JP5860249B2 - Firewood system - Google Patents

Firewood system Download PDF

Info

Publication number
JP5860249B2
JP5860249B2 JP2011191677A JP2011191677A JP5860249B2 JP 5860249 B2 JP5860249 B2 JP 5860249B2 JP 2011191677 A JP2011191677 A JP 2011191677A JP 2011191677 A JP2011191677 A JP 2011191677A JP 5860249 B2 JP5860249 B2 JP 5860249B2
Authority
JP
Japan
Prior art keywords
crusher
suction
sediment
ejector
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011191677A
Other languages
Japanese (ja)
Other versions
JP2013053437A (en
Inventor
敏行 天明
敏行 天明
俊男 岡部
俊男 岡部
中村 雄二
雄二 中村
裕也 山上
裕也 山上
睦宏 加来
睦宏 加来
徳次郎 山下
徳次郎 山下
富夫 原
富夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Hazama Ando Corp
Original Assignee
Kyushu Electric Power Co Inc
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Hazama Ando Corp filed Critical Kyushu Electric Power Co Inc
Priority to JP2011191677A priority Critical patent/JP5860249B2/en
Publication of JP2013053437A publication Critical patent/JP2013053437A/en
Application granted granted Critical
Publication of JP5860249B2 publication Critical patent/JP5860249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ダムの貯水池、湖水、河川などの水底の堆砂の浚渫に使用する浚渫システムに関する。   The present invention relates to a dredging system used for dredging sediment in the bottom of a dam reservoir, lake water, river or the like.

ダム貯水池の堆砂の進行により、貯水池容量の減少、上流河床の上昇、下流河床の低下、海岸線の後退などの問題が発生し、また、生物環境へ影響を及ぼすことが指摘されている。ダム貯水池の堆砂問題の解決を図ることは万国共通の課題であり、この問題を放置することは次世代に対する負の遺産の継承を意味する。したがって、ダム貯水池自体の機能の維持やダム及び河道の安全確保、流域管理の視点から、ダム貯水池の堆砂に関する対策を講じることが必要である。   It has been pointed out that the progress of sedimentation in the dam reservoir causes problems such as a decrease in reservoir capacity, an increase in the upstream riverbed, a decrease in the downstream riverbed, a receding shoreline, and an impact on the biological environment. Solving the sedimentation problem in the dam reservoir is an issue common to all countries. Therefore, it is necessary to take measures for sedimentation in the dam reservoir from the viewpoint of maintaining the function of the dam reservoir itself, ensuring the safety of the dam and river channel, and managing the basin.

この堆砂の対策には各種の工法があり、例えば、欧州諸国の発電用貯水池では、排砂バイパス・フラッシング排砂が多く、中国では、フラッシング排砂が多い。これに対して日本では、伝統的に掘削・浚渫が多く、特に、ダム貯水池内の水面下の堆砂の浚渫を必要とする場合、グラブ浚渫工法又はポンプ浚渫工法が一般に採用される。グラブ浚渫工法は、周知のとおり、グラブ船を用い、グラブバケットで水底に堆積した土砂を掘削する工法で、この種の工法が例えば特許文献1などに開示されている。ポンプ浚渫工法は、ポンプ船を用い、ポンプにより水底の土砂を吸い上げ、これを管路で搬送する工法で、この種の工法が例えば特許文献2などに開示されている。   There are various methods for dealing with this sedimentation. For example, in the reservoirs for power generation in European countries, there are many waste sand bypass and flushing waste sands, and in China there are many flushing waste sands. On the other hand, in Japan, traditionally, there are many excavations and dredgings, and especially when dredging of sediment below the surface of the dam reservoir is required, the grab dredging method or the pump dredging method is generally adopted. As is well known, the grab dredging method is a method of excavating earth and sand deposited on the bottom of a water with a grab bucket using a grab ship, and this type of method is disclosed in, for example, Patent Document 1. The pump dredging method uses a pump ship, sucks up sediment from the bottom of the water with a pump, and conveys it through a pipe. This type of method is disclosed in Patent Document 2, for example.

特開2003−166262公報JP 2003-166262 A 特開平3−244716公報JP-A-3-244716

しかしながら、従来のグラブ浚渫工法では、グラブバケットの開閉構造により、必要以上の厚さの土砂を浚渫するため、水質の汚濁を発生させるだけでなく、余分な浚渫土砂の発生を招き、作業効率が悪いという問題がある。これに対して、従来のポンプ浚渫工法においては、ポンプにより土砂を連続的に吸引するため、作業効率がよく、また吸引部に濁りの発生が少ないというメリットがあるものの、他面で、この工法に用いられるポンプが遠心力によるインペラー方式の水中ポンプであるため、このような水中ポンプでは、多くのダム貯水池の堆砂に存在する粒径200mm〜250mmの大きな礫やごみなどの異物に対する適用性が低い、という問題がある。そして、このような浚渫工法の分野では、粒径250mm程度の大きな礫を含む砂礫土砂を対象として吸引を行い、例えば400mに亘る長い距離を搬送することのできる技術がない、という問題がある。   However, in the conventional grab dredging method, the grab bucket opening and closing structure dreds more than necessary thickness of sand and sand, which not only causes water pollution but also causes extra dredged sand and work efficiency. There is a problem of being bad. On the other hand, in the conventional pump dredging method, since the soil is continuously sucked by the pump, there is a merit that the working efficiency is good and the occurrence of turbidity in the suction part is small. Since the pump used in the pump is an impeller-type submersible pump by centrifugal force, such submersible pumps are applicable to foreign matter such as large gravel and dust having a particle size of 200 mm to 250 mm present in the sediments of many dam reservoirs. There is a problem that is low. And in the field of such dredging methods, there is a problem that there is no technology capable of sucking gravel and sand containing large gravel with a particle size of about 250 mm and transporting a long distance of, for example, 400 m.

本発明は、このような従来の問題を解決するものであり、ダム貯水池などの水底の(例えば、粒径250mm程の)大きな礫やごみなどの異物を含む堆砂を連続的に効率よく吸引し、(例えば、400m程の)長い距離を搬送することのできる新たなポンプを用いた浚渫システムを提供すること、を目的とする。   The present invention solves such a conventional problem, and continuously and efficiently sucks sediments containing foreign matter such as large gravel and dust (for example, having a particle diameter of about 250 mm) at the bottom of a dam reservoir or the like. It is an object of the present invention to provide a dredge system using a new pump that can carry a long distance (for example, about 400 m).

上記目的を達成するために、本発明は、水底に沈殿する堆砂をポンプで吸引し、排砂管へ送り出す浚渫システムにおいて、前記ポンプは、高圧の動力水を送給する超高圧ポンプ
と、噴射口、吸引口、及び吐出口を有し、前記超高圧ポンプから送給される動力水により駆動され、堆砂を吸引、圧送するエジェクターと、先端にスクリュー式の破砕機を有し、堆砂を前記エジェクターに吸引搬送する吸引管と、前記破砕機又は前記吸引管に接続され、前記破砕機と前記吸引管との接続付近に流体を注入する流体注入装置とを備え、前記スクリュー式の破砕機は、一端に開口を有し、他端に駆動モーター取付部を有する略円筒形状をなし、外周面の前記他端側に前記吸引管の接続口を形成され、内周面の前記接続口よりも前記開口側の中間部に前記開口側から前記駆動モーター取付部に向けて漸次小径の、堆砂に含まれる吸引、圧送の対象とする所定の大きさまでの礫その他の含有物を破砕するためのテーパー面が形成されてなる外筒と、前記外筒の前記駆動モーター取付部に出力軸を前記外筒の軸芯と同芯上に配置して取り付けられる油圧式の駆動モーターと、前記油圧式の駆動モーターの出力軸に前記外筒の軸芯に対して偏芯して作動連結され、正逆回転可能に駆動可能な回転軸と、前記回転軸の少なくとも基端側に形成され、軸芯に対して直角方向の断面形状を略円形とし、外周面は略円錐台形で前記外筒の内周面のテーパー面に対向し当該テーパー面との間で、堆砂に含まれる吸引、圧送対象とする所定の大きさまでの礫その他の含有物を前記エジェクターにより吸引、圧送可能に所定の大きさまで小さく破砕し取り込み可能なコーンスクリュー、及び前記回転軸の先端側から前記コーンスクリューに向けて当該コーンスクリューの外径よりも大きく前記外筒の内径よりも小さい螺旋状に形成され、前記外筒の開口側の内周面内に配置されて、堆砂に含まれる吸引、圧送対象とする所定の大きさまでの礫その他の含有物を破砕し取り込み可能なオーガ式のスクリューとを具備し、前記エジェクターの噴射口、吐出口にそれぞれ、前記超高圧ポンプ、前記排砂管が接続され、前記エジェクターの吸引口と前記破砕機の接続口との間に前記吸引管が接続されるとともに、前記破砕機又は前記吸引管に前記流体注入装置が接続されて構成され、前記エジェクターを前記破砕機及び前記流体注入装置とともに駆動して、前記破砕機の前記オーガ式のスクリューの正回転と前記エジェクターの真空吸引力とにより水底の堆砂を当該堆砂に含まれる吸引、圧送対象の所定の大きさまでの礫その他の含有物とともに前記外筒の開口から内部へ取り込み、当該堆砂に含まれる一定以上の硬さの礫は前記オーガ式のスクリューの逆回転により前記外筒の開口の外部へ排出し、前記外筒の内部に取り込まれた堆砂に含まれる吸引、圧送対象の所定の大きさまでの礫その他の含有物を前記オーガ式のスクリューで破砕し、これを前記外筒の前記テーパー面と前記コーンスクリューの前記外周面との間で前記エジェクターにより吸引、圧送可能な大きさに破砕しながら、前記流体注入装置により注入される前記流体と混合して、前記吸引管を通して前記エジェクターに吸引し、前記排砂管へ圧送する、ことを要旨とする。
In order to achieve the above object, the present invention is a dredging system that sucks sediment deposited on the bottom of the water with a pump and sends it to a sand discharge pipe, wherein the pump is an ultra-high pressure pump for supplying high-pressure power water; It has an ejection port, a suction port, and a discharge port, and is driven by power water fed from the ultrahigh pressure pump, and has an ejector that sucks and pumps sediment and a screw crusher at the tip. A suction pipe that sucks and conveys sand to the ejector; and a fluid injection device that is connected to the crusher or the suction pipe and injects fluid in the vicinity of the connection between the crusher and the suction pipe. The crusher has a substantially cylindrical shape having an opening at one end and a drive motor mounting portion at the other end, a connection port of the suction pipe is formed on the other end side of the outer peripheral surface, and the connection on the inner peripheral surface The intermediate part on the opening side of the mouth An outer surface formed with a tapered surface for crushing gravel and other inclusions having a gradually smaller diameter from the mouth side toward the drive motor mounting portion up to a predetermined size to be sucked and pumped in the sediment. A cylinder, a hydraulic drive motor attached to the drive motor mounting portion of the outer cylinder with an output shaft disposed concentrically with the axis of the outer cylinder, and the output shaft of the hydraulic drive motor to the output shaft A rotary shaft that is operatively connected eccentrically with respect to the axial center of the outer cylinder and that can be driven to rotate forward and backward, and is formed on at least the base end side of the rotary shaft, and a cross-sectional shape perpendicular to the axial center The outer peripheral surface is substantially frustoconical and faces the tapered surface of the inner peripheral surface of the outer cylinder, and the gravel up to a predetermined size to be sucked and pumped in the sediment between the tapered surface. Other contents can be sucked and pumped by the ejector. A cone screw that can be crushed and taken down to a predetermined size, and formed in a spiral shape that is larger than the outer diameter of the cone screw and smaller than the inner diameter of the outer cylinder toward the cone screw from the tip side of the rotating shaft, An auger-type screw that is arranged in the inner peripheral surface on the opening side of the outer cylinder and is capable of crushing and taking up gravel and other contents up to a predetermined size to be sucked and pumped into the sediment; The super-high pressure pump and the sand discharge pipe are connected to the ejection port and discharge port of the ejector, respectively, and the suction tube is connected between the suction port of the ejector and the connection port of the crusher. The fluid injection device is connected to the crusher or the suction pipe, and the ejector is driven together with the crusher and the fluid injection device, so that the crusher Opening of the outer cylinder together with gravel and other contents up to a predetermined size to be sucked and pumped into the sediment by the positive rotation of the auger screw and the vacuum suction force of the ejector Gravel having a certain hardness or more contained in the sediment is discharged to the outside of the opening of the outer cylinder by reverse rotation of the auger-type screw, and is accumulated in the outer cylinder. The gravel and other inclusions up to a predetermined size to be sucked and pumped are crushed with the auger type screw, and this is broken between the tapered surface of the outer cylinder and the outer peripheral surface of the cone screw. While being crushed into a size that can be sucked and pumped by an ejector, mixed with the fluid injected by the fluid injection device, sucked into the ejector through the suction pipe, and the sand discharge pipe Pumping, it is summarized in that.

また、この浚渫システムは次の各部に次のような構成を有することが好ましい。
(1)コーンスクリューは、軸芯に対して直角方向の断面形状が略楕円形に形成されて、前記コーンスクリューの回転により、外筒のテーパー面と前記コーンスクリューの外周面との間の空間が拡大縮小可能に構成される。
(2)破砕機の外筒のテーパー面及び/又はコーンスクリューの外周面に肉盛構造の複数の凸部を有する
(3)破砕機は多関節アーム装置に取り付けられ、前記多関節アーム装置を介して堆砂の吸引先に向けて操作される。
(4)破砕機に水中カメラが堆砂の吸引先に向けて取り付けられ、操作側に前記水中カメラにより撮像された画像情報を表示する表示装置が設置される。
(5)流体に空気が採用され、流体注入装置は、空気を供給するコンプレッサーと、前記
コンプレッサーと破砕機又は吸引管との間に接続される注入管とからなり、前記破砕機内又は前記吸引管内に空気を注入することにより、前記破砕機と前記吸引管との接続付近で土砂濃度を低下させ、併せて前記破砕機と前記吸引管との接続付近に振動を発生させて、前記破砕機内又は前記吸引管内の閉塞を防止する。
In addition, this dredging system preferably has the following configuration in each of the following parts.
(1) The cone screw has a cross-sectional shape in a direction perpendicular to the axial center that is substantially elliptical, and a space between the tapered surface of the outer cylinder and the outer peripheral surface of the cone screw by the rotation of the cone screw. Is configured to be scalable.
(2) A plurality of convex portions having a built-up structure are provided on the tapered surface of the outer cylinder of the crusher and / or the outer peripheral surface of the cone screw.
(3) The crusher is attached to the articulated arm device, and is operated toward the suction destination of the sediment through the articulated arm device.
(4) An underwater camera is attached to the crusher toward the suction destination of the sediment, and a display device that displays image information captured by the underwater camera is installed on the operation side.
(5) Air is adopted as the fluid, and the fluid injection device includes a compressor for supplying air and an injection pipe connected between the compressor and the crusher or the suction pipe, and the inside of the crusher or the suction pipe By injecting air into the crusher, the sediment concentration is reduced in the vicinity of the connection between the crusher and the suction pipe, and vibration is generated in the vicinity of the connection between the crusher and the suction pipe. Blockage in the suction tube is prevented.

本発明の浚渫システムによれば、上記の構成により、エジェクターを破砕機及び流体注入装置とともに駆動して、破砕機のオーガ式のスクリューの正回転とエジェクターの真空吸引力とにより水底の堆砂を当該堆砂に含まれる吸引、圧送対象の所定の大きさまでの礫その他の含有物とともに外筒の開口から内部へ取り込み、当該堆砂に含まれる一定以上の硬さの礫はオーガ式のスクリューの逆回転により外筒の開口の外部へ排出し、外筒の内部に取り込まれた堆砂に含まれる吸引、圧送対象の所定の大きさまでの礫その他の含有物をオーガ式のスクリューで破砕し、これを外筒のテーパー面とコーンスクリューの外周面との間でエジェクターにより吸引、圧送可能な大きさに破砕しながら、流体注入装置により注入される流体と混合して、吸引管を通してエジェクターに吸引し、排砂管へ圧送するようにしたので、ダム貯水池などの水底の大きな礫やごみなどの異物を含む堆砂でも連続的に効率よく吸引することができ、特に、この破砕機の場合、例えば、最大粒径250mm程度の大きさの石やごみでもオーガ式のスクリューにより外筒の開口から内部に取り込み破砕し、これを外筒のテーパー面とコーンスクリューの外周面との間で大きな衝撃力で圧接し、エジェクターに吸引可能に例えば粒径150mm以下に破砕することができ、また他面で、この破砕機ですべての石を破砕しようとすると、モーターが大きくなりすぎるため、この破砕機では、一定の硬さ以上の礫は破砕せず、スクリューの逆回転により、破砕機外に排出することができ、しかも、エジェクターの駆動中は、常に吸引力が働いているので、スクリューを逆回転しても、土砂を連続的に吸引することができ、土砂吸引の効率を高めることができる、という格別な効果を奏する。 According to the dredging system of the present invention, with the above configuration, the ejector is driven together with the crusher and the fluid injection device, and the sediment at the bottom of the water is removed by the forward rotation of the auger type screw of the crusher and the vacuum suction force of the ejector. The suction and pressure contained in the sediment is taken into the inside from the opening of the outer cylinder together with gravel and other inclusions up to a predetermined size, and gravel with a certain level of hardness is contained in the sediment by the auger type screw. It is discharged to the outside of the opening of the outer cylinder by reverse rotation, and the gravel and other contents up to a predetermined size to be pumped are crushed with an auger-type screw. This sucked by ejector between the tapered surface and the outer circumferential surface of the cone screw of the outer tube, while crushed to pumpable size, and mixed with the fluid to be injected by the fluid injection device, intake Since it is sucked into the ejector through the pipe and pumped to the sand discharge pipe, even sediments containing foreign matter such as large gravel at the bottom of the dam reservoir and foreign matter such as garbage can be sucked continuously and efficiently. In the case of a crusher, for example, even stones and dust having a maximum particle size of about 250 mm are taken in from the opening of the outer cylinder by an auger type screw and crushed, and this is divided into a tapered surface of the outer cylinder and an outer peripheral surface of the cone screw. Can be crushed to a particle size of 150 mm or less so that it can be sucked by the ejector. On the other side, if all the stones are crushed with this crusher, the motor becomes too large. Therefore, in this crusher, gravel with a certain hardness or higher cannot be crushed and can be discharged out of the crusher by reverse rotation of the screw. Always since suction force is working, even if the reverse rotation of the screw, it is possible to continuously suck the sand, it is possible to increase the efficiency of soil suction achieves exceptional effect that.

本発明の一実施の形態における浚渫システムの構成を示すブロック図The block diagram which shows the structure of the bag system in one embodiment of this invention 同システムに用いるエジェクターの構成を示す図Diagram showing the configuration of the ejector used in the system 同システムに用いる破砕機の構成を示す図((a)は側面断面図(b)は先端面図)The figure which shows the structure of the crusher used for the system ((a) is side sectional drawing (b) is a front end view) 同システムを用いた浚渫工法を示す図Diagram showing the dredging method using the same system

次に、この発明を実施するための形態について図を用いて説明する。図1に浚渫システムの構成を示している。図1に示すように、浚渫システムSは、水底に沈殿する堆砂をポンプで吸引し、排砂管6へ送り出す形式のシステムで、このシステムSのポンプは、高圧の動力水を送給する超高圧ポンプ1と、噴射口、吸引口、及び吐出口を有し、超高圧ポンプ1から送給される動力水により駆動され、堆砂を吸引、圧送するエジェクター2と、先端にスクリュー式の破砕機4を有し、堆砂をエジェクター2に吸引搬送する吸引管3と、破砕機4又は吸引管3に接続され、破砕機4と吸引管3との接続付近に流体を注入する流体注入装置5とを備え、エジェクター2の噴射口、吸引口、吐出口にそれぞれ、超高圧ポンプ1、吸引管3、排砂管6が接続され、破砕機4又は吸引管3に流体注入装置5が接続されて構成される。   Next, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of the bag system. As shown in FIG. 1, the dredging system S is a system in which the sediment deposited on the bottom of the water is sucked by a pump and sent to the sand discharge pipe 6. The pump of the system S feeds high-pressure power water. An ejector 2 that has an ultrahigh pressure pump 1, an injection port, a suction port, and a discharge port, is driven by power water fed from the ultrahigh pressure pump 1, sucks and pumps sediment, and has a screw type at the tip. A suction pipe 3 that has a crusher 4 and sucks and conveys sediment to the ejector 2 and fluid injection that is connected to the crusher 4 or the suction pipe 3 and injects fluid near the connection between the crusher 4 and the suction pipe 3 And an ultrahigh pressure pump 1, a suction pipe 3, and a sand discharge pipe 6 are respectively connected to an ejection port, a suction port, and a discharge port of the ejector 2, and a fluid injection device 5 is connected to the crusher 4 or the suction pipe 3. Connected and configured.

この浚渫システムSでは、最大粒径(直径)250mm程度までの大きさの石やごみを含む砂礫土砂を吸引、圧送対象として、超高圧ポンプ他各ポンプ機器が製作され、これらのポンプ機器がユニットフロートを用いた台船上に配置されて組み立てられる(図4参照)。   In this dredging system S, ultrahigh pressure pumps and other pump devices are manufactured for suctioning and pumping gravel and sand containing stones and debris with a maximum particle size (diameter) of about 250 mm. It is arranged and assembled on a trolley using a float (see FIG. 4).

超高圧ポンプ1は、エジェクター2で最大粒径150mm程度の石などを含む砂礫土砂を吸引、圧送するのに必要な高い圧力で大容量の動力水をエジェクター2に供給可能に、ポンプ性能として1800回転/分で揚程1.5MPa、流量5m3/分程度の送水が可能な大型の両吸込渦巻ポンプ11、12が2台使用され、これらのポンプ11、12が並列に連結されて、揚程1.5MPa、流量10m3/分程度の能力を有する。この場合、両吸込渦巻ポンプ11、12の動力はモーターでもよいが、エンジンが採用され、220kw相当のエンジンが取り付けられる。なお、エンジン式の超高圧ポンプにしたことで全体がコンパクトになる利点がある。 The super high pressure pump 1 is capable of supplying a large volume of power water to the ejector 2 at a high pressure necessary for sucking and pumping gravel including sand having a maximum particle size of about 150 mm by the ejector 2. Two large suction centrifugal pumps 11 and 12 capable of supplying water at a pumping speed of 1.5 MPa at a rotation / min and a flow rate of about 5 m 3 / min are used, and these pumps 11 and 12 are connected in parallel to form a head 1 It has a capacity of about 5 MPa and a flow rate of about 10 m 3 / min. In this case, although the motor of both the suction centrifugal pumps 11 and 12 may be a motor, an engine is employed and an engine equivalent to 220 kW is attached. In addition, there is an advantage that the whole is made compact by adopting the engine type super high pressure pump.

エジェクター2は、図2に示すように、一端にノズル接続口211、他端に内管接続口212をそれぞれ有し、周面に吸引管接続口(吸引口)213を有するエジェクター本体をなす外管21と、外管21のノズル接続口211に嵌め込み固定されて、高圧水(ジェット水)を発生させるため噴射口をなすノズル22と、外管21の内管接続口212に嵌め込み固定されて、高圧水を受ける吐出口をなす内管23とからなり、このエジェクター2内に最大粒径150mm程度の礫などを含む砂礫土砂を吸引、圧送可能に、ノズル22の直径を60mm以上、内管22の直径を200mm以上(例えば、300mm)とし、ノズル22から内管23までの距離を150mm〜450mmの範囲、内管23の長さを500mm〜2000mmの範囲とする。なお、このエジェクター2は大型の超高圧ポンプ1に対応する大型のもので、自動制御された最適空気を外部から導入する点、絞りのない内管23を用いて真空を発生させる点で通常のエジェクターと異なり、その他管の磨耗に強い、管の閉塞や詰まりに強い、高濃度で吸引できる、吸引部の汚濁発生がない、などの利点がある。   As shown in FIG. 2, the ejector 2 has a nozzle connection port 211 at one end, an inner tube connection port 212 at the other end, and an ejector body having a suction tube connection port (suction port) 213 on the peripheral surface. The nozzle 21 is fitted and fixed to the pipe 21 and the nozzle connection port 211 of the outer tube 21, and is fitted and fixed to the nozzle 22 that forms an injection port for generating high-pressure water (jet water) and the inner tube connection port 212 of the outer tube 21. And an inner pipe 23 that forms a discharge port for receiving high-pressure water. The ejector 2 is capable of sucking and pumping gravel and sand containing gravel with a maximum particle size of about 150 mm, the diameter of the nozzle 22 is 60 mm or more, and the inner pipe. The diameter of 22 is 200 mm or more (for example, 300 mm), the distance from the nozzle 22 to the inner tube 23 is in the range of 150 mm to 450 mm, and the length of the inner tube 23 is in the range of 500 mm to 2000 mm. To. The ejector 2 is a large one corresponding to the large ultrahigh pressure pump 1, and is usually used in that it automatically introduces optimally controlled air from the outside and generates a vacuum using the inner tube 23 without a restriction. Unlike the ejector, there are other advantages such as resistance to abrasion of the tube, resistance to blockage and clogging of the tube, suction at a high concentration, and no occurrence of contamination of the suction part.

吸引管3は、フレキシブルホース又は鋼管が使用され、この吸引管3内に最大粒径150mm程度の礫などを含む砂礫土砂を吸引搬送可能に、直径を200mm以上とし、長さを閉塞防止のため20m以下とする。この吸引管3はエジェクター2の外管21の吸引管接続口213に連結固定される。   The suction pipe 3 is a flexible hose or a steel pipe. The suction pipe 3 is capable of sucking and transporting gravel and sand containing gravel with a maximum particle size of about 150 mm. The diameter of the suction pipe 3 is 200 mm or more to prevent blockage. 20 m or less. The suction tube 3 is connected and fixed to the suction tube connection port 213 of the outer tube 21 of the ejector 2.

破砕機4は、図3に示すように、一端に開口40を有し、他端に駆動モーター取付部41を有する略円筒形状をなし、外周面の他端側に吸引管3の接続口42を形成され、内周面の接続口42よりも開口40側の中間部に開口40側から駆動モーター取付部41に向けて漸次小径のテーパー面43が形成されてなる外筒44と、外筒44の駆動モーター取付部41に出力軸45を外筒44の軸芯と同芯上に配置して取り付けられる油圧式の駆動モーター46と、油圧式の駆動モーター46の出力軸45に外筒44の軸芯に対して偏芯して作動連結され、正逆回転可能に駆動可能な回転軸47と、回転軸47の少なくとも基端側に形成され、軸芯に対して直角方向の断面形状を略楕円形とするコーンスクリュー48、回転軸47の先端側からコーンスクリュー48に向けて螺旋状に形成されるオーガ式のスクリュー49、及び回転軸47の先端に取り付けられるウィング491とを具備し、外筒44の外周面の接続口42に吸引管3(の先端)が接続される。
この破砕機4では、外筒44内周面のテーパー面43の駆動モーター取付部41側の端部に延長して当該端部と略同じ高さの段部43Eが形成されて、これらテーパー面43及び段部43Eの各面に破砕ビットもしくは肉盛溶接により複数の凸部431が設けられる。このような外筒44において、コーンスクリュー48は外筒44内のテーパー面43及び段部43Eに対応する位置に配置され、コーンスクリュー48の外周面480はテーパー面43に対向する面が所定の外形寸法の略円錐台形に形成され、段部43Eに対向する面が所定の外形寸法の略円柱形に形成され、これら略円錐台形及び略円柱形の各面に肉盛溶接により複数の凸部481が設けられる。このようにして外筒44のテーパー面43及び段部43Eとコーンスクリュー48の外周面480との間に、粒径250mm程度の大きさの石やごみでも取り込み、かつエジェクター2に吸引可能な粒径150mm以下に破砕できるように、所定の間隔の空間が設けられ、また、既述のとおり、コーンスクリュー48は軸芯に対して直角方向の断面形状が略楕円形に形成されて、外筒44内でコーンスクリュー48の回転により、外筒44内のテーパー面43及び段部43Eとコーンスクリュー48の外周面480との間の空間を拡大縮小可能になっていて、外筒44内のテーパー面43及び段部43Eの複数の凸部431とコーンスクリュー48の外周面480の複数の凸部481はそれぞれ、この間隔が可変される空間に向けて突出される。なお、オーガ式のスクリュー49の外径はコーンスクリュー48の外径よりも大きく、外筒44の開口40側の内周面の内径よりも少し小さくなっており、開口40側の内周面内に配置される。先端のウィング491は破砕機4内で詰まりそうな大きな礫などを跳ね飛ばすため、外筒44の開口40内に回転可能に配置される。このような構成からなる破砕機4は、最大粒径250mm程度の大きさの石やごみでも外筒44の開口40から内部に取り込み、外筒44の内周面のテーパー面43及び段部43Eの各面とコーンスクリュー48の外周面480との間の拡縮される空間で外筒44のテーパー面43及び段部43Eの各面とコーンスクリュー48の外周面480とにより各面の複数の凸部431、481を介して大きな衝撃力で圧接し、エジェクター2に吸引可能に粒径150mm以下に破砕可能になっている。
また、この破砕機4ですべての石を破砕しようとすると、モーターが大きくなりすぎるため、この破砕機4では、一定の硬さ以上の石は破砕せず、スクリュー48、49の逆回転により、破砕機4外に排出するものとする。この破砕機4の場合、エジェクター2の駆動中は、常に吸引力が働いているので、スクリュー48、49を逆回転しても、土砂を連続的に吸引しており、土砂吸引の効率を高めることができる。
かかる破砕機4は多関節アーム装置に取り付けられ、多関節アーム装置を介して堆砂の吸引先に向けて操作される。この場合、多関節アーム装置に、図4に示すように、ロングアームバックホウBが利用され、破砕機4はバックホウBのロングアームaの先端に取り付けられる。なお、破砕機4の油圧ユニットは破砕機専用のものでもよいが、破砕機4の操作にバックホウBを使用するので、バックホウBに搭載された油圧ユニットを使用してもよい。バックホウBの油圧ユニットを用いることで、破砕機4の回転数を例えば20rpm〜100rpmの範囲で自由に変えることができ、オペレーターはバックホウBの油圧メーターを見ながら破砕機4を操作することができる。
また、この場合、破砕機4には水中カメラ70が堆砂の吸引先に向けて取り付けられ、操作側、この場合、バックホウBの運転席に水中カメラ70により撮像された画像情報を表示するモニター(表示装置)71が設置される。このようにしてオペレーターはモニター71を使って堆砂の吸引先の状態を確認しながら作業を行うことができ、堆砂の吸引効率を向上させることができる。
As shown in FIG. 3, the crusher 4 has a substantially cylindrical shape having an opening 40 at one end and a drive motor mounting portion 41 at the other end, and a connection port 42 of the suction pipe 3 at the other end side of the outer peripheral surface. An outer cylinder 44 in which a tapered surface 43 having a gradually smaller diameter is formed from the opening 40 side toward the drive motor mounting portion 41 at an intermediate portion on the opening 40 side of the connection port 42 on the inner peripheral surface, The hydraulic drive motor 46 is mounted on the drive motor mounting portion 41 of the output shaft 45 so as to be disposed on the same axis as the axis of the outer cylinder 44, and the outer cylinder 44 is attached to the output shaft 45 of the hydraulic drive motor 46. A rotary shaft 47 that is operatively connected eccentrically with respect to the shaft core, and that can be driven to rotate forward and backward, and is formed at least on the base end side of the rotary shaft 47, and has a cross-sectional shape perpendicular to the shaft core. From the tip side of the cone screw 48 and the rotating shaft 47 that are substantially elliptical, An auger-type screw 49 formed in a spiral toward the screw 48 and a wing 491 attached to the tip of the rotary shaft 47, and the suction pipe 3 ( The tip is connected.
In this crusher 4, the taper surface 43 on the inner peripheral surface of the outer cylinder 44 is extended to the end portion on the drive motor mounting portion 41 side to form a step portion 43E having substantially the same height as the end portion. A plurality of convex portions 431 are provided on each surface of 43 and stepped portion 43E by crushing bits or overlay welding. In such an outer cylinder 44, the cone screw 48 is disposed at a position corresponding to the tapered surface 43 and the stepped portion 43E in the outer cylinder 44, and the outer peripheral surface 480 of the cone screw 48 has a predetermined surface facing the tapered surface 43. Formed in a substantially frustoconical shape with outer dimensions, the surface facing the stepped portion 43E is formed into a substantially cylindrical shape with a predetermined outer dimension, and a plurality of convex portions are formed by overlay welding on each surface of the substantially frustoconical shape and the substantially cylindrical shape. 481 is provided. In this way, particles that can be taken in by stones and dust having a particle size of about 250 mm and sucked to the ejector 2 between the tapered surface 43 and stepped portion 43E of the outer cylinder 44 and the outer peripheral surface 480 of the cone screw 48. A space having a predetermined interval is provided so that the cone screw 48 can be crushed to a diameter of 150 mm or less. As described above, the cone screw 48 has a cross-sectional shape in a direction perpendicular to the axial center and is substantially elliptical. The space between the tapered surface 43 and the stepped portion 43E in the outer cylinder 44 and the outer peripheral surface 480 of the cone screw 48 can be enlarged and reduced by the rotation of the cone screw 48 in the inner cylinder 44, and the taper in the outer cylinder 44 is increased. The plurality of convex portions 431 of the surface 43 and the stepped portion 43E and the plurality of convex portions 481 of the outer peripheral surface 480 of the cone screw 48 are respectively projected toward a space in which the interval is variable. . The outer diameter of the auger-type screw 49 is larger than the outer diameter of the cone screw 48 and slightly smaller than the inner diameter of the inner peripheral surface of the outer cylinder 44 on the opening 40 side, Placed in. The wing 491 at the tip is rotatably disposed in the opening 40 of the outer cylinder 44 in order to jump off large gravel that is likely to be clogged in the crusher 4. The crusher 4 having such a configuration takes in stones or dust having a maximum particle size of about 250 mm from the opening 40 of the outer cylinder 44, and the tapered surface 43 and the stepped portion 43E on the inner peripheral surface of the outer cylinder 44. In the space between the respective surfaces of the outer cylinder 44 and the outer peripheral surface 480 of the cone screw 48, a plurality of protrusions on each surface are formed by the tapered surfaces 43 and 43E of the outer cylinder 44 and the outer peripheral surface 480 of the cone screw 48. It is pressed by a large impact force through the parts 431 and 481, and can be crushed to a particle size of 150 mm or less so that it can be sucked into the ejector 2.
In addition, if the crusher 4 tries to crush all the stones, the motor becomes too large, so that the crusher 4 does not crush the stones with a certain hardness or higher, and the screws 48 and 49 rotate backwards. It shall be discharged out of the crusher 4. In the case of this crusher 4, since the suction force is always working while the ejector 2 is driven, even if the screws 48 and 49 are rotated in the reverse direction, the earth and sand are continuously sucked and the efficiency of the earth and sand suction is increased. be able to.
The crusher 4 is attached to the articulated arm device, and is operated toward the suction destination of the sediment through the articulated arm device. In this case, as shown in FIG. 4, the long arm backhoe B is used for the articulated arm device, and the crusher 4 is attached to the tip of the long arm a of the backhoe B. The hydraulic unit of the crusher 4 may be dedicated to the crusher, but since the backhoe B is used for the operation of the crusher 4, a hydraulic unit mounted on the backhoe B may be used. By using the hydraulic unit of the backhoe B, the rotation speed of the crusher 4 can be freely changed within a range of 20 rpm to 100 rpm, for example, and the operator can operate the crusher 4 while looking at the hydraulic meter of the backhoe B. .
In this case, an underwater camera 70 is attached to the crusher 4 toward the suction destination of the sediment, and a monitor that displays image information captured by the underwater camera 70 on the operation side, in this case, the driver's seat of the backhoe B. (Display device) 71 is installed. In this way, the operator can work while confirming the state of the suction destination of the sediment using the monitor 71, and the sediment suction efficiency can be improved.

破砕機4又は吸引管3に注入する流体は空気が採用される。流体注入装置5は空気注入装置で、図1に示すように、空気を供給するコンプレッサー50と、コンプレッサー50と破砕機4又は吸引管3との間に接続される注入管51とからなる。この場合、コンプレッサー50に接続された注入管51は、破砕機4外周面の吸引管の接続口42に形成された空気注入口に注入管51の吹出し口が土砂の吸引方向に向けて接続される。空気量は1気圧換算で5m3/分以下とする。吸引管3の長さが15m程度を超える場合、吸引管3内の土砂濃度は5〜8パーセント以上と濃くなって、吸引管3が閉塞する恐れがあるが、破砕機4の内部で破砕機4と吸引管3との接続付近に空気を注入することにより、吸引管3の閉塞を防止することができる。 Air is used as the fluid injected into the crusher 4 or the suction pipe 3. The fluid injection device 5 is an air injection device, and includes a compressor 50 for supplying air, and an injection tube 51 connected between the compressor 50 and the crusher 4 or the suction tube 3 as shown in FIG. In this case, the injection pipe 51 connected to the compressor 50 is connected to the air injection port formed in the suction pipe connection port 42 on the outer peripheral surface of the crusher 4 so that the outlet of the injection pipe 51 is directed in the direction of the earth and sand suction. The The amount of air is 5 m 3 / min or less in terms of 1 atm. When the length of the suction tube 3 exceeds about 15 m, the earth and sand concentration in the suction tube 3 becomes 5 to 8% or more and the suction tube 3 may be blocked. By injecting air in the vicinity of the connection between 4 and the suction tube 3, the suction tube 3 can be prevented from being blocked.

排砂管6は、鋼管が使用され、この排砂管6内に最大粒径150mm程度の礫などを含む砂礫土砂を排送可能に、1本の鋼管の直径を400mm又はそれ以上、長さを6mとし、複数の鋼管をそれぞれ、ゴムジョイントを介して、各鋼管のフランジをボルト止めすることにより連結して、延長を200m〜400mとする。また、この排砂管6を水に浮かせて配管するため、鋼管1本につき2個のフロートを設置して貯水池に配管する。なお、この排砂管6で距離400m以上の砂礫土砂の輸送を行う場合は、図1に示すように、排砂管6に流体を挿入する。この場合、流体は空気とし、空気注入装置8により空気を注入する。空気注入装置8は空気を供給するコンプレッサー81と、コンプレッサー81と排砂管6との間に接続される注入管82とからなり、注入管82がエジェクター2の吐出口の先0〜20mの位置で排砂管6の一部に配管された空気挿入管80に接続され、排砂管6内に空気を供給する。空気量は1気圧換算で20m3/分以下とする。 The sand discharge pipe 6 is a steel pipe, and the diameter of one steel pipe is 400 mm or more so that gravel earth and sand containing gravel having a maximum particle size of about 150 mm can be discharged into the sand discharge pipe 6. And a plurality of steel pipes are connected to each other by bolting the flanges of the steel pipes through rubber joints, and the extension is set to 200 m to 400 m. In addition, in order to float the sand pipe 6 in the water and pipe it, two floats are installed per steel pipe and piped to the reservoir. In addition, when transporting gravel earth and sand having a distance of 400 m or more by the sand discharge pipe 6, a fluid is inserted into the sand discharge pipe 6 as shown in FIG. In this case, the fluid is air, and air is injected by the air injection device 8. The air injection device 8 includes a compressor 81 for supplying air and an injection pipe 82 connected between the compressor 81 and the sand discharge pipe 6, and the injection pipe 82 is located at a position 0 to 20 m ahead of the discharge port of the ejector 2. Thus, the air is connected to an air insertion pipe 80 piped on a part of the sand discharge pipe 6, and air is supplied into the sand discharge pipe 6. The amount of air is 20 m 3 / min or less in terms of 1 atm.

この浚渫システムSはこのような超高圧ポンプ1、エジェクター2、吸引管3、破砕機4、流体注入装置5及び排砂管6を備え、エジェクター2の噴出口のノズル22に超高圧ポンプ1を接続し、吸引口213に吸引管3を接続し、吐出口の内管23に排砂管6を接続し、破砕機4に流体注入装置5を接続して構成され、エジェクター2を破砕機4及び流体注入装置5とともに駆動して、水底の堆砂を、当該堆砂に含まれる吸引、圧送対象とする所定の大きさまでの礫その他の含有物を破砕機4で所定の粒径以下の大きさに破砕しながら、流体注入装置5により注入される空気と混合して、吸引管3を通してエジェクター2に吸引し、排砂管6へ圧送するようになっている。   This dredging system S includes such an ultrahigh pressure pump 1, an ejector 2, a suction pipe 3, a crusher 4, a fluid injection device 5, and a sand discharge pipe 6, and the ultrahigh pressure pump 1 is connected to a nozzle 22 at an ejection port of the ejector 2. The suction pipe 3 is connected to the suction port 213, the sand discharge pipe 6 is connected to the inner pipe 23 of the discharge port, the fluid injection device 5 is connected to the crusher 4, and the ejector 2 is connected to the crusher 4 And the fluid injecting device 5, and the gravel and other inclusions up to a predetermined size to be sucked and pumped into the bottom sediment, the crushing machine 4 has a size equal to or smaller than the predetermined particle size. While being crushed, it is mixed with air injected by the fluid injection device 5, sucked into the ejector 2 through the suction pipe 3, and pumped to the sand discharge pipe 6.

続いて、この浚渫システムSを用いた浚渫施工について説明する。図4に示すように、バックホウBのロングアームaの先端に取り付けられた破砕機4をロングアームaの操作によりダム貯水池の水底に向けて降ろし、破砕機4の先端開口40を堆砂面に対して適宜の距離にセットする。この場合の作業は、破砕機4に取り付けられた水中カメラ70及び操作側に設置されたモニター71により、水底の堆砂面の状態を確認することにより、効率よく行うことができる。そして、超高圧ポンプ1を駆動してエジェクター2を作動させるとともに、破砕機4及び流体注入装置5を駆動する。
図1、図2及び図3において、超高圧ポンプ1の駆動によりこの超高圧ポンプ1から高圧の大容量の動力水がエジェクター2に送給され、この動力水がエジェクター2のノズル22で絞られて秒速50mを超える流速でエジェクター2の内部に内管23に向けて噴射され、これによってエジェクター2の内部に高い負圧が発生し、エジェクター2の吸引口213を介してエジェクター2の外部から内部に向けて真空吸引力が働く。この真空吸引力により、水底の堆砂が破砕機4の開口40から連続的に吸入され、吸引管3、吸引口213を通してエジェクター2内部に連続的に吸引され、内管23を通じて排砂管6へ圧送される。
また、このとき、破砕機4の駆動により破砕機4の各スクリュー48、49が回転され、併せて、空気注入装置5の駆動により破砕機4内部の破砕機4と吸引管3との接続付近に空気が砂礫土砂の吸引方向に注入されるので、堆砂に含まれる吸引、圧送対象の所定の大きさまでの礫その他の含有物が破砕機4内で所定の粒径又は大きさ以下に破砕され、これらの礫その他の含有物を含む砂礫土砂に空気が混合されて、吸引管3に吸引される。
この場合、既述のとおり、超高圧ポンプ1による高い圧力と大容量の動力水の送給能力と、これに対応可能な大口径の内管23を有する大型の特殊エジェクター2とにより、エジェクター2は粒径150mm程度の石を吸引、圧送することができ、また、破砕機4は直径250mm程度の大きさの石を取り込み、150mm程度以下に破砕する能力を有するので、破砕機4から吸入される砂礫土砂の中に直径250mm程度の大きさの石が含まれていても、この石は破砕機4で150mm程度以下に破砕されて、砂礫土砂とともに、吸引管3を通じてエジェクター2内部へ送られ、内管23を通して排砂管6へ排送される。
また、この場合、吸引管3内の土砂濃度が濃い場合、吸引管3の長さが15mを超えると、閉塞する可能性が高まるが、破砕機4内部で破砕機4と吸引管3との接続付近に空気が注入され、砂礫土砂に混合されるので、吸引管3内の砂礫土砂の見かけの流速が速くなって、土砂濃度が低くなり、併せて、この空気の注入により破砕機4と吸引管3との接続付近に適度の振動が発生し、この振動により砂礫土砂が流動しやすくなり、吸引管3内が砂礫土砂により閉塞されるのを防止される。
このようにして最大粒径250mm程度の石を含む砂礫土砂であっても、エジェクター2に連続的に吸引され、排砂管6に圧送される。
なお、エジェクター2の内管23の先0〜20mの位置で排砂管6の一部に配管された空気挿入管80に空気注入装置8により空気が供給され、排砂管6内に排送される砂礫土砂に空気が混合されるので、排砂管6内の土砂濃度が低くなり、排砂管6内が砂礫土砂により閉塞されるのを防ぎ、所定の排送先まで確実に排送されることになる。
Then, the dredging construction using this dredging system S will be described. As shown in FIG. 4, the crusher 4 attached to the tip of the long arm a of the backhoe B is lowered toward the bottom of the dam reservoir by operating the long arm a, and the tip opening 40 of the crusher 4 is placed on the sedimentation surface. Set it at an appropriate distance. The work in this case can be efficiently performed by confirming the state of the bottom sedimentation surface with the underwater camera 70 attached to the crusher 4 and the monitor 71 installed on the operation side. And while driving the ultrahigh pressure pump 1 and operating the ejector 2, the crusher 4 and the fluid injection | pouring apparatus 5 are driven.
1, 2, and 3, by driving the ultrahigh pressure pump 1, a large volume of high-pressure power water is supplied from the ultrahigh pressure pump 1 to the ejector 2, and the power water is throttled by the nozzle 22 of the ejector 2. Injected into the ejector 2 toward the inner pipe 23 at a flow velocity exceeding 50 m / s, a high negative pressure is generated inside the ejector 2, and from the outside of the ejector 2 through the suction port 213 of the ejector 2. The vacuum suction force works toward Due to the vacuum suction force, the sediment at the bottom of the water is continuously sucked from the opening 40 of the crusher 4, continuously sucked into the ejector 2 through the suction pipe 3 and the suction port 213, and the sand discharge pipe 6 through the inner pipe 23. To be pumped.
At this time, the screws 48 and 49 of the crusher 4 are rotated by the driving of the crusher 4, and at the same time, the vicinity of the connection between the crusher 4 inside the crusher 4 and the suction pipe 3 is driven by the air injection device 5. Since air is injected in the direction of the gravel and sand suction, gravel and other contents up to a predetermined size to be sucked and pumped into the sediment are shredded to a predetermined particle size or less in the crusher 4 Then, air is mixed with the gravel earth and sand containing these gravel and other inclusions and sucked into the suction pipe 3.
In this case, as described above, the ejector 2 includes the high-pressure pump 1 having a high pressure and a large-capacity power water supply capability, and the large-sized special ejector 2 having a large-diameter inner pipe 23 that can handle this. Can suck and pump stones with a particle size of about 150 mm, and the crusher 4 has the ability to take in stones with a diameter of about 250 mm and crush them to about 150 mm or less. Even if stones with a diameter of about 250 mm are contained in the gravel earth and sand, this stone is crushed to about 150 mm or less by the crusher 4 and sent to the inside of the ejector 2 through the suction pipe 3 together with the gravel earth and sand. Then, it is discharged to the sand discharge pipe 6 through the inner pipe 23.
In this case, if the sediment concentration in the suction pipe 3 is high, the possibility of clogging increases when the length of the suction pipe 3 exceeds 15 m. Since air is injected in the vicinity of the connection and mixed with gravel and sand, the apparent flow speed of gravel and sand in the suction pipe 3 is increased, and the sediment concentration is lowered. Appropriate vibration is generated in the vicinity of the connection with the suction pipe 3, and the gravel is easily flown by this vibration, and the suction pipe 3 is prevented from being blocked by the gravel earth and sand.
Thus, even gravel earth and sand containing stones having a maximum particle size of about 250 mm is continuously sucked into the ejector 2 and pumped to the sand discharge pipe 6.
In addition, air is supplied by an air injection device 8 to an air insertion pipe 80 piped to a part of the sand discharge pipe 6 at a position of 0 to 20 m ahead of the inner pipe 23 of the ejector 2, and is discharged into the sand discharge pipe 6. Since air is mixed with the gravel soil, the sediment concentration in the sand discharge pipe 6 is reduced, the sand discharge pipe 6 is prevented from being blocked by the gravel sand, and reliably discharged to the specified destination. Will be.

以上説明したように、この浚渫システムSによれば、超高圧ポンプ1、エジェクター2、吸引管3、破砕機4、流体注入装置5及び排砂管6を備え、エジェクター2の噴出口のノズル22に超高圧ポンプ1を接続し、吸引口213に吸引管3を接続し、吐出口の内管23に排砂管6を接続し、破砕機4に流体注入装置5を接続して構成され、エジェクター2を破砕機4及び流体注入装置5とともに駆動して、水底の堆砂を、当該堆砂に含まれる吸引、圧送対象とする所定の大きさまでの礫その他の含有物を破砕機4で所定の粒径又は大きさ以下に破砕しながら、流体注入装置5により注入される空気と混合して、吸引管3を通してエジェクター2に吸引し、排砂管6へ圧送するので、ダム貯水池などの水底の大きな礫やごみなどの異物を含む堆砂でも連続的に効率よく吸引することができる。
この浚渫システムSの場合、特に、超高圧ポンプ1による高い圧力と大容量の動力水の送給能力と、これに対応可能な大口径の内管23を有する大型特殊のエジェクター2とにより、エジェクター2は粒径150mm程度の石を吸引、圧送することができ、また、破砕機4は直径250mm程度の大きさの石を取り込み、150mm程度以下に破砕する能力を有するので、破砕機4から吸入される砂礫土砂の中に直径250mm程度の大きさの石が含まれていても、この石を破砕機4で150mm程度以下に破砕して、砂礫土砂とともに、吸引管3を通じてエジェクター2内部へ連続的に吸引し、排砂管6へ圧送することができる。
また、この浚渫システムSの場合、吸引管3の長さが15m程度を超えるものであっても、破砕機4内部で破砕機4と吸引管3との接続付近に空気を注入し、砂礫土砂に混合するので、吸引管3内の土砂濃度を低くすることができ、さらに、この空気の注入により破砕機4と吸引管3との接続付近に適度の振動を発生し、この振動により砂礫土砂を流動しやすくすることができ、これらの作用により、吸引管3内が砂礫土砂により閉塞されるのを防止することができる。
As described above, according to the dredging system S, the super high pressure pump 1, the ejector 2, the suction pipe 3, the crusher 4, the fluid injection device 5, and the sand discharge pipe 6 are provided, and the nozzle 22 at the ejection port of the ejector 2. The super high pressure pump 1 is connected, the suction pipe 3 is connected to the suction port 213, the sand discharge pipe 6 is connected to the inner pipe 23 of the discharge port, and the fluid injection device 5 is connected to the crusher 4, The ejector 2 is driven together with the crusher 4 and the fluid injection device 5, and gravel and other contents up to a predetermined size to be sucked and pumped into the sediment at the bottom of the water are predetermined by the crusher 4. The mixture is mixed with air injected by the fluid injection device 5 while being crushed to a particle size or smaller than the above, sucked into the ejector 2 through the suction pipe 3, and pumped to the sand discharge pipe 6, so that the bottom of a dam reservoir or the like Contains foreign material such as large gravel and garbage In sand can be sucked continuously and efficiently.
In the case of this dredging system S, in particular, an ejector is provided by a high-pressure and high-capacity power water supply capability by the ultra-high pressure pump 1 and a large special ejector 2 having a large-diameter inner pipe 23 that can handle this. 2 can suck and pump stones with a particle size of about 150 mm, and the crusher 4 has the ability to take in stones with a diameter of about 250 mm and crush them to about 150 mm or less. Even if stones with a diameter of about 250 mm are contained in the sand and gravel, the stones are crushed to about 150 mm or less by the crusher 4 and continuously into the ejector 2 through the suction pipe 3 together with the gravel earth and sand. Can be sucked and sent to the sand discharge pipe 6 by pressure.
Further, in the case of this dredging system S, even if the length of the suction pipe 3 exceeds about 15 m, air is injected in the vicinity of the connection between the crusher 4 and the suction pipe 3 inside the crusher 4, and gravel Therefore, the sediment concentration in the suction pipe 3 can be lowered, and furthermore, the injection of air generates an appropriate vibration in the vicinity of the connection between the crusher 4 and the suction pipe 3, and this vibration causes the gravel and sand. By these actions, the suction pipe 3 can be prevented from being blocked by gravel earth and sand.

(この浚渫システムSによる砂礫土砂の吸引、輸送、陸揚げの試験施工の結果)
この浚渫システムSを用いて、水深4〜9mの貯水池で堆積砂礫を大きな玉石は破砕機4で破砕又は除去しながら吸引を行い、最大400mの距離を輸送し陸揚げしたところ、河床の状況にもよるが、吸引、輸送した砂礫土砂は1時間当たり35m3程度であり、吸引された土砂の中に粒径200mm程度の石、長さ500mm程度の木片、自動車のタイヤなどが混ざっており、この浚渫システムSが、貯水池内の粒径の大きな石や長い木片、ごみなどの異物に対する適応性が高いことを確認できた。
この浚渫システムSによれば、水中に堆積した土砂を、貯水池運用に大きく制約を与えることなしに、効果的に採取、輸送することができ、ダム貯水池の堆砂対策として有効で、採取した土砂をダム下流河川に供給することにより河川の環境改善にも資する新たな工法として今後の発展を期待することができる。
(Results of test construction of gravel and sand suction, transportation and landing by this dredging system S)
Using this dredging system S, a large cobblestone was aspirated while crushing or removing it with a crusher 4 in a reservoir with a depth of 4-9m, transported up to a distance of 400m, and landed on the riverbed. However, the gravel sand that has been sucked and transported is about 35 m 3 per hour, and stones with a particle size of about 200 mm, wood pieces with a length of about 500 mm, and automobile tires are mixed in the sucked earth and sand. It was confirmed that the dredging system S is highly adaptable to foreign objects such as large stones, long pieces of wood, and garbage in the reservoir.
According to this dredging system S, sediment accumulated in water can be collected and transported effectively without greatly restricting the operation of the reservoir, and it is effective as a countermeasure for sedimentation in dam reservoirs. The future development can be expected as a new construction method that contributes to the improvement of the river environment by supplying to the river downstream of the dam.

なお、この実施の形態では、破砕機の外筒のテーパー面及び段部の各面とコーンスクリューの外周面に複数の凸部を設けたが、破砕機の外筒のテーパー面及び段部又はコーンスクリューの外周面のいずれか一方にのみ複数の凸部を設けるようにしてもよい。
また、この実施の形態では、流体に空気を採用し、流体注入装置を、空気を供給するコンプレッサーと、コンプレッサーと破砕機又は吸引管との間に接続する注入管とにより構成したが、流体に水その他の液体を採用し、流体注入装置を水その他の液体を供給する供給装置と、この供給装置と破砕機又は吸引管との間に接続する注入管とにより構成してもよい。
このようにしても上記実施の形態と略同様の作用効果を得ることができる。
さらに、エジェクターは水中エジェクターとして水中に設置するようにしてもよい。水深の深い箇所を浚渫する場合には、吸引管を長くするよりもエジェクターを水中に設置して吸引管を短くした方が有利となる。
In this embodiment, a plurality of convex portions are provided on each of the tapered surface and the stepped portion of the outer cylinder of the crusher and the outer peripheral surface of the cone screw, but the tapered surface and the stepped portion of the outer cylinder of the crusher or You may make it provide a some convex part only in either one of the outer peripheral surfaces of a cone screw.
In this embodiment, air is used as the fluid, and the fluid injecting device is configured by a compressor that supplies air and an injecting tube that is connected between the compressor and the crusher or the suction tube. You may employ | adopt water and other liquids, and you may comprise a fluid injection apparatus with the supply apparatus which supplies water and other liquids, and the injection pipe connected between this supply apparatus and a crusher or a suction pipe.
In this way, substantially the same effect as the above embodiment can be obtained.
Further, the ejector may be installed underwater as an underwater ejector. When dripping a deep part of the water, it is advantageous to install the ejector in water and shorten the suction pipe rather than lengthening the suction pipe.

S 浚渫システム
1 超高圧ポンプ
2 エジェクター
211 ノズル接続口
212 内管接続口
213 吸引管接続口(吸引口)
21 外管
22 ノズル(噴射口)
23 内管(吐出口)
3 吸引管
4 破砕機
40 開口
41 駆動モーター取付部
42 吸引管の接続口
43 テーパー面
43E 段部
431 凸部
44 外筒
45 出力軸
46 油圧式の駆動モーター
47 回転軸
48 コーンスクリュー
480 外周面
481 凸部
49 オーガ式のスクリュー
491 ウィング
5 流体注入装置(空気注入装置)
50 コンプレッサー
51 注入管
6 排砂管
70 水中カメラ
71 モニター(表示装置)
8 空気注入装置
80 空気挿入管
81 コンプレッサー
82 注入管
S 浚 渫 system 1 Super high pressure pump 2 Ejector 211 Nozzle connection port 212 Inner tube connection port 213 Suction tube connection port (suction port)
21 Outer tube 22 Nozzle (spout)
23 Inner pipe (discharge port)
DESCRIPTION OF SYMBOLS 3 Suction pipe 4 Crusher 40 Opening 41 Drive motor attachment part 42 Suction pipe connection port 43 Tapered surface 43E Step part 431 Convex part 44 Outer cylinder 45 Output shaft 46 Hydraulic drive motor 47 Rotating shaft 48 Cone screw 480 Outer peripheral surface 481 Convex 49 Auger type screw 491 Wing 5 Fluid injection device (air injection device)
50 Compressor 51 Injection pipe 6 Sand discharge pipe 70 Underwater camera 71 Monitor (display device)
8 Air Injection Device 80 Air Insertion Pipe 81 Compressor 82 Injection Pipe

Claims (6)

水底に沈殿する堆砂をポンプで吸引し、排砂管へ送り出す浚渫システムにおいて、
前記ポンプは、
高圧の動力水を送給する超高圧ポンプと、
噴射口、吸引口、及び吐出口を有し、前記超高圧ポンプから送給される動力水により駆動され、堆砂を吸引、圧送するエジェクターと、
先端にスクリュー式の破砕機を有し、堆砂を前記エジェクターに吸引搬送する吸引管と、
前記破砕機又は前記吸引管に接続され、前記破砕機と前記吸引管との接続付近に流体を注入する流体注入装置と、
を備え、
前記スクリュー式の破砕機は、
一端に開口を有し、他端に駆動モーター取付部を有する略円筒形状をなし、外周面の前記他端側に前記吸引管の接続口を形成され、内周面の前記接続口よりも前記開口側の中間部に前記開口側から前記駆動モーター取付部に向けて漸次小径の、堆砂に含まれる吸引、圧送の対象とする所定の大きさまでの礫その他の含有物を破砕するためのテーパー面が形成されてなる外筒と、
前記外筒の前記駆動モーター取付部に出力軸を前記外筒の軸芯と同芯上に配置して取り付けられる油圧式の駆動モーターと、
前記油圧式の駆動モーターの出力軸に前記外筒の軸芯に対して偏芯して作動連結され、正逆回転可能に駆動可能な回転軸と、
前記回転軸の少なくとも基端側に形成され、軸芯に対して直角方向の断面形状を略円形とし、外周面は略円錐台形で前記外筒の内周面のテーパー面に対向し当該テーパー面との間で、堆砂に含まれる吸引、圧送対象とする所定の大きさまでの礫その他の含有物を前記
エジェクターにより吸引、圧送可能に所定の大きさまで小さく破砕し取り込み可能なコーンスクリュー、及び前記回転軸の先端側から前記コーンスクリューに向けて当該コーンスクリューの外径よりも大きく前記外筒の内径よりも小さい螺旋状に形成され、前記外筒の開口側の内周面内に配置されて、堆砂に含まれる吸引、圧送対象とする所定の大きさまでの礫その他の含有物を破砕し取り込み可能なオーガ式のスクリューと、
を具備し、
前記エジェクターの噴射口、吐出口にそれぞれ、前記超高圧ポンプ、前記排砂管が接続され、前記エジェクターの吸引口と前記破砕機の接続口との間に前記吸引管が接続されるとともに、前記破砕機又は前記吸引管に前記流体注入装置が接続されて構成され、
前記エジェクターを前記破砕機及び前記流体注入装置とともに駆動して、前記破砕機の前記オーガ式のスクリューの正回転と前記エジェクターの真空吸引力とにより水底の堆砂を当該堆砂に含まれる吸引、圧送対象の所定の大きさまでの礫その他の含有物とともに前記外筒の開口から内部へ取り込み、当該堆砂に含まれる一定以上の硬さの礫は前記オーガ式のスクリューの逆回転により前記外筒の開口の外部へ排出し、前記外筒の内部に取り込まれた堆砂に含まれる吸引、圧送対象の所定の大きさまでの礫その他の含有物を前記オーガ式のスクリューで破砕し、これを前記外筒の前記テーパー面と前記コーンスクリューの前記外周面との間で前記エジェクターにより吸引、圧送可能な大きさに破砕しながら、前記流体注入装置により注入される前記流体と混合して、前記吸引管を通して前記エジェクターに吸引し、前記排砂管へ圧送する、
ことを特徴とする浚渫システム。
In a dredging system that sucks sediment deposited on the bottom of the water with a pump and sends it to a sand pipe,
The pump is
An ultra-high pressure pump that delivers high-pressure power water;
An ejector having an ejection port, a suction port, and a discharge port, driven by power water fed from the ultrahigh pressure pump, and sucking and feeding sediment;
A suction pipe that has a screw-type crusher at the tip, and sucks and conveys the sediment to the ejector;
A fluid injection device that is connected to the crusher or the suction pipe and injects a fluid in the vicinity of the connection between the crusher and the suction pipe;
With
The screw-type crusher is
It has an opening at one end and a substantially cylindrical shape having a drive motor mounting portion at the other end, a connection port of the suction pipe is formed on the other end side of the outer peripheral surface, and the connection port of the inner peripheral surface is more than the connection port. A taper for crushing gravel and other inclusions that are gradually reduced in diameter from the opening side toward the drive motor mounting portion, up to a predetermined size to be sucked and pumped, included in the sediment, at the opening side intermediate portion An outer cylinder formed with a surface;
A hydraulic drive motor attached to the drive motor mounting portion of the outer cylinder by placing an output shaft concentrically with the axis of the outer cylinder; and
A rotary shaft that is operatively connected to the output shaft of the hydraulic drive motor in an eccentric manner with respect to the axis of the outer cylinder, and that can be driven to rotate forward and reverse;
The rotary shaft is formed at least on the base end side, and has a substantially circular cross-sectional shape in a direction perpendicular to the shaft center. The outer peripheral surface is substantially frustoconical and faces the tapered surface of the inner peripheral surface of the outer cylinder. A cone screw capable of crushing and taking in gravel and other inclusions up to a predetermined size to be sucked and pumped by the ejector between and to a predetermined size so that they can be pumped, and It is formed in a spiral shape that is larger than the outer diameter of the cone screw and smaller than the inner diameter of the outer cylinder from the tip end side of the rotating shaft toward the cone screw, and is arranged in the inner peripheral surface on the opening side of the outer cylinder. An auger-type screw capable of crushing and taking in gravel and other contents up to a predetermined size to be sucked and pumped into the sediment;
Comprising
The super-high pressure pump and the sand discharge pipe are connected to the ejection port and the discharge port of the ejector, and the suction tube is connected between the suction port of the ejector and the connection port of the crusher, and The fluid injection device is connected to the crusher or the suction tube,
The ejector is driven together with the crusher and the fluid injection device, and the bottom sediment is sucked into the sediment by the positive rotation of the auger type screw of the crusher and the vacuum suction force of the ejector, Gravel and other inclusions up to a predetermined size to be pumped are taken into the inside of the outer cylinder from the opening of the outer cylinder, and the gravel having a certain hardness or more contained in the sediment is transferred to the outer cylinder by reverse rotation of the auger screw. The gravel and other contents up to a predetermined size to be sucked and pumped in the sediment deposited inside the outer cylinder are crushed with the auger type screw, suction by the ejector between said tapered surface of the outer tube and the outer peripheral surface of the cone screw, while crushed to pumpable size, is injected by the fluid injection device It is mixed with the fluid, sucked into the ejector through the suction pipe, pumped to the sediment tube,
浚 渫 system characterized by that.
コーンスクリューは、軸芯に対して直角方向の断面形状が略楕円形に形成されて、前記コーンスクリューの回転により、外筒のテーパー面と前記コーンスクリューの外周面との間の空間が拡大縮小可能に構成される請求項1に記載の浚渫システム。 The cone screw has a substantially elliptical cross-sectional shape perpendicular to the axis, and the space between the tapered surface of the outer cylinder and the outer peripheral surface of the cone screw is enlarged or reduced by the rotation of the cone screw. The scissor system according to claim 1, which is configured to be possible. 破砕機の外筒のテーパー面及び/又はコーンスクリューの外周面に肉盛構造の複数の凸部を有する請求項1又は2に記載の浚渫システム。 The scissor system according to claim 1 or 2, wherein a plurality of convex portions having a built-up structure are provided on the tapered surface of the outer cylinder of the crusher and / or the outer peripheral surface of the cone screw. 破砕機は多関節アーム装置に取り付けられ、前記多関節アーム装置を介して堆砂の吸引先に向けて操作される請求項1乃至3のいずれかに記載の浚渫システム。   The crusher system according to any one of claims 1 to 3, wherein the crusher is attached to an articulated arm device, and is operated toward a suction destination of the sediment through the articulated arm device. 破砕機に水中カメラが堆砂の吸引先に向けて取り付けられ、操作側に前記水中カメラにより撮像された画像情報を表示する表示装置が設置される請求項1乃至4のいずれかに記載の浚渫システム。   The dredge according to any one of claims 1 to 4, wherein an underwater camera is attached to the crusher toward a suction destination of the sediment, and a display device that displays image information captured by the underwater camera is installed on the operation side. system. 流体に空気が採用され、流体注入装置は、空気を供給するコンプレッサーと、前記コンプレッサーと破砕機又は吸引管との間に接続される注入管とからなり、前記破砕機内又は前記吸引管内に空気を注入することにより、前記破砕機と前記吸引管との接続付近で土砂濃度を低下させ、併せて前記破砕機と前記吸引管との接続付近に振動を発生させて、前記破砕機内又は前記吸引管内の閉塞を防止する請求項1乃至5のいずれかに記載の浚渫システム。   Air is employed as the fluid, and the fluid injection device includes a compressor for supplying air and an injection pipe connected between the compressor and the crusher or the suction pipe. Air is supplied into the crusher or the suction pipe. By injecting, the sediment concentration is reduced in the vicinity of the connection between the crusher and the suction pipe, and vibration is generated in the vicinity of the connection between the crusher and the suction pipe. The scissor system according to any one of claims 1 to 5, which prevents blockage.
JP2011191677A 2011-09-02 2011-09-02 Firewood system Active JP5860249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191677A JP5860249B2 (en) 2011-09-02 2011-09-02 Firewood system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191677A JP5860249B2 (en) 2011-09-02 2011-09-02 Firewood system

Publications (2)

Publication Number Publication Date
JP2013053437A JP2013053437A (en) 2013-03-21
JP5860249B2 true JP5860249B2 (en) 2016-02-16

Family

ID=48130681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191677A Active JP5860249B2 (en) 2011-09-02 2011-09-02 Firewood system

Country Status (1)

Country Link
JP (1) JP5860249B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6449532B2 (en) * 2013-05-20 2019-01-09 株式会社安藤・間 Sediment sediment suction method and apparatus used therefor
CN113802504B (en) * 2021-09-29 2023-05-05 广东天立方建设集团有限公司 Municipal road silt cleaning device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139857U (en) * 1984-02-27 1985-09-17 小牧工業株式会社 Dorezija
JP2659015B2 (en) * 1988-04-01 1997-09-30 宇部興産株式会社 Dredging equipment
JP2522989B2 (en) * 1988-06-10 1996-08-07 運輸省港湾技術研究所長 Dredging slurry-transport method
JP3784139B2 (en) * 1997-06-10 2006-06-07 鹿島建設株式会社 Muddy water type shield machine with built-in gravel crusher and muddy water shield method
JP2005146767A (en) * 2003-11-19 2005-06-09 Penta Ocean Constr Co Ltd Water bottom dredging method and its device in solid foreign matter remaining water zone

Also Published As

Publication number Publication date
JP2013053437A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US10655300B2 (en) Cyclonic separation systems and hydro excavation vacuum apparatus incorporating same
JP6449532B2 (en) Sediment sediment suction method and apparatus used therefor
US4945661A (en) Dredging apparatus
JP5005777B2 (en) Sedimentary mud excavation and removal method and its equipment
JP6590143B2 (en) underwater pump
US20140015302A1 (en) Apparatus and method for the dredging of sediments from the seabed
CN108166555B (en) Milling and digging device and dredging ship with same
JP3445624B2 (en) Tunnel excavation method and tunnel excavator
KR101561293B1 (en) Ground excavator
JP4675169B2 (en) Underwater suction and conveying device, dredging method using the same, caisson filling material removal method, and sediment removal method in foundation pile
JP5860249B2 (en) Firewood system
AU2004247755B2 (en) Device and method for dislodging and recovering dredging material of varying nature
JP6147010B2 (en) Method of preventing sediment accumulation in rivers and sediment discharge system used therefor
JP3194786U (en) Tip attachment for scissors
CN108204003B (en) Ship with travelling step pile assembly
CN110847267A (en) Shipborne multifunctional sand taking island-building excavator
KR20200017119A (en) High speed dredger for marine use
JP2006097343A (en) Dredging carrying device
CN101748792A (en) Multifunctional cleaning and dredging vehicle
KR101606107B1 (en) Pump type dredging apparatus with prevention function of blocking
KR20050066021A (en) Vacuum inhalation apparatus for dredging
CN112049175B (en) Multifunctional platform type dredging device for bridge construction
CN219196122U (en) Dredging equipment
CN211898616U (en) Shipborne multifunctional sand taking island-building excavator
KR200346983Y1 (en) Vacuum inhalation apparatus for dredging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5860249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250