JP5863839B2 - Vaccine against Vibrio infection in shrimp and method for producing the same - Google Patents

Vaccine against Vibrio infection in shrimp and method for producing the same Download PDF

Info

Publication number
JP5863839B2
JP5863839B2 JP2014009769A JP2014009769A JP5863839B2 JP 5863839 B2 JP5863839 B2 JP 5863839B2 JP 2014009769 A JP2014009769 A JP 2014009769A JP 2014009769 A JP2014009769 A JP 2014009769A JP 5863839 B2 JP5863839 B2 JP 5863839B2
Authority
JP
Japan
Prior art keywords
shrimp
vibrio
cells
inactivated
formalin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014009769A
Other languages
Japanese (ja)
Other versions
JP2015137254A (en
Inventor
陳建初
林永慶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Taiwan Ocean University NTOU
Original Assignee
National Taiwan Ocean University NTOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Taiwan Ocean University NTOU filed Critical National Taiwan Ocean University NTOU
Priority to JP2014009769A priority Critical patent/JP5863839B2/en
Publication of JP2015137254A publication Critical patent/JP2015137254A/en
Application granted granted Critical
Publication of JP5863839B2 publication Critical patent/JP5863839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エビにおけるビブリオ感染に対するワクチン及びその作製方法に関する。   The present invention relates to a vaccine against Vibrio infection in shrimp and a method for producing the same.

通常宿主動物が弱くなったときに発生するビブリオ感染によって引き起こされるビブリオ病は、二次の日和見感染とみなされており、ビブリオ病の発生は養殖池水中のビブリオ属細菌の増加と関連付けられている(Lightner et al.、1998;Lavilla−Pitogo、et al.、1998)。エビ養殖システムにおいて報告されているビブリオ種には、V.alginolyticus、V.anguillarum、V.campbelli、V.damsella、V.fischeri、V.harveyi、V.logei、V.mediterrani、V.ordalii、V.orientalis、V.parahaemolyticus、V.pelagicus、V.splendidus、V.vulnificusなどがある。したがって、疾病の発生防止がエビ養殖における主要な懸念となっている。一般的な感染後の臨床では抗生物質やその他治療薬が広く使用されている。しかしながら、これら治療薬剤の適用は抗生物質に対する耐性の広がりを引き起こし、抗生物質治療の有効性を低下させ、組織中における残留蓄積と環境に対する有害性を生じ、また公衆衛生の問題も生んでいる(karunasagar et al.、1994;Cabello et al.、2006)。   Vibrio disease caused by vibrio infection, which usually occurs when the host animal becomes weak, is considered a secondary opportunistic infection, and the occurrence of vibrio disease is associated with an increase in Vibrio spp. In aquaculture pond water (Lightner et al., 1998; Lavilla-Pitogo, et al., 1998). Vibrio species reported in the shrimp farming system include V. alginoliticus, V.M. angulararum, V.M. campbelli, V.M. damsella, V.M. fischeri, V.M. harveyi, V.H. logei, V.M. mediterani, V.M. ordalii, V.M. orientalis, V.M. parahaemolyticus, V. et al. pelagicus, V. et al. splendidus, V.M. There are vulnificus. Therefore, prevention of disease has become a major concern in shrimp farming. Antibiotics and other treatments are widely used in general post-infection clinical practice. However, the application of these therapeutic agents causes an increase in resistance to antibiotics, reduces the effectiveness of antibiotic treatments, creates residual accumulation in the tissue and environmental hazards, and creates public health problems ( karunasagar et al., 1994; Cabello et al., 2006).

免疫刺激、植物及び微生物由来の原料のワクチン、プロバイオティクスなどの免疫学的予防は、病原性感染予防の有望で実行可能な方法となっている(Gatessoupe et al.、1999;Smith et al.、2003;Teunissen et al.、1998;Pereira et al.、2009)。免疫刺激剤は先天免疫を誘導し、病原菌に対する抵抗力を高め、免疫抑制を緩和することが知られている一方、ワクチンでの予防投与は特定の病原菌に対して保護を提供する。ワクチンはホルマリン、エタノール、硫酸ナトリウム、亜硫酸アンモニウム、脂肪酸、加熱で病原菌を不活性化させて作製することができる(Hossain et al.、2009)。   Immunological prevention such as immunostimulation, plant and microorganism-derived raw material vaccines, probiotics, etc. has become a promising and viable method for the prevention of pathogenic infections (Gatesoopup et al., 1999; Smith et al. 2003; Teunissen et al., 1998; Pereira et al., 2009). While immunostimulants are known to induce innate immunity, increase resistance to pathogens and alleviate immune suppression, prophylactic administration with vaccines provides protection against certain pathogens. Vaccines can be prepared by inactivating pathogens with formalin, ethanol, sodium sulfate, ammonium sulfite, fatty acids, and heat (Hossain et al., 2009).

現在に至るまで、エビの免疫系はまだ完全に理解されてはいない。これまでに、エビは他の無脊椎動物と同じように、循環する血球(無顆粒細胞(HC)、小顆粒細胞(semi−GC)、顆粒細胞(GC))が有害な微生物に対する自己防衛のための防御において重要な役割を果たす先天の免疫系のみに依存していると報告されている(Martin et al.、1985;Loker et al.、2004;Zhang et al.、2006)。造血組織(HPT)が血球の産生と供給を担っていることが知られている(van de Braak et al.、2002)。エビの免疫系は、ターン認識システム、フェノール酸化酵素前駆体(proPO)活性化システム、抗微生物ペプチドとリゾチームの放出、及び食作用、結節形成、封入から構成される(Jiravanichpaisal et al.、2006;Rowley et al.、2007)。proPOは、内生のトリプシン様セリンプロテイナーゼによるセリンプロテイナーゼカスケードを通じたメラニン合成によって活性化され、フェノール酸化酵素(PO)となる(Cerenius et al.、2008;Soederhaell et al.、1998)。呼吸バースト(RB)が食作用中に発生し、スーパオキシドアニオンとその他活性酸素種(ROS)が放出される(Bogan et al.、2000)。スーパオキシドアニオンがスーパーオキシドディスムターゼ(SOD)によって消去され、抗酸化システムを通じて宿主自体に対する損傷を防止する(Fridovich et al.、1995)。   To date, the shrimp immune system is not yet fully understood. To date, shrimp, like other invertebrates, are able to protect themselves against harmful microorganisms by circulating blood cells (agranule cells (HC), small granule cells (semi-GC), granule cells (GC)). It has been reported that it relies solely on the innate immune system that plays an important role in defense for (Martin et al., 1985; Loker et al., 2004; Zhang et al., 2006). It is known that hematopoietic tissue (HPT) is responsible for the production and supply of blood cells (van de Braak et al., 2002). The shrimp immune system consists of a turn recognition system, a phenol oxidase precursor (proPO) activation system, release of antimicrobial peptides and lysozyme, and phagocytosis, nodule formation, encapsulation (Jiravanichpaisal et al., 2006; Rowley et al., 2007). ProPO is activated by melanin synthesis through a serine proteinase cascade by endogenous trypsin-like serine proteinase and becomes phenol oxidase (PO) (Cerenus et al., 2008; Soederhaell et al., 1998). A respiratory burst (RB) occurs during phagocytosis, releasing superoxide anions and other reactive oxygen species (ROS) (Bogan et al., 2000). The superoxide anion is eliminated by superoxide dismutase (SOD) and prevents damage to the host itself through the antioxidant system (Fridovich et al., 1995).

最近一部の研究で、昆虫およびエビにおいて先天免疫系内の特異的記憶の存在、またはある形態の適応免疫が発生する可能性が示唆されている(Rowley et al.、2007;Arala−Chaves et al.、2000;Kurtz et al.、2004;Kurtz et al.、2005;Roth et al.、2009)。適応免疫または特異的免疫記憶の存在に基づき、真骨魚類及びエビ向けにいくつかの商用ワクチンが開発されている(Sommerset et al.、2005;Powell et al.、2011)。さらに、甲殻類では、「代替的適応免疫」で重要な役割を果たす、Dscamとも呼ばれるダウン症候群細胞接着分子(免疫グロブリンスーパーファミリーに属する)が観察された(Chou et al.、2009;Chou et al.、2011;Watthansurorot et al.、2011)。一部の報告では、ホルマリン不活化ビブリオ菌(Vibrio sp.)でのワクチン投与がクルマエビの稚エビ養殖におけるビブリオ病に対して有効であったことが示されている(Teunissen et al.、1998;Pereira et al.、2009;Itami et al.、1989;Itami et al.、1991;Itami et al.、1992;Alabi et al.、1999)。しかしながら、ホルマリン不活化病原菌を投与されたエビの作用機作および特定の病原菌に二次感染したエビの免疫応答についてはあまりまたは全く知られていない。エビの免疫応答パターンを調査し、ビブリオ感染に対する改良型エビ用ワクチン開発がやはり必要とされている。   Some recent studies have suggested the existence of specific memory within the innate immune system or the possibility of certain forms of adaptive immunity in insects and shrimp (Rowley et al., 2007; Arala-Chaves et al., 2000; Kurtz et al., 2004; Kurtz et al., 2005; Roth et al., 2009). Based on the presence of adaptive immunity or specific immune memory, several commercial vaccines have been developed for teleosts and shrimps (Sommerset et al., 2005; Powell et al., 2011). Furthermore, in crustaceans, a Down syndrome cell adhesion molecule (belonging to the immunoglobulin superfamily), also called Dscam, which plays an important role in “alternative adaptive immunity” was observed (Chou et al., 2009; Chou et al. , 2011; Wattansurorot et al., 2011). Some reports show that vaccination with formalin-inactivated Vibrio sp. Was effective against Vibrio disease in juvenile shrimp farming (Teunissen et al., 1998; Pereira et al., 2009; Itami et al., 1989; Itami et al., 1991; Itami et al., 1992; Alabi et al., 1999). However, little or no is known about the mechanism of action of shrimp administered formalin-inactivated pathogens and the immune response of shrimp secondary infected with specific pathogens. There is still a need for improved shrimp vaccines against Vibrio infections by examining shrimp immune response patterns.

本発明の目的は、エビにおけるビブリオ感染に対するワクチン及びその作製方法を提供することにある。   The objective of this invention is providing the vaccine with respect to the vibrio infection in shrimp, and its preparation method.

本研究において、熱不活化V.alginolyticus(HVa)またはホルマリン不活化V.alginolyticus(FVa)への一次暴露(primary exposure)の後、続いて生V.alginolyticus(LVa)の二次暴露(secondary exposure)を受けたホワイトエビの免疫応答パターンを理解するために実験を行った。一次暴露後、HVa投与エビは1日目に免疫応答のより早い高まりを示し、一方FVa投与エビは5日目に免疫応答のより遅い高まりを示し、そして二次暴露後、HVa投与エビとFVa投与エビの両方がワクチンの効果を示し、そのうちFVa投与エビはLVaに対するより高い耐性(resistance)、免疫パラメータのより早い回復、及びHPTのより高い増殖と分裂指数(mitotic index)を示すことが分かった。したがって、ビブリオ感染からエビを保護するためのワクチンとしてHVaとFVaの両方を使用することができ、中でも驚くべきことにHVaは、「ワクチン」としてだけでなく、特異的認識および記憶の誘導を促進する「免疫活性化物質」または「アジュバント」としても使用することができる。FVaとHVaの組み合わせ混合物が予期せずしてビブリオ感染に対する免疫応答の向上と延長を誘導する(クリアランス能力(clearance efficiency)は40%超、かつワクチン後42日間以上持続)ことが示された。   In this study, heat inactivation alginoliticus (HVa) or formalin inactivated after primary exposure to Alginoliticus (FVa), followed by raw V. pneumoniae. Experiments were conducted to understand the immune response pattern of white shrimp that had undergone secondary exposure of arginoliticus (LVa). After primary exposure, HVa-administered shrimp showed a faster increase in immune response on day 1, while FVa-administered shrimp showed a slower increase in immune response on day 5, and after secondary exposure, HVa-administered shrimp and FVa Both doses of shrimp show vaccine efficacy, of which FVa doses show higher resistance to LVa, faster recovery of immune parameters, and higher HPT proliferation and mitotic index It was. Thus, both HVa and FVa can be used as vaccines to protect shrimp from Vibrio infections, and surprisingly HVa not only serves as a “vaccine” but also promotes the induction of specific recognition and memory It can also be used as an “immunoactive substance” or “adjuvant”. It has been shown that a combined mixture of FVa and HVa unexpectedly induces an improved and prolonged immune response to Vibrio infection (clearance efficiency> 40% and lasts for more than 42 days after vaccine).

したがって、一態様において、本発明はエビにおいてビブリオ菌により引き起こされる感染に対するワクチン組成物を提供する。前記ワクチン組成物は、前記ビブリオ菌の熱不活化細胞(熱不活化ビブリオ細胞)と、前記ビブリオ菌のホルマリン不活化細胞(ホルマリン不活化ビブリオ細胞)を含み、そのうち、前記熱不活化ビブリオ細胞と前記ホルマリン不活化ビブリオ細胞が、エビにおいてビブリオ菌に特異的な免疫を誘導する有効量で存在する。   Accordingly, in one aspect, the invention provides a vaccine composition against infection caused by Vibrio in shrimp. The vaccine composition comprises heat-inactivated cells of Vibrio (heat-inactivated Vibrio cells) and formalin-inactivated cells of Vibrio (formalin-inactivated Vibrio cells), of which the heat-inactivated Vibrio cells and The formalin-inactivated vibrio cells are present in an effective amount that induces immunity specific for Vibrio in shrimp.

別の一態様において、本発明は、ビブリオ菌に特異的な免疫を誘導するためにエビに投与するワクチン組成物作製のための熱不活化ビブリオ細胞とホルマリン不活化ビブリオ細胞の混合物の使用を提供する。   In another aspect, the present invention provides the use of a mixture of heat-inactivated and formalin-inactivated vibrio cells for the production of a vaccine composition that is administered to shrimp to induce immunity specific for Vibrio. To do.

さらに別の一態様において、本発明はホルマリン不活化ビブリオ細胞から作製されたワクチンの免疫を向上するためのアジュバントとしての熱不活化ビブリオ細胞の使用を提供する。   In yet another aspect, the present invention provides the use of heat inactivated vibrio cells as an adjuvant to improve immunity of vaccines made from formalin inactivated vibrio cells.

さらに別の一態様において、本発明は、ビブリオ菌に特異的な免疫を誘導する有効量で、熱不活化ビブリオ細胞をホルマリン不活化ビブリオ細胞と混合して混合物を形成する工程を含む、ワクチン組成物の作製方法を提供する。   In yet another aspect, the present invention provides a vaccine composition comprising the step of mixing heat-inactivated vibrio cells with formalin-inactivated vibrio cells to form a mixture in an effective amount for inducing immunity specific for Vibrio bacteria. A method for manufacturing an object is provided.

本発明の1つ以上の実施形態の詳細を以下の説明で示す。本発明のその他の特徴及び利点は以下のいくつかの実施形態の詳細な説明及び添付の請求の範囲から明らかになるであろう。   The details of one or more embodiments of the invention are set forth in the description below. Other features and advantages of the invention will be apparent from the following detailed description of several embodiments and the appended claims.

本発明の上述の一般的な説明と、以下に述べる詳細な説明は、添付図面と併せて参照することによってより理解されるであろう。本発明を説明する目的で、現在好適な実施例を図面に示す。しかしながら、本発明は示された正確な配置及び手段に限定されないと理解すべきである。   The foregoing general description of the invention and the detailed description set forth below will be better understood by reference to the accompanying drawings, in which: For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. However, it should be understood that the invention is not limited to the precise arrangements and instrumentalities shown.

一次暴露(PE)で熱不活化V.alginolyticus(HVa)の投与を受けたエビ、ホルマリン不活化V.alginolyticus(FVa)の投与を受けたエビ、及び対照実験用の海水(MS)の暴露を受けたエビと、HVaとFVaの投与の7日後に生V.alginolyticus(LVa)の二次暴露(SE)を受けたエビの7〜35日HVa−PEと7〜35日FVa−PEエビ、及び7〜28日HVa−PEエビと7〜28日FVa−PEエビの両方におけるLVaと生枯草菌(Live Bacillus subtilis、LBs)に対する食作用及びクリアランスを示す、実験計画図である。Heat inactivated by primary exposure (PE) Shrimp, formalin-inactivated shrimp that received Alginoliticus (HVa) Shrimp that received Alginoliticus (FVa), and shrimp that received exposure to seawater (MS) for control experiments, and raw V. pneumoniae 7 days after administration of HVa and FVa. 7-35 day HVa-PE and 7-35 day FVa-PE shrimp, and 7-28 day HVa-PE shrimp and 7-28 day FVa-PE of shrimp that have received secondary exposure (SE) of arginolyticus (LVa) It is an experimental plan which shows the phagocytosis and clearance with respect to LVa and live Bacillus subtilis (LBs) in both shrimps. 対照エビと、海水(marine saline、MS)、HVa、FVa、LVaを投与されたエビの0日、0.5日、1日、3日、5日、7日後の無顆粒細胞(HC)(A)、顆粒細胞(GC)(semi−GCを含む)(B)、全血球数(THC)(C)を示すグラフである。各棒が6尾のエビからの平均と標準誤差(SE)を表す。異なる文字(a、b、c)が付された同じ時間のデータは処理間で有意な差がある(p<0.05)。異なる文字(x、y、z)が付された同じ処理のデータは異なる経過時間(日数)間で有意な差がある(p<0.05)。Control shrimp and granule cells (HC) at 0 days, 0.5 days, 1 day, 3 days, 5 days and 7 days after being given seawater (marine salin, MS), HVa, FVa, LVa ( A is a graph showing granule cells (GC) (including semi-GC) (B), whole blood count (THC) (C). Each bar represents the mean and standard error (SE) from 6 shrimps. Data at the same time with different letters (a, b, c) are significantly different between treatments (p <0.05). Data of the same process with different letters (x, y, z) has a significant difference (p <0.05) between different elapsed times (days). 対照エビと、海水(MS)、HVa、FVa、LVaを投与されたエビの0日、0.5日、1日、3日、5日、7日後のフェノール酸化酵素(PO)活性(A)、呼吸バースト(RB)(B)、スーパーオキシドディスムターゼ(SOD)活性(C)、リゾチーム活性(D)を示すグラフである。統計情報は図2を参照。Phenol oxidase (PO) activity (A) after 0 days, 0.5 days, 1, 3, 5, and 7 days of control shrimp and shrimp administered with seawater (MS), HVa, FVa, LVa It is a graph which shows respiratory burst (RB) (B), superoxide dismutase (SOD) activity (C), and lysozyme activity (D). See Figure 2 for statistical information. HVa、FVa、LVaを投与されたエビの0.5日、1日、3日、5日、7日後の相対免疫パラメータ(%)を示すグラフである。HVa投与エビにおける異なる文字(a、b、c)が付されたデータ(平均±SE)、FVa投与エビにおける異なる文字(r、s、t)が付されたデータ(平均±SE)、LVa投与エビにおける異なる文字(x、y、z)が付されたデータ(平均±SE)は異なる経過時間(日数)間で有意な差がある(p<0.05)。It is a graph which shows the relative immune parameter (%) of the shrimp which administered HVa, FVa, and LVa 0.5 days, 1 day, 3 days, 5 days, and 7 days after. Data with different letters (a, b, c) in HVa-administered shrimp (mean ± SE), Data with different letters (r, s, t) in FVA-administered shrimp (mean ± SE), LVa administration Data (mean ± SE) with different letters (x, y, z) in shrimp are significantly different (p <0.05) between different elapsed times (days). (A)対照エビ(a)と、5日後のHVa投与エビ(b)及びFVa投与エビ(c)のH&E染色造血組織(HPT)の光学顕微鏡写真である。HVa投与エビとFVa投与エビでより多くの有糸分裂細胞(矢印)数が認められた。(B)FVa投与エビとHVa投与エビのHPTにおける増殖細胞割合(%)は、対照エビのそれより有意に高かった。(C)対照エビ(a)、5日後のHVa投与エビ(b)及びFVa投与エビ(c)のヨウ化プロピジウム染色HPTの蛍光顕微鏡写真である。HVa投与エビとFVa投与エビでより多くの有糸分裂細胞(矢印)数が認められた。(D)FVa投与エビのHPTとHVa投与エビのHPTにおける分裂細胞の割合として表した分裂指数(mitotic index)は、対照エビのそれよりも有意に高かった。各棒が6つの異なる画像からの平均値と標準誤差(SE)を表す。異なる文字が付されたデータは処理間で有意な差がある(p<0.05)。目盛り=20μm。(A) Light micrograph of H & E-stained hematopoietic tissue (HPT) of control shrimp (a), HVa-administered shrimp (b) and FVa-administered shrimp (c) 5 days later. A larger number of mitotic cells (arrows) was observed in shrimp administered with HVa and shrimp administered with FVa. (B) The percentage of proliferating cells (%) in HPT of FVa-administered shrimp and HVa-administered shrimp was significantly higher than that of control shrimp. (C) Fluorescence micrographs of propidium iodide-stained HPT of control shrimp (a), HVa-administered shrimp (b) and FVa-administered shrimp (c) 5 days later. A larger number of mitotic cells (arrows) was observed in shrimp administered with HVa and shrimp administered with FVa. (D) The mitotic index, expressed as the percentage of dividing cells in HPT of FVa-treated shrimp and HPT of HVa-treated shrimp, was significantly higher than that of control shrimp. Each bar represents the mean and standard error (SE) from 6 different images. Data with different letters are significantly different between treatments (p <0.05). Scale = 20 μm. 生菌攻撃なしの対照エビ、及び対照エビと7日後のHVa及びFVa投与エビに菌数8.0×10cfuエビ−1のLVaで攻撃を行ったときの生残率を示すグラフである。各データポイントは3つの複製(各複製10尾)の平均と標準誤差(SE)を表す。同じ期間で異なる文字が付されたデータは処理間で有意な差がある(p<0.05)。It is a graph which shows the survival rate when attacking the control shrimp without viable bacteria attack, and the control shrimp and HVa and FVa administration shrimp 7 days later with LVa of the number of bacteria of 8.0 × 10 6 cfu shrimp- 1 . Each data point represents the mean and standard error (SE) of 3 replicates (10 replicates each). Data with different characters in the same period have a significant difference between treatments (p <0.05). 対照エビと、HVa及びFVa投与7日後のエビに菌数3.8×105cfuエビ−1のLVaで攻撃を行った0日、0.5日、1日、3日、5日、7日後の無顆粒細胞(HC)(A)、顆粒細胞(GC)(semi−GCを含む)(B)、全血球数(THC)(C)を示すグラフである。統計情報は図2を参照。The control shrimp and shrimp 7 days after HVa and FVa administration were challenged with LVa having a bacterial count of 3.8 × 10 5 cfu shrimp- 1 at 0, 0.5, 1, 3, 5, 7 It is a graph which shows the non-granule cell (HC) (A), granule cell (GC) (including semi-GC) (B), and the total blood count (THC) (C) after a day. See Figure 2 for statistical information. 対照エビと、HVa及びFVa投与7日後のエビに菌数3.8×105cfuエビ−1のLVaで攻撃を行った0日、0.5日、1日、3日、5日、7日後のフェノール酸化酵素(PO)活性(A)、呼吸バースト(RB)(B)、スーパーオキシドディスムターゼ(SOD)活性(C)、リゾチーム活性(D)を示すグラフである。統計情報は図2を参照。The control shrimp and shrimp 7 days after HVa and FVa administration were challenged with LVa having a bacterial count of 3.8 × 10 5 cfu shrimp- 1 at 0, 0.5, 1, 3, 5, 7 It is a graph which shows the phenol oxidase (PO) activity (A), respiratory burst (RB) (B), superoxide dismutase (SOD) activity (C), and lysozyme activity (D) after a day. See Figure 2 for statistical information. (A)対照エビと、HVa及びFVa投与7日後のエビにLVaで攻撃を行った後の相対免疫パラメータ(%)を示すグラフである。対照エビにおける異なる文字(x、y、z)が付されたデータ(平均±SE)、HVa投与エビにおける異なる文字(r、s、t)が付されたデータ(平均±SE)、FVa投与エビにおける異なる文字(a、b、c)が付されたデータ(平均±SE)は経過時間(日数)間で有意な差がある(p<0.05)。(B)対照エビに対するHVa投与エビとFVa投与エビの相対値を示すグラフである。HVa投与エビにおける異なる文字(r、s、t)が付されたデータと、FVa投与エビにおける異なる文字(a、b、c)が付されたデータは経過時間(日数)間で有意な差がある(p<0.05)。(A) It is a graph which shows the relative immunity parameter (%) after attacking LVa to the control shrimp and the shrimp 7 days after HVa and FVa administration. Data with different letters (x, y, z) in the control shrimp (mean ± SE), data with different letters (r, s, t) in the HVa-treated shrimp (mean ± SE), shrimp with FVa Data (mean ± SE) with different letters (a, b, c) in are significantly different between elapsed times (days) (p <0.05). (B) It is a graph which shows the relative value of HVa administration shrimp and FVa administration shrimp with respect to control shrimp. Data with different letters (r, s, t) for shrimp HVa administration and data with different letters (a, b, c) for shrimp FVa administration have a significant difference between elapsed times (days). Yes (p <0.05). (A)対照エビ(a)と、7日後のHVa投与エビ(b)及びFVa投与エビ(c)にLVa攻撃を行った3日後のH&E染色造血組織(HPT)の光学顕微鏡写真である。FVa投与エビでより多くの有糸分裂細胞(矢印)数が認められた。(B)7日後のFVa投与エビにLVa攻撃を行った3日後のこのエビのHPTにおける増殖細胞割合(%)は有意に高かった。(C)対照エビ(a)、7日後のHVa投与エビ(b)及びFVa投与エビ(c)にLVa攻撃を行った3日後のヨウ化プロピジウム染色HPTの蛍光顕微鏡写真である。FVa投与エビでより多くの有糸分裂細胞(矢印)数が認められた。(D)7日後のFVa投与エビにLVa攻撃を行った3日後のHPTにおける分裂細胞の割合として表した分裂指数(mitotic index)は有意に高かった。目盛り=20μm。統計情報は図5Bを参照。(A) Light micrograph of H & E-stained hematopoietic tissue (HPT) 3 days after LVa challenge to control shrimp (a), HVa-administered shrimp (b) and FVa-administered shrimp (c) 7 days later. A larger number of mitotic cells (arrows) was observed in the FVa-treated shrimp. (B) The percentage of proliferating cells (%) in HPT of shrimp 3 days after LVa challenge on FVa-administered shrimp 7 days later was significantly high. (C) Fluorescence micrographs of propidium iodide-stained HPT three days after LVa challenge to control shrimp (a), HVa-administered shrimp (b) and FVa-administered shrimp (c) 7 days later. A larger number of mitotic cells (arrows) was observed in the FVa-treated shrimp. (D) The mitotic index expressed as the percentage of dividing cells in HPT 3 days after LVa challenge to FVa-administered shrimp 7 days later was significantly higher. Scale = 20 μm. See Figure 5B for statistical information. 対照エビ(A)と7日後のHVa投与エビ(B)及びFVa(C)にLVa攻撃を行った後の凝集活性を示す写真である。FVa投与エビとHVa投与エビはより高い凝集活性を示した。凝集された「細菌クラスタ」が無顆粒細胞(HC)(D)と小顆粒細胞(SGC)(E)により貪食された様子が7日のHVa−PEエビと7日のFVa−PEエビの両方で観察され、HC(F)とSGC(G)の両方による貪食が14日のHVa−PEエビと14日のFVa−PEエビで、HC(H)とSGC(I)の両方による貪食が21日のHVa−PEエビと21日のFVa−PEエビで観察された。LVa(J)、HVa(K)、FVa(L)を含む異なる細菌のインタクトがLiu染色法(Liu’s staining)により染色された。目盛り=5μm(A〜I)、2μm(J〜L)。It is a photograph which shows the aggregation activity after performing LVa challenge to control shrimp (A) and HVa administration shrimp (B) and FVa (C) 7 days after. FVa and HVa administered shrimp showed higher aggregation activity. Aggregated “bacterial clusters” were phagocytosed by agranular cells (HC) (D) and small granule cells (SGC) (E), both 7 day HVa-PE shrimp and 7 day FVa-PE shrimp And phagocytosis by both HC (F) and SGC (G) is 14 days of HVa-PE shrimp and 14 days of FVa-PE shrimp, and phagocytosis by both HC (H) and SGC (I) is 21 Observed on day HVa-PE shrimp and 21 day FVa-PE shrimp. Different bacterial intacts, including LVa (J), HVa (K), FVa (L), were stained by the Liu staining method (Liu's staining). Scale = 5 μm (A to I), 2 μm (J to L). 対照エビと、7〜35日のHVa−PEエビ及び7〜35日のFVa−PEエビにLVa攻撃を行った後の貪食能(A)、食作用係数(B)、クリアランス能力(C)を示すグラフである。対照エビと、7〜28日のHVa−PEエビ及び7〜28日のFVa−PEエビに生枯草菌(LBs)攻撃を行った後の貪食能(D)、食作用係数(E)、クリアランス能力(F)を示すグラフである。異なる文字(a、b、c)が付された同じ暴露時間のデータは異なる処理間で有意な差がある(p<0.05)。Control shrimp, phagocytic ability (A), phagocytosis coefficient (B), clearance ability (C) after LVa challenge to HVa-PE shrimp from 7 to 35 days and FVa-PE shrimp from 7 to 35 days It is a graph to show. Control shrimp, phagocytic ability (D), phagocytosis coefficient (E), clearance after 7-28 days HVa-PE shrimp and 7-28 days FVa-PE shrimp attacked with Bacillus subtilis (LBs) It is a graph which shows capability (F). Data for the same exposure time with different letters (a, b, c) are significantly different between different treatments (p <0.05). 対照エビと、7〜42日後の(HVa+FVa)−PEエビにLVa攻撃を行った後のクリアランス能力を示すグラフである。異なる文字(a、b)が付された同じ暴露時間のデータは異なる処理間で有意な差がある(p<0.05)。It is a graph which shows the clearance ability after performing LVa attack to the control shrimp and the (HVa + FVa) -PE shrimp 7 to 42 days later. Data for the same exposure time with different letters (a, b) are significantly different between different treatments (p <0.05).

別途定義がされない限り、ここで使用される全ての技術的及び科学的用語は、本発明が属する技術における通常の技能で一般的に理解されているものと同じ意味を持つ。   Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood in ordinary skill in the art to which this invention belongs.

本明細書で使用される、「ある」及び「一」(冠詞「a」及び「an」)は、1または2以上(即ち、少なくとも1)のその(冠詞の)文法上の目的語を指す。例えば、「ある要素」(「an element」)とは1つの要素または2つ以上の要素を意味する。   As used herein, “a” and “one” (articles “a” and “an”) refer to one or more (ie, at least one) grammatical objects thereof. . For example, “an element” means one element or more than one element.

本明細書で使用される、用語「ワクチン」または「ワクチン組成物」は、抗原性物質の免疫原性組成物(例えば、レシピエント中のその抗原性物質に特異的な免疫を引き出すために使用できる病原菌またはそのたんぱく質)を指し、変更可能である。したがって、被験者がワクチン投与された、またはワクチンで免疫を付けられた後、前記被験者は前記ワクチンの抗原を特異的に認識する免疫を形成し、病原菌にさらに暴露された場合に前記病原菌を殺すまたは不活化させる。エビにおいて、免疫付与またはワクチン投与は、注射または浸漬によって実施可能である。さらに、エビにおける免疫は、血球の細胞数などの多様なパラメータに基づいて判定することができ、例えば無顆粒細胞(HC)、小顆粒細胞(semi−GC)、顆粒細胞(GC)、フェノール酸化酵素(PO)活性、呼吸バースト(RB)、スーパーオキシドディスムターゼ(SOD)活性、リゾチーム活性、細胞増殖、造血組織(HPT)の分裂指数(mitotic index)、貪食能、クリアランス能力である。エビのこれらパラメータを測定する標準検査が当業者の技能範囲で既知である。   As used herein, the term “vaccine” or “vaccine composition” refers to an immunogenic composition of an antigenic substance (eg, used to elicit immunity specific for that antigenic substance in a recipient). Can be changed. Thus, after a subject has been vaccinated or immunized with a vaccine, the subject forms immunity that specifically recognizes the antigen of the vaccine and kills the pathogen when further exposed to the pathogen or Inactivate. In shrimps, immunization or vaccination can be performed by injection or immersion. Furthermore, immunity in shrimp can be determined based on various parameters such as the number of cells of blood cells, such as agranular cells (HC), small granule cells (semi-GC), granule cells (GC), phenol oxidation Enzyme (PO) activity, respiratory burst (RB), superoxide dismutase (SOD) activity, lysozyme activity, cell proliferation, hematopoietic tissue (HPT) mitotic index, phagocytic ability, clearance ability. Standard tests for measuring these parameters for shrimp are known within the skill of the artisan.

本明細書で使用される、「不活化された」または「不活化」とは、病原菌から作製されたワクチンに関するため、ワクチン中の病原菌の感染性、毒性、または病原性を例えば熱やホルマリン、紫外光照射などの方法で破壊する処理が行われることを指す。   As used herein, “inactivated” or “inactivated” refers to a vaccine made from a pathogenic bacterium, so that the infectivity, toxicity, or pathogenicity of the pathogenic bacterium in the vaccine is, for example, heat or formalin, It means that the destruction process is performed by a method such as ultraviolet light irradiation.

本発明によれば、熱不活化ビブリオ細胞とホルマリン不活化ビブリオ細胞の混合物は、ホルマリン不活化ビブリオ細胞単独の場合と比較して、エビにおけるビブリオ感染に対する免疫応答の強化または延長を誘導できる、ビブリオ感染に対する改良型ワクチンとして作用することが示されている。   According to the present invention, a mixture of heat-inactivated vibrio cells and formalin-inactivated vibrio cells can induce enhanced or prolonged immune responses to vibrio infection in shrimp compared to formalin-inactivated vibrio cells alone. It has been shown to act as an improved vaccine against infection.

したがって、一態様において、本発明はエビにおいてビブリオ菌により引き起こされる感染に対するワクチン組成物を提供する。前記ワクチン組成物は、前記ビブリオ菌の熱不活化細胞(熱不活化ビブリオ細胞)と、前記ビブリオ菌のホルマリン不活化細胞(ホルマリン不活化ビブリオ細胞)を含み、そのうち、前記熱不活化ビブリオ細胞と前記ホルマリン不活化ビブリオ細胞がエビにおいてビブリオ菌に特異的な免疫を誘導するために有効な量存在する。本発明はまた、エビに投与して前記ビブリオ菌に特異的な免疫を誘導するためのワクチン組成物の製造における前記熱不活化ビブリオ細胞と前記ホルマリン不活化ビブリオ細胞の混合物の使用も提供する。   Accordingly, in one aspect, the invention provides a vaccine composition against infection caused by Vibrio in shrimp. The vaccine composition comprises heat-inactivated cells of Vibrio (heat-inactivated Vibrio cells) and formalin-inactivated cells of Vibrio (formalin-inactivated Vibrio cells), of which the heat-inactivated Vibrio cells and The formalin-inactivated vibrio cells are present in an amount effective to induce immunity specific for Vibrio in shrimp. The present invention also provides the use of a mixture of the heat-inactivated vibrio cells and the formalin-inactivated vibrio cells in the manufacture of a vaccine composition for administration to shrimp to induce immunity specific to the Vibrio bacteria.

一部の実施態様において、前記ビブリオ菌には、V.alginolyticus、V.anguillarum、V.campbelli、V.damsella、V.fischeri、V.harveyi、V.logei、V.mediterrani、V.ordalii、V.orientalis、V.parahaemolyticus、V.pelagicus、V.splendidus、V.vulnificusが含まれるが、これらに限らない。この細菌は市販されているものを利用するか、または先行技術において報告されている標準の手順に基づいて斃死したエビから分離することができる。この細菌は培地中において約28℃で一夜培養することができる。最近の培養に使用される培地はTB(Terrific broth)またはTSB(トリプティックソイブロス)とすることができ、2%のNaCl、及びフェニルアラニン、チロシン、トリプトファン、パラアミノ安息香酸、パラヒドロキシ安息香酸などのアミノ酸が追加される。   In some embodiments, the Vibrio bacteria include V. alginoliticus, V.M. angulararum, V.M. campbelli, V.M. damsella, V.M. fischeri, V.M. harveyi, V.H. logei, V.M. mediterani, V.M. ordalii, V.M. orientalis, V.M. parahaemolyticus, V. et al. pelagicus, V. et al. splendidus, V.M. vulnificus is included, but is not limited thereto. This bacterium can be commercially available or can be isolated from moribund shrimp based on standard procedures reported in the prior art. The bacteria can be cultured overnight in a medium at about 28 ° C. The medium used for recent cultures can be TB (Terrific broth) or TSB (tryptic soy broth), 2% NaCl, and amino acids such as phenylalanine, tyrosine, tryptophan, paraaminobenzoic acid, parahydroxybenzoic acid, etc. Is added.

一部の実施態様において、前記エビには、バナメイエビ、ブラックタイガーエビ、クルマエビ、コウライエビ、インドエビ、ヨシエビ、レッドテールシュリンプ、オニテナガエビが含まれるが、これらに限らない。   In some embodiments, the shrimp includes but is not limited to vaname shrimp, black tiger shrimp, tiger shrimp, red shrimp, indian shrimp, reed shrimp, red tail shrimp, tiger shrimp.

熱不活化ビブリオ細胞とホルマリン不活化ビブリオ細胞は、当業者の技能範囲で既知のさまざまな手順に従って作製することができる。一部の実施態様において、熱不活化ビブリオ細胞の作製は、細菌を培養し、これを採取して、海水中に再懸濁した後、細菌懸濁液を80℃以上の温度、好ましくは90℃以上、より好ましくは100℃以上、皿により好ましくは120℃で、充分な時間、例えば5分間以上、好ましくは10分間以上、より好ましくは15分間以上、加熱ボックス、加熱槽、またはオートクレーブで加熱する。ある特定の実施態様において、前記細菌懸濁液は121℃で20分間オートクレーブ処理される。別の実施態様において、ホルマリン不活化ビブリオ細胞の作製は、前記細菌懸濁液が充分な時間、例えば約12〜約96時間、好ましくは約24〜48時間、より好ましくは約24時間、有効濃度のホルマリンで処理される。一部の実施例において、ホルマリンによる細菌処理の手順は約4℃〜40℃で実施される。一部の実施例において、前記細菌試料を処理するためのホルマリンの有効濃度は、約0.1%〜約2%(v/v)の範囲であり、例えば0.1%(v/v)、0.2%(v/v)、0.3%(v/v)、0.4%(v/v)、0.5%(v/v)、0.6%(v/v)、0.7%(v/v)、0.8%(v/v)、0.9%(v/v)、1.0%(v/v)、または最大2.0%(v/v)である。ある特定の実施態様において、前記細菌懸濁液が取得され、1%ホルマリンの最終濃度までホルマリンが追加され、4℃で24時間インキュベートされる。さらに、細菌試料がホルマリンで処理され、その後遠心分離されるか、細菌ペレットを回収するために充填され、培養液で洗浄して残留するホルムアルデヒドが除去される。   Heat-inactivated vibrio cells and formalin-inactivated vibrio cells can be produced according to various procedures known to those skilled in the art. In some embodiments, the production of heat-inactivated vibrio cells involves culturing the bacteria, harvesting and resuspending them in sea water, and then suspending the bacterial suspension at a temperature above 80 ° C., preferably 90 °. More than 100 ° C., more preferably 100 ° C. or more, preferably 120 ° C. with a dish, for a sufficient time, for example, 5 minutes or more, preferably 10 minutes or more, more preferably 15 minutes or more, heating in a heating box, heating tank, or autoclave To do. In certain embodiments, the bacterial suspension is autoclaved at 121 ° C. for 20 minutes. In another embodiment, the production of formalin-inactivated vibrio cells may be performed at an effective concentration of the bacterial suspension for a sufficient time, eg, about 12 to about 96 hours, preferably about 24 to 48 hours, more preferably about 24 hours. Treated with formalin. In some examples, the procedure for bacterial treatment with formalin is performed at about 4 ° C to 40 ° C. In some embodiments, the effective concentration of formalin for treating the bacterial sample ranges from about 0.1% to about 2% (v / v), such as 0.1% (v / v). 0.2% (v / v), 0.3% (v / v), 0.4% (v / v), 0.5% (v / v), 0.6% (v / v) , 0.7% (v / v), 0.8% (v / v), 0.9% (v / v), 1.0% (v / v), or up to 2.0% (v / v) v). In certain embodiments, the bacterial suspension is obtained and formalin is added to a final concentration of 1% formalin and incubated at 4 ° C. for 24 hours. In addition, the bacterial sample is treated with formalin and then centrifuged or filled to recover the bacterial pellet and washed with culture to remove residual formaldehyde.

一部の実施態様において、本発明のワクチン組成物(前記熱不活化ビブリオ細胞+前記ホルマリン不活化ビブリオ細胞)中の前記ビブリオ細胞は、10−10CFU/mlの量で存在する。特に、本発明のワクチン組成物中の前記熱不活化ビブリオ細胞+前記ホルマリン不活化ビブリオ細胞は、CFU比0.1:1〜1:0.1(HVa:FVa)で存在する。 In some embodiments, the vibrio cells in the vaccine composition of the invention (the heat-inactivated vibrio cells + the formalin-inactivated vibrio cells) are present in an amount of 10 5 -10 9 CFU / ml. In particular, the heat-inactivated vibrio cells + the formalin-inactivated vibrio cells in the vaccine composition of the present invention are present at a CFU ratio of 0.1: 1 to 1: 0.1 (HVa: FVa).

一部の実施態様において、投与方法は、注射と浸漬を含むが、これらに限らない。ある実施態様において、注射投与での使用には、1尾当たり10−10CFUの用量で本発明のワクチン組成物がエビに注射された。別の実施態様において、浸漬による投与での使用には、本発明のワクチン組成物で浸漬を行い、エビにワクチンが投与され、例えば、1Lタンク内の滅菌エイジング済み汽水または海水で作製したワクチンストックを20Lの水に希釈することにより10−10CFU/mlの濃度を達成することで実施でき、浸漬時間は約30分間またはそれ以上、例えば、1時間、2時間、3時間、またはそれ以上とすることができる。 In some embodiments, methods of administration include, but are not limited to, injection and immersion. In one embodiment, for use in injection administration, shrimp were injected with the vaccine composition of the invention at a dose of 10 4 -10 8 CFU per tail. In another embodiment, for use in administration by immersion, a vaccine stock made by immersion with the vaccine composition of the present invention and administered the vaccine to shrimp, eg, made of sterile aged brackish water or seawater in a 1 L tank Can be achieved by diluting the solution in 20 L of water to achieve a concentration of 10 2 -10 5 CFU / ml, soaking time is about 30 minutes or more, for example 1 hour, 2 hours, 3 hours, or more This can be done.

本発明によれば、熱不活化ビブリオ細胞とホルマリン不活化ビブリオ細胞の混合物は、以下の実験によって実証されるように、熱不活化ビブリオ細胞またはホルマリン不活化ビブリオ細胞単独の場合と比較して、エビにおけるビブリオ感染に対する著しい免疫応答を誘導する改良型ワクチンとして使用することができる。特に、熱不活化ビブリオ細胞とホルマリン不活化ビブリオ細胞の前記混合物に居って誘導されるクリアランス率は少なくとも40%と高く、かつ28日を超えて42日まで持続する。免疫の持続性はエビ養殖において重要である。これは、エビの養殖段階が約4〜4.5ヶ月であり、免疫がより長く持続することでワクチン投与(再強化)の回数を減少でき、エビ養殖のコストを削減することができるためである。このつながりにおいて、ワクチン組成物中、熱不活化ビブリオ細胞がエビにおける免疫応答の誘導を促進するアジュバントの役割を果たすことが示唆される。   According to the present invention, a mixture of heat-inactivated vibrio cells and formalin-inactivated vibrio cells, as demonstrated by the following experiment, compared to the case of heat-inactivated vibrio cells or formalin-inactivated vibrio cells alone, It can be used as an improved vaccine that induces a significant immune response to vibrio infection in shrimp. In particular, the clearance rate induced in the mixture of heat-inactivated and formalin-inactivated vibrio cells is as high as at least 40% and lasts from 28 days to 42 days. Immunity persistence is important in shrimp farming. This is because the shrimp farming phase is about 4 to 4.5 months, and the immunity lasts longer, so the number of vaccine administrations (re-strengthening) can be reduced and the cost of shrimp farming can be reduced. is there. This connection suggests that in vaccine compositions, heat-inactivated vibrio cells serve as adjuvants that promote the induction of immune responses in shrimp.

したがって、本発明はホルマリン不活化ビブリオ細胞から作製されたワクチンの免疫を向上するアジュバントとしての熱不活化ビブリオ細胞の使用も提供する。   Accordingly, the present invention also provides the use of heat inactivated vibrio cells as an adjuvant to improve immunity of vaccines made from formalin inactivated vibrio cells.

本明細書で使用される「アジュバント」とは、ある抗原とともに投与されたときその抗原に対するレシピエントの免疫応答を強化する物質または薬剤を指す。   As used herein, an “adjuvant” refers to a substance or agent that when administered with an antigen enhances the recipient's immune response to that antigen.

一実施態様において、前記熱不活化ビブリオ細胞は前記ホルマリン不活化ビブリオ細胞と混合され、ホルマリン不活化ビブリオ細胞単独の場合と比較して、ビブリオ菌に対する免疫応答の増強と延長を誘導する、混合物を形成する。   In one embodiment, the heat-inactivated vibrio cells are mixed with the formalin-inactivated vibrio cells to induce an enhancement and prolongation of the immune response against Vibrio bacteria as compared to the formalin-inactivated vibrio cells alone. Form.

さらに別の態様において、本発明は熱不活化ビブリオ細胞をホルマリン不活化ビブリオ細胞と混合する工程を含む、エビにおけるビブリオ感染に対するワクチン組成物の作製方法を提供する。通常、本発明のワクチンの調製には海水が使用される。ワクチンの調製にはその他の賦形剤や担体も使用することができる。特に、本発明の方法は、単に熱不活化ビブリオ細胞とホルマリン不活化ビブリオ細胞を混合して均質な混合物を形成することにより実施でき、さらなるアジュバント成分は必要とされない。   In yet another aspect, the present invention provides a method of making a vaccine composition against vibrio infection in shrimp, comprising the step of mixing heat inactivated vibrio cells with formalin inactivated vibrio cells. Usually, seawater is used to prepare the vaccine of the present invention. Other excipients and carriers can also be used in preparing the vaccine. In particular, the method of the present invention can be performed by simply mixing heat-inactivated and formalin-inactivated vibrio cells to form a homogeneous mixture, and no additional adjuvant components are required.

特定の実施態様において、本発明のエビにおけるビブリオ感染に対するワクチン組成物の作製方法は、
(a) ビブリオ菌の細胞を培養して増殖させる工程と、
(b) 増殖した細胞を採取し、採取した細胞を第1部分と第2部分に分ける工程と、
(c) 採取した細胞の第1部分を加熱により不活化し、熱不活化ビブリオ細胞を取得するとともに、採取した細胞の第2部分をホルマリンにより不活化し、ホルマリン不活化ビブリオ細胞を取得する工程と、
(d) 熱不活化ビブリオ細胞をホルマリン不活化ビブリオ細胞と混合し、エビにおけるビブリオ菌に対するワクチン組成物を得る工程と、
を含む。
In certain embodiments, a method of making a vaccine composition against Vibrio infection in shrimp of the invention comprises:
(A) culturing and growing Vibrio cells;
(B) collecting the proliferated cells and dividing the collected cells into a first part and a second part;
(C) Inactivating the first part of the collected cells by heating to obtain heat-inactivated vibrio cells, and inactivating the second part of the collected cells with formalin to obtain formalin-inactivated vibrio cells. When,
(D) mixing heat-inactivated vibrio cells with formalin-inactivated vibrio cells to obtain a vaccine composition against vibrio in shrimp;
including.

一部の実施態様において、前記熱不活化ビブリオ細胞と前記ホルマリン不活化ビブリオ細胞が混合され、ワクチン組成物中で10−10CFU/mlの量が提供される。一部の実施態様において、本発明のワクチン組成物中の前記熱不活化ビブリオ細胞と前記ホルマリン不活化ビブリオ細胞は、CFU比0.1:1〜1:0.1(HVa:FVa)で存在する。 In some embodiments, the heat-inactivated vibrio cells and the formalin-inactivated vibrio cells are mixed to provide an amount of 10 5 -10 9 CFU / ml in the vaccine composition. In some embodiments, the heat-inactivated vibrio cells and the formalin-inactivated vibrio cells in the vaccine composition of the present invention are present in a CFU ratio of 0.1-1 to 1: 0.1 (HVa: FVa). To do.

特定の一実施態様において、本発明のワクチン組成物の作製方法は、アジュバントとして追加の成分を添加する工程を含まない。   In one particular embodiment, the method of making a vaccine composition of the invention does not include the step of adding additional components as an adjuvant.

したがって、本発明の方法の利点の一つは、さらなるアジュバントの添加を行うことなく実施される、工程数の減少であり、また当業者の技能範囲で既知のアジュバントの一部(例えばアルミニウムまたはオイルベースのアジュバント)は高価な場合があり、かつそれに対する特殊な安全上の懸念や品質管理が必要とされ、さらなるコスト高につながることがある。つまり、本発明の熱不活化ビブリオ細胞とホルマリン不活化ビブリオ細胞をともに混合することによるビブリオ感染に対するワクチン組成物の作製方法は、簡単でコスト効率に優れており、大規模な製造に適用できる可能性がある。   Thus, one of the advantages of the method of the invention is the reduction in the number of steps carried out without the addition of further adjuvants, and some of the known adjuvants (eg aluminum or oil) within the skill of the person skilled in the art. Base adjuvants) can be expensive and require special safety concerns and quality control, which can lead to higher costs. In other words, the method of preparing a vaccine composition against Vibrio infection by mixing both heat-inactivated vibrio cells and formalin-inactivated vibrio cells of the present invention is simple and cost-effective, and can be applied to large-scale production. There is sex.

以下の実施例により、本発明についてさらに説明する。これらの実施例は例示を目的としたものであり、本発明を限定するものではない。当業者であれば、本発明の開示に基づいて、開示された特定の実施態様に多くの変更を加え、本発明の要旨と範囲を逸脱することなく、同様または類似の結果を取得することが可能であろう。   The following examples further illustrate the present invention. These examples are for illustrative purposes and do not limit the invention. A person skilled in the art may make many changes to the specific embodiments disclosed based on the disclosure of the present invention and obtain similar or similar results without departing from the spirit and scope of the present invention. It will be possible.

いくつかの用語の略語を以下に示す。

Figure 0005863839
Some term abbreviations are shown below.
Figure 0005863839

本実験では各LVa、HVa、FVaの投与を受けたエビの免疫パラメータを調査し、各HVaとFVaの投与7日後にLVaの投与を受けたLVa攻撃後のエビの生残率と免疫パラメータを調査した。対照エビ、HVa投与エビ、FVa投与エビの血球細胞増殖とHPT(造血組織)の分裂指数(mitotic index)がLVa攻撃の前後で調査された。血液像、PO活性、RB、SOD活性、リゾチーム活性が免疫パラメータのインジケータとして使用された(Rodriguez et al.、2000)。HVaとFVaの投与を受けた7〜35日後にLVa攻撃を受けたエビの食作用とクリアランスが調査された。さらに、HVaとFVaの投与を受けた7〜28日後に生枯草菌(LBs)攻撃を受けたエビの食作用とクリアランスが調査された。最後に、HVaとFVaの組み合わせ混合物の投与を受けた7〜35日後にLVa攻撃を受けたエビのクリアランスが調査された。   In this experiment, the immune parameters of shrimp that received LVa, HVa, and FVa were investigated, and the survival rate and immune parameters of shrimp after LVa challenge that received LVa 7 days after the administration of each HVa and FVa investigated. Blood cell proliferation and HPT (hematopoietic tissue) mitotic index of control shrimp, HVa shrimp and FVa shrimp were examined before and after LVa challenge. Blood profile, PO activity, RB, SOD activity, lysozyme activity were used as indicators of immune parameters (Rodriguez et al., 2000). The phagocytosis and clearance of shrimp LVa challenged 7-35 days after receiving HVa and FVa were investigated. In addition, the phagocytosis and clearance of shrimp attacked by Bacillus subtilis (LBs) were investigated 7-28 days after receiving HVa and FVa. Finally, the clearance of LVa challenged shrimp was investigated 7-35 days after receiving a combination of HVa and FVa.

1. 材料及び方法   1. Materials and methods

1.1.ホワイトエビバナメイエビ
ホワイトエビのバナメイエビが台湾基隆の海岸に隣接するUniversity Marine Animal Centerから実験室に提供された。エビはエアレーションした海水(塩分濃度35%)を入れた屋内のガラス繊維サーキュレータ水槽に入れられ、実験が開始されるまで3週間順応された。順応期間中、エビは1日2回体重3%のエビ用配合飼料(Tairou Feed Company、台湾台南市)で給餌された。
1.1. White Shrimp Banana Shrimp White Shrimp Banama Shrimp was provided to the laboratory by the University Marine Animal Center adjacent to the coast of Keelung, Taiwan. Shrimp were placed in an indoor glass fiber circulator tank containing aerated seawater (35% salinity) and allowed to acclimate for 3 weeks until the experiment began. During the acclimatization period, shrimp were fed twice a day with a 3% shrimp formula feed (Tairou Feed Company, Tainan, Taiwan).

1.2. LVaとLBsの作製
本実験では斃死したバナメイエビから分離したV.alginolyticusの病原菌株が使用された(Liu et al.、2004)。細菌はトリプティックソイブロス(TSBに2%のNaClを添加、Difco、米国メリーランド州スパークス市)で24時間にわたり28℃で培養された後、7155xgで20分間にわたり4℃で遠心分離された(Yeh et al.、2009)。上清が除去され、細菌ペレットが1.9×10で海水(MS)中に再懸濁され、4.0×10コロニー形成単位(cfu)ml-1で各細菌懸濁液として免疫パラメータの調査と生菌攻撃試験用に調製された。Bioresource Collection and Resource Center(台湾新竹市)より取得された枯草菌(BCRC10448)が上述同様に培養され、細菌懸濁液が4.0×10cfu ml-1で生菌攻撃試験用に調製された。
1.2. Production of LVa and LBs In this experiment, V. LVs isolated from dying vaname shrimp were isolated. The pathogenic strain of Alginoliticus was used (Liu et al., 2004). Bacteria were cultured in Tryptic Soy Broth (TSB with 2% NaCl, Difco, Sparks, MD, USA) for 24 hours at 28 ° C. and then centrifuged at 7155 × g for 20 minutes at 4 ° C. (Yeh et al., 2009). The supernatant is removed and the bacterial pellet is resuspended in seawater (MS) at 1.9 × 10 7 and immunized as each bacterial suspension with 4.0 × 10 8 colony forming units (cfu) ml −1. Prepared for parameter investigation and viable challenge test. Bacillus subtilis (BCRC10448) obtained from Bioresource Collection and Resource Center (Hsinchu City, Taiwan) was cultured in the same manner as described above, and a bacterial suspension was prepared at 4.0 × 10 8 cfu ml −1 for a live bacterial challenge test. It was.

1.3. HVaとFVaの作製
前記細菌懸濁液(1.9×10 cfu ml-1)が4500xgで10分間、4℃で遠心分離され、細菌ペレットがMSで洗浄された後再度遠心分離され、培養液が除去された。最後に、ペレットが同量のMS中に再懸濁され、121℃で20分間オートクレーブ処理された。オートクレーブ後の細菌懸濁液が熱不活化処理に使用された。別の細菌懸濁液(1.9×10cfu ml-1)が遠心分離され、上述同様にペレットが取得された。MS中の細菌懸濁液に最終濃度1%ホルマリンとなるようにホルマリンが添加され、4℃で24時間インキュベートされた。前記細菌懸濁液が細菌ペレットを回収するために4500xgで10分間、4℃で遠心分離され、その後MSで洗浄後、再度遠心分離されて残留するホルムアルデヒドが除去された。ホルマリン処理後の細菌懸濁液がホルマリン不活化処理に使用された。
1.3. Preparation of HVa and FVa The bacterial suspension (1.9 × 10 7 cfu ml −1 ) was centrifuged at 4500 × g for 10 minutes at 4 ° C., and the bacterial pellet was washed with MS and then centrifuged again. Separation and culture broth were removed. Finally, the pellet was resuspended in the same volume of MS and autoclaved at 121 ° C. for 20 minutes. The bacterial suspension after autoclaving was used for heat inactivation treatment. Another bacterial suspension (1.9 × 10 7 cfu ml −1 ) was centrifuged and a pellet was obtained as described above. Formalin was added to the bacterial suspension in MS to a final concentration of 1% formalin and incubated at 4 ° C. for 24 hours. The bacterial suspension was centrifuged at 4500 × g for 10 minutes at 4 ° C. to recover the bacterial pellet, then washed with MS and centrifuged again to remove residual formaldehyde. The bacterial suspension after formalin treatment was used for formalin inactivation treatment.

1.4. 実験計画
7つの研究が実施された。実験は特定の病原菌に対する一次暴露(PE)及び二次暴露(SE)を試験するための旧来の免疫付与に基づいて計画された(図1)。(1)対照エビ、MS−PEエビ、LVa−PEエビ、HVa−PEエビ、FVa−PEエビの免疫パラメータが0〜7日間にわたり調査された。(2)5日目に対照エビ、HVa−PEエビ、FVa−PEエビのHPTの血球細胞増殖及び分裂指数(mitotic index)が測定された。(3)対照エビ、7日HVa−PEエビ(HVaへの一次暴露を受けて7日後のエビ)、7日FVa−PEエビ(FVaへの一次暴露を受けて7日後のエビ)の抵抗力がLVaへのSE後に調査された。(4)対照エビ、7日HVa−PEエビ、7日FVa−PEエビの免疫パラメータがLVaへのSEの0.5〜7日後に調査された。(5)対照エビ、7日HVa−PEエビ、7日FVa−PEエビのHPTの血球細胞増殖及び分裂指数(mitotic index)がLVaへのSEの3日後に調査された。(6)LVaへのSEを受けた7〜35日HVa−PEエビと7〜35日FVa−PEエビの凝集、食作用、クリアランスが調査された。(7)LBs攻撃を受けた7〜28日HVa−PEエビと7〜28日FVa−PEエビの食作用及びクリアランスが調査された。エビの重量は10.21〜12.63gの範囲であり、平均は11.42±1.21g(平均±SD)であった。処理間に有意なサイズ差は見られなかった。脱皮間段階のエビのみが研究に使用された。脱皮段階は表皮の部分的収縮が識別できる尾肢を検査することで判定された(Chan SM et al.、1988)。実験期間中、水温26〜29℃、pH7.89〜8.27、塩分濃度33‰〜35‰、溶存酸素量(DO)5.68〜6.84mg L-1の範囲であった。
1.4. Experimental design Seven studies were conducted. Experiments were designed based on traditional immunization to test primary exposure (PE) and secondary exposure (SE) to specific pathogens (Figure 1). (1) The immune parameters of control shrimp, MS-PE shrimp, LVa-PE shrimp, HVa-PE shrimp and FVa-PE shrimp were investigated over 0-7 days. (2) HPT blood cell proliferation and mitotic index of control shrimp, HVa-PE shrimp, and FVa-PE shrimp were measured on day 5. (3) Resistance of control shrimp, 7-day HVa-PE shrimp (shrimp 7 days after receiving primary exposure to HVa), 7-day FVa-PE shrimp (shrimp 7 days after receiving primary exposure to FVa) Were investigated after SE to LVa. (4) The immune parameters of control shrimp, 7-day HVa-PE shrimp, 7-day FVa-PE shrimp were investigated 0.5-7 days after SE to LVa. (5) HPT blood cell proliferation and mitotic index of control shrimp, 7-day HVa-PE shrimp, 7-day FVa-PE shrimp were examined 3 days after SE to LVa. (6) Aggregation, phagocytosis, and clearance of 7-35 day HVa-PE shrimp and 7-35 day FVa-PE shrimp that underwent SE to LVa were investigated. (7) The phagocytosis and clearance of 7-28 day HVa-PE shrimp and 7-28 day FVa-PE shrimp subjected to LBs challenge were investigated. The shrimp weight ranged from 10.21 to 12.63 g and the average was 11.42 ± 1.21 g (mean ± SD). There was no significant size difference between treatments. Only shrimp at the molting stage was used in the study. The molting stage was determined by examining the caudal limb where partial contraction of the epidermis could be identified (Chan SM et al., 1988). During the experiment period, the water temperature was 26 to 29 ° C., the pH was 7.89 to 8.27, the salinity was 33 ‰ to 35 ‰, and the dissolved oxygen amount (DO) was 5.68 to 6.84 mg L- 1 .

1.5.LVa−PEエビ、HVa−PEエビ、FVa−PEエビの免疫パラメータ
5つの処理があり、各処理が5つの異なる時間(0、0.5、1、3、5、7日)で実施された。(1)対照エビ、(2)MS投与エビ、(3)LVa、(4)HVa、(5)FVaがあった。8尾のエビが各処理に毎回使用された。各エビ頭胸部の腹部静脈洞(ventral sinus)に細菌懸濁液(LVa、HVa、またはFVa)20μlが1.9×10cfu ml-1の濃度で注射され、結果3.8×10cfuエビ-1となった。処置なしのエビが背景対照とされ、MS20μlの投与を受けたエビが陽性対照群とされた。0.5、1、3、5、7日後に血リンパが採取された。血リンパのサンプリング及び希釈血リンパの作製は先述された手順に従って行われた(Yeh et al.、2009)。簡単に説明すると、血リンパ(300μl)が各エビの腹部静脈洞から個別に採取され、2700μlの抗凝固液で希釈された。血リンパ抗凝固液混合物(希釈血リンパ)が4つの管に入れられた。管には500、1000、1000、500μlの希釈血リンパがそれぞれ入れられ、それぞれ(1)血球数とRB、(2)PO活性、(3)SOD活性、(4)リゾチーム活性を測定するために使用された。
1.5. Immune parameters of LVa-PE shrimp, HVa-PE shrimp, FVa-PE shrimp There are 5 treatments, each treatment at 5 different times (0, 0.5, 1, 3, 5, 7 days) Carried out in There were (1) control shrimp, (2) MS administration shrimp, (3) LVa, (4) HVa, and (5) FVa. Eight shrimps were used for each treatment. 20 μl of bacterial suspension (LVa, HVa, or FVa) was injected at a concentration of 1.9 × 10 7 cfu ml −1 into the ventral sinus of each shrimp head and chest, resulting in 3.8 × 10 5 It became cfu shrimp- 1 . Shrimp without treatment served as the background control, and shrimp that received 20 μl of MS served as the positive control group. Hemolymph was collected after 0.5, 1, 3, 5, 7 days. Sampling of hemolymph and preparation of diluted hemolymph were performed according to the procedure described previously (Yeh et al., 2009). Briefly, hemolymph (300 μl) was collected individually from each shrimp abdominal sinus and diluted with 2700 μl of anticoagulant. Hemolymph anticoagulant mixture (diluted hemolymph) was placed in 4 tubes. The tubes were filled with 500, 1000, 1000, and 500 μl of diluted hemolymph, respectively, for measuring (1) blood cell count and RB, (2) PO activity, (3) SOD activity, and (4) lysozyme activity, respectively. Used.

1.6. PE5日後の対照エビ、HVa−PEエビ、FVa−PEエビにおけるHPTの細胞増殖と分裂指数
3つの処理があり、各処理に5尾のエビを使用した。これらのエビは、(1)MS(対照)、(2)HVa、(3)FVaの投与を受けたものである。上述と同様の方法でエビにMS、HVa、またはLVaが注射された。5日後、エビがサンプルされ、有糸分裂を阻害するためそれぞれビンブラスチン(V1377、Sigma)が注射された。簡単に説明すると、エビは腹部静脈洞にビンブラスチン60μl(0.5mg ml-1)が注射され、通常の海水中にリリースされた(van de Braak et al.、2002)。12時間後、エビ頭胸部の背部にDavidsonの固定液3ml(30mlの95%エタノール、20mlの37%ホルムアルデヒド、10mlの酢酸、30mlの蒸留水)が注射された。HPTのサンプリング、固定、包埋、永久スライドの作製及びHPTの観察は先述された方法にしたがって行われた(van de Braak et al.、2002;Sirirustanaum et al.、2011;Bell et al.、1993)。
1.6. Cell proliferation and mitotic index of HPT in control shrimp, HVa-PE shrimp, FVa-PE shrimp 5 days after PE There were three treatments, and 5 shrimp were used for each treatment. These shrimps were administered (1) MS (control), (2) HVa, (3) FVa. Shrimp were injected with MS, HVa, or LVa in the same manner as described above. Five days later, shrimp were sampled and each injected with vinblastine (V1377, Sigma) to inhibit mitosis. Briefly, shrimp were injected into the abdominal sinus with 60 μl (0.5 mg ml −1 ) vinblastine and released into normal seawater (van de Braak et al., 2002). After 12 hours, 3 ml of Davidson's fixative (30 ml of 95% ethanol, 20 ml of 37% formaldehyde, 10 ml of acetic acid, 30 ml of distilled water) was injected into the back of the shrimp head chest. Sampling, fixation, embedding of HPT, preparation of permanent slides and observation of HPT were performed according to the methods described previously (van de Braak et al., 2002; Siriustanaum et al., 2011; Bell et al., 1993). ).

HPT含有スライドのその他セットはキシレン中で脱パラフィンされ、何段階かのエタノール溶液と水道水で再水和された。RNA消化のためRNase A溶液(1mg L-1)一滴がスライド上に滴下され、続いてヨウ化プロピジウム(PI)液(0.2mg ml-1)で10分間染色した後、スライドが流水で約45分間洗浄された。永久スライドの作製、観察、HPTの分裂指数の判定は先述された方法にしたがって行われた(Zhang et al.、2006;Sirirustanaum et al.、2011;Humason et al.、1979)。 The other set of HPT-containing slides was deparaffinized in xylene and rehydrated with several ethanol solutions and tap water. For RNA digestion, a drop of RNase A solution (1 mg L −1 ) was dropped on the slide, followed by staining with propidium iodide (PI) solution (0.2 mg ml −1 ) for 10 minutes. Washed for 45 minutes. Preparation of permanent slides, observation, and determination of HPT splitting index were performed according to the method described previously (Zhang et al., 2006; Sirirustanaum et al., 2011; Humason et al., 1979).

1.7. LVaへのSE後の対照エビ、7日HVa−PEエビ、7日FVa−PEエビの抵抗力
1つの生菌攻撃なしの処理と、3つの生菌攻撃処理の計4つの処理が行われた。PEの(1)MS投与、(2)HVa投与7日後、(3)FVa投与7日後のエビにSEとしてLVaの投与が行われ、これらが生菌攻撃ありの群とされた。各エビ頭胸部の腹部静脈洞に20μlのHVa(1.9×10 cfu ml-1)またはFVa(1.9×10 cfu ml-1)細菌懸濁液が注射され、結果3.8×10cfuエビ-1とされた。生菌攻撃ありの対照群として、エビに同量の滅菌MSが注射された。7日後、各エビ頭胸部の腹部静脈洞に個別に20μlのLVaが4.0×10cfu ml-1で注射され、結果8.0×10cfuエビ-1とされた。生菌攻撃なしの対照エビにはPEとして同量のMSが、SEとして同量のMSが注射された。各群には30尾のエビが含まれた。実験エビと対照エビ(10尾水槽-1)は海水20L(35‰)を含む40Lの水槽に保持され、3つ複製された。したがって、120尾[(3×3×10)+(1×3×10)]がこの研究に使用された。1日目は12時間ごとに、それ以降は7日目の実験終了まで1日1回エビの生残が調査された。
1.7. Resistance of control shrimp, 7-day HVa-PE shrimp, 7-day FVa-PE shrimp after SE to LVa
A total of four treatments were performed, one treatment without viable cell attack and 3 live cell attack treatments. (1) MS administration of PE, (2) 7 days after HVa administration, (3) LVa was administered as SE to shrimp 7 days after FVa administration, and these were classified into groups with viable cell attack. Each shrimp craniothoracic abdominal sinus was injected with 20 μl of HVa (1.9 × 10 7 cfu ml −1 ) or FVa (1.9 × 10 7 cfu ml −1 ) bacterial suspension, resulting in 3.8 × 10 5 cfu shrimp- 1 . As a control group with live bacteria challenge, shrimp were injected with the same amount of sterile MS. Seven days later, 20 μl of LVa was individually injected into the abdominal sinus of each shrimp head chest at 4.0 × 10 8 cfu ml −1 , resulting in 8.0 × 10 6 cfu shrimp- 1 . Control shrimp without viable challenge were injected with the same amount of MS as PE and the same amount of MS as SE. Each group contained 30 shrimps. Experimental shrimp and control shrimp (10 tail tank- 1 ) were kept in a 40L tank containing 20L (35 ‰) of seawater and replicated three times. Therefore, 120 fish [(3 × 3 × 10) + (1 × 3 × 10)] were used for this study. Survival of shrimp was examined once every 12 hours on the first day and once a day thereafter until the end of the experiment on the seventh day.

1.8. LVaへのSE後の対照エビ、7日HVa−PEエビ、7日FVa−PEエビの免疫パラメータ
(1)MSが投与されたエビ(対照エビ)、(2)7日後のHVa投与エビ(7日HVa−PEエビ)、(3)7日後のFVa投与エビ(7日FVa−PEエビ)の3つの処理が行われ、それぞれの処理が5つの異なる期間(0.5、1、3、5、7日)で調査された。8尾のエビが各処理と期間に使用された。さらに、背景値を得るために処理なしの8尾のエビが使用された。実験エビには20μlのHVaまたはFVa(1.9×10 cfu ml-1)が個別に注射され、結果3.8×10cfuエビ-1が通常の海水にリリースされた。対照エビには20μlのMSが注射された。7日後、エビに個別に20μlのLVaが1.9×10cfu ml-1で注射され、結果3.8×10cfuエビ-1とされた。LVa攻撃の0.5、1、3、5、7日後に血リンパが個別に採取された。血リンパのサンプリングと希釈された血リンパの作製は上述と同様に行われた。
1.8. Control parameters after SE to LVa, 7-day HVa-PE shrimp, 7-day FVa-PE shrimp immune parameters (1) Shrimp administered MS (control shrimp), (2) HVa after 7 days Three treatments of shrimp (7-day HVa-PE shrimp) and (3) FVa-shrimp shrimp 7 days later (7-day FVa-PE shrimp) were performed, and each treatment was conducted for 5 different periods (0.5, 1 3, 5, 7). Eight shrimps were used for each treatment and period. In addition, 8 untreated shrimps were used to obtain background values. Experimental shrimp were individually injected with 20 μl of HVa or FVa (1.9 × 10 7 cfu ml −1 ), resulting in release of 3.8 × 10 5 cfu shrimp- 1 into normal seawater. Control shrimp were injected with 20 μl of MS. Seven days later, shrimp were individually injected with 20 μl of LVa at 1.9 × 10 7 cfu ml −1 resulting in 3.8 × 10 5 cfu shrimp- 1 . Hemolymph was collected individually at 0.5, 1, 3, 5, 7 days after LVa challenge. Sampling of hemolymph and preparation of diluted hemolymph were performed as described above.

1.9. 免疫パラメータの測定
第1の管から希釈血リンパ一滴が血球計に置かれ、位相差倒立顕微鏡(Leica DMIL、Leica Microsystems、ドイツヴェッツラー)を使用してHC、GC(semi−GCを含む)及び全血球数(THC)が測定された。残りの希釈血リンパ混合物は後の試験に使用された。
1.9. Measurement of immune parameters A drop of diluted hemolymph from the first tube is placed in a hemacytometer and HC, GC (semi-) using a phase contrast inverted microscope (Leica DMIL, Leica Microsystems, Wetzlar, Germany) GC) and whole blood count (THC) were measured. The remaining diluted hemolymph mixture was used for later testing.

先述されているように(Soderhall et al.、1979)、一部変更を加えて、L−ジヒドロキシフェニルアラニン(L−DOPA)から産生されるドーパクロムの形成を記録することにより、全PO活性が分光測定で測定された。簡単に説明すると、第2の管から希釈血リンパ1000μlが800xg、4℃で20分間遠心分離された。測定の詳細は先述されている(Yeh et al.、2009)。   As previously described (Soderhall et al., 1979), with some modifications, total PO activity is measured spectrophotometrically by recording the formation of dopachrome produced from L-dihydroxyphenylalanine (L-DOPA). Measured in Briefly, 1000 μl of diluted hemolymph from the second tube was centrifuged at 800 × g for 20 minutes at 4 ° C. Details of the measurement have been described previously (Yeh et al., 2009).

血球のRBは、先述されているように(Bell et al.、1993)、スーパオキシドアニオンの測定として、ホルマザンに対するニトロブルーテトラゾリウム(NBT)の減少を使用して数値化された。簡単に説明すると、第1の管からの希釈血リンパ100μlが、細胞の付着性を高めるために前もって100μlのポリLリシン溶液(0.2%)でコーティングされた96ウェルマイクロプレートにトリプリケートで分注された。測定の詳細は先述されている(Yeh et al.、2009)。   Blood cell RB was quantified using the reduction of nitroblue tetrazolium (NBT) versus formazan as a measure of superoxide anion, as previously described (Bell et al., 1993). Briefly, 100 μl of diluted hemolymph from the first tube was triplicated into a 96-well microplate previously coated with 100 μl poly L-lysine solution (0.2%) to enhance cell adhesion. Noted. Details of the measurement have been described previously (Yeh et al., 2009).

SOD活性は、Ransodキット(Randox、英国クラムリン)を使用して、スーパーオキシドラジカル依存性反応を阻害する能力により測定された。簡単に説明すると、第3の管からの希釈血リンパ1000μlが800xg、4℃で20分間遠心分離された。測定の詳細は先述されている(Yeh et al.、2009;Biagini et al.、1995)。   SOD activity was measured by its ability to inhibit superoxide radical-dependent reactions using the Ransod kit (Randox, UK). Briefly, 1000 μl of diluted hemolymph from the third tube was centrifuged at 800 × g for 20 minutes at 4 ° C. Details of the measurement have been described previously (Yeh et al., 2009; Biagini et al., 1995).

リゾチーム活性が先述されたとおりの方法(Ellis et al.、1990)に従って判定された。簡単に説明すると、第4の管からの希釈血リンパ500μlが遠心分離され、沈殿物が1ml(0.02%)のMicrococcus lysodeikticus(Sigma、米国ミズーリ州セントルイス)と混合された。測定の詳細は先述されている(Ellis et al.、1990;Tayag et al.、2010)。   Lysozyme activity was determined according to the method as previously described (Ellis et al., 1990). Briefly, 500 μl of diluted hemolymph from the fourth tube was centrifuged and the precipitate was mixed with 1 ml (0.02%) Micrococcus lysodeikticus (Sigma, St. Louis, Mo., USA). Details of the measurement have been described previously (Ellis et al., 1990; Tayag et al., 2010).

1.10. LVaへのSE3日後の対照エビ、7日HVa−PEエビ、7日FVa−PEエビのHPTの細胞増殖と分裂指数
3つの処理が各処理5尾のエビで実施された。エビはPEとして(1)MS、(2)HVa、(3)FVaの投与を7日間受けた。8尾のエビが各処理と時間に使用された。エビに20μlのHVaまたはFVa(1.9×10 cfu ml-1)が個別に注射され、結果3.8×10cfuエビ-1が通常の海水(35% 塩分濃度)に7日間リリースされた。エビはSEとしてLVaが投与され、3日後エビがサンプリングされ、有糸分裂を阻害するために個別にビンブラスチン(V1377、Sigma)が注射された。後続のビンブラスチン注射、HPT固定、スライド染色、永久スライドの作製、細胞増殖と分裂指数の観察に係る手順は2.6節の説明と同様に実施された。
1.10. Cell growth and mitotic index of control shrimp, 7-day HVa-PE shrimp, 7-day FVa-PE shrimp after 3 days SE to LVa Three treatments were performed with 5 shrimp in each treatment. Shrimp received (1) MS, (2) HVa, and (3) FVa as PE for 7 days. Eight shrimps were used for each treatment and time. Shrimp were individually injected with 20 μl HVa or FVa (1.9 × 10 7 cfu ml −1 ), resulting in 3.8 × 10 5 cfu shrimp- 1 released into normal seawater (35% salinity) for 7 days It was done. Shrimp were administered LVa as SE, and after 3 days the shrimp were sampled and individually injected with vinblastine (V1377, Sigma) to inhibit mitosis. The procedures for subsequent vinblastine injection, HPT fixation, slide staining, creation of permanent slides, observation of cell proliferation and mitotic index were performed as described in Section 2.6.

1.11. LVaへのSEを受けたHVa−PEエビとFVa−PEエビにおける食作用とクリアランス能力、及びLBs攻撃を受けたHVa−PEエビとFVa−PEエビにおける食作用とクリアランス
LVaへのSEのため、3つの処理があり、7、14、21、28、35日間PEとして(1)MS、(2)HVa、(3)FVaの投与を受けた後、SEとしてLVa(3.8×10cfuエビ-1)の投与を3時間受けたエビが、凝集された「細菌クラスタ」、食作用及びクリアランス観察のための実験に使用された。50μlの血リンパがサンプリングされ、50μlの抗凝固液とそっと混合された後、100μlの固定液(1%パラホルムアルデヒド)が添加され、30分間インキュベートされた。固定血球がサイトスピン(Thermo、英国シャンドン)を1000rpmで10分間使用してスライドガラス上で拡散された。スライドガラスがLiu氏A溶液で30秒間、Liu氏B溶液で60秒間染色された後、流水で30秒間洗浄された。異なる処理のV.alginolyticusの細胞が上述と同様に染色された。貪食能とクリアランス能力の実験が先述された方法(Tayag CM et al.、2010)に従って実施された。貪食能は貧食率(PR)として定義され、PR(%)=[(貪食性血球)/(合計血球)]×100で表された。食作用係数(PI)は、PI=[(貪食性血球によって貪食される細菌)/(貪食性血球)]で表された。対照エビ(MS)における細菌コロニー数が対照群として表され、HVa投与エビ及びFVa投与エビのコロニーがテスト群とされた。クリアランス能力は「100−[(テスト群のcfu)/(対照群のcfu)]×100」で表された。LBsの比較のために、3つの処理が行われた。エビに(1)MS、(2)HVa、(3)FVaを投与した7、14、21、28日後に、LBs攻撃(3.8×10cfuエビ-1)を3時間受けたエビが食作用とクリアランス観察の実験に使用された。貪食能、食作用係数、クリアランス能力は先述されたものと同様に実施された。
1.11. Phagocytosis and clearance capacity in HVa-PE shrimp and FVa-PE shrimp that have undergone SE to LVa, and phagocytosis and clearance in LVa-shrimp HVa-PE shrimp and FVa-PE shrimp LVa There are 3 treatments for SE, and after receiving administration of (1) MS, (2) HVa, (3) FVa as PE for 7, 14, 21, 28, 35 days, SE as LVa (3.8 Shrimp that received 3 × 10 5 cfu shrimp- 1 ) for 3 hours were used in experiments to observe aggregated “bacterial clusters”, phagocytosis and clearance. After 50 μl hemolymph was sampled and gently mixed with 50 μl anticoagulant, 100 μl fixative (1% paraformaldehyde) was added and incubated for 30 minutes. Fixed blood cells were spread on glass slides using cytospin (Thermo, Chandon, UK) at 1000 rpm for 10 minutes. The slide glass was stained with Mr. Liu A solution for 30 seconds and with Mr. Liu B solution for 60 seconds, and then washed with running water for 30 seconds. V. of different processing alginoliticus cells were stained as described above. Phagocytosis and clearance ability experiments were performed according to the method described previously (Tayag CM et al., 2010). Phagocytosis was defined as the phagocytic rate (PR) and expressed as PR (%) = [(phagocytic blood cells) / (total blood cells)] × 100. The phagocytic coefficient (PI) was expressed as PI = [(bacteria phagocytosed by phagocytic blood cells) / (phagocytic blood cells)]. The number of bacterial colonies in the control shrimp (MS) was expressed as a control group, and colonies of HVa-administered shrimp and FVa-administered shrimp were taken as the test group. The clearance ability was expressed as “100 − [(cfu of test group) / (cfu of control group)] × 100”. Three treatments were performed for comparison of LBs. Shrimp that received LBs attack (3.8 × 10 5 cfu shrimp- 1 ) for 3 hours after 7, 14, 21, 28 days after administration of (1) MS, (2) HVa, (3) FVa to shrimp Used for phagocytosis and clearance observation experiments. The phagocytic ability, phagocytosis coefficient, and clearance ability were carried out in the same manner as described above.

1.12. HVaとFVaの混合物の作製
細菌懸濁液(1.9×10cfu ml-1)が4500xg、4℃で10分間遠心分離され、細菌ペレットがMSで洗浄され、再度遠心分離されて培養液が除去された。最後に、ペレットが同量のMSで再懸濁され、121℃で20分間オートクレーブ処理された。オートクレーブ後の細菌懸濁液が熱不活化処理に使用された。別の細菌懸濁液(1.9×10cfu ml-1)が遠心分離され、上述と同様にペレットが取得された。MS中の細菌懸濁液に最終濃度1%ホルマリンまでホルマリンが添加され、4℃で24時間インキュベートされた。前記細菌懸濁液が細菌ペレットを回収するために4500xgで10分間、4℃で遠心分離され、その後MSで洗浄後、再度遠心分離されて残留するホルムアルデヒドが除去された。ホルマリン処理済みの細菌懸濁液がホルマリン不活化処理に使用された。FVaとHVaの混合物がFVa(1.9×10cfu ml-1)1分量にHVa(1.9×10cfu ml-1)1分量を追加して2分量のFVa+HVa混合物(1.9×10cfu ml-1)を取得することで作製された。
1.12. Preparation of a mixture of HVa and FVa A bacterial suspension (1.9 × 10 7 cfu ml −1 ) was centrifuged at 4500 × g for 10 minutes at 4 ° C., the bacterial pellet washed with MS and centrifuged again And the culture medium was removed. Finally, the pellet was resuspended with the same amount of MS and autoclaved at 121 ° C. for 20 minutes. The bacterial suspension after autoclaving was used for heat inactivation treatment. Another bacterial suspension (1.9 × 10 7 cfu ml −1 ) was centrifuged and a pellet was obtained as described above. Formalin was added to the bacterial suspension in MS to a final concentration of 1% formalin and incubated at 4 ° C. for 24 hours. The bacterial suspension was centrifuged at 4500 × g for 10 minutes at 4 ° C. to recover the bacterial pellet, then washed with MS and centrifuged again to remove residual formaldehyde. Formalin-treated bacterial suspension was used for formalin inactivation treatment. Mixtures of FVa and HVa is FVa (1.9 × 10 7 cfu ml -1) 1 aliquots to HVa (1.9 × 10 7 cfu ml -1) was added to one portion 2 content of FVa + HVa mixture (1 9.9 × 10 7 cfu ml −1 ).

1.13. 統計分析
すべてのデータに一元配置分散分析(ANOVA)が行われた。有意な差が0.05レベルで示された場合、多重比較(テューキー)検定を使用してSASコンピュータソフトウェア(SAS Institute、米国ノースカロライナ州ケーリー)で処理間の有意差が調査された。比率データ(抵抗試験)は分析の前に逆正弦変換を使用して正規化(normalized)された。統計的有意差はpが<0.05であることが要求された。
1.13. Statistical analysis One-way analysis of variance (ANOVA) was performed on all data. Where significant differences were shown at the 0.05 level, significant differences between treatments were investigated with SAS computer software (SAS Institute, Cary, NC, USA) using a multiple comparison (Tukey) test. Ratio data (resistance test) was normalized using an inverse sine transform prior to analysis. Statistical significance required p to be <0.05.

2. 結果   2. Results

2.1. LVa−PEエビ、HVa−PEエビ、FVa−PEエビの免疫パラメータ
異なる期間の対照エビとMS投与エビにおいてHC、GC、THC、PO活性、RB、SOD活性、リゾチーム活性に有意な差は見られなかった。LVa投与エビのHC、GC、THCは0.5日後に減少し、1日後に最低レベルに達した後、0.5〜7日間にわたり背景値より低いままであった。HVa投与エビのHC、GC、THCは1〜5日間増加した後、7日後に背景値に戻った。FVa投与エビのHC、GC、THCは0.5日後に減少したが、その後増加し、5日目に最高レベルまで増加した(図2)。
2.1. Immune parameters of LVa-PE shrimp, HVa-PE shrimp, FVa-PE shrimp Significant in HC, GC, THC, PO activity, RB, SOD activity, lysozyme activity in control shrimp and MS shrimp in different periods There was no difference. The HCa, GC, THC of shrimp administered LVa decreased after 0.5 days and remained below background values for 0.5-7 days after reaching the lowest level after 1 day. HCa shrimp HC, GC, and THC increased for 1 to 5 days, and then returned to the background value after 7 days. HC, GC, and THC of shrimp administered with FVa decreased after 0.5 days, but then increased and increased to the highest level on day 5 (FIG. 2).

LVa投与エビのPO活性、RB、SOD活性、リゾチーム活性は減少し、0.5〜7日目は背景値より低かった。HVa投与エビのPO活性、RB、SOD活性、リゾチーム活性は1日後に有意に増加し、その後やや減少して、7日後は背景値と同様になった。FVa投与エビのPO活性、RB、SOD活性は0.5日目に減少し、その後増加して5日目に最高レベルに達したが、7日目までに背景値まで戻った。FVa投与エビのリゾチーム活性は0.5〜7日目で変化しないままであった(図3)。   The LVa-administered shrimp had decreased PO activity, RB, SOD activity, and lysozyme activity, and were lower than the background values on the 5th to 7th days. The PO activity, RB, SOD activity, and lysozyme activity of shrimp administered with HVa increased significantly after 1 day, decreased slightly thereafter, and became similar to the background value after 7 days. The PO activity, RB, and SOD activity of shrimp administered with FVa decreased on the 0.5th day and then increased to reach the highest level on the 5th day, but returned to the background value by the 7th day. The lysozyme activity of FVa-administered shrimp remained unchanged on days 0.5-7 (FIG. 3).

PEとしてHVa、FVa、LVaの投与を受けたエビの先天免疫応答パターンを明らかにするため、免疫パラメータが背景値に正規化され、相対比率値として表示される(図4)。LVa投与エビの免疫パラメータパターンは0.5〜7日間減少した。HVa投与エビの免疫パラメータパターンは1日目により早く増加した後、徐々に減少し、7日目までに背景値に戻った。FVa投与エビの免疫パラメータパターンは0.5日に減少し、その後増加して5日目に最高値に達した。HVa、FVa、LVaの投与を受けたエビは異なる先天免疫応答パターンを示した。   In order to clarify the innate immune response pattern of shrimp that received HVa, FVa, and LVa as PE, immune parameters are normalized to background values and displayed as relative ratio values (FIG. 4). The immune parameter pattern of shrimp administered with LVa decreased for 0.5-7 days. The immune parameter pattern of shrimp administered with HVa increased more rapidly on day 1 and then gradually decreased and returned to background values by day 7. The immune parameter pattern of shrimp administered with FVa decreased on 0.5 day, then increased and reached the highest value on 5th day. Shrimp receiving HVa, FVa, LVa showed different innate immune response patterns.

2.2. PE後5日目のHVa−PEエビとFVa−PEエビにおけるHPTの細胞増殖と分裂指数
5日目の対照エビ、HVa投与エビ、FVa投与エビのH&E染色HPT光学写真が取得された(データ未表示)。HVa投与エビとFVa投与エビの増殖細胞割合が有意に増加した(図5A)。5日目の対照エビ、HVa投与エビ、FVa投与エビのPI染色HPTの蛍光写真が取得され、HVa投与エビとFVa投与エビで有糸分裂細胞の数が多いことが観察された(データ未表示)。HPTにおける分裂細胞比率で表される分裂指数は、対照エビのそれよりHVa投与エビとFVa投与エビで有意に高かった(図5B)。
2.2. Cell proliferation and division index of HPT in HVa-PE shrimp and FVa-PE shrimp on day 5 after PE. H & E-stained HPT optical photographs of control shrimp, HVa-treated shrimp, and FVa-treated shrimp on day 5 were obtained. (Data not shown). The proportion of proliferating cells of HVa-administered shrimp and FVa-administered shrimp increased significantly (FIG. 5A). Fluorescence photographs of PI-stained HPT of control shrimp, HVa-shrimp, and FVa-shrimp shrimp on day 5 were obtained, and it was observed that the number of mitotic cells was large in HVa-shrimp and FVa-shrimp (data not shown) ). The mitotic index, expressed as the dividing cell ratio in HPT, was significantly higher in HVa and FVa-treated shrimp than that of control shrimp (FIG. 5B).

2.3. SEとしてのLVa後の対照エビ、7日HVa−PEエビ、7日FVa−PEエビの抵抗力
生菌攻撃なしの対照エビすべてが生残した。対照的に、生菌攻撃群では0.5日後に斃死の発生が開始した。3〜7日目でHVa投与エビとFVa投与エビ間に生残率に有意な差は見られなかった。しかし、5〜7日目でFVa投与エビのほうが(83.3%)HVa投与エビ(70%)より生残率が高かった。対照エビの生残率は生菌攻撃後4〜7日目で40%とずっと低かった(図6)。
2.3. Control shrimp after LVa as SE, 7-day HVa-PE shrimp, 7-day FVa-PE shrimp All control shrimp without viable cell challenge survived. In contrast, mortality began to occur after 0.5 days in the viable challenge group. On day 3-7, there was no significant difference in survival rate between HVa-administered shrimp and FVa-administered shrimp. However, on days 5-7, the survival rate was higher for the shrimp administered with FVa (83.3%) than for shrimp administered with HVa (70%). The survival rate of the control shrimp was much lower at 40% on the 4th to 7th day after the viable bacterial challenge (FIG. 6).

2.4. SEとしてのLVa後の対照エビ、7日HVa−PEエビ、7日FVa−PEエビの免疫パラメータ
SEとしてのLVa後0.5〜7日目に対照エビの免疫パラメータが減少した。7日HVa−PEエビの免疫パラメータはSEとしてのLVa後の3〜7日目に徐々に増加したが、背景値よりも低い値のままであった。7日FVa−PEエビのHC、GC、THCはSEとしてのLVa後0.5〜1日目より低かったが、その後増加し、SEとしてのLVa後3〜7日目に背景値と同様になった。7日FVa−PEエビのPO、RB、SOD、リゾチーム活性はSEとしてのLVa後1日目に増加し、SEとしてのLVa後0.5〜7日目に値は背景値と同様になった(図7、図8)。
2.4. Immune parameters of control shrimp, LVa-PE shrimp, 7-day HVa-PE shrimp, 7-day FVa-PE shrimp after LVa as SE Immune parameters of control shrimp decreased on days 5-7 after LVa as SE . The immune parameters of 7-day HVa-PE shrimp gradually increased on days 3-7 after LVa as SE, but remained below the background value. The HC, GC and THC of the 7th day FVa-PE shrimp were lower than the first to fifth day after LVa as SE, but increased after that, and similar to the background value on the third to seventh day after LVa as SE became. 7 day FVa-PE shrimp PO, RB, SOD, lysozyme activity increased on day 1 after LVa as SE, and values were similar to background values on days 0.5-7 after LVa as SE (FIGS. 7 and 8).

PEとしてのMS、HVa、FVa投与に続いてSEとしてのLVa投与を受けたエビの二次免疫応答パターンを明らかにするため、免疫パラメータが背景値に正規化され、相対比率値として表示される(図9A)。対照エビと7日HVa−PEエビの免疫パラメータパターンはSEとしてのLVa後1日目に最低まで減少した後、徐々に増加したが、値はSEとしてのLVa後1〜7日目に背景値よりずっと低いままであった。しかし、7日FVa−PEエビの免疫パラメータパターンは0.5日目に減少したが、1日目に徐々に増加し、値はSEとしてのLVa後3〜7日目に背景値と同様になった。対照エビに対する7日FVa−PEエビと7日HVa−PEエビの相対値を正規化する(normalize)ためにさらに計算が行われた(図9B)。SEとしてのLVaに直面したとき7日HVaエビと7日FVaエビ両方の免疫が誘発されたが、7日FVaエビは7日HVaエビよりも効率的な免疫応答を示した。   In order to clarify the secondary immune response pattern of shrimp who received MS, HVa, FVa as PE followed by LVa as SE, immune parameters are normalized to background values and displayed as relative ratio values (FIG. 9A). The immune parameter pattern of control shrimp and 7-day HVa-PE shrimp decreased gradually to the first day after LVa as SE and then gradually increased, but the values were background values 1-7 days after LVa as SE Remained much lower. However, the immune parameter pattern of the 7-day FVa-PE shrimp decreased on the 0.5th day, but gradually increased on the 1st day, and the value was similar to the background value on the 3rd to 7th day after the LVa as SE. became. Further calculations were performed to normalize the relative values of 7-day FVa-PE shrimp and 7-day HVa-PE shrimp relative to control shrimp (FIG. 9B). Both 7-day and 7-day FVa shrimp immunity was elicited when faced with LVa as SE, but 7-day FVa shrimp showed a more efficient immune response than 7-day HVa shrimp.

2.5. SEとしてのLVa後、SE後3日目の対照エビ、7日HVa−PEエビ、7日FVa−PEエビにおけるHPTの細胞増殖と分裂指数
SEとしてのLVa後、SE後3日目の対照エビ、7日HVa−PEエビ、7日FVa−PEエビのH&E染色HPTの光学写真を図10Aに示す。SEとしてのLVa後、7日FVa−PEエビの増殖細胞割合は7日HVa−PEエビと対照エビのそれより有意に高かった(図10B)。SEとしてのLV後の対照エビ、7日HVa−PEエビ、7日FVa−PEエビのPI染色HPTの蛍光写真を図10Cに示す。FVa投与エビにおいて有糸分裂細胞(矢印)の数が多いことが観察された。SEの3日後7日FVa−PEエビの分裂指数は対照エビと7日HVa−PEエビよりも有意に高かった(図10D)。
2.5. Cell growth and mitotic index of HPT in LVa as SE, 3 days post-SE control shrimp, 7-day HVa-PE shrimp, 7-day FVa-PE shrimp 3 days after SE after LVa as SE Optical photographs of H & E-stained HPTs of the eye control shrimp, 7-day HVa-PE shrimp, 7-day FVa-PE shrimp are shown in FIG. 10A. After LVa as SE, the percentage of proliferating cells of 7-day FVa-PE shrimp was significantly higher than that of 7-day HVa-PE shrimp and control shrimp (FIG. 10B). FIG. 10C shows fluorescence photographs of PI-stained HPT of control shrimp, 7-day HVa-PE shrimp, and 7-day FVa-PE shrimp after LV as SE. It was observed that the number of mitotic cells (arrows) was large in FVa-administered shrimp. The split index of 7 day FVa-PE shrimp 3 days after SE was significantly higher than control shrimp and 7 day HVa-PE shrimp (FIG. 10D).

2.6. SEとしてのLVa投与を受けたHVa−PEエビとFVa−PEエビにおける食作用とクリアランス能力、及びLBs攻撃を受けたHVa−PEエビとFVa−PEエビにおける食作用とクリアランス
対照エビ、7日HVa−PEエビ、7日FVa−PEエビの血球染色の後、3時間後のLVa投与を図11Aから図11Cに示す。HVa及びFVa処理において、細菌が凝集して細菌クラスタを形成した後、血球に付着した。両方の処理において、HCとSGCによる細菌クラスタの貪食が観察された(図11D、図11E)。同様の細菌凝集と貪食性HC及びSGCの現象が14日HVa−PEエビと14日FVa−PEエビの両方(図11F、図11G)、及び21日HVa−PEエビと21日FVa−PEエビの両方(図11H、11I)で観察された。LVa、HVa、FVaのインタクトがLiu染色法(Liu’s staining)により確認された。
2.6. Phagocytosis and clearance capacity in HVa-PE shrimp and FVa-PE shrimp treated with LVa as SE, and phagocytosis and clearance in HVa-PE shrimp and FVa-PE shrimp attacked with LBs Control shrimp 11A to 11C show LVa administration 3 hours after blood cell staining of 7-day HVa-PE shrimp and 7-day FVa-PE shrimp. In HVa and FVa treatment, bacteria aggregated to form bacterial clusters and then attached to blood cells. In both treatments, phagocytosis of bacterial clusters by HC and SGC was observed (FIGS. 11D and 11E). Similar bacterial aggregation and phagocytic HC and SGC phenomena were observed for both 14-day HVa-PE shrimp and 14-day FVa-PE shrimp (FIG. 11F, FIG. 11G), and 21-day HVa-PE shrimp and 21-day FVa-PE shrimp. In both (FIGS. 11H, 11I). Intact of LVa, HVa and FVa was confirmed by the Liu staining method (Liu's staining).

SEとしてのLVa投与を受けた7〜35日FVa−PEエビと7〜21日HVaエビの食作用活性はLVaの投与を受けた対照エビのそれより有意に高く(図12A)、SEとしてのLVa投与を受けた7〜35日FVa−PEエビと7〜35日HVa−PEエビの食作用係数はLVaの投与を受けた対照エビのそれよりやや高かった(図12B)。両処理のクリアランス能力は最長28日までパフォーマンスがより高いままであった(図12C)。LBsの投与を受けた7〜28日HVaエビ、7〜28日FVaエビ、対照エビの間で貪食能における有意な差は観察されなかったが(図12D)、LBsの投与を受けた7〜28日FVa−PEエビと7〜28日HVa−PEエビの食作用係数はLBsの投与を受けた対照エビのそれよりやや高かった(図12E)。LBsの投与を受けた7日HVa−PEエビと7日FVa−PEエビのクリアランス能力はLBsの投与を受けた対照エビのそれより有意に高かった。しかし、クリアランス能力の傾向は14日後低下した(図11F)。   The phagocytic activity of 7-35 day FVa-PE shrimp and 7-21 day HVa shrimp receiving LVa as SE was significantly higher than that of control shrimp receiving LVa (FIG. 12A). The phagocytic coefficient of 7-35 day FVa-PE shrimp and 7-35 day HVa-PE shrimp that received LVa was slightly higher than that of control shrimp that received LVa (FIG. 12B). The clearance capacity of both treatments remained higher up to 28 days (FIG. 12C). No significant difference in phagocytic ability was observed between 7-28 day HVa shrimp, 7-28 day FVa shrimp, and control shrimp receiving LBs (FIG. 12D), but 7-28 days receiving LBs. The phagocytic coefficient of 28-day FVa-PE shrimp and 7-28 day HVa-PE shrimp was slightly higher than that of control shrimp that received LBs (FIG. 12E). The clearance capacity of 7-day HVa-PE shrimp and 7-day FVa-PE shrimp receiving LBs was significantly higher than that of control shrimp receiving LBs. However, the tendency for clearance ability declined after 14 days (FIG. 11F).

2.7. HVa+FVa−PEエビにおけるクリアランス能力
HVaとFVa(CFU比1:1)の組み合わせ混合物の投与を受けたエビの血リンパにおけるクリアランス能力を図13に示す。エビは7つの群に振り分けられ、HVaとFVa(CFU比1:1)の組み合わせ混合物が注射された。その後各群が組み合わせ混合物(HVa+FVa)の投与を受けてからそれぞれ7、14、21、28、35、42日後にLVaに暴露された。LVaへの暴露の3時間後にクリアランス能力の分析用にエビから血リンパが採取された。血リンパ中のLVa残留量が少ないということは、クリアランス能力の高さを示唆している。図13に示すように、HVaとFVaの組み合わせ混合物は処理から42日目まで40%のクリアランス能力を示した。図12Cに示すようにHVa投与エビとFVa投与エビの結果が28日より後より高い能力を維持していないことと比較して、HVaとFVaの組み合わせ混合物により誘導されたエビの免疫は向上され、延長されている(保護期間が28日間に対して42日間と1.5倍より長くなっている)。
2.7. Clearance ability in HVa + FVa-PE shrimp Clearance ability in hemolymph of shrimp administered with a combination mixture of HVa and FVa (CFU ratio 1: 1) is shown in FIG. Shrimp were divided into 7 groups and injected with a combination mixture of HVa and FVa (CFU ratio 1: 1). Each group was then exposed to LVa at 7, 14, 21, 28, 35, and 42 days after receiving the combination mixture (HVa + FVa), respectively. Hemolymph was collected from shrimps for analysis of clearance capacity 3 hours after exposure to LVa. A low amount of LVa in the hemolymph suggests a high clearance capacity. As shown in FIG. 13, the combined mixture of HVa and FVa showed 40% clearance capacity from treatment to day 42. The immunity of shrimp induced by the combined mixture of HVa and FVa is improved compared to the fact that the results of HVa and FVa administered shrimp do not maintain higher ability after 28 days as shown in FIG. 12C , Extended (protection period is 42 days versus 28 days, 1.5 times longer).

3. 結論及び討論
現在の研究結果から、HVaとFVaの両方がV.alginolyticusへのSEからエビを保護するワクチンとして使用できる。一次免疫パターン、二次免疫パターン、高められた食作用、免疫誘発の強さに基づきFVaはよりよい候補であり、一方HVaは一次免疫における早期の増加、二次免疫パターンにおける若干の向上、高められた食作用、免疫誘発の若干の強さに基づき、免疫刺激剤とワクチンの両方としての二面性を示した。したがって、HVaは特異的認識および記憶の誘導を促進する「免疫活性化物質」または「アジュバント」として使用することができる。FVaとHVaの組み合わせ混合物は免疫応答を調節し、エビ養殖産業においてビブリオ病に対する免疫力を高めるための「ワクチン成分」として有効に作用する。
3. Conclusion and discussion From the current research results, both HVa and FVa are It can be used as a vaccine to protect shrimp from SE to arginolyticus. FVa is a better candidate based on primary immunity pattern, secondary immunity pattern, enhanced phagocytosis, and strength of immunity induction, whereas HVa is an early increase in primary immunity, slight improvement and enhancement in secondary immunity pattern Based on the phagocytosis effected and some strength of immunity induction, it showed duality as both an immunostimulant and a vaccine. Thus, HVa can be used as an “immunoactivator” or “adjuvant” that promotes specific recognition and induction of memory. The combined mixture of FVa and HVa effectively acts as a “vaccine component” to modulate the immune response and enhance immunity against Vibrio disease in the shrimp farming industry.

まとめると、HVa投与エビの免疫パラメータは1日後の早期に増加し、一方FVa投与エビの免疫パラメータは5日後に増加して、両方の処理ともにより高いHPT増殖を示した。FVa投与エビはLVaに対するより高い抵抗力を示し、また免疫パラメータのより早い回復、及び攻撃後3日でより高いHPTの増殖と分裂指数を示した。さらに、HVaとFVaの組み合わせ混合物の投与を受けたエビはHVaまたはFVaを単独で投与されたエビよりもより向上かつ延長された免疫を示した。そのようなHVaとFVaの組み合わせ混合物はエビ養殖産業においてビブリオ感染に対する改良型ワクチンの開発に役立つ。   In summary, the immune parameters of HVa-administered shrimp increased early after 1 day, while the immune parameters of FVa-administered shrimp increased after 5 days, with both treatments showing higher HPT proliferation. FVa-treated shrimp showed higher resistance to LVa, faster recovery of immune parameters, and higher HPT proliferation and mitotic index 3 days after challenge. In addition, shrimp that received a combination mixture of HVa and FVa showed improved and prolonged immunity over shrimp administered HVa or FVa alone. Such a combined mixture of HVa and FVa is useful for the development of improved vaccines against Vibrio infections in the shrimp farming industry.

なし None

参考文献References

1. Lightner DV、Redman RM.Shrimp disease and current diagnostic methods.Aquaculture 1998;164、201〜220.
2. Lavilla−Pitogo CR、Lean’O EM、Paner MG.Mortalities of pond−cultured juvenile shrimp,Penaeus monodon,associated with dominance of luminescent Vibrios in the rearing environment.Aquaculture 1998;164、337〜349.
3. Karunasagar I、Pai IR、Malathi GR、karunasagar I.Mass mortality of Penaeus monodon larvae due to antibiotic−resistant Vibrio harveyi infection.Aquaculture 1994;128、203〜209.
4. Cabello FC.Heavy use of prophylactic antibiotics in aquaculture:a growing problem for human and animal health and for the environment.Environ Microbiol 2006;8、1137〜1144.
5. Gatesoupe FJ.The use of probiotics in aquaculture.Aquaculture 1999;180:147〜165.
6. Smith VJ、Brown JH、Hauton C.Immunostimulation in crustaceans:does it really protect against infection?Fish Shellfish Immunol 2003;15、71〜90.
7. Teunissen OSP、Faber R、Booms GHR、Latscha T、Boon JH.Influence of vaccination on Vibriosis resistance of the giant black tiger shrimp Penaeus monodon(Fabricius).Aquaculture 1998;164、359〜366.
8. Pereira JJ、Shanmugan SA、Sulthana M、Sundaraj V.Effect of vaccination on Vibriosis resistance of Fenneropenaeus indicus.Veter Anim Sci 2009;6、246〜250.
9. Hossain MMM、Kawai K、Oshima S.Effective inactivation of Edwardsiella tarda for the development of vaccine for fish.J Biol Sci 2009;9、392〜401.
10. Sommerset I、Krossoy B、Biering E、Frost P.Vaccines for fish in aquaculture.Expert Rev vaccines 2005;4、89〜101.
11. Powell A、Pope EC、Eddy FE、Roberts EC、Shields RJ、Francis M、Smith P、Topps S、Reid J、Rowley AF.Enhanced immune defences in Pacific white shrimp(Litopenaeus vannamei)post−exposure to a Vibrio vaccine.J Invert Pathol 2011b;107、95〜99.
12. Martin GG、Graves B.Fine structure and classification of shrimp hemocytes.J Morphol 1985;185、339〜348.
13. Loker ES、Adema CM、Zhang SM、Kepler TB.Invertebrate immune system not homogeneous,not simple,not well understood.Immunol Rev 2004;198、10〜24.
14. Zhang ZF、Shao M、Kang KH.Classification of haematopoietic cells and haemocytes in Chinese prawn Fenneropenaeus chinensis.Fish Shellfish Immunol 2006;21、159〜169.
15. van de Braak、CBT、Botterblom MHA、Liu W、Taverne N、van der Knaap WPW、Ronbout JHWM.the role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp(Penaeus monodon).Fish Shellfish Immunol 2002;12、253〜272.
16. Jiravanichpaisal P、Lee BL、Soederhaell K.、Cell−mediated immunity in arthropods:Hematopoiesis,coagulation,melanization and opsonization.Immunobiology 2006;211、213〜236.
17. Rowley AF、Powell A.Invertebrate immune systems specific、quasi−specific,or nonspecific?J Immunol 2007;179、7209〜7214.
18. Cerenius L、Lee BL、Soederhaell K.the proPO−system:pros and cons for its role in invertebrate immunity.Trend Immunol 2008;29、263〜271.
19. Soederhaell K、Cerenius L.Roles of the prophenoloxidase−activating system in invertebrate immunity.Curr Opin Immunol 1998;10、23〜28.
20. Bogan C、Roellinghoff M、Diefenbach A.Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity.Curr Opin Immunol 2000;12、64〜76.
21. Fridovich I.Superoxide radical and superoxide dismutase.Annu Rev Biochem 1995;64、97〜112.
22. Itami T、Takahashi Y、Nakayama Y.Efficacy of vaccination against Vibriosis in cultured kuruma prawn、Penaeus japonicus.J Aqua Animal Health 1989;1、234〜242.
23. Itami T、Takahashi Y.Survival of larval giant tiger prawns Penaeus monodon after addition of killed Vibrio cells to a microencapsulated diet.J Aqua Animal Health 1991;3、151〜152
24. Itami T、Yan Y、Takahashi Y.Studies on vaccination against Vibriosis in cultured kuruma prawns Penaeus japonicus:Effect of different vaccine preparations and oral vaccination efficiency.Fisheries 1992;40、139〜144.
25. Alabi AO、Jones DA、Latchford JW.the efficacy of immersion as opposed to oral vaccination of Penaeus indicus larvae against Vibrio harveyi.Aquaculture 1999;178、1〜11.
26. Pope EC、Powell A、Roberts EC、Shields RJ、Wardle R、Rowley AF.Enhanced cellular immunity in shrimp(Litopenaeus vannamei)after ‘vaccination’.PLoS ONE 2011;6:e20960.doi:1371/journal.pone.0020960.
27. Namikoshi A、Wu JL、Yamashita T、Nishizawa T、Nishioka T、Arimoto M、Muroga K.Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus.Aquaculture 2004;229、25〜35.
28. Witteveldt J、Cifuentes CC、Vlak JM、Hulten MCWV.Protection of Penaeus monodon against white spot syndrome virus by oral vaccination.J Virol 2004;78、2057〜2061.
29. Witteveldt J、Vlak JM、Hulten MCWV.Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine.Fish Shellfish Immunol 2004;16、571〜579.
30. Vaseeharan B、Anand TP、Murugan T、Chen JC.Shrimp vaccination trials with the VP292 protein of white spot syndrome virus.Letters in Applied Microbiology 2006;43、137〜142.
31. Arala−Chaves M、Sequeira T.Is there any kind of adaptive immunity in invertebrates?Aquaculture 2000;191、247〜258.
32. Kurtz J.Memory in the innate and adaptive immune systems.Microbes and Infection 2004;6、1410〜1417.
33. Kurtz J.Specific memory within innate immune system Trends in Immunol 2005:26、186〜192.
34. Roth O、Sadd BM、Schmid−Hempel P、Kurtz J.Strain〜specific priming of resistance in the red flour beetle、Tribolium castaneum.Proc.R.Soc.B.2009:276、145〜151.
35. Chou PH、Chang HS、Chen TT、Lin HY、Chen YM.the putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam(LvDccam)is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail.Dev Comp Immunol 2009;33、1258〜1267.
36. Chou PH、Chang HS、Chen IT、Lee CW、Hung HY、Wang KCHC.Penaeus monodon Dscam(PmDscam)has a highly diverse cytoplasmic tail and is the first membrane〜bound shrimp Dscam to be reported.Fish Shellfish Immunol 2011;30、1109〜1123.
37. Watthansurorot A、Juravanichpaisal P、Liu H、Soederhaell I、Soederhaell K.、Bacteria−induced Dscam isoformers of the Crustacean、Pacifastacus leniusculus.PLoS Pathog 2011;7:e1002062.
38. Rodriguez J、Le Moullac F.State of the art of immunological tools and health control of penaeid shrimp.Aquaculture 2000;191、109〜119.
39. Liu CH、Cheng W、Hsu JP、Chen JC.Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing.Dis Aquat Org 2004;61、169〜174.
40. Yeh ST、Chen JC.White shrimp Litopenaeus vannamei that received the hot−water extract of Gracilaria tenuistipitata showed earlier recovery in immunity after a Vibrio alginolyticus injection.Fish Shellfish Immunol 2009;26、724〜730.
41. Chan SM、Rankin SM、Keeley LL.Characterization of the molt stages in Penaeus vannamei:setogenesis and hemolymph levels of total protein ecdysteroids,and glucose.Biol Bull 1988;175、185〜192
42. Sirirustanaun N、Chen JC、Lin YC、Yeh ST、Liou CH、Chen LL、Sim SS、Chiew SL.Dietary administration of a Gracilaria tenuistipitata extract enhances the immune response and resistance against Vibrio alginolyticus and white spot syndrome virus in the white shrimp Litopenaeus vannamei.Fish Shellfish Immunol 2011;31、848〜855.
43. Bell KL、Smith VJ.In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas(L.)Dev Comp Immunol 1993;17、211〜219.
44. Humason GL.Animal tissue technique.San Francisco、USA:Freeman Company;1979.661p.
45. Soederhaell K、Unestam T.Activation of serum prophenoloxidase in arthropod immunity:The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase.Can J Microbiol 1979;25、406〜414.
46. Biagini G、Sala D、Zini I.Diethyldithiocarbamate、a superoxide dismutase inhibitor、counteracts the maturation of ischemic−like lesions caused by endothelin−1 intrastriatal injection.Neurosci Lett 1995;90、212〜216.
47. Ellis AE.Lysozyme assay.In: Stolen JS、Fletcher TC、Anderson DP、Roberson BS、van Muiswinkel WB、editors.Technique in fish immunology−1.Fair Haven、NJ: SOS publications;1990.p.101〜103
48. Tayag CM、Lin YC、Li CC、Liou CH、Chen JC.Administration of the hot−water extract of Spirulina platensis enhanced the immune response of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus.Fish Shellfish Immunol 2010;28、764〜773.
49. Li CC、Yeh ST、Chen JC.the immune response of white shrimp Litopenaeus vannamei following Vibrio alginolyticus injection.Fish Shellfish Immunol 2008;25、853〜860.
50. Li CC、Yeh ST、Chen JC.Innate immunity of the white shrimp Litopenaeus vannamei weakened by the combination of a Vibrio alginolyticus injection and low−salinity stress.Fish Shellfish Immunol 2010;28、121〜127.
51. Cheng W、Liu CH、Kuo CM、Chen JC.Dietary administration of sodium alginate enhance the immune ability of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus.Fish Shellfish Immunol 2005;18、1〜12.
52. Chang CC、Yeh MS、Lin HK、Cheng W.the effect of Vibrio alginolyticus infection on capase−3 expression and activity in white shrimp Litopenaeus vannamei.Fish Shellfish Immunol 2008;25、672〜678.
53. Smith VJ、Soederhaell K.Induction of degranulation and lysis of haemocytes in the freshwater crayfish,Astacus astacus,by components of prophenoloxidase activating system in vitro.Cell Tissue Res 1983;233、295〜303.
54. Lorenzon S、De Guannini S、Smith VJ、Ferrero EA.Effects of LPS injection on circulating haemocytes in crustaceans in vivo.Fish Shellfish Immunol 1999;9、31〜50.
55. Hou WY、Chen JC.the immunostimulatory effect of hot−water extract of Gracilaria tenuistiptata on the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus.Fish Shellfish Immunol 2005;19、127〜138.
56. Yeh ST、Chen JC.Immunonodulation by carrageenan in the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus.Aquaculture 2008;276、22〜26.
57. Watson FL、Puttmann〜Holgado R、Thomas F、Lamar DL.Hughes M.et al.Extensive diversity of Ig−superfamily protein in the immune system of insects.Science 2005;309、1874〜1878.
58. Pham LN、Dionne MS、Shirasu−Hiza M、Schneider DS、A specific primed immune response in Drosophila is Dependent on Phagocytes.PLoS Pathog 2007; 3:e26.doi:10.1371/journal.ppat.0030026.
59. Dong Y、Taylor HE、Dimopoulos G、AgDscan、a hypervarible immunoglobulin domain−containing receptor of receptor the Anopheles gambiae innate immune system.PLoS Biol、2006;4、1137〜1145.
60. Wojtowicz WM、Flanagan JJ、Millard SS、Zipursky SL、Clemens JC、Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform−specific homophilic binding.Cell、2004;118、619〜633.
1. Lightner DV, Redman RM. Shrim disease and current diagnostic methods. Aquaculture 1998; 164, 201-220.
2. Lavilla-Pitogo CR, Lean'OEM, Paner MG. Moralties of pondered juvenile shrimp, Penaeus monodon, associated with dominance of luminance vibrio in the rearing environment. Aquaculture 1998; 164,337-349.
3. Karunasagar I, Pai IR, Malathi GR, Karunasagar I. Mass Mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture 1994; 128, 203-209.
4). Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing probe for human and animal health and for the environment. Environ Microbiol 2006; 8, 1137-1144.
5. Gatesoope FJ. The use of probiotics in equipment. Aquaculture 1999; 180: 147-165.
6). Smith VJ, Brown JH, Hauton C.I. Immunostimulation in crustaceans: does it really protect protect against information? Fish Shellfish Immunol 2003; 15, 71-90.
7). Teunissen OSP, Faber R, Boots GHR, Latscha T, Boon JH. Inflation of vaccination on Vibriosis resistance of the giant black tiger shrimpen Penaeus monodon (Fabricius). Aquaculture 1998; 164, 359-366.
8). Pereira JJ, Shanmugan SA, Sultana M, Sundaraj V. Effect of vacation on Vibriosis resistance of Fennelopenaeus indicus. Veter Anim Sci 2009; 6, 246-250.
9. Hossain MMM, Kawai K, Oshima S .; Effective inactivation of Edwardsiella tarda for the development of vaccine for fish. J Biol Sci 2009; 9, 392-401.
10. Somerset I, Klossoy B, Biering E, Frost P. et al. Vaccines for fish in aquaculture. Expert Rev vaccines 2005; 4, 89-101.
11. Powell A, Pope EC, Eddy FE, Roberts EC, Shields RJ, Francis M, Smith P, Topps S, Reid J, Rowley AF. Enhanced immunodefenses in Pacific white shrim (Litopenaeus vannamei) post-exposure to a Vibrio vaccine. J Invert Path 2011b; 107, 95-99.
12 Martin GG, Graves B.M. Fine structure and classification of shrim hemocytes. J Morphor 1985; 185, 339-348.
13. Locker ES, Adema CM, Zhang SM, Kepler TB. Invertate immune system not homogeneous, not simple, not well understead. Immunol Rev 2004; 198, 10-24.
14 Zhang ZF, Shao M, Kang KH. Classification of haematopoietic cells and haemocytes in Chinese prawn Feneropenaeus chinensis. Fish Shellfish Immunol 2006; 21, 159-169.
15. van de Braak, CBT, Bottomblom MHA, Liu W, Taberne N, van der Knap WPW, Rombout JHWM. the role of the haematopoietic tissue in haemocyte production and measurement in the black tiger shrimp (Penaeus monodon). Fish Shellfish Immunol 2002; 12, 253-272.
16. Jiravanichpaisal P, Lee BL, Soederhaell K. et al. Cell-mediated immunity in arthropods: Hematopoiesis, coagulation, melanization and opsonization. Immunobiology 2006; 211, 213-236.
17. Rowley AF, Powell A. Invertebrate immune systems specific, quasi-specific, or nonspecific? J Immunol 2007; 179, 7209-7214.
18. Cerenius L, Lee BL, Soderhaell K. et al. the proPO-system: pros and cons for rolls in invertible immunity. Trend Immunol 2008; 29, 263-271.
19. Soderhaell K, Cerenius L. Roles of the proxenoxidase-activating system in inverted immunity. Curr Opin Immunol 1998; 10, 23-28.
20. Bogan C, Roellingoff M, Dieffenbach A.M. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 2000; 12, 64-76.
21. Fridovic I.I. Superoxide radical and superoxide dismutase. Annu Rev Biochem 1995; 64, 97-112.
22. Itami T, Takahashi Y, Nakayama Y. Eficacy of vaccination against Vibrosis in cultured kuruma prawn, Penaeus japanicus. J Aqua Animal Health 1989; 1,234-242.
23. Itami T, Takahashi Y. Survival of Larval Giant Tiger Prawns Penaeus monodon after addition of killed Vibrio cells to a microencapsulated diet. J Aqua Animal Health 1991; 3, 151-152.
24. Itami T, Yan Y, Takahashi Y. Studies on vacation agility in culture in cultures kuruma prunes Penaeus Japanicus: Effect of differentiated vaccine preparations and oral vaccinations. Fisheries 1992; 40, 139-144.
25. Arabi AO, Jones DA, Latchford JW. the efficiency of imposition as opposed to oral vaccination of Penaeus indicus larvae against Vibrio harveyi. Aquaculture 1999; 178, 1-11.
26. Pope EC, Powell A, Roberts EC, Shields RJ, Wardle R, Rowley AF. Enhanced cellular immunity in shrim (Litopenaeus vannamei) after 'vaccination'. PLoS ONE 2011; 6: e20960. doi: 1371 / journal. pone. 0020960.
27. Namikoshi A, Wu JL, Yamashita T, Nishizawa T, Nishioka T, Arimoto M, Muruga K. et al. Vaccination trials with Penaeus japonicus to inducience resistance to white spot syndrome virus. Aquaculture 2004; 229, 25-35.
28. Witeveldt J, Cifentes CC, Vlak JM, Hulten MCWV. Protection of Penaeus monodon again white spot syndrom virus by oral vaccination. J Virol 2004; 78, 2057-2061.
29. Witeveldt J, Vlak JM, Hulten MCWV. Protection of Penaeus monodon again white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol 2004; 16, 571-579.
30. Vaseharan B, Anand TP, Muruguan T, Chen JC. Shrim vaccination trials the the VP292 protein of white spot syndrome virus. Letters in Applied Microbiology 2006; 43, 137-142.
31. Arala-Chaves M, Sequeira T. et al. Is there any kind of adaptive immunity in inverteds? Aquaculture 2000; 191, 247-258.
32. Kurtz J. et al. Memory in the innate and adaptive immuno systems. Microbes and Infection 2004; 6, 1410-1417.
33. Kurtz J. et al. Specific memory with innate immune system Trends in Immunol 2005: 26, 186-192.
34. Roth O, Sadd BM, Schmid-Hempel P, Kurtz J. et al. Strain-specific priming of resistance in the red floor beetle, Tribolium castaneum. Proc. R. Soc. B. 2009: 276, 145-151.
35. Chou PH, Chang HS, Chen TT, Lin HY, Chen YM. the putative invertebrate adaptive protein Litopenaeuus vannamei Dscam (LvDccam) is the first reported Dampam trammem mp Dev Comp Immunol 2009; 33, 1258-1267.
36. Chou PH, Chang HS, Chen IT, Lee CW, Hung HY, Wang KCHC. Penaeus monodon Dscam (PmDscam) has a high divergence cytoplasmic tail and is the first membrane to bound shrimp Dscam to be reported. Fish Shellfish Immunol 2011; 30, 1109-1123.
37. Wattansurorot A, Juravanichpaisal P, Liu H, Soederhaell I, Soederhaell K. et al. Bacteria-induced Dscam isoformers of the Crustian, Pacifastacus leniusculus. PLoS Pathog 2011; 7: e1002062.
38. Rodriguez J, Le Moollac F. State of the art of immunological tools and health control of penaeid shrim. Aquaculture 2000; 191, 109-119.
39. Liu CH, Cheng W, Hsu JP, Chen JC. Vibrio arginoliticus infection in the white shrim Litopenaeus vannamei confused by polymerase chain reaction and 16S rDNA sequencing. Dis Aqua Org 2004; 61, 169-174.
40. Yeh ST, Chen JC. White shrimp Litopenaeus vannamei that received the hot-water extract of Gracilaria tenituitious injured in recovery in immobility in recovery. Fish Shellfish Immunol 2009; 26, 724-730.
41. Chan SM, Rankin SM, Keeley LL. Charactorization of the malt stages in Penaeus vannamei: setogenesis and hemolym levels of total protein ecdysteroids, and glucose. Biol Bull 1988; 175, 185-192
42. Siriustanaun N, Chen JC, Lin YC, Yeh ST, Liou CH, Chen LL, Sim SS, Chain SL. Dietary administration of a Gracilaria tenuispitita extract enhancer the human response and resilience and humanity of the world. Fish Shellfish Immunol 2011; 31, 848-855.
43. Bell KL, Smith VJ. In Vitro superoxide production by hyalline cells of the Shore Crab Carcinus mainas (L.) Dev Comp Immunol 1993; 17, 211-219.
44. Humason GL. Animal tissue technique. San Francisco, USA: Freeman Company; 1979.661 p.
45. Soderhaell K, Unestam T .; Activation of serum prolonoloxidase in arthropod immunity: the specificity of cell glucan activation and activation by pulmonary function. Can J Microbiol 1979; 25, 406-414.
46. Biagini G, Sala D, Zini I. Diethyldithiocarbamate, a superoxide dismutase inhibitor, counteracts the manufacture of ischemic-like conditions causative by endothelin. Neurosci Lett 1995; 90, 212-216.
47. Ellis AE. Lysozyme assay. In: Stolen JS, Fletcher TC, Anderson DP, Robertson BS, van Muiswinkel WB, editors. Technique in fish immunology-1. Fair Haven, NJ: SOS publications; 1990. p. 101-103
48. Tayag CM, Lin YC, Li CC, Liou CH, Chen JC. Administration of the hot-water extract of Spirulina platensis enhanced the imminous response of whit the instimate vensme ti n gen s i n a t e n i s i n a i s s s s s s e n i n a n i n a n i n a n i n i n e n i t e n i n a i n i i n e n i i n i i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i i n i i i i i i i i i, i, i am, i am ” Fish Shellfish Immunol 2010; 28, 764-773.
49. Li CC, Yeh ST, Chen JC. the immune response of white shrim Litopenaeus vannamei following Vibrio alginolyticus injection. Fish Shellfish Immunol 2008; 25, 853-860.
50. Li CC, Yeh ST, Chen JC. Innate immunity of the white shrim Litopenaeus vannamei weeked by the combination of a Vibrio alginolyticus injection and low-salin. Fish Shellfish Immunol 2010; 28, 121-127.
51. Cheng W, Liu CH, Kuo CM, Chen JC. Dietary administration of sodum alginate enhance the immobility of whit shrim Litopenaeus vannamei and it resistance agility in Vigor. Fish Shellfish Immunol 2005; 18, 1-12.
52. Chang CC, Yeh MS, Lin HK, Cheng W. the effect of Vibrio arginolyticus infection on case-3 expression and activity in white shrim Litopenaeus vannamei. Fish Shellfish Immunol 2008; 25, 672-678.
53. Smith VJ, Soderhaell K. Induction of degeneration and lysis of haemocycles in the freshwater crayfish, Astacus astacus, by components of profilovitatives activation. Cell Tissue Res 1983; 233, 295-303.
54. Lorenzon S, De Guannini S, Smith VJ, Ferrero EA. Effects of LPS injection on circading haemocytes in crustaceans in vivo. Fish Shellfish Immunol 1999; 9, 31-50.
55. Hou WY, Chen JC. the immunostimulatory effect of hot-water extract of Gracilaria tenuistipata on the white shrittle Litopenaeus vannamei and venigani sist varisti sist venitali. Fish Shellfish Immunol 2005; 19, 127-138.
56. Yeh ST, Chen JC. Immunology by carriage in the white shrim Litopenaeus vannamei and it resistance aganist Vibrio alginolyticus. Aquaculture 2008; 276, 22-26.
57. Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL. Hughes M.M. et al. Extensible diversity of Ig-superfamily protein in the immunosystem of incts. Science 2005; 309, 1874-1878.
58. Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS, A specific primed response in Drosophila is dependent on Phagocytos. PLoS Pathog 2007; 3: e26. doi: 10.1371 / journal. ppat. 0030026.
59. Dong Y, Taylor HE, Dimopoulos G, AgDscan, a hyperimmunoglobulin domain-containering receptor of the anthemamines gamnes. PLoS Biol, 2006; 4, 1137-1145.
60. Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC, Alternative splicing of Drosophile oxidi- gents of the world. Cell, 2004; 118, 619-633.

Claims (11)

エビにおいてビブリオ菌により引き起こされる感染に対するエビ用ワクチン組成物であって、前記ビブリオ菌の熱不活化細胞(熱不活化ビブリオ細胞)と前記ビブリオ菌のホルマリン不活化細胞(ホルマリン不活化ビブリオ細胞)を含み、そのうち、前記熱不活化ビブリオ細胞と前記ホルマリン不活化ビブリオ細胞が、エビにおいてビブリオ菌に対し特異的な免疫を誘導するために有効な量で存在することを特徴とする、エビ用ワクチン組成物。 A shrimp vaccine composition against infection caused by Vibrio in shrimp, heat inactivated cells of the Vibrio (heat inactivated Vibrio cells) and the vibrio of formalin-inactivated cells (formalin-inactivated Vibrio cells) A vaccine composition for shrimp , wherein the heat-inactivated vibrio cells and the formalin-inactivated vibrio cells are present in an amount effective for inducing specific immunity against vibrio in shrimp object. 前記ビブリオ菌が、V.alginolyticus、V.anguillarum、V.campbelli、V.damsella、V.fischeri、V.harveyi、V.logei、V.mediterrani、V.ordalii、V.orientalis、V.parahaemolyticus、V.pelagicus、V.splendidus、V.vulnificusを含む群より選択されたことを特徴とする、請求項1に記載のエビ用ワクチン組成物。 The Vibrio bacterium is V. alginoliticus, V.M. angulararum, V.M. campbelli, V.M. damsella, V.M. fischeri, V.M. harveyi, V.H. logei, V.M. mediterani, V.M. ordalii, V.M. orientalis, V.M. parahaemolyticus, V. et al. pelagicus, V. et al. splendidus, V.M. Shrimp vaccine composition according to claim 1, characterized in that it is selected from the group comprising vulnificus. 前記ワクチン組成物が、注射または浸漬での投与用であることを特徴とする、請求項1または2に記載のエビ用ワクチン組成物。 The shrimp vaccine composition according to claim 1 or 2, wherein the vaccine composition is for injection or immersion administration. 前記熱不活化ビブリオ細胞と前記ホルマリン不活化ビブリオ細胞がワクチン組成物中に合計で10−10CFU/mlの量で存在することを特徴とする、請求項1乃至3のいずれかに記載のエビ用ワクチン組成物。 4. The heat-inactivated vibrio cell and the formalin-inactivated vibrio cell are present in the vaccine composition in a total amount of 10 < 5 > -10 < 9 > CFU / ml. Shrimp vaccine composition. 前記熱不活化ビブリオ細胞と前記ホルマリン不活化ビブリオ細胞が、前記ワクチン組成物中にCFU比0.1:1〜1:0.1で存在することを特徴とする、請求項1乃至4のいずれかに記載のエビ用ワクチン組成物。 5. The heat-inactivated vibrio cell and the formalin-inactivated vibrio cell are present in the vaccine composition at a CFU ratio of 0.1: 1 to 1: 0.1, respectively. A shrimp vaccine composition according to claim 1. 前記エビが、バナメイエビ(Litopenaeus vannamei)、ブラックタイガーエビ(Penaeus monodon)、クルマエビ(Marsupenaeus japonics)、コウライエビ(Fenneropenaeus chinensis)、インドエビ(F. indicus)、ヨシエビ(Metapenaeus ensis)、レッドテールシュリンプ(F. penicillatus)、オニテナガエビ(Macrobrachium rosenbergii)を含む群より選択されたことを特徴とする、請求項1乃至5のいずれかに記載のエビ用ワクチン組成物。 The shrimp, vannamei shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), prawns (Marsupenaeus japonic u s), Kouraiebi (Fenneropenaeus chinensis), Indoebi (F. indicus), Metapenaeus Ensis (Metapenaeus ensis), red tail shrimp (F Penicillatus), Shrimp vaccine (Macrobrachium rosenbergii), selected from the group comprising shrimp vaccine composition according to any one of claims 1-5. ビブリオ菌のホルマリン不活化細胞(ホルマリン不活化ビブリオ細胞)から作製された、エビにおいてビブリオ菌により引き起こされる感染に対するエビ用ワクチンの免疫を向上するためのアジュバンドとしての前記ビブリオ菌の熱不活化細胞(熱不活化ビブリオ細胞)の使用。 Heat-inactivated cells of Vibrio as an adjuvant for improving the immunity of a shrimp vaccine against infection caused by Vibrio in Vibrio, prepared from Vibrio formalin-inactivated cells (formalin-inactivated Vibrio cells) Use of (heat inactivated vibrio cells). 前記熱不活化ビブリオ細胞が前記ホルマリン不活化ビブリオ細胞と混合され、前記ホルマリン不活化ビブリオ細胞単独と比較して、前記ビブリオ菌に対してより強化かつ延長された免疫応答を誘導できる混合物を形成することを特徴とする、請求項7に記載の使用。 The heat-inactivated vibrio cells are mixed with the formalin-inactivated vibrio cells to form a mixture that can induce a more enhanced and prolonged immune response against the vibrio bacteria compared to the formalin-inactivated vibrio cells alone. Use according to claim 7, characterized in that. 前記熱不活化ビブリオ細胞と前記ホルマリン不活化ビブリオ細胞を混合して混合物を形成する工程を含むことを特徴とする、請求項1乃至6のいずれかにおいて定義されるエビ用ワクチン組成物の作製方法。 The method for producing a shrimp vaccine composition as defined in any one of claims 1 to 6, comprising a step of mixing the heat-inactivated vibrio cells and the formalin-inactivated vibrio cells to form a mixture. . 前記混合物にアジュバントとしての追加成分を追加する工程を含まないことを特徴とする、請求項9に記載の方法。 The method according to claim 9, wherein the method does not include adding an additional component as an adjuvant to the mixture. エビにおいてビブリオ菌に対して強化及び延長された免疫応答を含む特異的な免疫を誘導するために有効である、エビにおいてビブリオ菌により引き起こされる感染に対するエビ用ワクチン組成物の製造のための、  For the production of a shrimp vaccine composition against infections caused by Vibrio in shrimp, effective for inducing specific immunity including enhanced and prolonged immune response against Vibrio in shrimp,
ビブリオ菌の熱不活化細胞(熱不活化ビブリオ細胞)とビブリオ菌のホルマリン不活化細胞(ホルマリン不活化ビブリオ細胞)との組み合わせの使用。  Use of a combination of Vibrio heat-inactivated cells (heat-inactivated Vibrio cells) and Vibrio formalin-inactivated cells (formalin-inactivated Vibrio cells).
JP2014009769A 2014-01-22 2014-01-22 Vaccine against Vibrio infection in shrimp and method for producing the same Expired - Fee Related JP5863839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009769A JP5863839B2 (en) 2014-01-22 2014-01-22 Vaccine against Vibrio infection in shrimp and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014009769A JP5863839B2 (en) 2014-01-22 2014-01-22 Vaccine against Vibrio infection in shrimp and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015137254A JP2015137254A (en) 2015-07-30
JP5863839B2 true JP5863839B2 (en) 2016-02-17

Family

ID=53768500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009769A Expired - Fee Related JP5863839B2 (en) 2014-01-22 2014-01-22 Vaccine against Vibrio infection in shrimp and method for producing the same

Country Status (1)

Country Link
JP (1) JP5863839B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240032900A (en) 2021-07-09 2024-03-12 스미또모 가가꾸 가부시키가이샤 Composition for rearing of shrimp order organisms, and composition for prevention or treatment of shrimp order infections

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204820A (en) * 1989-10-12 1991-09-06 Nippon Saibai Suisan Kk Preventive vaccine for bacterial disease of prawn and production thereof
JP2569414B2 (en) * 1991-11-19 1997-01-08 水産庁長官 Marine fish mixed vaccine

Also Published As

Publication number Publication date
JP2015137254A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
de Souza Valente et al. Vibrio and major commercially important vibriosis diseases in decapod crustaceans
Lin et al. Vaccination enhances early immune responses in white shrimp Litopenaeus vannamei after secondary exposure to Vibrio alginolyticus
Harikrishnan et al. Fish health aspects in grouper aquaculture
Novriadi Vibriosis in aquaculture
Mujeeb Rahiman et al. Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival, growth performance and immune response of Macrobrachium rosenbergii (de Man)
Gómez et al. Biology and mucosal immunity to myxozoans
Xia et al. The effect of Aeromonas hydrophila infection on the non-specific immunity of blunt snout bream (Megalobrama amblycephala)
Traifalgar et al. Efficacy of dietary immunostimulants to enhance the immunological responses and Vibriosis resistance of juvenile Penaeus monodon
Rajkumar et al. Ontogenetic changes in the expression of immune related genes in response to immunostimulants and resistance against white spot syndrome virus in Litopenaeus vannamei
Chong et al. Phytotherapy in aquaculture: Integration of endogenous application with science
Gouife et al. Photobacterium damselae subsp. damselae in mariculture
Lio-Po et al. Infectious diseases of warmwater fish in fresh water.
Takahashi et al. Bacterial and viral diseases of kuruma shrimp (Penaeus japonicus) in Japan
JP5863839B2 (en) Vaccine against Vibrio infection in shrimp and method for producing the same
Varalakshmi et al. Bacterial Fish Diseases and Treatment
Bartholomew et al. Piscirickettsia salmonis
Jansson et al. Infectious diseases of coldwater fish in marine and brackish waters.
Abou‐Okada et al. Effect of booster vaccination on immunoprotection in European seabass vaccinated against vibriosis
Van Duy et al. Application of probiotics from marine microbes for sustainable marine aquaculture development
TWI546017B (en) Vaccine against vibrio infection in shrimp and preparation method thereof
Nikapitiya Marine bacteria as probiotics and their applications in aquaculture
US20190350994A1 (en) Method for preventing and controlling viral infections in salmonid fish using quillaja saponaria extracts
Vibin et al. Immunostimulatory effect and propo gene expression status of methanolic extract of Phyllanthus niruri against WSSV in shrimp Penaeus monodon (Fab)
Cain et al. Infectious diseases of coldwater fish in fresh water.
Mohammadian et al. Effects of dietary β-1, 3-glucan and host gut-derived probiotic bacteria on hemato-immunological indices and gut microbiota of juvenile rainbow trout (Onchorhynchus mykiss)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150715

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150820

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5863839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees