugget is cooled and solidified, and the workpiece W is welded.

本実施形態に係るスポット溶接装置1によれば、以下の効果が奏される。
本実施形態では、先ず、第1主電極121と第2主電極131間に主電流D1を流すとともに、第1主電極121と一対の補助電極122,122間に補助電流D2,D2を流した後、これら補助電流D2,D2を遮断する。ここで、抵抗溶接の際には、主電極には大電流を流す一方で、補助電極には小電流を流すのが通常である。主電極及び補助電極いずれもその熱容量は小さいところ、補助電流を遮断した時点では、大電流が流れていたあるいは流れている主電極はかなりの高温状態である一方で、小電流が流れていた補助電極は主電極に比べると低温状態である。
そこで、本実施形態では、補助電流D2,D2を遮断した後、隣接する高温状態の第1主電極121に、第1主電極121に比べて低温状態の一対の補助電極122,122を当接させることで、第1主電極121の熱容量を増加させる。これにより、補助電流D2,D2を遮断した時点において、主電流D1を通電中である場合には、第1主電極121の温度の上昇を抑制でき、主電流D1の通電が遮断されている場合には、第1主電極121の冷却を促進できる。従って、本実施形態によれば、第1主電極121が高温状態となるのを抑制でき、第1主電極121を長寿命化できる。
According to the spot welding apparatus 1 according to the present embodiment, the following effects are exhibited.
In the present embodiment, first, the main current D1 is passed between the first main electrode 121 and the second main electrode 131, and the auxiliary currents D2 and D2 are passed between the first main electrode 121 and the pair of auxiliary electrodes 122, 122. Thereafter, the auxiliary currents D2 and D2 are cut off. Here, in resistance welding, a large current is usually passed through the main electrode, while a small current is passed through the auxiliary electrode. The heat capacity of both the main electrode and the auxiliary electrode is small. At the time when the auxiliary current was cut off, a large current was flowing or the flowing main electrode was in a considerably high temperature state, but a small current was flowing. The electrode is at a lower temperature than the main electrode.
Therefore, in the present embodiment, after the auxiliary currents D2 and D2 are cut off, the pair of auxiliary electrodes 122 and 122 in a lower temperature state are brought into contact with the adjacent first main electrode 121 in the higher temperature state than the first main electrode 121. As a result, the heat capacity of the first main electrode 121 is increased. Accordingly, when the main current D1 is being energized at the time when the auxiliary currents D2 and D2 are interrupted, the temperature increase of the first main electrode 121 can be suppressed, and the energization of the main current D1 is interrupted. In addition, cooling of the first main electrode 121 can be promoted. Therefore, according to this embodiment, it can suppress that the 1st main electrode 121 becomes a high temperature state, and can extend the lifetime of the 1st main electrode 121. FIG.

特に本実施形態では、補助電極122,122を第1主電極121に隣接して最薄板W1側からワークWに当接させ、最薄板材W1側で補助電流D2,D2を流してナゲットの成長を促進するため、第1主電極121が発熱中心の近傍であり、第1主電極121への伝熱量が多いことから、上記効果が高められる。
また、例えば自動車のモヒカン部等の狭い部位を溶接するために、第1主電極121を小径として熱容量を特に小さくした場合にも、本実施形態の効果が高められる。
ここで、図5は、本実施形態に係るスポット溶接装置1をモヒカン部5の溶接に適用し、一対の補助電極122,122を第1主電極121に当接させたときの状態を示す平面図である。モヒカン部5の溶接では主電極の径が制限されるとともに、溶接時の主電極周囲のクリアランスが制限されるため、従来は単純に主電極を大径化するという対策が取れなかったところ、本実施形態によれば、モヒカン溝51の延在方向から補助電極122,122の当接部124,124を第1主電極121に接近させて当接させることができるため、従来のような制約がない。
また本実施形態によれば、補助電極122,122を第1主電極121に当接させる構成であるため、従来の主電極をそのまま継続して使用できる。そのため、例えば主電極に熱容量を増加させる部材を取り付けた場合のように、主電極のチップドレスが困難になることがない。
In particular, in this embodiment, the auxiliary electrodes 122 and 122 are adjacent to the first main electrode 121 and are brought into contact with the work W from the thinnest plate W1 side, and the auxiliary currents D2 and D2 are supplied on the thinnest plate material W1 side to grow nuggets. The first main electrode 121 is in the vicinity of the heat generation center, and the amount of heat transferred to the first main electrode 121 is large, so that the above effect is enhanced.
The effect of this embodiment is also enhanced when the first main electrode 121 has a small diameter and the heat capacity is particularly small in order to weld a narrow portion such as a mohawk portion of an automobile.
Here, FIG. 5 is a plane showing a state when the spot welding apparatus 1 according to the present embodiment is applied to the welding of the mohawk portion 5 and the pair of auxiliary electrodes 122 and 122 are brought into contact with the first main electrode 121. FIG. In the welding of the Mohawk section 5, the diameter of the main electrode is limited and the clearance around the main electrode during welding is limited. Therefore, in the past, the measure of simply increasing the diameter of the main electrode could not be taken. According to the embodiment, the contact portions 124, 124 of the auxiliary electrodes 122, 122 can be brought into contact with the first main electrode 121 from the extending direction of the mohawk groove 51, and thus there are restrictions as in the conventional case. Absent.
Moreover, according to this embodiment, since it is the structure which makes the auxiliary electrodes 122 and 122 contact | abut to the 1st main electrode 121, the conventional main electrode can be used continuously as it is. Therefore, the chip dressing of the main electrode does not become difficult as in the case where a member for increasing the heat capacity is attached to the main electrode.

なお、本実施形態のスポット溶接装置1を用いた抵抗溶接方法によれば、上記効果と同様の効果が奏される。   In addition, according to the resistance welding method using the spot welding apparatus 1 of this embodiment, there exists an effect similar to the said effect.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
例えば上記実施形態では、一対の補助電極122,122を、第1主電極121に隣接してワークWに当接させたが、これに限定されない。一対の補助電極122,122を、第2主電極131に隣接してワークWに当接させてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
For example, in the above embodiment, the pair of auxiliary electrodes 122 and 122 are brought into contact with the workpiece W adjacent to the first main electrode 121, but the present invention is not limited to this. The pair of auxiliary electrodes 122 and 122 may be in contact with the workpiece W adjacent to the second main electrode 131.

また上記実施形態では、第1主電極121から第2主電極131及び補助電極122,122の方向に電流を流したが、電流の流れる方向を逆にしてもよい。つまり、第1主電極121を電源の負極に接続し、第2主電極131及び補助電極122,122を電源の正極に接続してもよい。   Moreover, in the said embodiment, although the electric current was sent from the 1st main electrode 121 to the direction of the 2nd main electrode 131 and the auxiliary electrodes 122 and 122, you may make the direction through which an electric current flows reverse. That is, the first main electrode 121 may be connected to the negative electrode of the power source, and the second main electrode 131 and the auxiliary electrodes 122 and 122 may be connected to the positive electrode of the power source.

また上記実施形態では、補助電極122,122を一対としたが、これに限定されない。補助電極は1つでもよく、3つ以上でもよい。   In the above embodiment, the auxiliary electrodes 122 and 122 are paired, but the present invention is not limited to this. There may be one auxiliary electrode or three or more auxiliary electrodes.

また上記実施形態では、熱容量増加手段として、第1シリンダ機構127の駆動力により補助電極122を回動軸125を中止として第1主電極121側に向かって回動させることで、補助電極122を第1主電極121に当接させたが、これに限定されない。例えば、補助電極122を、スライド機構によりスライドさせることで、補助電極122を第1主電極121に当接させてもよい。   Further, in the above embodiment, as the heat capacity increasing means, the auxiliary electrode 122 is rotated toward the first main electrode 121 by stopping the rotation shaft 125 by the driving force of the first cylinder mechanism 127, so that the auxiliary electrode 122 is rotated. Although it was made to contact | abut to the 1st main electrode 121, it is not limited to this. For example, the auxiliary electrode 122 may be brought into contact with the first main electrode 121 by sliding the auxiliary electrode 122 with a slide mechanism.

また上記実施形態では、本発明をスポット溶接に適用したが、本発明は抵抗溶接に含まれる他の溶接方法やその方法を利用した溶接装置にも適用できる。また、本実施形態では、3枚の板材を重ね合わせたワーク(薄板−厚板−厚板)を用いた場合について説明したが、本発明では、4枚以上のワーク(例えば、薄板−薄板−厚板−厚板と重ね合わせたワーク)を用いることもできる。   Moreover, in the said embodiment, although this invention was applied to spot welding, this invention is applicable also to the welding apparatus using the other welding method included in resistance welding, and its method. Further, in the present embodiment, the case where a workpiece (thin plate-thick plate-thick plate) obtained by superimposing three plate materials has been described, but in the present invention, four or more workpieces (for example, thin plate-thin plate-) are used. It is also possible to use a thick plate—a workpiece superposed on a thick plate.

1…スポット溶接装置(抵抗溶接装置)
100…制御装置(通電手段、熱容量増加手段)
121…第1主電極
122…補助電極
124…当接部(熱容量増加手段)
125…回動軸(熱容量増加手段)
127…第1シリンダ機構(熱容量増加手段)
131…第2主電極
D1…主電流
D2…補助電流
W…ワーク
W1,W2,W3…板材
1. Spot welding equipment (resistance welding equipment)
100 ... Control device (energizing means, heat capacity increasing means)
121 ... first main electrode 122 ... auxiliary electrode 124 ... contact portion (heat capacity increasing means)
125 ... Rotating shaft (heat capacity increasing means)
127 ... First cylinder mechanism (heat capacity increasing means)
131 ... 2nd main electrode D1 ... Main current D2 ... Auxiliary current W ... Work W1, W2, W3 ... Plate material

Claims (2)

複数の板材を重ね合わせたワークを抵抗溶接する抵抗溶接装置であって、
前記ワークに当接する第1主電極と、
当該第1主電極とは反対側から前記ワークに当接し且つ前記第1主電極とは逆の極性を有する第2主電極と、
前記第1主電極及び前記第2主電極のうちいずれか一方の主電極に隣接して前記ワークに当接し且つ前記第1主電極とは逆の極性を有する補助電極と、
前記第1主電極、前記第2主電極及び前記補助電極により前記ワークを挟持加圧した状態で、前記第1主電極と前記第2主電極との間に主電流を流すとともに、前記第1主電極と前記補助電極との間に補助電流を流す通電手段と、
前記補助電流を遮断した後、前記補助電極を前記隣接する主電極に当接させることで、当該主電極の熱容量を増加させる熱容量増加手段と、を備えることを特徴とする抵抗溶接装置。
A resistance welding apparatus for resistance welding a workpiece in which a plurality of plate materials are stacked,
A first main electrode in contact with the workpiece;
A second main electrode that contacts the workpiece from the opposite side of the first main electrode and has a polarity opposite to that of the first main electrode;
An auxiliary electrode which is in contact with the workpiece adjacent to one of the first main electrode and the second main electrode and has a polarity opposite to that of the first main electrode;
While the work is sandwiched and pressurized by the first main electrode, the second main electrode, and the auxiliary electrode, a main current is passed between the first main electrode and the second main electrode, and the first Energizing means for supplying an auxiliary current between the main electrode and the auxiliary electrode;
And a heat capacity increasing means for increasing the heat capacity of the main electrode by bringing the auxiliary electrode into contact with the adjacent main electrode after the auxiliary current is cut off.
複数の板材を重ね合わせたワークを抵抗溶接する抵抗溶接方法であって、
第1主電極を前記ワークに当接させ、
前記第1主電極とは逆の極性を有する第2主電極を前記第1主電極とは反対側から前記ワークに当接させ、
前記第1主電極とは逆の極性を有する補助電極を前記第1主電極及び前記第2主電極のうちいずれか一方の主電極に隣接して前記ワークに当接させ、且つ、
前記第1主電極、前記第2主電極及び前記補助電極により前記ワークを挟持加圧する工程と、
前記第1主電極と前記第2主電極との間に主電流を流すとともに、前記第1主電極と前記補助電極との間に補助電流を流す通電工程と、
前記補助電流を遮断した後、前記補助電極を前記隣接する主電極に当接させることで、当該主電極の熱容量を増加させる熱容量増加工程と、を備えることを特徴とする抵抗溶接方法。
A resistance welding method for resistance welding a workpiece in which a plurality of plate materials are stacked,
Bringing the first main electrode into contact with the workpiece;
A second main electrode having a polarity opposite to that of the first main electrode is brought into contact with the workpiece from a side opposite to the first main electrode;
An auxiliary electrode having a polarity opposite to that of the first main electrode is brought into contact with the workpiece adjacent to one of the first main electrode and the second main electrode; and
Sandwiching and pressurizing the workpiece with the first main electrode, the second main electrode, and the auxiliary electrode;
An energization step of flowing a main current between the first main electrode and the second main electrode and flowing an auxiliary current between the first main electrode and the auxiliary electrode;
A resistance welding method comprising: a heat capacity increasing step of increasing a heat capacity of the main electrode by bringing the auxiliary electrode into contact with the adjacent main electrode after cutting off the auxiliary current.
JP2012124344A 2012-05-31 2012-05-31 Resistance welding apparatus and resistance welding method Active JP5864363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012124344A JP5864363B2 (en) 2012-05-31 2012-05-31 Resistance welding apparatus and resistance welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124344A JP5864363B2 (en) 2012-05-31 2012-05-31 Resistance welding apparatus and resistance welding method

Publications (2)

Publication Number Publication Date
JP2013248634A JP2013248634A (en) 2013-12-12
JP5864363B2 true JP5864363B2 (en) 2016-02-17

Family

ID=49847838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124344A Active JP5864363B2 (en) 2012-05-31 2012-05-31 Resistance welding apparatus and resistance welding method

Country Status (1)

Country Link
JP (1) JP5864363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889858A (en) * 2020-07-15 2020-11-06 芜湖天弋能源科技有限公司 Resistance welding structure and welding method of lithium ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527479A (en) * 1946-10-18 1950-10-24 Preston M Hall Method and means for forming joints
JPH0829418B2 (en) * 1986-06-06 1996-03-27 ミヤチテクノス株式会社 Covered wire joining device
JP2008073728A (en) * 2006-09-21 2008-04-03 Denso Corp Joining method of metallic member
JP5411792B2 (en) * 2009-06-05 2014-02-12 本田技研工業株式会社 Resistance welding method and apparatus
JP5519457B2 (en) * 2010-09-24 2014-06-11 本田技研工業株式会社 Spot welding method and apparatus
JP5430530B2 (en) * 2010-09-30 2014-03-05 本田技研工業株式会社 Spot welding equipment

Also Published As

Publication number Publication date
JP2013248634A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5427074B2 (en) Resistance welding method and apparatus
JP5908976B2 (en) Spot welding apparatus and spot welding method
JP5411792B2 (en) Resistance welding method and apparatus
US20110233173A1 (en) Seam welding method and machine therefor
JP5513460B2 (en) Spot welding equipment
WO2012033040A1 (en) Welding method and welding device
JP2011194464A (en) Method and device for spot welding
JP5427746B2 (en) Spot welding equipment
JP5519457B2 (en) Spot welding method and apparatus
WO2015033460A1 (en) Seam welding method and seam welding device
WO2017073793A1 (en) Spot welding electrode having movable pressing member and spot welding method using same
JP6339292B2 (en) Spot welding method and apparatus
JP2012071333A (en) Spot welding method and spot welding apparatus
JP5864363B2 (en) Resistance welding apparatus and resistance welding method
JP5930839B2 (en) Resistance welding apparatus and resistance welding method
JP5865132B2 (en) Seam welding method and seam welding apparatus
JP5430530B2 (en) Spot welding equipment
JP6104013B2 (en) Spot welding method and spot welding apparatus
JP5519451B2 (en) Resistance welding method and system
JP5822904B2 (en) Spot welding method and apparatus
JP6254279B2 (en) Seam welding method and apparatus
JP5787696B2 (en) Welding method and apparatus
JP2014217874A (en) Welding current value adjustment device
JP2013169547A (en) Seam welding method and apparatus thereof
JP2004322182A (en) Spot welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151224

R150 Certificate of patent or registration of utility model

Ref document number: 5864363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150