JP5861873B2 - Spectrometer and microspectroscopic system - Google Patents

Spectrometer and microspectroscopic system Download PDF

Info

Publication number
JP5861873B2
JP5861873B2 JP2012013720A JP2012013720A JP5861873B2 JP 5861873 B2 JP5861873 B2 JP 5861873B2 JP 2012013720 A JP2012013720 A JP 2012013720A JP 2012013720 A JP2012013720 A JP 2012013720A JP 5861873 B2 JP5861873 B2 JP 5861873B2
Authority
JP
Japan
Prior art keywords
light
optical path
substantially parallel
emitted
parallel light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012013720A
Other languages
Japanese (ja)
Other versions
JP2013152179A (en
Inventor
良一 左高
良一 左高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012013720A priority Critical patent/JP5861873B2/en
Publication of JP2013152179A publication Critical patent/JP2013152179A/en
Application granted granted Critical
Publication of JP5861873B2 publication Critical patent/JP5861873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、分光器及び顕微分光システムに関する。   The present invention relates to a spectroscope and a microspectroscopic system.

従来の走査型蛍光顕微鏡では、点光源から射出された照明光(励起光)を走査ユニットにより標本上で走査し、この照明光により励起された標本から射出された信号光(蛍光)を走査ユニットでデスキャンした後、分光器の分光素子で分光することにより、分光された信号光をそれぞれの受光器で検出するように構成されている。このような分光器用の分光素子として、回折格子が広く用いられている。この回折格子は、偏光依存性があり、入射光の電場振動方向が回折格子の刻線に平行なP偏光成分の光に比べて、回折格子の刻線に垂直なS偏光成分の光の方が、一般的に回折効率が高いとされている。特に、入射光の波長が回折格子の周期(刻線のピッチ)と同程度以上の長波長帯域では、上記傾向が顕著に現われる。これは、言い換えると、回折格子の周期が短いものほど上記傾向が顕著に現われ、偏光依存性が高くなるということであり、分解能の高い回折格子を用いる場合には考慮すべき点である。そこで、偏光方向の相違による回折効率の差異を解消するために、信号光をP偏光成分の光とS偏光成分の光に分離するとともに、P偏光成分の光をS偏光成分の光に変換してこれらの光を回折格子で分光する構成が開示されている(例えば、特許文献1参照)。   In the conventional scanning fluorescence microscope, the illumination light (excitation light) emitted from the point light source is scanned on the specimen by the scanning unit, and the signal light (fluorescence) emitted from the specimen excited by the illumination light is scanned by the scanning unit. After descanning, the signal light separated by the spectroscopic element of the spectroscope is detected by the respective light receivers. As such a spectroscopic element for a spectroscope, a diffraction grating is widely used. This diffraction grating has polarization dependency, and the direction of the electric field oscillation of incident light is light of the S polarization component perpendicular to the marking line of the diffraction grating as compared to the light of the P polarization component parallel to the marking line of the diffraction grating. However, it is generally said that the diffraction efficiency is high. In particular, the above tendency appears remarkably in a long wavelength band where the wavelength of incident light is equal to or more than the period of the diffraction grating (the pitch of the engraving line). In other words, the shorter the diffraction grating period, the more the above-mentioned tendency appears and the higher the polarization dependency. This is a point to be considered when using a diffraction grating with high resolution. Therefore, in order to eliminate the difference in diffraction efficiency due to the difference in polarization direction, the signal light is separated into P-polarized component light and S-polarized component light, and P-polarized component light is converted into S-polarized component light. A configuration is disclosed in which these lights are separated by a diffraction grating (see, for example, Patent Document 1).

米国特許第6498872号明細書US Pat. No. 6,498,872

しかしながら、分離されたP偏光成分の光とS偏光成分の光とを回折格子の異なる位置に入射させると回折格子が大型化してしまい、また、これらの信号光の少なくとも一部が回折格子上で重なるように入射させると、回折格子の大型化は避けられるが、これらの光の回折格子に対する入射角度が異なるためこの回折格子で分光された分光光を受光器に集光するための集光光学系(例えば、結像レンズや凹面鏡)が2つ必要になり、結果として分光器が大型化してしまうという課題があった。   However, if the separated P-polarized component light and S-polarized component light are incident on different positions of the diffraction grating, the diffraction grating becomes larger, and at least a part of the signal light is reflected on the diffraction grating. Increasing the size of the diffraction grating can be avoided if they are incident so as to overlap, but because the incident angles of these lights with respect to the diffraction grating are different, the condensing optics for condensing the spectral light split by the diffraction grating onto the receiver Two systems (for example, an imaging lens and a concave mirror) are required, resulting in a problem that the spectroscope becomes large.

本発明はこのような課題に鑑みてなされたものであり、分光素子の偏光依存性を考慮しつつ、大型化及びコスト増加を抑えることができる分光器、及びこの分光器を備える顕微分光システムを提供することを目的とする。   The present invention has been made in view of such problems, and a spectroscope capable of suppressing an increase in size and cost while taking into account the polarization dependence of the spectroscopic element, and a microspectroscopic system including this spectroscope. The purpose is to provide.

前記課題を解決するために、本発明に係る分光器は、信号光を略平行光束とするコリメートレンズと、このコリメートレンズから射出した略平行光束を第1光路及び第2光路の2つの光路に分け、且つ、第1光路中の光をP偏光成分とし、第2光路中の光をS偏光成分とする偏光分離素子と、第1光路中に配置され、当該第1光路中のP偏光成分の光をS偏光成分の光とする偏光回転素子と、第1光路及び第2光路の各々の略平行光束の光束径を平行状態を維持しつつ縮小する光路結合部材と、光路結合部材から射出された略平行光束を分光する分光素子と、分光素子で分光された分光光を検出する受光器と、分光素子からの分光光を受光器に集光する集光光学系と、を有することを特徴とする。   In order to solve the above-described problems, a spectroscope according to the present invention includes a collimating lens that makes signal light a substantially parallel light beam, and a substantially parallel light beam emitted from the collimating lens in two optical paths, a first optical path and a second optical path. And a polarization separation element having the light in the first optical path as the P-polarized component and the light in the second optical path as the S-polarized component, and the P-polarized component in the first optical path disposed in the first optical path A polarization rotator that uses the S-polarized light as the light of S polarization, an optical path coupling member that reduces the beam diameter of the substantially parallel light flux in each of the first optical path and the second optical path while maintaining a parallel state, and an emission from the optical path coupling member A spectroscopic element that splits the substantially parallel light beam, a light receiver that detects the spectroscopic light dispersed by the spectroscopic element, and a condensing optical system that condenses the spectral light from the spectroscopic element on the light receiver. Features.

また、このような分光器において、光路結合部材は、第1光路から射出する略平行光束を反射する軸外放物面形状の第1の反射面及び第2の反射面から構成される第1のビームエクスパンダと、第2光路から射出する略平行光束を反射する軸外放物面形状の第1の反射面及び第2の反射面から構成される第2のビームエクスパンダと、から構成されている。   Further, in such a spectroscope, the optical path coupling member includes a first reflecting surface and a second reflecting surface having an off-axis paraboloid shape that reflects a substantially parallel light beam emitted from the first optical path. And a second beam expander composed of a first reflecting surface and a second reflecting surface having an off-axis paraboloid shape that reflects a substantially parallel light beam emitted from the second optical path. Has been.

また、このような分光器において、光路結合部材は、光束径が縮小された各々の略平行光束を互いに隣接させて射出するように構成されていることが好ましい。 Further, in such a spectrometer, the optical path coupling member is preferably in a substantially parallel beam of each beam diameter is reduced to be adjacent to each other are configured so as to emit.

また、このような分光器において、光路結合部材は、当該光路結合部材から射出する各々の略平行光束の全体の径を、コリメートレンズから射出して偏光分離素子に入射する略平行光束の径以下とすることが好ましい。   Further, in such a spectroscope, the optical path coupling member has an overall diameter of each substantially parallel light beam emitted from the optical path coupling member, which is equal to or less than a diameter of the substantially parallel light beam emitted from the collimator lens and incident on the polarization separation element. It is preferable that

また、このような分光器において、偏光分離素子は、コリメートレンズから射出した略平行光束が入射する位置に配置され、この略平行光束のうちP偏光成分の光を透過して第1光路に導き、S偏光成分の光を反射する偏光ビームスプリッタと、偏光ビームスプリッタで反射されたS偏光成分の光を反射して第2光路に導く平面鏡と、から構成されていることが好ましい。   In such a spectroscope, the polarization separation element is disposed at a position where the substantially parallel light beam emitted from the collimator lens is incident, and transmits the P-polarized light component of the substantially parallel light beam and guides it to the first optical path. The polarizing beam splitter preferably reflects the S-polarized component light, and the plane mirror reflects the S-polarized component light reflected by the polarizing beam splitter and guides it to the second optical path.

また、このような分光器において、偏光回転素子は、フレネルロム1/2波長板であることが好ましい。   In such a spectroscope, the polarization rotation element is preferably a Fresnel ROM half-wave plate.

また、本発明に係る顕微分光システムは、光源から放射された照明光を走査して対物レンズにより標本に照射するとともに、この標本から放射される信号光を対物レンズで集光する顕微鏡と、顕微鏡からの信号光を分光して検出する上述の分光器のいずれかと、を有することを特徴とする。   In addition, a microspectroscopic system according to the present invention includes a microscope that scans illumination light emitted from a light source, irradiates the specimen with an objective lens, and collects signal light emitted from the specimen with the objective lens; One of the above-described spectroscopes that spectrally detects signal light from the above.

本発明によれば、分光素子の偏光依存性を考慮しつつ、大型化及びコスト増加を抑えた分光器、及びこの分光器を備える顕微分光システムを提供することができる。   According to the present invention, it is possible to provide a spectroscope that suppresses the increase in size and cost while taking into account the polarization dependence of the spectroscopic element, and a microspectroscopic system including this spectroscope.

顕微分光システムの構成を示す説明図である。It is explanatory drawing which shows the structure of a microspectroscopic system. 分光器の構成を示す説明図である。It is explanatory drawing which shows the structure of a spectrometer. 上記分光器の要部を示す説明図である。It is explanatory drawing which shows the principal part of the said spectrometer.

以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて顕微分光システムの構成について説明する。図1に示すように、この顕微分光システム1は、光源系10、共焦点ユニット20及び顕微鏡30を有する共焦点顕微鏡と、分光器40と、制御部50と、を有して構成されている。この顕微分光システム1において、共焦点ユニット20と分光器40とは、ファイバカプラ29a,29bを介して光ファイバ28により光学的に接続されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of the microspectroscopic system will be described with reference to FIG. As shown in FIG. 1, the microspectroscopic system 1 includes a confocal microscope having a light source system 10, a confocal unit 20, and a microscope 30, a spectroscope 40, and a control unit 50. . In this microspectroscopy system 1, the confocal unit 20 and the spectroscope 40 are optically connected by an optical fiber 28 via fiber couplers 29a and 29b.

光源系10は、レーザ装置11と、光ファイバ13と、ファイバカプラ12,14と、を有する。レーザ装置11は、例えば、レーザーダイオードを備え、目的の波長特性を有するレーザ光(照明光)を射出する。このレーザ光は、光ファイバ13を介して共焦点ユニット20に導かれる。なお、図1の例では、照明光として、標本33を励起して蛍光を発光させるための励起光を射出する。   The light source system 10 includes a laser device 11, an optical fiber 13, and fiber couplers 12 and 14. The laser device 11 includes, for example, a laser diode, and emits laser light (illumination light) having a target wavelength characteristic. This laser beam is guided to the confocal unit 20 through the optical fiber 13. In the example of FIG. 1, excitation light for exciting the specimen 33 to emit fluorescence is emitted as illumination light.

共焦点ユニット20は、光源系10からの照明光を略平行光束とするコリメートレンズ21と、ダイクロイックミラー22と、走査ユニット23と、スキャナレンズ24と、集光レンズ25と、ピンホール26aを有するピンホール板26と、リレーレンズ27と、を有する。また、顕微鏡30は、第2対物レンズ31及び対物レンズ32と、標本33が載置されるステージ34と、を有する。これらの共焦点ユニット20と顕微鏡30とを組み合わせて走査型共焦点顕微鏡が構成される。なお、ダイクロイックミラー22は、光源系10から射出されたレーザ光を顕微鏡30側に反射し、このレーザ光により励起した標本33から放射される蛍光(信号光)を透過するように構成されている。また、集光レンズ25の像側焦点は、ピンホール板26のピンホール26aと略一致するように配置されている。   The confocal unit 20 includes a collimating lens 21 that converts illumination light from the light source system 10 into a substantially parallel light beam, a dichroic mirror 22, a scanning unit 23, a scanner lens 24, a condensing lens 25, and a pinhole 26a. A pinhole plate 26 and a relay lens 27 are provided. The microscope 30 includes a second objective lens 31 and an objective lens 32, and a stage 34 on which the specimen 33 is placed. The confocal unit 20 and the microscope 30 are combined to form a scanning confocal microscope. The dichroic mirror 22 is configured to reflect the laser light emitted from the light source system 10 toward the microscope 30 and transmit the fluorescence (signal light) emitted from the specimen 33 excited by the laser light. . Further, the image side focal point of the condenser lens 25 is disposed so as to substantially coincide with the pinhole 26 a of the pinhole plate 26.

光源系10のレーザ装置11から射出されたレーザ光(照明光)はファイバカプラ12を介して光ファイバ13に導入される。さらにこの光ファイバ13を通ったレーザ光はファイバカプラ14から共焦点ユニット20のコリメートレンズ21に入射する。そして、このレーザ光はコリメートレンズ21で略平行光に変換された後、ダイクロイックミラー22で顕微鏡30側の光路に反射され、直交配置された2つのガルバノミラーからなる走査ユニット23及びスキャナレンズ24に導入されて、二次元的に走査される。走査されたレーザ光は、第2対物レンズ31で略平行光にされた後、対物レンズ32で標本33上の1点に集光される。なお、走査ユニット23により二次元的に走査される標本33上の位置は、制御部50により走査ユニット23を構成するガルバノミラーの動作を制御することにより制御される。そして、このレーザ光(照明光)により励起された標本33から放射された蛍光(信号光)は、対物レンズ32で略平行光に変換され、レーザ光(照明光)と逆の経路を辿り、走査ユニット23でデスキャンされた後、ダイクロイックミラー22に入射する。さらに、ダイクロイックミラー22に入射した蛍光はこのダイクロイックミラー22を透過し、集光レンズ25によりピンホール板26のピンホール26a上に集光される。   Laser light (illumination light) emitted from the laser device 11 of the light source system 10 is introduced into the optical fiber 13 through the fiber coupler 12. Further, the laser light passing through the optical fiber 13 enters the collimating lens 21 of the confocal unit 20 from the fiber coupler 14. The laser light is converted into substantially parallel light by the collimator lens 21, then reflected by the dichroic mirror 22 to the optical path on the microscope 30 side, and applied to the scanning unit 23 and the scanner lens 24, which are composed of two orthogonally arranged galvanometer mirrors. Introduced and scanned in two dimensions. The scanned laser light is made into substantially parallel light by the second objective lens 31 and then condensed at one point on the specimen 33 by the objective lens 32. Note that the position on the specimen 33 scanned two-dimensionally by the scanning unit 23 is controlled by controlling the operation of the galvanometer mirror constituting the scanning unit 23 by the control unit 50. Then, the fluorescence (signal light) emitted from the specimen 33 excited by the laser light (illumination light) is converted into substantially parallel light by the objective lens 32, and follows a path opposite to the laser light (illumination light). After being descanned by the scanning unit 23, the light enters the dichroic mirror 22. Further, the fluorescence incident on the dichroic mirror 22 passes through the dichroic mirror 22 and is collected by the condenser lens 25 onto the pinhole 26 a of the pinhole plate 26.

ピンホール26aを通過した蛍光(信号光)は、リレーレンズ27を経て、ファイバカプラ29aから光ファイバ28に導かれる。リレーレンズ27を介すると、図1に示すように、ピンホール26aを通過した光が、そのままであると発散光束となるところを、再び、集光され、光ファイバ28の開口端において、見かけ上、小さな開口径でも、有効に(ロスが少なく)入射できるようになる。   The fluorescence (signal light) that has passed through the pinhole 26a is guided to the optical fiber 28 from the fiber coupler 29a via the relay lens 27. Through the relay lens 27, as shown in FIG. 1, the light that has passed through the pinhole 26a becomes a divergent light beam as it is, and is condensed again, and apparently appears at the opening end of the optical fiber 28. Even with a small aperture diameter, it becomes possible to enter effectively (with little loss).

ここで、ピンホール26aに形成される集光点は標本33上での光スポットの像となっているため、標本33上の他の点から発した光がたとえあったとしても、ピンホール26aでは像を結ばずピンホール板26により遮られ、ファイバカプラ29aにほとんど到達できない。そのため、このピンホール26aを通過できた光のみ、すなわち、上述の光スポットの位置から出た光のみが、リレーレンズ27を介してファイバカプラ29aに到達できる。この結果、走査型共焦点顕微鏡では高い横分解能だけでなく、高い縦分解能を持って標本を観察できる顕微鏡となっている。   Here, since the condensing point formed in the pinhole 26a is an image of a light spot on the specimen 33, even if there is light emitted from another point on the specimen 33, the pinhole 26a. Then, an image is not formed and is blocked by the pinhole plate 26 and hardly reaches the fiber coupler 29a. Therefore, only the light that has been able to pass through the pinhole 26a, that is, only the light emitted from the position of the light spot described above, can reach the fiber coupler 29a through the relay lens 27. As a result, the scanning confocal microscope is a microscope capable of observing a specimen not only with high lateral resolution but also with high vertical resolution.

ファイバカプラ29aに入射した蛍光(信号光)は、光ファイバ28を通り、ファイバカプラ29bを介して分光器40に導入される。以下、本実施形態に係る分光器40の構成について説明する。   The fluorescence (signal light) incident on the fiber coupler 29a passes through the optical fiber 28 and is introduced into the spectroscope 40 via the fiber coupler 29b. Hereinafter, the configuration of the spectrometer 40 according to the present embodiment will be described.

図2及び図3に示すように、分光器40は、ファイバカプラ29bを介して光ファイバ28から入射する信号光(図1の例では蛍光)を略平行光束とするコリメートレンズ41と、このコリメートレンズ41で略平行光束にされた信号光を、P偏光成分とS偏光成分の光に分離し、P偏光成分の光を第1光路C1に導き、S偏光成分の光を第2光路C2に導く偏光分離素子42と、第1光路C1に設けられ、P偏光成分の光をS偏光成分の光に変換する偏光回転素子43と、第1光路C1及び第2光路C2の光の光束径を変えるとともに、これらの光を互いに平行で且つ隣接させて射出する光路結合素子44と、光路結合素子44から射出した略平行光束を分光する分光素子である反射型の回折格子45と、複数の受光素子がアレイ状に並べられてラインディテクタを構成する受光器47と、回折格子45から射出された回折光(分光光)を受光器47の受光面に結像させる集光光学系46と、を有する。ここで、受光器47は、32個のPMT(光電子倍増管:Photomultiplier Tube)を用いたものである。この複数のPMTは、回折格子45の複数の刻線が並んでいる方向、つまり回折格子45の光分散方向(分光方向)に並んでいる。このように、本実施形態では、受光器47として、複数の検出セル(PMT)を持つ光検出アレイを用いているので、複数の波長域の光を同時に検出することができる。なお、図2においては集光光学系46として凹面鏡(反射光学系)を用いた場合について示しているが、正の屈折力を有するレンズ(屈折光学系)で構成しても良い。   As shown in FIGS. 2 and 3, the spectroscope 40 includes a collimator lens 41 that makes signal light (fluorescence in the example of FIG. 1) incident from the optical fiber 28 through the fiber coupler 29b substantially parallel, and this collimator. The signal light converted into a substantially parallel light beam by the lens 41 is separated into P-polarized component light and S-polarized light component, the P-polarized light component is guided to the first optical path C1, and the S-polarized light component is input to the second optical path C2. The polarization separation element 42 for guiding, the polarization rotation element 43 provided in the first optical path C1, and converting the light of the P polarization component into the light of the S polarization component, and the light beam diameter of the light in the first optical path C1 and the second optical path C2. The optical path coupling element 44 that emits these lights in parallel and adjacent to each other, the reflective diffraction grating 45 that is a spectroscopic element that splits the substantially parallel light beam emitted from the optical path coupling element 44, and a plurality of light receiving elements Elements are arranged in an array Is a and the receiver 47 constituting the line detector, and is thereby condensing optical system 46 forms an image on the light receiving surface of the light receiver 47 is emitted from the diffraction grating 45 is diffracted light of (spectral light), the by. Here, the light receiver 47 uses 32 PMTs (Photomultiplier Tubes). The plurality of PMTs are arranged in the direction in which the plurality of score lines of the diffraction grating 45 are arranged, that is, in the light dispersion direction (spectral direction) of the diffraction grating 45. Thus, in this embodiment, since the photodetection array having a plurality of detection cells (PMT) is used as the light receiver 47, light in a plurality of wavelength regions can be detected simultaneously. Although FIG. 2 shows a case where a concave mirror (reflection optical system) is used as the condensing optical system 46, a lens having a positive refractive power (refractive optical system) may be used.

偏光分離素子42は、コリメートレンズ41から射出した略平行光束が入射する位置に、この略平行光束の入射角度が略45°になるように配置された偏光ビームスプリッタ板42aと、偏光ビームスプリッタ板42aで反射された略平行光束の入射角度が略45°になるように配置され、この略平行光束を反射する平面鏡42bと、から構成されている。なお、入射角度とは、入射面の法線に対する入射光の角度である。ここで、偏光ビームスプリッタ板42aは、平行平板ガラスに誘電体反射コーティングを施したもので、入射する光のうち、S偏光成分の光を反射し、P偏光成分の光を透過する性質を有する。そのため、この偏光ビームスプリッタ板42aに入射した略平行光束(信号光)のうち、P偏光成分の光はこの偏光ビームスプリッタ板42aを透過して第1光路C1に導かれ、S偏光成分の光はこの偏光ビームスプリッタ板42aで反射し、さらに、平面鏡42bで反射して第2光路C2に導かれる。なお、上述したように偏光ビームスプリッタ板42a及び平面鏡42bは、その入射光に対する角度が略45°になるように配置されているため、第1光路C1及び第2光路C2は、略平行に延びて配置されている。なお、以下の説明の都合上、コリメートレンズ41の光軸と平行な方向をZ方向、コリメートレンズ41からの光が偏光ビームスプリッタ板42aにより反射される方向とZ方向とに平行な面内でZ方向に垂直な方向をY方向、Y方向及びZ方向に垂直な方向をX方向とする。   The polarization separation element 42 includes a polarization beam splitter plate 42a disposed at a position where a substantially parallel light beam emitted from the collimating lens 41 is incident so that an incident angle of the substantially parallel light beam is approximately 45 °, and a polarization beam splitter plate. The plane mirror 42b is arranged so that the incident angle of the substantially parallel light beam reflected by 42a is about 45 ° and reflects the substantially parallel light beam. The incident angle is the angle of incident light with respect to the normal of the incident surface. Here, the polarization beam splitter plate 42a is obtained by applying a dielectric reflection coating to a parallel plate glass, and has a property of reflecting S-polarized light and transmitting P-polarized light among incident light. . Therefore, of the substantially parallel light beam (signal light) incident on the polarization beam splitter plate 42a, the P-polarized component light is transmitted through the polarization beam splitter plate 42a and guided to the first optical path C1, and the S-polarized component light. Is reflected by the polarization beam splitter plate 42a, further reflected by the plane mirror 42b, and guided to the second optical path C2. As described above, since the polarization beam splitter plate 42a and the plane mirror 42b are arranged so that the angle with respect to the incident light is about 45 °, the first optical path C1 and the second optical path C2 extend substantially in parallel. Are arranged. For convenience of the following explanation, the direction parallel to the optical axis of the collimating lens 41 is in the Z direction, and the light from the collimating lens 41 is reflected in the plane parallel to the direction in which the light is reflected by the polarization beam splitter plate 42a and the Z direction. A direction perpendicular to the Z direction is defined as a Y direction, and a direction perpendicular to the Y direction and the Z direction is defined as an X direction.

偏光回転素子43は、例えば、フレネルロム1/2波長板で構成される。このフレネルロム1/2は波長板は、全反射を利用した複屈折素子で、波長依存性が極めて小さく、各種波長の光に対して用いることができる。このフレネルロム1/2波長板では、入射面43aから入射した光は、一平面上で4回反射して(平面43b〜43eで反射して)出射面43fから出射される。このフレネルロム1/2波長板は、入射面43a及び出射面43fがZ方向に対して垂直で且つ前述の一平面43b〜43eが図3(b)に示すように、ZX平面に対して45°を成すように配置されている。このように、偏光回転素子43としてフレネルロム1/2波長板を設けることにより、偏光ビームスプリッタ板42aを通過してP偏光成分の光になった信号光(略平行光束)は、このフレネルロム1/2波長板内での全反射1回につき、偏光方向がλ/8分変化して、合計でλ/2分変化し、結果として、S偏光成分の光に変換される。このS偏光成分の光は、コリメートレンズ41の光軸上、言い換えると、Z方向に平行な方向に進む。   The polarization rotation element 43 is configured by, for example, a Fresnel ROM half-wave plate. The Fresnel ROM 1/2 is a birefringent element using total reflection, and has a very small wavelength dependency, and can be used for light of various wavelengths. In the Fresnel ROM half-wave plate, the light incident from the incident surface 43a is reflected four times on one plane (reflected by the planes 43b to 43e) and emitted from the emission surface 43f. In the Fresnel ROM half-wave plate, the incident surface 43a and the output surface 43f are perpendicular to the Z direction, and the above-described one planes 43b to 43e are 45 ° to the ZX plane as shown in FIG. It is arranged to form. As described above, by providing the Fresnel ROM half-wave plate as the polarization rotation element 43, the signal light (substantially parallel light beam) that has passed through the polarizing beam splitter plate 42a and becomes the P-polarized component light is reflected in this Fresnel ROM 1 / For each total reflection in the two-wavelength plate, the polarization direction is changed by λ / 8, and the total is changed by λ / 2. As a result, the light is converted into light of the S polarization component. The S-polarized component light travels on the optical axis of the collimating lens 41, in other words, in a direction parallel to the Z direction.

光路結合素子44は、第1光路C1に配置された第1のビームエクスパンダ441と、第2光路C2に配置された第2のビームエクスパンダ442と、から構成されている。これらの第1及び第2のビームエクスパンダ441,442の各々は、第1及び第2光路C1,C2からの光が入射する位置に配置され、軸外放物面形状を有し、これらの光を反射する第1の反射面441a,442aと、この第1の反射面441a,442aに対向するように配置され第1の反射面441a,442aで反射された光を反射する、軸外放物面形状を有する第2の反射面441b,442bと、からなる2つの軸外放物面で構成されている。また、本実施形態においては、第1の反射面441a,442aの焦点距離は、第2の反射面441b,442bの焦点距離の略2倍になるように構成されている。そのため、この第2の反射面441b,442bで反射された信号光の光束径は、第1及び第2光路C1,C2の光束径の略半分に縮小される。また、本実施形態において第1のビームエクスパンダ441に用いられている第2の反射面441bと第2のビームエクスパンダ442に用いられている第2の反射面442bとは接するようにかつZ軸と略平行に光を射出するように配置してあるため、回折格子45への入射時の最大光束径は、偏光分離素子42に入射するときの光束径と同じである。そのため、コリメートレンズ41から射出した信号光を偏光分離素子42により2つの光路に分割して偏光回転素子43で偏光を揃えても、結果的に光束径が2倍になってしまうことはなく、回折格子45が大型化することはない。また、光路結合素子44を射出した第1及び第2光路C1,C2の各々を通った信号光は略平行光束であり、回折格子45に対する入射角が同じであるため、集光光学系46を2つ用意する必要がなく、分光器40の大型化を防ぐことができる。なお、本実施形態では第1及び第2のビームエクスパンダ441,442の光束径の変換倍率を揃えているが、第1のビームエクスパンダ441と第2のビームエクスパンダ442とで異なる変換倍率にしてもよい。なお、この場合も、回折格子45への入射時の最大光束径が、偏光分離素子42に入射するときの光束径以下となることが好ましい。   The optical path coupling element 44 includes a first beam expander 441 disposed in the first optical path C1 and a second beam expander 442 disposed in the second optical path C2. Each of the first and second beam expanders 441 and 442 is disposed at a position where light from the first and second optical paths C1 and C2 is incident, and has an off-axis paraboloid shape. First reflective surfaces 441a and 442a that reflect light, and an off-axis release that reflects light reflected by the first reflective surfaces 441a and 442a that are arranged to face the first reflective surfaces 441a and 442a. It is comprised by the two off-axis paraboloids which consist of the 2nd reflective surfaces 441b and 442b which have an object shape. In the present embodiment, the focal lengths of the first reflecting surfaces 441a and 442a are configured to be approximately twice the focal length of the second reflecting surfaces 441b and 442b. For this reason, the beam diameter of the signal light reflected by the second reflecting surfaces 441b and 442b is reduced to approximately half the beam diameter of the first and second optical paths C1 and C2. In the present embodiment, the second reflecting surface 441b used for the first beam expander 441 and the second reflecting surface 442b used for the second beam expander 442 are in contact with each other and Z Since the light is emitted so as to be substantially parallel to the axis, the maximum light beam diameter when entering the diffraction grating 45 is the same as the light beam diameter when entering the polarization separation element 42. Therefore, even if the signal light emitted from the collimating lens 41 is divided into two optical paths by the polarization separation element 42 and the polarization is aligned by the polarization rotation element 43, the beam diameter will not be doubled as a result. The diffraction grating 45 does not increase in size. Further, the signal light passing through each of the first and second optical paths C1 and C2 emitted from the optical path coupling element 44 is a substantially parallel light flux and has the same incident angle with respect to the diffraction grating 45. There is no need to prepare two, and an increase in the size of the spectrometer 40 can be prevented. In the present embodiment, the conversion magnifications of the light beam diameters of the first and second beam expanders 441 and 442 are uniform. However, the conversion magnifications that are different between the first beam expander 441 and the second beam expander 442. It may be. Also in this case, it is preferable that the maximum light beam diameter when entering the diffraction grating 45 is equal to or smaller than the light beam diameter when entering the polarization separation element 42.

本実施形態に係る分光器40を以上のように構成すると、信号光の偏光方向をS偏光に揃えることができるため、回折格子45に入射する信号光の電場振動方向がこの回折格子45の刻線に対して垂直にすることができるので、回折格子45の回折効率を高くすることができ、明るい分光光を得ることができる。また、上述したように、光路結合素子44により回折格子45に入射する信号光の光束径(第1及び第2光路C1,C2を通過した信号光の全体の光束径)がコリメートレンズ41を射出して偏光分離素子42に入射する前の光束径より大きくならないようにすることができるため、偏光分離素子42等を用いて偏光方向を揃えない従来の分光器と同じ大きさの回折格子45を用いることができる。さらに、光路結合素子44を射出した信号光は略平行光束であるため、集光光学系46は1つで良い。そのため、この分光器40の大型化を防ぐことができる。また、本実施形態に示す分光器40は光ファイバ28(ファイバカプラ29b)を入射端としているので、容易に共焦点顕微鏡に接続することが可能である。すなわち、上述したように一般的な共焦点顕微鏡では光検出をピンホール板26に接続した光検出器で行っているが、ピンホール26a透過後の光を光ファイバ28に入射させることで分光器40への光導入を容易に光ファイバ28で行うことが可能である。   If the spectroscope 40 according to the present embodiment is configured as described above, the polarization direction of the signal light can be aligned with the S-polarized light, so that the electric field vibration direction of the signal light incident on the diffraction grating 45 is the time of the diffraction grating 45. Since it can be perpendicular to the line, the diffraction efficiency of the diffraction grating 45 can be increased, and bright spectral light can be obtained. Further, as described above, the light beam diameter of the signal light incident on the diffraction grating 45 by the optical path coupling element 44 (the total light beam diameter of the signal light that has passed through the first and second optical paths C1 and C2) is emitted from the collimator lens 41. Therefore, the diffraction grating 45 having the same size as a conventional spectroscope that does not align the polarization direction using the polarization separation element 42 or the like can be provided. Can be used. Further, since the signal light emitted from the optical path coupling element 44 is a substantially parallel light beam, only one condensing optical system 46 is required. Therefore, the enlargement of the spectroscope 40 can be prevented. Moreover, since the spectroscope 40 shown in this embodiment has the optical fiber 28 (fiber coupler 29b) as the incident end, it can be easily connected to a confocal microscope. That is, as described above, in a general confocal microscope, light detection is performed by a photodetector connected to the pinhole plate 26, but the spectroscope is obtained by making the light transmitted through the pinhole 26a enter the optical fiber 28. It is possible to easily introduce light into the optical fiber 28 using the optical fiber 28.

なお、以上の説明においては、1つの回折格子45を用いた場合を示したが、波長分解能の異なる複数の回折格子を回転格子台上に配置し、この回転格子台を回転させて、光路結合素子44から射出した信号光が入射する回折格子を切り替え可能に構成しても良い。回折格子を載せている回折格子台を回転させることで、回折格子の波長分解能を切り替えることができ、また、この回折格子に対する光の入射角度及び出射角度を変えることができるため、アレイ状の受光器47で検出できる波長領域を変えることができる。   In the above description, the case where one diffraction grating 45 is used is shown. However, a plurality of diffraction gratings having different wavelength resolutions are arranged on the rotating grating stage, and the rotating grating stage is rotated to couple the optical path. The diffraction grating on which the signal light emitted from the element 44 enters may be switchable. By rotating the diffraction grating stage on which the diffraction grating is mounted, the wavelength resolution of the diffraction grating can be switched, and the incident angle and the emission angle of light with respect to this diffraction grating can be changed. The wavelength region that can be detected by the device 47 can be changed.

また、以上の説明では、第2光路C2中に平面鏡42bを設けたが、第1光路C1中に平面鏡を設けても良いことは言うまでもない。また、以上の実施形態では、回折格子45で分光された光を凹面鏡からなる集光光学系46で集光した後、受光器47で受光しているが、この受光器47の代わりに、特定の波長域の光を出射する出射スリットを設けても良い。   In the above description, the plane mirror 42b is provided in the second optical path C2, but it goes without saying that a plane mirror may be provided in the first optical path C1. In the above embodiment, the light dispersed by the diffraction grating 45 is collected by the condensing optical system 46 formed of a concave mirror and then received by the light receiver 47. However, instead of the light receiver 47, a specific light is received. You may provide the output slit which radiate | emits the light of this wavelength range.

また、以上の説明では、偏光分離素子42にいわゆる平面型の偏光ビームスプリッタである偏光ビームスプリッタ板42aを設けた場合について説明したが、プリズム型やウェッジ基板型の偏光ビームスプリッタを用いることも可能である。   In the above description, the polarization separation element 42 is provided with the polarization beam splitter plate 42a which is a so-called planar polarization beam splitter. However, a prism type or wedge substrate type polarization beam splitter can also be used. It is.

1 顕微分光システム 30 顕微鏡 32 対物レンズ
40 分光器 41 コリメートレンズ
42 偏光分離素子 42a 偏光ビームスプリッタ板 42b 平面鏡
43 偏光回転素子 44 光路結合部材
441 第1のビームエクスパンダ
441a 第1の反射面 441b 第2の反射面
442 第2のビームエクスパンダ
442a 第2の反射面 442b 第2の反射面
45 回折格子 46 集光光学系 47 受光器
DESCRIPTION OF SYMBOLS 1 Microscopic system 30 Microscope 32 Objective lens 40 Spectroscope 41 Collimating lens 42 Polarization separation element 42a Polarization beam splitter plate 42b Plane mirror 43 Polarization rotation element 44 Optical path coupling member 441 First beam expander 441a First reflection surface 441b Second Reflective surface 442 Second beam expander 442a Second reflective surface 442b Second reflective surface 45 Diffraction grating 46 Condensing optical system 47 Light receiver

Claims (6)

信号光を略平行光束とするコリメートレンズと、
前記コリメートレンズから射出した前記略平行光束を第1光路及び第2光路の2つの光路に分け、且つ、前記第1光路中の光をP偏光成分とし、前記第2光路中の光をS偏光成分とする偏光分離素子と、
前記第1光路中に配置され、当該第1光路中の前記P偏光成分の光をS偏光成分の光とする偏光回転素子と、
前記第1光路及び前記第2光路の各々の前記略平行光束の光束径を平行状態を維持しつつ縮小する光路結合部材と、
前記光路結合部材から射出された前記略平行光束を分光する分光素子と、
前記分光素子で分光された分光光を検出する受光器と、
前記分光素子からの前記分光光を前記受光器に集光する集光光学系と、を有し、
前記光路結合部材は、
前記第1光路から射出する前記略平行光束を反射する軸外放物面形状の第1の反射面及び第2の反射面から構成される第1のビームエクスパンダと、
前記第2光路から射出する前記略平行光束を反射する軸外放物面形状の第1の反射面及び第2の反射面から構成される第2のビームエクスパンダと、から構成されていることを特徴とする分光器。
A collimating lens that converts the signal light into a substantially parallel light beam;
The substantially parallel light beam emitted from the collimating lens is divided into two optical paths, a first optical path and a second optical path, the light in the first optical path is a P-polarized component, and the light in the second optical path is S-polarized. A polarization separation element as a component;
A polarization rotation element that is disposed in the first optical path and uses the light of the P-polarized component in the first optical path as light of the S-polarized component;
An optical path coupling member that reduces the diameter of the substantially parallel light flux of each of the first optical path and the second optical path while maintaining a parallel state;
A spectroscopic element for dispersing the substantially parallel light beam emitted from the optical path coupling member;
A light receiver for detecting the spectroscopic light dispersed by the spectroscopic element;
Have a, a focusing optical system for focusing the partial beams from the spectral element to the light receiver,
The optical path coupling member is
A first beam expander composed of a first reflecting surface and a second reflecting surface having an off-axis paraboloid shape that reflects the substantially parallel light beam emitted from the first optical path;
And a second beam expander configured by an off-axis paraboloid-shaped first reflecting surface and a second reflecting surface that reflects the substantially parallel light beam emitted from the second optical path. Spectrometer characterized by.
前記光路結合部材は、光束径が縮小された各々の前記略平行光束を互いに隣接させて射出するように構成されていることを特徴とする請求項1に記載の分光器。   The spectroscope according to claim 1, wherein the optical path coupling member is configured to emit the substantially parallel light beams with reduced light beam diameters adjacent to each other. 前記光路結合部材は、当該光路結合部材から射出する各々の前記略平行光束の全体の径を、前記コリメートレンズから射出して前記偏光分離素子に入射する前記略平行光束の径以下とすることを特徴とする請求項1または2に記載の分光器。 The optical path coupling member is configured such that an overall diameter of each of the substantially parallel light beams emitted from the optical path coupling member is equal to or less than a diameter of the substantially parallel light beams emitted from the collimator lens and incident on the polarization separation element. The spectroscope according to claim 1 or 2 , characterized in that: 前記偏光分離素子は、前記コリメートレンズから射出した前記略平行光束が入射する位置に配置され、前記略平行光束のうちP偏光成分の光を透過して前記第1光路に導き、S偏光成分の光を反射する偏光ビームスプリッタと、
前記偏光ビームスプリッタで反射された前記S偏光成分の光を反射して前記第2光路に導く平面鏡と、から構成されていることを特徴とする請求項1〜3のいずれか一項に記載の分光器。
The polarization separation element is disposed at a position where the substantially parallel light beam emitted from the collimating lens is incident, transmits light of the P-polarized component of the substantially parallel light beam, guides it to the first optical path, and A polarizing beam splitter that reflects light;
According to any one of claims 1 to 3, characterized in that it is composed of a plane mirror the reflected and reflecting light of S polarized component guided to the second optical path by the polarization beam splitter Spectroscope.
前記偏光回転素子は、フレネルロム1/2波長板であることを特徴する請求項1〜4のいずれか一項に記載の分光器。 The spectroscope according to claim 1, wherein the polarization rotation element is a Fresnel ROM half-wave plate. 光源から放射された照明光を走査して対物レンズにより標本に照射するとともに、前記標本から放射される信号光を前記対物レンズで集光する顕微鏡と、
前記顕微鏡からの前記信号光を分光して検出する請求項1〜5のいずれか一項に記載の分光器と、を有することを特徴とする顕微分光システム。
A microscope that scans illumination light emitted from a light source and irradiates the specimen with an objective lens, and collects signal light emitted from the specimen with the objective lens, and
A spectroscopic light system comprising: the spectroscope according to any one of claims 1 to 5 that spectrally detects the signal light from the microscope.
JP2012013720A 2012-01-26 2012-01-26 Spectrometer and microspectroscopic system Expired - Fee Related JP5861873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013720A JP5861873B2 (en) 2012-01-26 2012-01-26 Spectrometer and microspectroscopic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013720A JP5861873B2 (en) 2012-01-26 2012-01-26 Spectrometer and microspectroscopic system

Publications (2)

Publication Number Publication Date
JP2013152179A JP2013152179A (en) 2013-08-08
JP5861873B2 true JP5861873B2 (en) 2016-02-16

Family

ID=49048625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013720A Expired - Fee Related JP5861873B2 (en) 2012-01-26 2012-01-26 Spectrometer and microspectroscopic system

Country Status (1)

Country Link
JP (1) JP5861873B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017119389A1 (en) * 2016-01-08 2018-10-25 国立大学法人 東京大学 Fourier transform spectrometer
CN110440915B (en) * 2019-08-02 2021-04-30 中国电子科技集团公司第四十一研究所 Compact remote detection spectrometer based on linear gradient filter light splitting

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605385B2 (en) * 1988-12-08 1997-04-30 日本電気株式会社 Optical wavelength resolution measurement device
JPH05203894A (en) * 1992-01-27 1993-08-13 Fujitsu General Ltd Display device using light valve
JP2002267951A (en) * 2001-03-09 2002-09-18 Ando Electric Co Ltd Tunable filter
JP2003083810A (en) * 2001-09-14 2003-03-19 Anritsu Corp Spectroscopic device and light measuring device
US7177496B1 (en) * 2001-12-27 2007-02-13 Capella Photonics, Inc. Optical spectral power monitors employing time-division-multiplexing detection schemes
JP4645173B2 (en) * 2004-11-26 2011-03-09 株式会社ニコン Spectroscope and microspectroscopic device provided with the same
JP2008139652A (en) * 2006-12-04 2008-06-19 Nikon Corp Light source device, spectrum modulator, and spectrum measuring instrument
WO2010026640A1 (en) * 2008-09-04 2010-03-11 Suzuki Chihiro Parallel light output unit, projector, and stereoscopic image display unit

Also Published As

Publication number Publication date
JP2013152179A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
US5646411A (en) Fluorescence imaging system compatible with macro and micro scanning objectives
US8873046B2 (en) Spectroscopic detection device and confocal microscope
CA2829545C (en) Total internal reflection flourescence (tirf) microscopy across multiple wavelengths simultaneously
US20100142041A1 (en) Multi-Mode Fiber Optically Coupling a Radiation Source Module to a Multi-Focal Confocal Microscope
US9989754B2 (en) Light scanning microscope with spectral detection
US8885162B2 (en) Detection optical system and scanning microscope
US8149403B2 (en) Optical equipment having wavelength-independent optical path division element
JP2005099662A (en) Confocal microscope
JP2004029205A (en) Laser scanning microscope
JP4434882B2 (en) Laser scanning fluorescence observation system
US7130042B2 (en) Dual axis fluorescence microscope with modulated input
WO2020196783A1 (en) Confocal microscope unit and confocal microscope
JP4645173B2 (en) Spectroscope and microspectroscopic device provided with the same
US20030030897A1 (en) Laser microscope
US11366312B2 (en) Microscope device with enhanced contrast formed by light illumination transmitted in two different spectral ranges
JP5861873B2 (en) Spectrometer and microspectroscopic system
JP5287566B2 (en) Confocal microscope
JP2015094887A (en) Confocal microscope
US11874450B2 (en) Oblique plane microscope for imaging a sample
JP5576649B2 (en) Spectroscope and optical apparatus provided with the same
JP2024514419A (en) Chromatic confocal measurement system for high speed distance measurement
JP5787151B2 (en) Spectroscopic unit and scanning microscope
JP2005345561A (en) Scanning type laser microscope device
JP2008164719A (en) Scanning confocal microscope
JPH1195114A (en) Scanning optical microscope device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151209

R150 Certificate of patent or registration of utility model

Ref document number: 5861873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees