JP5859828B2 - Polymer compound, method for producing the same, and light emitting device - Google Patents

Polymer compound, method for producing the same, and light emitting device Download PDF

Info

Publication number
JP5859828B2
JP5859828B2 JP2011262370A JP2011262370A JP5859828B2 JP 5859828 B2 JP5859828 B2 JP 5859828B2 JP 2011262370 A JP2011262370 A JP 2011262370A JP 2011262370 A JP2011262370 A JP 2011262370A JP 5859828 B2 JP5859828 B2 JP 5859828B2
Authority
JP
Japan
Prior art keywords
group
formula
represented
structural unit
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011262370A
Other languages
Japanese (ja)
Other versions
JP2012131993A (en
Inventor
一栄 大内
一栄 大内
雅之 曽我
雅之 曽我
後藤 修
修 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011262370A priority Critical patent/JP5859828B2/en
Publication of JP2012131993A publication Critical patent/JP2012131993A/en
Application granted granted Critical
Publication of JP5859828B2 publication Critical patent/JP5859828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • C08G2261/374Metal complexes of Os, Ir, Pt, Ru, Rh, Pd
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/524Luminescence phosphorescent
    • C08G2261/5242Luminescence phosphorescent electrophosphorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、高分子化合物及びその製造方法、化合物、高分子化合物を含有する組成物、溶液、薄膜及び発光素子、並びに、発光素子を備える面状光源及び表示素子に関する。   The present invention relates to a polymer compound and a method for producing the same, a compound, a composition containing the polymer compound, a solution, a thin film and a light emitting device, and a planar light source and a display device including the light emitting device.

発光素子の発光層に用いる発光材料として、三重項励起状態からの発光を示す燐光発光性化合物をホスト材料にドーピングした組成物が知られている。この組成物に用いられるホスト材料の基本特性としては、最低三重項励起エネルギー(以下、「T1エネルギー」と言う。)が高いことが重要である。   As a light-emitting material used for a light-emitting layer of a light-emitting element, a composition in which a host material is doped with a phosphorescent compound that emits light from a triplet excited state is known. As a basic characteristic of the host material used in this composition, it is important that the lowest triplet excitation energy (hereinafter referred to as “T1 energy”) is high.

例えば、赤色よりも短波長の発光色を示す燐光発光性化合物に対して、T1エネルギーが高く、優れた最大発光効率を与えることができるホスト材料として、特定の構成単位を組み合わせて含むメタフェニレン系高分子化合物が提案されている(特許文献1)。   For example, a metaphenylene-based compound containing a combination of specific structural units as a host material that has a high T1 energy and can provide excellent maximum light emission efficiency with respect to a phosphorescent compound that emits light having a shorter wavelength than red. A polymer compound has been proposed (Patent Document 1).

国際公開2010/084977号パンフレットInternational Publication 2010/084977 Pamphlet

上述したような組成物を用いた発光層を備える発光素子は、高い輝度を得ることができることに加えて、長時間駆動させた場合であっても高い輝度を維持できる特性を有していること、すなわち、輝度安定性に優れていることが望ましい。ところが、上述したような従来の高分子化合物等をホスト材料等に適用して発光層を形成した場合、これまで、十分な輝度安定性を得ることは困難であった。   In addition to being able to obtain high luminance, a light-emitting element including a light-emitting layer using the composition as described above has characteristics that can maintain high luminance even when driven for a long time. That is, it is desirable that the luminance stability is excellent. However, when the light emitting layer is formed by applying the above-described conventional polymer compound or the like to the host material or the like, it has been difficult to obtain sufficient luminance stability.

そこで、本発明はこのような事情に鑑みてなされたものであり、発光素子の作製に用いた場合に、高い発光効率を与えることができるとともに、発光素子を長時間駆動させた場合であっても優れた輝度安定性を得ることが可能な、高分子化合物を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and can provide high light emission efficiency when used for manufacturing a light emitting element, and is a case where the light emitting element is driven for a long time. Another object of the present invention is to provide a polymer compound capable of obtaining excellent luminance stability.

本発明はまた、このような高分子化合物を得るのに好適な化合物、この化合物を用いた高分子化合物の製造方法、本発明の高分子化合物を含有する組成物、溶液、薄膜及び発光素子、並びに、発光素子を備える面状光源及び表示素子を提供することを目的とする。   The present invention also provides a compound suitable for obtaining such a polymer compound, a method for producing a polymer compound using this compound, a composition containing the polymer compound of the present invention, a solution, a thin film, and a light emitting device, It is another object of the present invention to provide a planar light source and a display element including a light emitting element.

上記目的を達成するため、本発明の高分子化合物は、式(1)で表される構成単位、式(2)で表される構成単位及び式(3)で表される構成単位、並びに、式(4)で表される構成単位及び式(5)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を含む高分子鎖を有しており、且つ、高分子鎖中に、式(1)で表される構成単位と式(2)で表される構成単位とが直接結合した構造を含まないことを特徴とする。   In order to achieve the above object, the polymer compound of the present invention comprises a structural unit represented by formula (1), a structural unit represented by formula (2) and a structural unit represented by formula (3), and A polymer chain comprising at least one structural unit selected from the group consisting of the structural unit represented by formula (4) and the structural unit represented by formula (5), and in the polymer chain The structure does not include a structure in which the structural unit represented by the formula (1) and the structural unit represented by the formula (2) are directly bonded.

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

式(1)中、R1aは、アルキル基、アリール基、1価の芳香族複素環基、アラルキル基又は置換アミノ基を表し、R1b及びR1cは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。なお、2つのR1cは、それぞれ同一であっても異なっていてもよい。 In formula (1), R 1a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an aralkyl group or a substituted amino group, and R 1b and R 1c each independently represent a hydrogen atom or an alkyl group. , An aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, a fluorine atom or a cyano group. The two R 1c s may be the same or different.

式(2)中、Ar2a及びAr2bは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基であって、式(1)で表される構成単位とは異なる構造を有する基を表す。Ar2cは、アリール基、又は、1価の芳香族複素環基を表す。Ar2a、Ar2b及びAr2cで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。t及びtは、それぞれ独立に、1又は2である。なお、Ar2a及びAr2bが複数存在する場合、それらは同一であっても異なっていてもよい。 In the formula (2), Ar 2a and Ar 2b each independently represent an arylene group or a divalent aromatic heterocyclic group, and a group having a structure different from the structural unit represented by the formula (1). Represent. Ar 2c represents an aryl group or a monovalent aromatic heterocyclic group. The groups represented by Ar 2a , Ar 2b and Ar 2c are alkyl groups, aryl groups, monovalent aromatic heterocyclic groups, alkoxy groups, aryloxy groups, aralkyl groups, arylalkoxy groups, substituted amino groups, substituted carbonyls. A group, a substituted carboxyl group, a fluorine atom or a cyano group may further be included as a substituent. t 1 and t 2 are each independently 1 or 2. In the case where Ar 2a and Ar 2b there are a plurality, they may be different even in the same.

式(3)で表される構成単位は、式(1)で表される構成単位とは異なる構造である。式(3)中、Ar3aは、アリーレン基、又は、2価の芳香族複素環基を表す。R3a及びR3bは、それぞれ独立に、アルキル基、アリール基、又は、1価の芳香族複素環基であって、Ar3aにおける前記高分子鎖と結合している炭素原子の隣の炭素原子に結合している基である。Ar3aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を置換基として更に有していてもよい。 The structural unit represented by Formula (3) has a different structure from the structural unit represented by Formula (1). In formula (3), Ar 3a represents an arylene group or a divalent aromatic heterocyclic group. R 3a and R 3b are each independently an alkyl group, an aryl group, or a monovalent aromatic heterocyclic group, and a carbon atom adjacent to the carbon atom bonded to the polymer chain in Ar 3a It is a group bonded to The group represented by Ar 3a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent.

式(4)で表される構成単位は、式(1)で表される構成単位及び式(3)で表される構成単位とはそれぞれ異なる構造である。式(4)中、Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、Ar4aが複数存在する場合、それらは同一であっても異なっていてもよい。 The structural unit represented by formula (4) has a structure different from the structural unit represented by formula (1) and the structural unit represented by formula (3). In formula (4), Ar 4a represents an arylene group or a divalent aromatic heterocyclic group. The group represented by Ar 4a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent. k is an integer of 1 to 3. When a plurality of Ar 4a are present, they may be the same or different.

式(5)中、Ar5a、Ar5b、Ar5c、Ar5d及びAr5hは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基を表す。Ar5e、Ar5f及びAr5gは、それぞれ独立に、アリール基又は1価の芳香族複素環基を表す。Ar5a、Ar5b、Ar5c、Ar5d、Ar5e、Ar5f、Ar5g及びAr5hで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。Ar5d、Ar5e、Ar5f及びAr5gで表される基は、それぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接結合するか、或いは、−O−、−S−、−C(=O)−、−C(=O)−O−、−N(R)−、−C(=O)−N(R)−、又は−C(R)2−で表される基を介して結合して、5〜7員環を形成していてもよい。これらの式中のRは、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表す。n及びnは、それぞれ独立に、0又は1であり、nは、0、1又は2である。 In formula (5), Ar 5a , Ar 5b , Ar 5c , Ar 5d and Ar 5h each independently represent an arylene group or a divalent aromatic heterocyclic group. Ar 5e , Ar 5f and Ar 5g each independently represent an aryl group or a monovalent aromatic heterocyclic group. The groups represented by Ar 5a , Ar 5b , Ar 5c , Ar 5d , Ar 5e , Ar 5f , Ar 5g and Ar 5h are an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group A group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, a fluorine atom or a cyano group may further be included as a substituent. The groups represented by Ar 5d , Ar 5e , Ar 5f and Ar 5g are each directly bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, or —O -, - S -, - C (= O) -, - C (= O) -O -, - N (R A) -, - C (= O) -N (R A) -, or -C ( It may combine through a group represented by R A ) 2 — to form a 5- to 7-membered ring. R A in these formulas represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, or an aralkyl group. n 1 and n 2 are each independently 0 or 1, and n 3 is 0, 1 or 2.

上記本発明の高分子化合物は、式(1)、(2)及び(3)で表される構成単位と、式(4)及び(5)で表される構成単位の少なくとも一方とを含む構造を有することにより、燐光発光性化合物のホスト材料として用いた場合に、優れた発光効率を与えることができる。   The polymer compound of the present invention comprises a structural unit represented by the formulas (1), (2) and (3) and at least one of the structural units represented by the formulas (4) and (5). When used as a host material of a phosphorescent compound, excellent luminous efficiency can be provided.

ここで、本発明者らが検討した結果、式(1)、(2)及び(3)で表される構成単位と、式(4)及び(5)で表される構成単位の少なくとも一方とを組み合わせて有する高分子化合物によれば、高い発光効率が得られるものの、式(1)及び(2)の構成単位が直接結合して配置されている場合、輝度安定性が十分に得られないことが判明した。これは、式(1)及び(2)の構成単位が隣接していると、高分子化合物における電子雲の広がりが阻害され易いためであると推測される。そこで、本発明の高分子化合物は、式(1)、(2)及び(3)で表される構成単位と、式(4)及び(5)で表される構成単位の少なくとも一方とを有するとともに、式(1)及び(2)の構成単位が直接結合した構造が含まれないことで、高い発光効率と、優れた輝度安定性の両方を得ることが可能となる。   Here, as a result of the study by the present inventors, the structural unit represented by the formulas (1), (2) and (3), and at least one of the structural units represented by the formulas (4) and (5) According to the polymer compound having a combination of the above, high luminous efficiency can be obtained, but when the structural units of the formulas (1) and (2) are directly bonded and arranged, sufficient luminance stability cannot be obtained. It has been found. This is presumed to be because if the structural units of the formulas (1) and (2) are adjacent to each other, the spread of the electron cloud in the polymer compound is easily inhibited. Therefore, the polymer compound of the present invention has structural units represented by formulas (1), (2), and (3) and at least one of structural units represented by formulas (4) and (5). In addition, since the structure in which the structural units of the formulas (1) and (2) are directly bonded is not included, it is possible to obtain both high luminous efficiency and excellent luminance stability.

上述した効果がより良好に得られるので、式(2)で表される構成単位の両側に、式(3)で表される構成単位が直接結合していると好ましく、また、式(1)で表される構成単位の両側に、式(4)で表される構成単位及び式(5)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位が直接結合していると好ましい。   Since the effect mentioned above is acquired more favorably, it is preferable that the structural unit represented by the formula (3) is directly bonded to both sides of the structural unit represented by the formula (2), and the formula (1) When at least one structural unit selected from the group consisting of the structural unit represented by formula (4) and the structural unit represented by formula (5) is directly bonded to both sides of the structural unit represented by preferable.

特に、高分子化合物は、式(1)で表される構成単位の両側に式(4)で表される構成単位が直接結合している、式(6)で表される構造が形成されていると好ましい。すなわち、高分子化合物において、式(1)の構成単位は、全てこのような構造を有するように含まれていると好適である。

Figure 0005859828
In particular, the polymer compound has a structure represented by the formula (6) in which the structural unit represented by the formula (4) is directly bonded to both sides of the structural unit represented by the formula (1). It is preferable. That is, in the polymer compound, it is preferable that all the structural units of the formula (1) are included so as to have such a structure.
Figure 0005859828

式(6)中、R1a、R1b、R1c、Ar4a及びkは、それぞれ前記と同義である。ただし、2つのkは、互いに同一であっても異なっていてもよく、複数のAr4aは、それぞれ同一であっても異なっていてもよい。 In formula (6), R 1a , R 1b , R 1c , Ar 4a and k are as defined above. However, two k may be the same or different from each other, and the plurality of Ar 4a may be the same or different from each other.

このような構造を有する場合、高分子化合物は、式(1)で表される構成単位の両側に、常に式(4)で表される構成単位が配置された構造となることから、発光効率及び輝度安定性の効果がより安定的に得られるようになる。   When the polymer compound has such a structure, the polymer compound has a structure in which the structural unit represented by the formula (4) is always arranged on both sides of the structural unit represented by the formula (1). In addition, the effect of luminance stability can be obtained more stably.

より具体的には、高分子化合物は、式(3)で表される構成単位として、式(7)で表される構成単位を有すると好ましい。

Figure 0005859828
More specifically, the polymer compound preferably has a structural unit represented by the formula (7) as the structural unit represented by the formula (3).
Figure 0005859828

式(7)中、R7a及びR7cは、それぞれ独立に、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基又はシアノ基を表し、R7b及びR7dは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。 In formula (7), R 7a and R 7c each independently represent an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, R 7b and R 7d each independently represents a hydrogen atom, an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, or an aralkyl. Represents a group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, a fluorine atom or a cyano group.

また、式(4)で表される構成単位としては、式(9)で表される構成単位及び式(10)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を有すると好ましい。

Figure 0005859828

Figure 0005859828
The structural unit represented by formula (4) has at least one structural unit selected from the group consisting of the structural unit represented by formula (9) and the structural unit represented by formula (10). It is preferable.
Figure 0005859828

Figure 0005859828

式(9)中、R9a及びR9cは、それぞれ独立に、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表し、R9aとR9cとが互いに結合していてもよい。 In Formula (9), R 9a and R 9c each independently represent an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, or an aralkyl group, and R 9a and R 9c are bonded to each other. Also good.

高分子化合物においては、式(1)中のR1aが、アルキル基、アリール基又はアラルキル基であると好ましく、R1bが、水素原子、アルキル基、アリール基、1価の芳香族複素環基、又は置換アミノ基であると好ましく、R1cが、水素原子であると好ましい。 In the polymer compound, R 1a in formula (1) is preferably an alkyl group, an aryl group or an aralkyl group, and R 1b is a hydrogen atom, an alkyl group, an aryl group or a monovalent aromatic heterocyclic group. Or a substituted amino group, and R 1c is preferably a hydrogen atom.

高分子化合物において、高分子化合物の全質量中の、式(1)で表される構成単位、式(2)で表される構成単位、式(3)で表される構成単位、式(4)で表される構成単位及び式(5)で表される構成単位の合計の質量比率は、高分子化合物全体を1としたとき、0.9以上であると好適である。このような割合で式(1)〜(5)で表される構成単位を含むことで、高い発光効率と輝度安定性とを一層両立させ易くなる。   In the polymer compound, in the total mass of the polymer compound, the structural unit represented by the formula (1), the structural unit represented by the formula (2), the structural unit represented by the formula (3), the formula (4) ) And the total mass ratio of the structural unit represented by the formula (5) are preferably 0.9 or more when the entire polymer compound is 1. By including the structural units represented by the formulas (1) to (5) at such a ratio, it becomes easier to achieve both high luminous efficiency and luminance stability.

高分子化合物は、燐光発光性化合物から誘導される構成単位を更に含むと好ましい。高分子化合物がこのような構成単位を含むことで、優れた発光効率が得られるほか、発光素子を製造する際に、燐光発光性化合物のホスト材料である高分子化合物に対する燐光発光性化合物のドーピング量を低減、もしくは無くすことが可能となり、発光素子の製造における作業性を向上することも可能となる。   The polymer compound preferably further includes a structural unit derived from a phosphorescent compound. When the polymer compound contains such a structural unit, excellent luminous efficiency can be obtained, and doping of the phosphorescent compound with respect to the polymer compound that is a host material of the phosphorescent compound when manufacturing a light emitting device. The amount can be reduced or eliminated, and the workability in manufacturing the light emitting element can be improved.

本発明はまた、上述した高分子化合物を製造するために好適な化合物を提供する。すなわち、本発明の化合物は、式(11)で表されることを特徴とする。

Figure 0005859828
The present invention also provides a compound suitable for producing the above-described polymer compound. That is, the compound of the present invention is represented by the formula (11).
Figure 0005859828

式(11)中、R1aは、アルキル基、アリール基、1価の芳香族複素環基、アラルキル基又は置換アミノ基を表し、R1b及びR1cは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。2つのR1cは、それぞれ同一であっても異なっていてもよい。Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、複数存在するAr4aは、それぞれ同一であっても異なっていてもよく、2つのkも、互いに同一であっても異なっていてもよい。X11aは、下記の置換基(a)群から選ばれる基、又は下記の置換基(b)群から選ばれる基を表す。2つのX11aは、互いに同一であっても異なってもよい。
(置換基(a)群)
塩素原子、臭素原子、ヨウ素原子、−O−S(=O)20(R20はアルキル基、又はアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
(置換基(b)群)
−B(OR21(R21は水素原子又はアルキル基を示し、2個存在するR21は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、−BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、−Sn(R22(R22は水素原子又はアルキル基を示し、3個存在するR22は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、−MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、−ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。
In formula (11), R 1a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an aralkyl group or a substituted amino group, and R 1b and R 1c each independently represent a hydrogen atom or an alkyl group. , An aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, a fluorine atom or a cyano group. Two R 1c s may be the same or different. Ar 4a represents an arylene group or a divalent aromatic heterocyclic group. The group represented by Ar 4a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent. k is an integer of 1 to 3. A plurality of Ar 4a may be the same or different, and two k may be the same or different from each other. X 11a represents a group selected from the following substituent (a) group or a group selected from the following substituent (b) group. Two X 11a may be the same as or different from each other.
(Substituent group (a) group)
Chlorine atom, bromine atom, iodine atom, —O—S (═O) 2 R 20 (R 20 is an alkyl group, or an aryl group optionally substituted with an alkyl group, an alkoxy group, a nitro group, a fluorine atom, or a cyano group. A group represented by:
(Substituent (b) group)
—B (OR 21 ) 2 (R 21 represents a hydrogen atom or an alkyl group, and two R 21 s may be the same or different and may be bonded to each other to form a ring). A group represented by -BF 4 Q 1 (Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium), -Sn (R 22 ) 3 (R 22 represents A hydrogen atom or an alkyl group, and three R 22 s that may be the same or different and may be bonded to each other to form a ring), -MgY 1 (Y 1 Represents a chlorine atom, a bromine atom or an iodine atom.), A group represented by —ZnY 2 (Y 2 represents a chlorine atom, a bromine atom or an iodine atom).

このような化合物を、上記本発明の高分子化合物における式(1)及び式(4)で表される構成単位を形成するための出発原料として用いることにより、本発明の高分子化合物を容易に得ることが可能となる。   By using such a compound as a starting material for forming the structural unit represented by formula (1) and formula (4) in the polymer compound of the present invention, the polymer compound of the present invention can be easily prepared. Can be obtained.

本発明の化合物においては、k=1であることが好ましい。こうすることで、得られる高分子化合物は、高い発光効率及び輝度安定性を得やすいものとなる。   In the compound of the present invention, k = 1 is preferable. By doing so, the obtained polymer compound can easily obtain high luminous efficiency and luminance stability.

より具体的には、本発明の化合物としては、式(12)で表される化合物、又は、式(13)で表される化合物が好ましい。これらの化合物を用いることで、上記効果に優れる高分子化合物が一層得られ易くなる。

Figure 0005859828

Figure 0005859828
More specifically, the compound of the present invention is preferably a compound represented by the formula (12) or a compound represented by the formula (13). By using these compounds, it becomes easier to obtain a polymer compound having excellent effects.
Figure 0005859828

Figure 0005859828

式(12)中、R1a、R1b、R1c、X11a及びR9aは前記と同義である。ただし、4つ存在するR9aは、それぞれ同一であっても異なっていてもよい。また、式(13)中、R1a、R1b、R1c及びX11aは前記と同義である。 In formula (12), R 1a , R 1b , R 1c , X 11a and R 9a are as defined above. However, four R 9a may be the same or different. In formula (13), R 1a , R 1b , R 1c and X 11a are as defined above.

式(11)〜(13)において、R1aは、アルキル基、アリール基又はアラルキル基であると好ましく、R1bは、水素原子、アルキル基、アリール基、1価の芳香族複素環基、又は置換アミノ基であると好ましく、R1cは、水素原子であると好ましい。 In formulas (11) to (13), R 1a is preferably an alkyl group, an aryl group, or an aralkyl group, and R 1b is a hydrogen atom, an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, or It is preferably a substituted amino group, and R 1c is preferably a hydrogen atom.

また、上述した高分子化合物を製造するために好適な化合物としては、式(12−1)で表される化合物も好適である。このような化合物を用いることで、上記効果に優れる高分子化合物がより一層得られ易くなる。

Figure 0005859828
Moreover, as a compound suitable for producing the above-described polymer compound, a compound represented by the formula (12-1) is also suitable. By using such a compound, it becomes easier to obtain a polymer compound having excellent effects.
Figure 0005859828

式(12−1)中、R12aはメチル基を表し、R12bは水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたフェニル基を表し、R12cは水素原子又はメチル基を表し、R12dはアルキル基、アルキル基又はアリール基で置換されたアリール基を表し、R12eはアルキル基又はアリール基で置換されたアリール基を表す。2つのR12cは、互いに同一であっても異なっていてもよく、2つのR12dは、互いに同一であっても異なっていてもよく、2つのR12eは、互いに同一であっても異なっていてもよい。X11aは、上記式(11)の場合と同義である。2つのX11aは、互いに同一であっても異なってもよい。 In formula (12-1), R 12a represents a methyl group, R 12b represents a hydrogen atom, an alkyl group, an unsubstituted or phenyl group substituted with an alkyl group or an aryl group, and R 12c represents a hydrogen atom or a methyl group. R 12d represents an aryl group substituted with an alkyl group, an alkyl group or an aryl group, and R 12e represents an aryl group substituted with an alkyl group or an aryl group. The two R 12c may be the same or different from each other, the two R 12d may be the same or different from each other, and the two R 12e may be the same or different from each other. May be. X 11a has the same meaning as in the case of the above formula (11). Two X 11a may be the same as or different from each other.

式(12−1)において、R12dは、炭素数1〜8のアルキル基、又は、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であって且つ該アルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であり、R12eは、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であって且つ該アルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であると好ましい。 In the formula (12-1), R 12d is an alkyl group having 1 to 8 carbon atoms, or an aryl group substituted with one or more and 3 or less alkyl groups having 1 to 12 carbon atoms, and the alkyl group At least one of the groups is an aryl group which is an alkyl group having 6 to 12 carbon atoms, and R 12e is an aryl group substituted with one or more and 3 or less alkyl groups having 1 to 12 carbon atoms, In addition, it is preferable that at least one of the alkyl groups is an aryl group which is an alkyl group having 6 to 12 carbon atoms.

また、式(12−1)において、R12d及びR12eは、式(12−2)で表される基、すなわち、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であって且つそのアルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であると好ましい。

Figure 0005859828
In the formula (12-1), R 12d and R 12e were substituted with a group represented by the formula (12-2), that is, an alkyl group having 1 to 12 carbon atoms. It is preferably an aryl group that is an aryl group and at least one of the alkyl groups is an alkyl group having 6 to 12 carbon atoms.
Figure 0005859828

式(12−2)中、R12f、R12g及びR12hは、それぞれ独立に、水素原子、又は炭素数1〜12のアルキル基を表す。但し、R12f、R12g及びR12hのうちの少なくとも一つは、炭素数6〜12のアルキル基である。式(12−1)において、複数存在する式(12−2)で表される基は、それぞれ同一であっても異なっていてもよい。 In formula (12-2), R 12f , R 12g and R 12h each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. However, at least one of R 12f , R 12g and R 12h is an alkyl group having 6 to 12 carbon atoms. In the formula (12-1), a plurality of groups represented by the formula (12-2) may be the same or different.

本発明はまた、本発明の高分子化合物を含む組成物を提供する。すなわち、本発明の組成物は、上記本発明の高分子化合物と、正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも1種の材料とを含有する。このような組成物は、発光素子における発光層を形成するための材料として極めて好適であり、かかる組成物により形成された発光層を備える発光素子は、高い発光効率が得られるとともに、輝度安定性にも優れるものとなる。この組成物において、発光材料は、特に燐光発光性化合物を含むと好ましい。   The present invention also provides a composition comprising the polymer compound of the present invention. That is, the composition of the present invention contains the polymer compound of the present invention and at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material. Such a composition is extremely suitable as a material for forming a light-emitting layer in a light-emitting element, and a light-emitting element including a light-emitting layer formed using such a composition has high luminous efficiency and luminance stability. Even better. In this composition, the light emitting material preferably contains a phosphorescent compound.

本発明は、高分子化合物と溶媒とを含有する溶液を提供する。かかる溶液によれば、上述したような発光層を、塗布等の簡便な手法によって容易に形成することが可能となる。   The present invention provides a solution containing a polymer compound and a solvent. According to such a solution, the light emitting layer as described above can be easily formed by a simple technique such as coating.

本発明は、上記本発明の高分子化合物を含有する薄膜を提供する。本発明の薄膜は、発光素子等の発光層に良好に適用することができ、発光素子の発光効率及び輝度安定性の両方を高めることが可能である。   The present invention provides a thin film containing the polymer compound of the present invention. The thin film of the present invention can be favorably applied to a light-emitting layer such as a light-emitting element, and can improve both the light emission efficiency and the luminance stability of the light-emitting element.

本発明は、陽極と、陰極と、陽極と陰極との間に設けられた上記本発明の高分子化合物を含有する発光層とを備える発光素子を提供する。かかる発光素子は、発光層が本発明の高分子化合物を含有することから、高い発光効率が得られるほか、優れた輝度安定性を発揮し得るものとなる。   The present invention provides a light emitting device comprising an anode, a cathode, and a light emitting layer containing the polymer compound of the present invention provided between the anode and the cathode. Such a light-emitting element has high luminous efficiency and can exhibit excellent luminance stability because the light-emitting layer contains the polymer compound of the present invention.

本発明は、本発明の発光素子を備える面状光源及び表示素子を提供する。これらの面状光源や表示素子は、本発明の発光素子を備えるので、明るい照明や表示が可能であり、しかも、輝度を長期にわたって良好に維持することが可能である。   The present invention provides a planar light source and a display device comprising the light emitting device of the present invention. Since these planar light sources and display elements include the light-emitting element of the present invention, bright illumination and display are possible, and the luminance can be well maintained over a long period of time.

また、本発明の高分子化合物の製造方法は、式(11)で表される化合物、式(14)で表される化合物、式(15)で表される化合物を含む単量体混合物を重合させて、式(6)で表される構造、式(2)で表される構成単位及び式(3)で表される構成単位を含む高分子化合物を得る工程を有しており、単量体混合物は、その全モル数を100としたとき、式(11)で表される化合物、式(14)で表される化合物及び式(15)で表される化合物の合計モル数が、60〜100であることを特徴とする。   Moreover, the manufacturing method of the high molecular compound of this invention superpose | polymerizes the monomer mixture containing the compound represented by the compound represented by the compound represented by Formula (11), Formula (14), and Formula (15). And a step of obtaining a polymer compound comprising the structure represented by formula (6), the structural unit represented by formula (2), and the structural unit represented by formula (3). When the total number of moles of the body mixture is 100, the total number of moles of the compound represented by formula (11), the compound represented by formula (14) and the compound represented by formula (15) is 60. It is characterized by being ~ 100.

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

式(11)及び式(6)中、R1a、R1b及びR1c、Ar4a及びkは、式(1)及び(4)の場合と同義である。ただし、複数存在するAr4aは、それぞれ同一であっても異なっていてもよく、2つのkも、互いに同一であっても異なっていてもよい。X11aは、下記置換基(a)群から選ばれる基、又は下記置換基(b)群から選ばれる基を表す。2つのX11aは、互いに同一であっても異なってもよい。
(置換基(a)群)
塩素原子、臭素原子、ヨウ素原子、−O−S(=O)20(R20はアルキル基、又はアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
(置換基(b)群)
−B(OR21(R21は水素原子又はアルキル基を示し、2個存在するR21は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、−BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、−Sn(R22(R22は水素原子又はアルキル基を示し、3個存在するR22は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、−MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、−ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。
In formula (11) and formula (6), R 1a , R 1b and R 1c , Ar 4a and k have the same meanings as in formulas (1) and (4). However, a plurality of Ar 4a may be the same or different, and two k may be the same or different from each other. X 11a represents a group selected from the following substituent group (a) or a group selected from the following substituent group (b). Two X 11a may be the same as or different from each other.
(Substituent group (a) group)
Chlorine atom, bromine atom, iodine atom, —O—S (═O) 2 R 20 (R 20 is an alkyl group, or an aryl group optionally substituted with an alkyl group, an alkoxy group, a nitro group, a fluorine atom, or a cyano group. A group represented by:
(Substituent (b) group)
—B (OR 21 ) 2 (R 21 represents a hydrogen atom or an alkyl group, and two R 21 s may be the same or different and may be bonded to each other to form a ring). A group represented by -BF 4 Q 1 (Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium), -Sn (R 22 ) 3 (R 22 represents A hydrogen atom or an alkyl group, and three R 22 s that may be the same or different and may be bonded to each other to form a ring), -MgY 1 (Y 1 Represents a chlorine atom, a bromine atom or an iodine atom.), A group represented by —ZnY 2 (Y 2 represents a chlorine atom, a bromine atom or an iodine atom).

これらの式(14)及び式(2)において、Ar2a、Ar2b、Ar2c、t及びtは、それぞれ、上述した式(2)の場合と同義である。また、X14aは、X11aと同義である。 In these formulas (14) and (2), Ar 2a , Ar 2b , Ar 2c , t 1 and t 2 are respectively synonymous with those in the above-described formula (2). X 14a is synonymous with X 11a .

式(15)及び式(3)において、Ar3a、R3a及びR3bは、それぞれ、上述した式(3)の場合と同義である。また、X15aは、X11aと同義である。 In Formula (15) and Formula (3), Ar 3a , R 3a and R 3b have the same meanings as in Formula (3) described above. X 15a is synonymous with X 11a .

このような本発明の高分子化合物の製造方法によれば、上記本発明の高分子化合物で示した式(1)、(2)及び(3)の構成単位を含むとともに、式(1)及び(2)の構成単位が直接結合した構造を含まない高分子化合物が確実に得られるようになる。そして、このようにして得られる高分子化合物は、高い発光効率及び輝度安定性を有するものとなる。   According to such a method for producing a polymer compound of the present invention, it contains the structural units of the formulas (1), (2) and (3) shown in the polymer compound of the present invention, and the formula (1) and A polymer compound which does not contain a structure in which the structural units of (2) are directly bonded can be obtained with certainty. And the high molecular compound obtained in this way has a high luminous efficiency and luminance stability.

高分子化合物の製造方法において、単量体混合物は、式(16)で表される化合物及び式(17)で表される化合物からなる群より選ばれる少なくとも1種の化合物を更に含むと好ましい。こうすることで、上記本発明の高分子化合物を容易に製造することが可能となる。

Figure 0005859828

Figure 0005859828
In the method for producing a polymer compound, the monomer mixture preferably further includes at least one compound selected from the group consisting of a compound represented by formula (16) and a compound represented by formula (17). By doing so, the polymer compound of the present invention can be easily produced.
Figure 0005859828

Figure 0005859828

式(16)中、Ar4a及びkは、それぞれ、式(4)の場合と同義である。また、X16aは、X11aと同義である。式(17)中、Ar5a、Ar5b、Ar5c、Ar5d、Ar5e、Ar5f、Ar5g、Ar5h、n、n及びnは、それぞれ、式(5)の場合と同義である。また、X17aは、X11aと同義である。 In formula (16), Ar 4a and k have the same meanings as in formula (4). X 16a is synonymous with X 11a . In the formula (17), Ar 5a , Ar 5b , Ar 5c , Ar 5d , Ar 5e , Ar 5f , Ar 5g , Ar 5h , n 1 , n 2 and n 3 have the same meanings as in the formula (5), respectively. It is. X 17a is synonymous with X 11a .

本発明の高分子化合物の製造方法においては、X11a、X14a、X16a及びX17aが、置換基(a)群から選ばれる基であり、X15aが、置換基(b)群から選ばれる基であるか、或いは、X11a、X14a、X16a及びX17aが、置換基(b)群から選ばれる基であり、X15aが、置換基(a)群から選ばれる基であると、一層好ましい。こうすれば、各化合物(単量体化合物)同士を選択的に反応させることが可能となり、所望の構造を有する高分子化合物が得られ易くなる。 In the method for producing a polymer compound of the present invention, X 11a , X 14a , X 16a and X 17a are groups selected from the substituent (a) group, and X 15a is selected from the substituent (b) group. Or X 11a , X 14a , X 16a and X 17a are groups selected from the substituent (b) group, and X 15a is a group selected from the substituent (a) group. And more preferable. If it carries out like this, it will become possible to make each compound (monomer compound) react selectively, and it will become easy to obtain the high molecular compound which has a desired structure.

本発明によれば、発光素子の作製に用いた場合に、高い発光効率を与えることができるとともに、発光素子を長時間駆動させた場合であっても優れた輝度安定性を得ることが可能な高分子化合物を提供することが可能となる。このような高分子化合物は、特に、赤色よりも短波長の発光色を示す燐光発光性化合物のホスト材料として用いることで、発光効率が高く、しかも駆動時の輝度安定性にも優れる発光素子を形成することができる。   According to the present invention, when used for manufacturing a light-emitting element, high luminous efficiency can be given, and excellent luminance stability can be obtained even when the light-emitting element is driven for a long time. A polymer compound can be provided. Such a polymer compound is used as a host material for a phosphorescent compound that emits light having a wavelength shorter than that of red, so that a light-emitting element having high luminous efficiency and excellent luminance stability during driving can be obtained. Can be formed.

また、本発明の高分子化合物を得るのに好適な化合物、この化合物を用いた高分子化合物の製造方法、本発明の高分子化合物を含有する組成物、溶液、薄膜及び発光素子、並びに、発光素子を備える面状光源及び表示素子を提供することが可能となる。   Further, a compound suitable for obtaining the polymer compound of the present invention, a method for producing a polymer compound using the compound, a composition containing the polymer compound of the present invention, a solution, a thin film and a light emitting device, and light emission It becomes possible to provide a planar light source and a display element including the element.

好適な例に係る発光素子の断面構成を模式的に示す図である。It is a figure which shows typically the cross-sectional structure of the light emitting element which concerns on a suitable example.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

[用語の説明]
まず、本明細書において用いている用語について説明する。本明細書において、「構成単位」とは、高分子化合物中に1個以上存在する単位を意味し、この構成単位は、「繰り返し単位」(即ち、高分子化合物中に2個以上存在する単位)として高分子化合物中に存在するものであると好ましい。また、「構成連鎖」とは、高分子化合物中において、2つ以上の構成単位が単結合によって結合して形成された構造を意味する。
[Explanation of terms]
First, terms used in this specification will be described. In the present specification, “structural unit” means one or more units present in a polymer compound, and this structural unit is “a repeating unit” (that is, two or more units present in a polymer compound). ) Is preferably present in the polymer compound. The “constitutive chain” means a structure formed by bonding two or more structural units by a single bond in a polymer compound.

「n価の芳香族複素環基」(nは1又は2である)とは、芳香族性を示す複素環式化合物から、芳香環に直接結合している水素原子のうちn個の水素原子を除いた原子団を意味し、縮合環を有するものも含む。「複素環式化合物」とは、環式構造を持つ有機化合物のうち、環を構成する原子として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子等のヘテロ原子を含む化合物をいう。   The “n-valent aromatic heterocyclic group” (n is 1 or 2) refers to n hydrogen atoms among hydrogen atoms directly bonded to an aromatic ring from a heterocyclic compound exhibiting aromaticity. It means an atomic group excluding and includes those having a condensed ring. “Heterocyclic compound” means not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom, etc. as atoms constituting a ring among organic compounds having a cyclic structure. The compound containing the hetero atom of these.

「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾシロール、ジベンゾホスホール等のヘテロ原子を含む複素環式化合物であり、複素環自体が芳香族性を示す化合物、或いは、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等のヘテロ原子を含む複素環それ自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。   “Aromatic heterocyclic compounds” include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzosilole, dibenzophosphole Is a heterocyclic compound containing a heteroatom such as a compound in which the heterocyclic ring itself exhibits aromaticity, or a heterocyclic ring itself containing a heteroatom such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, or benzopyran Even if it does not show aromaticity, it means a compound in which an aromatic ring is condensed to a heterocyclic ring.

また、本明細書において、Meはメチル基を表し、Etはエチル基を表し、i−Prはイソプロピル基を表し、n−Buはn−ブチル基を表し、tBu、t−Bu及びt−ブチル基はtert−ブチル基を表す。   In the present specification, Me represents a methyl group, Et represents an ethyl group, i-Pr represents an isopropyl group, n-Bu represents an n-butyl group, tBu, t-Bu and t-butyl. The group represents a tert-butyl group.

[置換基の説明]
次に、本明細書に示した各種の置換基について具体的に説明する。本明細書では、特別な説明がない限り、各置換基は以下に説明されるものとする。
[Explanation of substituents]
Next, various substituents shown in this specification will be specifically described. In the present specification, unless otherwise specified, each substituent shall be described below.

(アルキル基)
アルキル基は、直鎖、分岐又は環状であり、炭素数が1〜20のものが好ましい。アルキル基における水素原子は、フッ素原子で置換されていてもよい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、t−ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ドデシル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。
(Alkyl group)
The alkyl group is linear, branched or cyclic, and preferably has 1 to 20 carbon atoms. The hydrogen atom in the alkyl group may be substituted with a fluorine atom. As the alkyl group, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, t-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group , 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, dodecyl group, trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorooctyl group, etc. It is done.

(アリール基)
アリール基は、芳香族炭化水素から水素原子1個を除いた原子団であり、縮合環を有するものを含む。アリール基は、炭素数が6〜60のものが好ましく、6〜48のものがより好ましく、6〜20のものが更に好ましく、6〜14のものが一層好ましい。炭素数には、置換基の炭素数は含まない。アリール基における水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基で置換されていてもよい。アリール基としては、置換又は非置換のフェニル基等が挙げられる。
(Aryl group)
The aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon, and includes those having a condensed ring. The aryl group preferably has 6 to 60 carbon atoms, more preferably 6 to 48 carbon atoms, still more preferably 6 to 20 carbon atoms, and still more preferably 6 to 14 carbon atoms. The carbon number does not include the carbon number of the substituent. The hydrogen atom in the aryl group includes an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, and a fluorine atom. Alternatively, it may be substituted with a cyano group. Examples of the aryl group include substituted or unsubstituted phenyl groups.

(1価の芳香族複素環基)
1価の芳香族複素環基は、炭素数が通常2〜60であり、3〜60のものが好ましく、3〜20のものがより好ましい。炭素数には、置換基の炭素数は含まない。1価の芳香族複素環基としては、2−オキサジアゾリル基、2−チアジアゾリル基、2−チアゾリル基、2−オキサゾリル基、2−チエニル基、2−ピロリル基、2−フリル基、2−ピリジル基、3−ピリジル基、4−ピリジル基、2−ピラジル基、2−ピリミジル基、2−トリアジル基、3−ピリダジル基、3−カルバゾリル基、2−フェノキサジニル基、3−フェノキサジニル基、2−フェノチアジニル基、3−フェノチアジニル基等が挙げられる。1価の芳香族複素環基における水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基で置換されていてもよい。
(Monovalent aromatic heterocyclic group)
The monovalent aromatic heterocyclic group usually has 2 to 60 carbon atoms, preferably 3 to 60 carbon atoms, more preferably 3 to 20 carbon atoms. The carbon number does not include the carbon number of the substituent. As monovalent aromatic heterocyclic groups, 2-oxadiazolyl group, 2-thiadiazolyl group, 2-thiazolyl group, 2-oxazolyl group, 2-thienyl group, 2-pyrrolyl group, 2-furyl group, 2-pyridyl group 3-pyridyl group, 4-pyridyl group, 2-pyrazyl group, 2-pyrimidyl group, 2-triazyl group, 3-pyridazyl group, 3-carbazolyl group, 2-phenoxazinyl group, 3-phenoxazinyl group, 2-phenothiazinyl group Group, 3-phenothiazinyl group and the like. The hydrogen atom in the monovalent aromatic heterocyclic group is an alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group, It may be substituted with a substituted carboxyl group, a fluorine atom or a cyano group.

(アルコキシ基)
アルコキシ基は、直鎖、分岐又は環状であり、炭素数が1〜20のものが好ましい。アルコキシ基におけるアルキル基部分としては、上記アルキル基として例示したものと同様の基が挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、sec−ブトキシ基、イソブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ドデシルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基、2−メトキシエチルオキシ基、2−エトキシエチルオキシ基等が挙げられる。
(Alkoxy group)
The alkoxy group is linear, branched or cyclic, and preferably has 1 to 20 carbon atoms. Examples of the alkyl group moiety in the alkoxy group include the same groups as those exemplified as the alkyl group. As the alkoxy group, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, sec-butoxy group, isobutoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group Octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, dodecyloxy group, trifluoromethoxy group, pentafluoroethoxy group, perfluorobutoxy group, perfluorohexyloxy group Perfluorooctyloxy group, methoxymethyloxy group, 2-methoxyethyloxy group, 2-ethoxyethyloxy group and the like.

(アリールオキシ基)
アリールオキシ基は、炭素数が6〜60のものが好ましい。アリールオキシ基におけるアリール基部分としては、上記アリール基として例示したものと同様の基が挙げられる。アリールオキシ基としては、フェノキシ基、C〜C12アルコキシフェノキシ基(「C〜C12アルコキシ」は、アルコキシ部分の炭素数1〜12であることを示す。以下、同様の表記は同様のことを意味する。)、C〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられる。
(Aryloxy group)
The aryloxy group preferably has 6 to 60 carbon atoms. Examples of the aryl group moiety in the aryloxy group include the same groups as those exemplified as the aryl group. The aryloxy group is a phenoxy group, C 1 -C 12 alkoxy phenoxy group ( "C 1 -C 12 alkoxy" refers to a C1-12 alkoxy moiety. Hereinafter, the same notation similar means that.), C 1 -C 12 alkylphenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, a pentafluorophenyl group and the like.

(アラルキル基)
アラルキル基は、炭素数が7〜60のものが好ましい。アラルキル基におけるアルキル基部分としては、上記アルキル基として例示したものと同様の基が挙げられ、アリール基部分としては、上記アリール基として例示したものと同様の基が挙げられる。アラルキル基としては、フェニル−C〜C12アルキル基、C〜C12アルコキシフェニル−C〜C12アルキル基、C〜C12アルキルフェニル−C〜C12アルキル基等が挙げられる。
(Aralkyl group)
The aralkyl group preferably has 7 to 60 carbon atoms. Examples of the alkyl group moiety in the aralkyl group include groups similar to those exemplified as the alkyl group. Examples of the aryl group moiety include groups similar to those exemplified as the aryl group. The aralkyl groups include phenyl -C 1 -C 12 alkyl group, C 1 -C 12 alkoxyphenyl -C 1 -C 12 alkyl group, C 1 -C 12 alkylphenyl -C 1 -C 12 alkyl group, or the .

(アリールアルコキシ基)
アリールアルコキシ基は、炭素数が7〜60のものが好ましい。アリールアルコキシ基におけるアリール基部分としては、上記アリール基として例示したものと同様の基が挙げられる。アリールアルコキシ基としては、フェニル−C〜C12アルコキシ基、C〜C12アルコキシフェニル−C〜C12アルコキシ基、C〜C12アルキルフェニル−C〜C12アルコキシ基等が挙げられる。
(Arylalkoxy group)
The arylalkoxy group preferably has 7 to 60 carbon atoms. Examples of the aryl group moiety in the arylalkoxy group include the same groups as those exemplified as the aryl group. The arylalkoxy group, like a phenyl -C 1 -C 12 alkoxy group, C 1 -C 12 alkoxyphenyl -C 1 -C 12 alkoxy group, C 1 -C 12 alkylphenyl -C 1 -C 12 alkoxy group, or the It is done.

(置換アミノ基)
置換アミノ基は、炭素数が2〜60のものが好ましい。置換アミノ基としては、アルキル基、アリール基、アラルキル基又は1価の芳香族複素環基で置換されたアミノ基が挙げられる。置換アミノ基には、アミノ基の置換基同士が直接、若しくは炭素原子、酸素原子、硫黄原子等を介して結合して縮合環を形成したものも含まれる。置換アミノ基としては、ジアルキル置換アミノ基、ジアリール置換アミノ基が好ましい。具体的には、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ジ−4−トリルアミノ基、ジ−4−t−ブチルフェニルアミノ基、ビス(3,5−ジ−t−ブチルフェニル)アミノ基、N−カルバゾリル基、N−フェノキサジニル基、N−アクリジニル基、N−フェノチアジニル基等が挙げられる。
(Substituted amino group)
The substituted amino group preferably has 2 to 60 carbon atoms. Examples of the substituted amino group include an amino group substituted with an alkyl group, an aryl group, an aralkyl group, or a monovalent aromatic heterocyclic group. Substituted amino groups include those in which amino group substituents are bonded together directly or via a carbon atom, oxygen atom, sulfur atom or the like to form a condensed ring. As the substituted amino group, a dialkyl-substituted amino group and a diaryl-substituted amino group are preferable. Specifically, dimethylamino group, diethylamino group, diphenylamino group, di-4-tolylamino group, di-4-t-butylphenylamino group, bis (3,5-di-t-butylphenyl) amino group, N-carbazolyl group, N-phenoxazinyl group, N-acridinyl group, N-phenothiazinyl group and the like can be mentioned.

(置換カルボニル基)
置換カルボニル基は、炭素数が2〜60のものが好ましい。置換カルボニル基としては、−C(=O)R(Rは所定の置換基)で表される基であって、Rがアルキル基、アリール基、アラルキル基又は1価の芳香族複素環基である基が挙げられる。より具体的には、アセチル基、ブチリル基、ベンゾイル基等が挙げられる。
(Substituted carbonyl group)
The substituted carbonyl group preferably has 2 to 60 carbon atoms. The substituted carbonyl group is a group represented by —C (═O) R (R is a predetermined substituent), and R is an alkyl group, an aryl group, an aralkyl group or a monovalent aromatic heterocyclic group. There are certain groups. More specifically, an acetyl group, a butyryl group, a benzoyl group, etc. are mentioned.

(置換カルボキシル基)
置換カルボキシル基は、炭素数が2〜60のものが好ましい。置換カルボキシル基としては、−C(=O)−O−R(Rは所定の置換基)で表される基であって、Rがアルキル基、アリール基、アラルキル基又は1価の芳香族複素環基である基が挙げられる。より具体的には、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、フェノキシカルボニル基、ベンジルオキシカルボニル基等が挙げられる。
(Substituted carboxyl group)
The substituted carboxyl group preferably has 2 to 60 carbon atoms. The substituted carboxyl group is a group represented by —C (═O) —O—R (R is a predetermined substituent), and R is an alkyl group, an aryl group, an aralkyl group, or a monovalent aromatic complex. Examples thereof are groups that are cyclic groups. More specifically, a methoxycarbonyl group, an ethoxycarbonyl group, a butoxycarbonyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, and the like can be given.

(アリーレン基)
アリーレン基は、芳香族炭化水素から水素原子2個を除いた原子団を意味し、縮合環を有するものを含む。アリーレン基は、炭素数が6〜60のものが好ましい。炭素数には、置換基の炭素数は含まない。アリーレン基としては、1,4−フェニレン基(下記の式001で表される基、以下同様。)、1,3−フェニレン基(式002)、1,2−フェニレン基(式003)等のフェニレン基;ナフタレン−1,4−ジイル基(式004)、ナフタレン−1,5−ジイル基(式005)、ナフタレン−2,6−ジイル基(式006)等のナフタレンジイル基;9,10−ジヒドロフェナントレン−2,7−ジイル基(式007)等のジヒドロフェナントレンジイル基;フルオレン−3,6−ジイル基(式008)、フルオレン−2,7−ジイル基(式009)等のフルオレンジイル基等が挙げられる。これらのアリーレン基における水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基で置換されていてもよい。
(Arylene group)
The arylene group means an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, and includes those having a condensed ring. The arylene group preferably has 6 to 60 carbon atoms. The carbon number does not include the carbon number of the substituent. Examples of the arylene group include a 1,4-phenylene group (a group represented by the following formula 001, the same shall apply hereinafter), a 1,3-phenylene group (formula 002), a 1,2-phenylene group (formula 003), and the like. Phenylene group; naphthalenediyl group such as naphthalene-1,4-diyl group (formula 004), naphthalene-1,5-diyl group (formula 005), naphthalene-2,6-diyl group (formula 006); -Dihydrophenanthrene-2,7-diyl group (formula 007) and other dihydrophenanthrene diyl groups; fluorene-3,6-diyl group (formula 008), fluorene-2,7-diyl group (formula 009) and other oranges Yl group and the like. The hydrogen atoms in these arylene groups are alkyl groups, aryl groups, monovalent aromatic heterocyclic groups, alkoxy groups, aryloxy groups, aralkyl groups, arylalkoxy groups, substituted amino groups, substituted carbonyl groups, substituted carboxyl groups, It may be substituted with a fluorine atom or a cyano group.

Figure 0005859828
Figure 0005859828

これらの式中、Rは、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。Rは、アルキル基、アリール基、1価の芳香族複素環基又はアラルキル基を表す。式中に複数存在するRは、同一であっても異なっていてもよく、複数存在するRは、同一であっても異なっていてもよい。また、Rが同一基内に複数存在する場合、それらは一緒になって環構造を形成してもよい。 In these formulas, R is a hydrogen atom, alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group, substituted carboxyl group. Represents a group, a fluorine atom or a cyano group. R a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group or an aralkyl group. A plurality of R present in the formula may be the same or different, and a plurality of R a may be the same or different. When a plurality of R a are present in the same group, they may be combined to form a ring structure.

式001〜009中、Rとしては、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、置換アミノ基が好ましく、水素原子、アルキル基、アリール基がより好ましい。   In formulas 001 to 009, R is preferably a hydrogen atom, an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, or a substituted amino group, a hydrogen atom, an alkyl group, An aryl group is more preferred.

式007〜009中、Rとしては、アリール基、アルキル基が好ましく、非置換又はアルキル基、アルコキシ基若しくはアリール基で置換されたアリール基;非置換又はアルキル基、アルコキシ基若しくはアリール基で置換されたアルキル基がより好ましい。 In Formulas 007 to 009, R a is preferably an aryl group or an alkyl group, unsubstituted or substituted with an alkyl group, alkoxy group or aryl group; unsubstituted or substituted with an alkyl group, alkoxy group or aryl group More preferred are alkyl groups.

式007〜009中、Rが複数存在する場合に形成する環構造としては、非置換又はアルキル基で置換されたシクロペンチル環;非置換又はアルキル基で置換されたシクロヘキシル環;非置換又はアルキル基で置換されたシクロヘプチル環が好ましい。このように複数のRが環を形成している構造を有するアリーレン基としては、式(010)〜(012)で表される構造を有するものが挙げられる。

Figure 0005859828
In Formulas 007 to 009, when a plurality of R a are present, the ring structure is formed by, for example, a cyclopentyl ring that is unsubstituted or substituted with an alkyl group; a cyclohexyl ring that is unsubstituted or substituted with an alkyl group; an unsubstituted or alkyl group A cycloheptyl ring substituted with is preferred. Examples of the arylene group having a structure in which a plurality of Ras form a ring as described above include those having a structure represented by formulas (010) to (012).
Figure 0005859828

(2価の芳香族複素環基)
2価の芳香族複素環基は、芳香族複素環式化合物から水素原子2個を除いた原子団であり、縮合環を有するものも含む。2価の芳香族複素環基は、炭素数が通常2〜60であり、3〜60のものが好ましい。炭素数には、置換基の炭素数は含まない。2価の芳香族複素環基としては、ピリジン−2,5−ジイル基(式101)、ピリジン−2,6−ジイル基(式102)等のピリジンジイル基;ピリミジン−4,6−ジイル基(式103)等のピリミジンジイル基;トリアジン−2,4−ジイル基(式104);ピラジン−2,5−ジイル基(式105)等のピラジンジイル基;ピリダジン−3,6−ジイル基(式106)等のピリダジンジイル基;キノリン−2,6−ジイル基(式107)等のキノリンジイル基;イソキノリン−1,4−ジイル基(式108)等のイソキノリンジイル基;キノキサリン−5,8−ジイル基(式109)等のキノキサリンジイル基;カルバゾール−3,6−ジイル基(式110)、カルバゾール−2,7−ジイル基(式111)等のカルバゾールジイル基;ジベンゾフラン−2,8−ジイル基(式112)、ジベンゾフラン−3,7−ジイル基(式113)等のジベンゾフランジイル基;ジベンゾチオフェン−2,8−ジイル基(式114)、ジベンゾチオフェン−3,7−ジイル基(式115)等のジベンゾチオフェンジイル基;ジベンゾシロール−2,8−ジイル基(式116)、ジベンゾシロール−3,7−ジイル基(式117)等のジベンゾシロールジイル基;式118、式119等のフェノキサジンジイル基;式120、式121等のフェノチアジンジイル基;式122等のジヒドロアクリジンジイル基;式123で表される2価の基;ピロ−ル−2,5−ジイル基(式124)等のピロールジイル基;フラン−2,5−ジイル基(式125)等のフランジイル基;チオフェン−2,5−ジイル基(式126)等のチオフェンジイル基;ジアゾール−2,5−ジイル基(式127)等のジアゾールジイル基;トリアゾール−2,5−ジイル基(式128)等のトリアゾールジイル基;オキサゾール−2,5−ジイル基(式129)等のオキサゾールジイル基;オキサジアゾール−2,5−ジイル基(式130);チアゾール−2,5−ジイル基(式131)等のチアゾールジイル基;チアジアゾール−2,5−ジイル基(式132)等が挙げられる。
(Divalent aromatic heterocyclic group)
The divalent aromatic heterocyclic group is an atomic group obtained by removing two hydrogen atoms from an aromatic heterocyclic compound, and includes those having a condensed ring. The divalent aromatic heterocyclic group usually has 2 to 60 carbon atoms, and preferably 3 to 60 carbon atoms. The carbon number does not include the carbon number of the substituent. Examples of the divalent aromatic heterocyclic group include pyridinediyl groups such as pyridine-2,5-diyl group (formula 101) and pyridine-2,6-diyl group (formula 102); pyrimidine-4,6-diyl group Pyrimidinediyl groups such as (formula 103); triazine-2,4-diyl groups (formula 104); pyrazinediyl groups such as pyrazine-2,5-diyl groups (formula 105); pyridazine-3,6-diyl groups (formulas) 106) and the like; quinoline-2,6-diyl group (formula 107) and other quinoline diyl groups; isoquinoline-1,4-diyl group (formula 108) and other isoquinoline diyl groups; quinoxaline-5,8-diyl Quinoxalinediyl groups such as the group (formula 109); carbazole diyl groups such as the carbazole-3,6-diyl group (formula 110) and the carbazole-2,7-diyl group (formula 111) Dibenzofuranyl groups such as dibenzofuran-2,8-diyl group (formula 112), dibenzofuran-3,7-diyl group (formula 113); dibenzothiophene-2,8-diyl group (formula 114), dibenzothiophene-3, Dibenzothiophene diyl group such as 7-diyl group (formula 115); dibenzosilol diyl group such as dibenzosilol-2,8-diyl group (formula 116), dibenzosilol-3,7-diyl group (formula 117); 118, phenoxazinediyl group such as formula 119; phenothiazinediyl group such as formula 120, formula 121; dihydroacridine diyl group such as formula 122; divalent group represented by formula 123; pyrrole-2,5- A pyrrole diyl group such as a diyl group (formula 124); a furanyl group such as a furan-2,5-diyl group (formula 125); thiophene-2, A thiophene diyl group such as a diyl group (formula 126); a diazole diyl group such as a diazole-2,5-diyl group (formula 127); a triazole diyl group such as a triazole-2,5-diyl group (formula 128); Oxazolediyl groups such as 2,5-diyl groups (formula 129); oxadiazole-2,5-diyl groups (formula 130); thiazolediyl groups such as thiazole-2,5-diyl groups (formula 131); thiadiazole -2,5-diyl group (formula 132) and the like.

これらの2価の芳香族複素環基における水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基で置換されていてもよい。なお、下記式101〜132中のR及びRは、上記と同義である。 The hydrogen atom in these divalent aromatic heterocyclic groups is alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group. It may be substituted with a group, a substituted carboxyl group, a fluorine atom or a cyano group. In the following formulas 101 to 132, R and R a are as defined above.

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

[高分子化合物]
次に、好適な実施形態に係る高分子化合物について説明する。本実施形態の高分子化合物は、式(1)、(2)及び(3)で表される構成単位、並びに、式(4)及び(5)のうちの少なくとも一方の構成単位を有する。まず、各構成単位について説明する。
[Polymer compound]
Next, the polymer compound according to a preferred embodiment will be described. The high molecular compound of this embodiment has a structural unit represented by Formula (1), (2) and (3), and at least one structural unit of Formula (4) and (5). First, each structural unit will be described.

(式(1)で表される構成単位)
式(1)中、R1aで表される基としては、アルキル基、アリール基、アラルキル基が好ましい。この構成単位の原料となる単量体が、重合時に良好な反応性を示すので、アルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が更に好ましく、メチル基が特に好ましい。
(Structural unit represented by Formula (1))
In the formula (1), the group represented by R 1a is preferably an alkyl group, an aryl group, or an aralkyl group. Since the monomer used as a raw material for the structural unit exhibits good reactivity during polymerization, an alkyl group is more preferable, and a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group are more preferable. The group is particularly preferred.

式(1)中、R1bで表される基としては、高分子化合物の耐熱性と有機溶媒への溶解性とのバランスがよくなるので、水素原子、アルキル基、アリール基、1価の芳香族複素環基、置換アミノ基が好ましく、水素原子、アルキル基、非置換又はアルキル基、アリール基、1価の芳香族複素環基若しくは置換アミノ基で置換されたアリール基、非置換又はアルキル基、アリール基若しくは1価の芳香族複素環基で置換された1価の芳香族複素環基、ジアリール置換アミノ基がより好ましく、水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたアリール基が更に好ましく、水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたフェニル基が特に好ましい。 In the formula (1), the group represented by R 1b has a good balance between the heat resistance of the polymer compound and the solubility in an organic solvent, so a hydrogen atom, an alkyl group, an aryl group, and a monovalent aromatic group. Heterocyclic group and substituted amino group are preferable, hydrogen atom, alkyl group, unsubstituted or alkyl group, aryl group, monovalent aromatic heterocyclic group or aryl group substituted with substituted amino group, unsubstituted or alkyl group, A monovalent aromatic heterocyclic group substituted with an aryl group or a monovalent aromatic heterocyclic group, or a diaryl-substituted amino group is more preferable, and a hydrogen atom, an alkyl group, an unsubstituted group, or an alkyl group or an aryl group is substituted. An aryl group is more preferable, and a hydrogen atom, an alkyl group, an unsubstituted or phenyl group substituted with an alkyl group or an aryl group is particularly preferable.

また、式(1)中、R1bで表される基としては、高分子化合物を用いて得られる発光素子で良好な駆動電圧が得られるので、水素原子、アルキル基、アリール基、1価の芳香族複素環基、置換アミノ基が好ましく、非置換又はアルキル基、アリール基、1価の芳香族複素環基若しくは置換アミノ基で置換されたアリール基;非置換又はアルキル基、アリール基若しくは1価の芳香族複素環基で置換された1価の芳香族複素環基;ジアリール置換アミノ基がより好ましく、1価の芳香族複素環基又は置換アミノ基で置換されたアリール基;非置換又はアルキル基、アリール基若しくは1価の芳香族複素環基で置換された1価の芳香族複素環基;ジアリール置換アミノ基が更に好ましく、1価の芳香族複素環基又は置換アミノ基で置換されたフェニル基;アルキル基、アリール基又は1価の芳香族複素環基で置換されたピリジル基;アルキル基、アリール基又は1価の芳香族複素環基で置換されたピラジル基;アルキル基、アリール基又は1価の芳香族複素環基で置換されたピリダジル基;アルキル基、アリール基又は1価の芳香族複素環基で置換されたピリミジル基;アルキル基、アリール基又は1価の芳香族複素環基で置換された1,3,5−トリアジン−2−イル基;ピリジル基、ジアリール置換アミノ基が特に好ましい。 In addition, in the formula (1), as the group represented by R 1b , a favorable driving voltage can be obtained with a light-emitting element obtained using a polymer compound, so that a hydrogen atom, an alkyl group, an aryl group, Aromatic heterocyclic groups and substituted amino groups are preferred, unsubstituted or alkyl groups, aryl groups, monovalent aromatic heterocyclic groups or aryl groups substituted with substituted amino groups; unsubstituted or alkyl groups, aryl groups or 1 A monovalent aromatic heterocyclic group substituted with a monovalent aromatic heterocyclic group; a diaryl-substituted amino group is more preferred; an aryl group substituted with a monovalent aromatic heterocyclic group or a substituted amino group; unsubstituted or A monovalent aromatic heterocyclic group substituted with an alkyl group, an aryl group or a monovalent aromatic heterocyclic group; a diaryl-substituted amino group is more preferred; and a monovalent aromatic heterocyclic group or a substituted amino group is substituted. Tafu An pyridyl group substituted with an alkyl group, an aryl group or a monovalent aromatic heterocyclic group; a pyrazyl group substituted with an alkyl group, an aryl group or a monovalent aromatic heterocyclic group; an alkyl group, an aryl group Or a pyridazyl group substituted with a monovalent aromatic heterocyclic group; a pyrimidyl group substituted with an alkyl group, an aryl group or a monovalent aromatic heterocyclic group; an alkyl group, an aryl group or a monovalent aromatic heterocyclic ring A 1,3,5-triazin-2-yl group substituted with a group; a pyridyl group and a diaryl-substituted amino group are particularly preferred.

式(1)中、R1cで表される基としては、原料である単量体の重合時の反応性が良好になるので、水素原子、アルキル基、アリール基、1価の芳香族複素環基が好ましく、水素原子がより好ましい。 In the formula (1), the group represented by R 1c is a hydrogen atom, an alkyl group, an aryl group, and a monovalent aromatic heterocyclic ring because the reactivity of the monomer as a raw material becomes good. Group is preferred, and a hydrogen atom is more preferred.

式(1)で表される構成単位としては、下記の式1−001〜1−017、1−101〜1−113、1−201〜1−208で表される構成単位等が挙げられる。   Examples of the structural unit represented by the formula (1) include structural units represented by the following formulas 1-001 to 1-017, 1-101 to 1-113, 1-201 to 1-208.

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

式(1)で表される構成単位としては、なかでも、式1−001〜1−017で表されるものが好ましく、1−001、1−017で表されるものがより好ましく、1−001で表されるものが特に好ましい。   As the structural unit represented by the formula (1), those represented by the formulas 1-001 to 1-017 are preferable, those represented by the 1-001 and 1-017 are more preferable, and 1- What is represented by 001 is especially preferable.

なお、式(1)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。   In addition, as for the structural unit represented by Formula (1), only 1 type may be contained in the high molecular compound, and 2 or more types may be contained.

(式(2)で表される構成単位)
式(2)中、Ar2a、Ar2bで表される基としては、アリーレン基が好ましく、なかでも、1,4−フェニレン基(式001)がより好ましく、非置換の1,4−フェニレン基が特に好ましい。式(2)中、Ar2cで表される基としては、アリール基が好ましく、アルキル基等で置換されたフェニル基がより好ましい。さらに、式(2)中、t及びtはともに1であるか、ともに2であると、高分子化合物の合成が容易となるので好ましい。
(Structural unit represented by Formula (2))
In the formula (2), the group represented by Ar 2a or Ar 2b is preferably an arylene group, more preferably a 1,4-phenylene group (formula 001), and an unsubstituted 1,4-phenylene group. Is particularly preferred. In the formula (2), the group represented by Ar 2c is preferably an aryl group, and more preferably a phenyl group substituted with an alkyl group or the like. Furthermore, in the formula (2), it is preferable that both t 1 and t 2 are 1 or 2 because it facilitates the synthesis of the polymer compound.

式(2)で表される構成単位としては、下記の式2−1、2−2で表される構成単位が好ましい。

Figure 0005859828

[式2−1中、R2aは、水素原子、アルキル基、又はアリール基を表す。複数あるR2aは、それぞれ同一でも異なっていてもよいが、少なくとも一つのR2aは、水素原子以外の基を表す。式2−2中、R2aは前記と同義である。R2bは水素原子、アルキル基、又はアリール基を表す。複数あるR2bは、それぞれ同一でも異なっていてもよい。] As the structural unit represented by the formula (2), structural units represented by the following formulas 2-1 and 2-2 are preferable.
Figure 0005859828

[In Formula 2-1, R 2a represents a hydrogen atom, an alkyl group, or an aryl group. A plurality of R 2a may be the same or different, but at least one R 2a represents a group other than a hydrogen atom. In Formula 2-2, R 2a has the same meaning as described above. R 2b represents a hydrogen atom, an alkyl group, or an aryl group. A plurality of R 2b may be the same or different. ]

式(2−1)で表される構成単位としては、下記の式2−001〜2−008で表される構成単位がより好ましい。

Figure 0005859828
As the structural unit represented by the formula (2-1), structural units represented by the following formulas 2-001 to 2-008 are more preferable.
Figure 0005859828

式(2−2)で表される構成単位としては、下記の式2−101〜2−106で表される構成単位がより好ましい。

Figure 0005859828
As the structural unit represented by the formula (2-2), structural units represented by the following formulas 2-101 to 2-106 are more preferable.
Figure 0005859828

式(2)で表される構成単位は、高分子化合物中に、一種のみ含まれていても二種以上含まれていてもよい。   The structural unit represented by the formula (2) may be contained alone or in combination of two or more in the polymer compound.

(式(3)で表される構成単位)
式(3)中、R3a及びR3bで表される基としては、アルキル基又はアリール基が好ましく、アルキル基、又はアルキル基で置換されたフェニル基が好ましく、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、t−ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ドデシル基が好ましい。
(Structural unit represented by Formula (3))
In the formula (3), the group represented by R 3a and R 3b is preferably an alkyl group or an aryl group, preferably an alkyl group or a phenyl group substituted with an alkyl group, a propyl group, an isopropyl group, or a butyl group. , Sec-butyl group, isobutyl group, t-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group A dodecyl group is preferred.

式(3)中、Ar3aで表される基としては、アリーレン基が好ましく、なかでも、1,4−フェニレン基(上記式001)、及び、フルオレン−2,7−ジイル基(上記式009)がより好ましい。 In the formula (3), the group represented by Ar 3a is preferably an arylene group, and in particular, a 1,4-phenylene group (the above formula 001) and a fluorene-2,7-diyl group (the above formula 009). ) Is more preferable.

式(3)で表される構成単位としては、式(7)で表される構成単位が好ましい。

Figure 0005859828

[式(7)中、R7aは、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基又はシアノ基を表す。R7bは、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。2個存在するR7aは、互いに同一であっても異なっていてもよく、2個存在するR7bは、互いに同一であっても異なっていてもよい。] As the structural unit represented by the formula (3), the structural unit represented by the formula (7) is preferable.
Figure 0005859828

[In the formula (7), R 7a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, or a substituted carboxyl group. Represents a group or a cyano group. R 7b is a hydrogen atom, alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group, substituted carboxyl group, fluorine atom Or represents a cyano group. Two R 7a may be the same or different from each other, and two R 7b may be the same or different from each other. ]

式(7)中、R7aで表される基としては、高分子化合物の耐熱性と有機溶媒への溶解性とのバランスがよくなるので、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、置換アミノ基が好ましく、アルキル基、アラルキル基がより好ましく、アルキル基が更に好ましく、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、シクロヘキシルメチル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ドデシル基が特に好ましい。 In the formula (7), as the group represented by R 7a , the balance between the heat resistance of the polymer compound and the solubility in an organic solvent is improved, so that an alkyl group, an aryl group, a monovalent aromatic heterocyclic group An alkoxy group, an aryloxy group, an aralkyl group and a substituted amino group are preferred, an alkyl group and an aralkyl group are more preferred, an alkyl group is more preferred, and a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, and a pentyl group. A group, an isoamyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a cyclohexylmethyl group, a nonyl group, a decyl group, a 3,7-dimethyloctyl group, and a dodecyl group are particularly preferable.

式(7)中、R7bで表される基としては、高分子化合物の耐熱性、有機溶媒への溶解性や原料である単量体の重合時の反応性が良好になるので、水素原子、アルキル基、アルコキシ基、アリール基、1価の芳香族複素環基、アラルキル基が好ましく、水素原子、アルキル基がより好ましく、水素原子が特に好ましい。 In the formula (7), the group represented by R 7b is a hydrogen atom because the heat resistance of the polymer compound, the solubility in an organic solvent and the reactivity of the monomer as a raw material are improved. , An alkyl group, an alkoxy group, an aryl group, a monovalent aromatic heterocyclic group and an aralkyl group are preferred, a hydrogen atom and an alkyl group are more preferred, and a hydrogen atom is particularly preferred.

式(7)で表される構成単位としては、下記の式7−001〜7−019、7−101〜7−105で表される構成単位が好ましい。

Figure 0005859828

Figure 0005859828

Figure 0005859828
As the structural unit represented by the formula (7), structural units represented by the following formulas 7-001 to 7-019 and 7-101 to 7-105 are preferable.
Figure 0005859828

Figure 0005859828

Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

式(7)で表される構成単位としては、なかでも、式7−001〜7−019で表されるものがより好ましい。   As the structural unit represented by the formula (7), those represented by the formulas 7-001 to 7-019 are more preferable.

なお、式(3)で表される構成単位(好ましくは式(7)で表される構成単位)は、高分子化合物中に、一種のみ含まれていても二種以上含まれていてもよい。   In addition, the structural unit represented by Formula (3) (preferably the structural unit represented by Formula (7)) may be included in the polymer compound alone or in combination of two or more. .

(式(4)、(5)で表される構成単位)
本実施形態の高分子化合物は、上述した式(1)、(2)及び(3)で表される構成単位に加えて、式(4)及び(5)で表される構成単位のうちの少なくとも一方を有している。これによって、高分子化合物は、高い発光効率が得られるとともに、発光素子とした場合に優れた輝度安定性が得られるようになる。
(Structural units represented by formulas (4) and (5))
In addition to the structural units represented by the formulas (1), (2) and (3) described above, the polymer compound of the present embodiment includes the structural units represented by the formulas (4) and (5). Have at least one. As a result, the polymer compound can obtain high luminous efficiency and excellent luminance stability when used as a light emitting device.

なお、式(4)で表される構成単位は、式(2)で表される構成単位におけるAr2a又はAr2bで表される基と同じであってもよく、異なっていてもよい。ただし、本実施形態の高分子化合物においては、式(4)で表される構成単位と式(2)におけるAr2a又はAr2bで表される基とが同じ構造となる場合、該当する構造は、式(2)中のt又はtが2となるまでは、式(2)で表される構成単位に含まれると見なすこととする。 In addition, the structural unit represented by Formula (4) may be the same as or different from the group represented by Ar 2a or Ar 2b in the structural unit represented by Formula (2). However, in the polymer compound of the present embodiment, when the structural unit represented by the formula (4) and the group represented by Ar 2a or Ar 2b in the formula (2) have the same structure, the corresponding structure is Until t 1 or t 2 in formula (2) becomes 2, it is assumed that they are included in the structural unit represented by formula (2).

式(4)中、Ar4aで表される基としては、アリーレン基が好ましく、なかでも、1,4−フェニレン基(式001)、1,3−フェニレン基(式002)、ナフタレン−2,6−ジイル基(式006)、4,5−ジヒドロフェナントレン−2,7−ジイル基(式007)、フルオレン−3,6−ジイル基(式008)、フルオレン−2,7−ジイル基(式009)がより好ましく、1,4−フェニレン基(式001)、フルオレン−2,7−ジイル基(式009)が特に好ましい。また、式(4)中、kとしては、1が好ましい。 In the formula (4), the group represented by Ar 4a is preferably an arylene group, among which a 1,4-phenylene group (formula 001), a 1,3-phenylene group (formula 002), naphthalene-2, 6-diyl group (formula 006), 4,5-dihydrophenanthrene-2,7-diyl group (formula 007), fluorene-3,6-diyl group (formula 008), fluorene-2,7-diyl group (formula 009) is more preferable, and a 1,4-phenylene group (formula 001) and a fluorene-2,7-diyl group (formula 009) are particularly preferable. In Formula (4), k is preferably 1.

式(4)で表される構成単位としては、上記の式(9)又は(10)で表される構成単位が好ましい。式(9)中、R9aで表される基としては、高分子化合物の耐熱性や有機溶媒への溶解性の特性のバランスがよくなるので、アリール基、アルキル基が好ましく、非置換、又はアルキル基、アルコキシ基、アリール基若しくは置換アミノ基で置換されたアリール基;非置換、又はアルキル基、アルコキシ基、アリール基若しくは置換アミノ基で置換されたアルキル基がより好ましい。 As a structural unit represented by Formula (4), the structural unit represented by said Formula (9) or (10) is preferable. In the formula (9), the group represented by R 9a is preferably an aryl group or an alkyl group because the balance between the heat resistance of the polymer compound and the solubility in an organic solvent is improved. An aryl group substituted with a group, an alkoxy group, an aryl group or a substituted amino group; an unsubstituted or an alkyl group substituted with an alkyl group, an alkoxy group, an aryl group or a substituted amino group is more preferred.

式(9)で表される構成単位としては、下記の式9−001〜9−020で表される構成単位が好ましい。

Figure 0005859828

Figure 0005859828
As the structural unit represented by the formula (9), structural units represented by the following formulas 9-001 to 9-020 are preferable.
Figure 0005859828

Figure 0005859828

なかでも、式(9)で表される構成単位としては、式9−001〜9−012で表されるものがより好ましい。   Especially, as a structural unit represented by Formula (9), what is represented by Formula 9-001 to 9-012 is more preferable.

また、式(9)で表される構成単位としては、高分子化合物を発光素子に適用した際の安定性が更に向上するので、式(9−1)で表される構成単位が好適である。

Figure 0005859828
In addition, as the structural unit represented by the formula (9), the structural unit represented by the formula (9-1) is preferable because stability when the polymer compound is applied to a light-emitting element is further improved. .
Figure 0005859828

式(9−1)において、R12dで表される基は、アルキル基、又は、アルキル基若しくはアリール基で置換されたアリール基であることが好ましく、R12eで表される基は、アルキル基若しくはアリール基で置換されたアリール基であることが好ましい。 In Formula (9-1), the group represented by R 12d is preferably an alkyl group or an aryl group substituted with an alkyl group or an aryl group, and the group represented by R 12e is an alkyl group. Alternatively, an aryl group substituted with an aryl group is preferable.

なかでも、式(9−1)で表される構成単位においては、高分子化合物の溶解性を向上させ、発光素子の作成を容易にする観点から、R12dは、炭素数1〜8のアルキル基、又は、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であってかつそのアルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であることが好ましく、また、R12eは、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であってかつそのアルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であることが好ましい。 Among these, in the structural unit represented by the formula (9-1), R 12d is an alkyl having 1 to 8 carbon atoms from the viewpoint of improving the solubility of the polymer compound and facilitating the production of a light emitting device. An aryl group substituted with 1 or more and 3 or less alkyl groups having 1 to 12 carbon atoms, and at least one of the alkyl groups is an alkyl group having 6 to 12 carbon atoms R 12e is an aryl group substituted with 1 to 3 alkyl groups having 1 to 12 carbon atoms, and at least one of the alkyl groups has 6 to 6 carbon atoms. It is preferably an aryl group that is 12 alkyl groups.

更に好ましくは、式(9−1)において、R12dおよびR12eは、式(9−2)で表される基、すなわち、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であってかつそのアルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であると好ましい。

Figure 0005859828
More preferably, in the formula (9-1), R 12d and R 12e are substituted with a group represented by the formula (9-2), that is, one or more and three or less alkyl groups having 1 to 12 carbon atoms. The aryl group is preferably an aryl group in which at least one of the alkyl groups is an alkyl group having 6 to 12 carbon atoms.
Figure 0005859828

式(9−2)において、R12f、R12g及びR12hは、それぞれ独立に、水素原子、又は炭素数1〜12のアルキル基を表す。但し、式(9−2)において、R12f、R12g及びR12hのうちの少なくとも一つは、炭素数6〜12のアルキル基である。式(9−1)において、複数存在する式(9−2)で表される基は同一であっても異なっていてもよい。 In Formula (9-2), R 12f , R 12g and R 12h each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. However, in Formula (9-2), at least one of R 12f , R 12g, and R 12h is an alkyl group having 6 to 12 carbon atoms. In the formula (9-1), a plurality of groups represented by the formula (9-2) may be the same or different.

そして、このような観点からは、式(9)で表される構成単位としては、式9−008〜9−011で表されるもの及び式9−017〜9−020で表されるものが特に好ましい。   And from such a viewpoint, as the structural unit represented by the formula (9), those represented by the formulas 9-008 to 9-011 and those represented by the formulas 9-017 to 9-020 are available. Particularly preferred.

なお、式(4)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。   In addition, as for the structural unit represented by Formula (4), only 1 type may be contained in the high molecular compound, and 2 or more types may be contained.

また、式(5)中、Ar5a、Ar5b、Ar5c、Ar5d及びAr5hで表される基としては、アリーレン基が好ましく、中でも1,4−フェニレン基(式001)、フルオレン−2,7−ジイル基(式009)がより好ましく、1,4−フェニレン基(式001)が特に好ましい。 In the formula (5), the groups represented by Ar 5a , Ar 5b , Ar 5c , Ar 5d and Ar 5h are preferably arylene groups, among which 1,4-phenylene group (formula 001) and fluorene-2 , 7-diyl group (formula 009) is more preferred, and a 1,4-phenylene group (formula 001) is particularly preferred.

式(5)中、Ar5e、Ar5f及びAr5gで表される基としては、アリール基が好ましく、アルキル基で置換されたフェニル基がより好ましい。また、式(5)中のRとしては、アルキル基が好ましい。 In the formula (5), the group represented by Ar 5e , Ar 5f and Ar 5g is preferably an aryl group, more preferably a phenyl group substituted with an alkyl group. Moreover, as R A in Formula (5), an alkyl group is preferable.

式(5)で表される構成単位としては、式5−001〜5−004で表される構成単位が好ましい。なお、式中のRは、上記と同義である。

Figure 0005859828
As the structural unit represented by the formula (5), structural units represented by the formulas 5-001 to 5-004 are preferable. In addition, R in a formula is synonymous with the above.
Figure 0005859828

式(5)で表される構成単位としては、式5−001で表される構成単位が、高分子化合物を用いた発光素子の発光効率が向上するので、特に好ましい。   As the structural unit represented by the formula (5), the structural unit represented by the formula 5-001 is particularly preferable because the light emission efficiency of the light-emitting element using the polymer compound is improved.

なお、式(5)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。   In addition, as for the structural unit represented by Formula (5), only 1 type may be contained in the high molecular compound, and 2 or more types may be contained.

(燐光発光性化合物から誘導される構成単位)
本実施形態の高分子化合物は、上記の各構成単位に加えて、更に燐光発光性化合物から誘導される構成単位を有していてもよい。燐光発光性化合物から誘導される構成単位とは、燐光発光性化合物に由来する構造を含む構成単位であり、例えば、燐光発光性化合物から水素原子を1個除いた残基、燐光発光性化合物から水素原子を1個除いた残基を置換基として有するアリーレン基又は2価の芳香族複素環基、燐光発光性化合物から水素原子を2個除いた残基、燐光発光性化合物から水素原子を3個除いた残基等が挙げられる。燐光発光性化合物から誘導される構成単位が、燐光発光性化合物から水素原子を3個除いた残基である場合、高分子化合物は、この構成単位において分岐した構造を有することになる。
(Structural unit derived from phosphorescent compound)
The polymer compound of the present embodiment may further have a structural unit derived from a phosphorescent compound in addition to the above structural units. The structural unit derived from the phosphorescent compound is a structural unit including a structure derived from the phosphorescent compound. For example, a residue obtained by removing one hydrogen atom from the phosphorescent compound, a phosphorescent compound, or the like. An arylene group or divalent aromatic heterocyclic group having a residue obtained by removing one hydrogen atom as a substituent, a residue obtained by removing two hydrogen atoms from a phosphorescent compound, and three hydrogen atoms from a phosphorescent compound Residues that are excluded are listed. When the structural unit derived from the phosphorescent compound is a residue obtained by removing three hydrogen atoms from the phosphorescent compound, the polymer compound has a branched structure in the structural unit.

燐光発光性化合物から誘導される構成単位が、例えば、高分子鎖の末端に位置する1価の基、すなわち、燐光発光性化合物の残基からなる1価の基である場合、そのような構成単位としては、後述する式(MM)で表される燐光発光性化合物の有するLで表される配位子から水素原子を1個除いた1価の残基が挙げられる。   When the structural unit derived from the phosphorescent compound is, for example, a monovalent group located at the end of the polymer chain, that is, a monovalent group consisting of a residue of the phosphorescent compound, such a configuration Examples of the unit include a monovalent residue obtained by removing one hydrogen atom from the ligand represented by L of the phosphorescent compound represented by the formula (MM) described later.

また、燐光発光性化合物から誘導される構成単位が、例えば、高分子鎖の主鎖中に存在する2価の基、すなわち、燐光発光性化合物の残基からなる2価の基である場合、そのような構成単位としては、後述する式(MM)で表される燐光発光性化合物の有するLで表される配位子から水素原子を1個取り除いた1価の残基を置換基として有するアリーレン基又は2価の芳香族複素環基、式(MM)で表される燐光発光性化合物の有するLで表される配位子1つから水素原子を2個取り除いた2価の残基、或いは、式(MM)で表される燐光発光性化合物の有するLで表される配位子2つから水素原子を各1個取り除いた2価の残基が挙げられる。   When the structural unit derived from the phosphorescent compound is, for example, a divalent group present in the main chain of the polymer chain, that is, a divalent group consisting of a residue of the phosphorescent compound, As such a structural unit, a monovalent residue obtained by removing one hydrogen atom from a ligand represented by L of a phosphorescent compound represented by the formula (MM) described later is used as a substituent. An arylene group or a divalent aromatic heterocyclic group, a divalent residue obtained by removing two hydrogen atoms from one ligand represented by L of the phosphorescent compound represented by the formula (MM), Alternatively, a divalent residue obtained by removing one hydrogen atom from each of two ligands represented by L of the phosphorescent compound represented by the formula (MM) can be given.

さらに、燐光発光性化合物から誘導される構成単位が、例えば、高分子鎖の主鎖中に存在する3価の基、すなわち、燐光発光性化合物の残基からなる3価の基である場合、そのような構成単位としては、後述する式(MM)で表される燐光発光性化合物の有するLで表される配位子1つから水素原子を3個取り除いた3価の残基、式(MM)で表される燐光発光性化合物の有するLで表される配位子2つから水素原子をそれぞれ1個及び2個取り除いた3価の残基、或いは、式(MM)で表される燐光発光性化合物の有するLで表される配位子3つから水素原子をそれぞれ1個取り除いた3価の残基が挙げられる。   Furthermore, when the structural unit derived from the phosphorescent compound is, for example, a trivalent group present in the main chain of the polymer chain, that is, a trivalent group consisting of a residue of the phosphorescent compound, As such a structural unit, a trivalent residue obtained by removing three hydrogen atoms from one ligand represented by L of the phosphorescent compound represented by the formula (MM) described later, A trivalent residue obtained by removing one and two hydrogen atoms from two ligands represented by L of the phosphorescent compound represented by MM), or represented by the formula (MM) And trivalent residues obtained by removing one hydrogen atom from each of the three ligands represented by L of the phosphorescent compound.

燐光発光性化合物から誘導される構成単位を形成し得る燐光発光性化合物としては、以下の化合物が例示できる。燐光発光性化合物としては、三重項発光錯体等の公知の化合物や、従来から低分子系の発光素子の発光材料として利用されてきた化合物等を適用できる。   Examples of the phosphorescent compound that can form a structural unit derived from the phosphorescent compound include the following compounds. As the phosphorescent compound, a known compound such as a triplet light-emitting complex or a compound that has been conventionally used as a light-emitting material of a low-molecular light-emitting element can be used.

<燐光発光性化合物>
燐光発光性化合物から誘導される構成単位を形成するための燐光発光性化合物としては、上述した好適な実施形態の高分子化合物が高いT1のエネルギー準位を有するために、様々な燐光発光性化合物を用いることが可能であるが、更に高い電流効率を得る為には、高分子化合物の有する最低励起三重項状態(T)と同等の、もしくは、より低いエネルギー準位の最低励起三重項状態(T)を有する燐光発光性化合物を選択することが好ましい。
<Phosphorescent compound>
As the phosphorescent compound for forming a structural unit derived from the phosphorescent compound, since the polymer compound of the preferred embodiment described above has a high energy level of T1, various phosphorescent compounds are used. In order to obtain higher current efficiency, the lowest excited triplet state having the same or lower energy level as the lowest excited triplet state (T 1 ) of the polymer compound may be used. It is preferable to select a phosphorescent compound having (T 1 ).

より具体的には、高分子化合物が有する最低三重項励起状態(T1)のエネルギー準位(TH)と、燐光発光性化合物の有する最低三重項励起状態(T1)のエネルギー準位(TM)とが、
TH>TM−0.1(eV)
の関係を満たすものが好ましく、
TH>TM
の関係を満たすものがより好ましく、
TH>TM+0.1(eV)
の関係を満たすものがさらに好ましい。
More specifically, the energy level (TH) of the lowest triplet excited state (T1) of the polymer compound and the energy level (TM) of the lowest triplet excited state (T1) of the phosphorescent compound But,
TH> TM-0.1 (eV)
Preferably satisfying the relationship
TH> TM
It is more preferable to satisfy the relationship
TH> TM + 0.1 (eV)
Those satisfying the above relationship are more preferable.

なお、下記に燐光発光性化合物を例示するが、適用可能な燐光発光性化合物は下記に限定されるものではなく、上記(TH)と(TM)の関係を満たす燐光発光性化合物全般が有用である。   In addition, although the phosphorescent compound is illustrated below, the applicable phosphorescent compound is not limited to the following, and the phosphorescent compound generally satisfying the relationship of (TH) and (TM) is useful. is there.

例えば、燐光発光性化合物としては、Nature, (1998), 395, 151、Appl. Phys. Lett. (1999), 75(1), 4、Proc. SPIE−Int. Soc. Opt. Eng. (2001), 4105(Organic Light−Emitting Materials and DevicesIV), 119、 J. Am. Chem. Soc., (2001), 123, 4304、Appl. Phys. Lett., (1997), 71(18), 2596、Syn. Met., (1998), 94(1), 103、Syn. Met., (1999),99(2), 1361、Adv. Mater., (1999), 11(10), 852、Inorg. Chem., (2003), 42, 8609、Inorg. Chem., (2004), 43, 6513、Journal of the SID 11/1、161 (2003)、WO2002/066552、WO2004/020504、WO2004/020448等に記載されている化合物が挙げられる。   For example, as a phosphorescent compound, Nature, (1998), 395, 151, Appl. Phys. Lett. (1999), 75 (1), 4, Proc. SPIE-Int. Soc. Opt. , 4105 (Organic Light-Emitting Materials and Devices IV), 119, J. Am. Chem. Soc., (2001), 123, 4304, Appl. Phys. Lett., (1997) 71 (1997). Syn. Met., (1998), 94 (1), 103, Syn. Met., (1999), 99 (2), 1361, Adv. Mater., (1999), 11 (10), 852, Inorg. Chem., (2003), 42, 8609, Inor . Chem., (2004), 43, 6513, Journal of the SID 11 / 1,161 (2003), include compounds described in WO2002 / 066552, WO2004 / 020504, WO2004 / 020448 and the like.

特に、燐光発光性化合物としては、金属錯体の最高被占軌道(HOMO)における、中心金属の最外殻d軌道の軌道係数の2乗の和が、全原子軌道係数の2乗の和において占める割合が1/3以上であるものを適用すると、高発光効率が得られるので好ましい。例えば、中心金属が第6周期に属する遷移金属であるオルトメタル化錯体等が挙げられる。   In particular, as the phosphorescent compound, the sum of the squares of the orbital coefficients of the outermost shell d orbitals of the central metal in the highest occupied orbital (HOMO) of the metal complex occupies the sum of the squares of the total atomic orbital coefficients. When the ratio is 1/3 or more, it is preferable because high luminous efficiency can be obtained. For example, an ortho metalated complex in which the central metal is a transition metal belonging to the sixth period can be used.

三重項発光錯体の中心金属としては、原子番号50以上の原子で、錯体にスピン−軌道相互作用があり、一重項状態と三重項状態間の項間交差を起こし得る金属が挙げられる。中心金属は、好ましくは、金、白金、イリジウム、オスミウム、レニウム、タングステン、ユーロピウム、テルビウム、ツリウム、ディスプロシウム、サマリウム、プラセオジム、ガドリニウム、イッテルビウムであり、より好ましくは、金、白金、イリジウム、オスミウム、レニウムであり、更に好ましくは、金、白金、イリジウム、レニウムであり、特に好ましくは、白金(II)、イリジウム(III)であり、とりわけ好ましくは、イリジウム(III)である。   As the central metal of the triplet light emitting complex, a metal having an atomic number of 50 or more and having a spin-orbit interaction in the complex and capable of causing an intersystem crossing between the singlet state and the triplet state can be mentioned. The central metal is preferably gold, platinum, iridium, osmium, rhenium, tungsten, europium, terbium, thulium, dysprosium, samarium, praseodymium, gadolinium, ytterbium, and more preferably gold, platinum, iridium, osmium. Rhenium, more preferably gold, platinum, iridium and rhenium, particularly preferably platinum (II) and iridium (III), and particularly preferably iridium (III).

このような燐光発光性化合物としては、式(MM)で表される化合物が挙げられる。

Figure 0005859828
As such a phosphorescent compound, a compound represented by the formula (MM) can be given.
Figure 0005859828

式(MM)で表される化合物は、全体として中性の原子価を有し、式(MM)中、Mはルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金から選ばれる金属原子であり、LはMで表される金属原子との間に、配位結合及び共有結合から選ばれる結合を少なくとも2つ形成して多座配位することが可能な、中性又は1〜3価のアニオン性の配位子であり、Zはカウンターアニオンである。kaは1以上の整数を表し、kbは0以上の整数を表す。但し、ka+kbは金属原子Mが有する価数を満たすように存在する。L、Zが複数存在する場合、それらは互いに同一でも異なっていてもよい。   The compound represented by the formula (MM) has a neutral valence as a whole. In the formula (MM), M is a metal atom selected from ruthenium, rhodium, palladium, osmium, iridium, platinum, and L Is neutral or 1 to 3 valent anionic which can form multidentate coordination with a metal atom represented by M by forming at least two bonds selected from a coordination bond and a covalent bond Z is a counter anion. ka represents an integer of 1 or more, and kb represents an integer of 0 or more. However, ka + kb exists so that the valence which the metal atom M has may be satisfy | filled. When a plurality of L and Z are present, they may be the same as or different from each other.

Mで表される金属原子としては、白金(II)、イリジウム(III)が好ましく、イリジウム(III)が特に好ましい。   As the metal atom represented by M, platinum (II) and iridium (III) are preferable, and iridium (III) is particularly preferable.

上記Lで表される配位子としては、例えば、8−キノリノール及びその誘導体、ベンゾキノリノール及びその誘導体のように、金属原子と窒素原子及び酸素原子で配位結合若しくは共有結合で結合する配位子;例えば、2−フェニル−ピリジン及びその誘導体のように窒素原子及び炭素原子で配位結合若しくは共有結合で結合する配位子;例えば、アセチルアセトン及びその誘導体のように酸素原子で配位結合若しくは共有結合で結合する配位子;例えば、2,2’−ビピリジル及びその誘導体のように、窒素原子で配位結合する配位子や、リン原子及び炭素原子で配位結合若しくは共有結合する配位子等が挙げられる。   As the ligand represented by L, for example, 8-quinolinol and derivatives thereof, and benzoquinolinol and derivatives thereof are coordinated by a covalent bond or a covalent bond between a metal atom and a nitrogen atom and an oxygen atom. A ligand; for example, a ligand that binds by a coordinate bond or a covalent bond at a nitrogen atom and a carbon atom such as 2-phenyl-pyridine and a derivative thereof; for example, a coordinate bond at an oxygen atom such as acetylacetone and a derivative thereof; Ligand that binds covalently; for example, ligands that coordinate with nitrogen atoms, such as 2,2′-bipyridyl and its derivatives, and coordination or covalent bonds that bind with phosphorus and carbon atoms Examples include quantifiers.

なかでも、Mで表される金属原子と、窒素原子及び炭素原子で配位結合若しくは共有結合で結合する配位子、または、窒素原子で配位結合する配位子が好ましく、窒素原子及び炭素原子で配位結合もしくは共有結合で結合するモノアニオン性のオルトメタル化配位子、又は、このモノアニオン性のオルトメタル化配位子が互いに結合してなる2価もしくは3価のオルトメタル化配位子がより好ましい。   Of these, a metal atom represented by M and a ligand bonded by a coordinate bond or a covalent bond between a nitrogen atom and a carbon atom, or a ligand coordinated by a nitrogen atom is preferable, and a nitrogen atom and a carbon atom are preferable. Monoanionic orthometalated ligands that are coordinated or covalently bonded by atoms, or bivalent or trivalent orthometalated ligands in which these monoanionic orthometalated ligands are bonded to each other A ligand is more preferred.

また、Lで表される配位子は、式(MM)で表される化合物において、一種単独で用いられても、異なる種類が共存して用いられても良い。なお、一種単独で用いられる場合、式(MM)で表される化合物はホモレプティック錯体(homoleptic complex)となり、2種以上が用いられる場合、ヘテロレプティック錯体(heteroleptic complex)となる。   Moreover, the ligand represented by L may be used individually by 1 type in the compound represented by a formula (MM), or may be used together with a different kind. When used alone, the compound represented by the formula (MM) becomes a homoleptic complex, and when two or more are used, it becomes a heteroleptic complex.

以下、Lとして特に好ましい窒素原子及び炭素原子で配位結合もしくは共有結合で結合するモノアニオン性のオルトメタル化配位子を例示する。

Figure 0005859828
Hereinafter, monoanionic orthometalated ligands which are particularly preferably bonded as a coordinate bond or a covalent bond at a nitrogen atom and a carbon atom as L will be exemplified.
Figure 0005859828

上記に例示した各配位子における任意の水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換オキシカルボニル基、フッ素原子又はシアノ基で置換されていてもよく、また、それらの置換基を介して互いに結合することにより更なる縮合環構造を形成していてもよい。なお、上記の例示には、より詳細な理解を助ける為に、縮合環構造を形成している例も含まれている。   Arbitrary hydrogen atoms in each ligand exemplified above are alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group. It may be substituted with a group, a substituted oxycarbonyl group, a fluorine atom or a cyano group, and may be bonded to each other via these substituents to form a further condensed ring structure. The above examples include examples in which a condensed ring structure is formed in order to facilitate a more detailed understanding.

また、中心金属がイリジウムである三重項発光錯体の配位子としては、8−キノリノール及びその誘導体、ベンゾキノリノール及びその誘導体等のイリジウム原子と窒素原子及び酸素原子で配位結合若しくは共有結合で結合する配位子、2−フェニル−ピリジン及びその誘導体等の窒素原子及び炭素原子で配位結合若しくは共有結合で結合する配位子、アセチルアセトン及びその誘導体等の酸素原子で配位結合若しくは共有結合で結合する配位子が挙げられる。好ましくは、2−フェニル−ピリジン及びその誘導体、アセチルアセトン及びその誘導体であり、更に好ましくは、2−フェニル−ピリジン及びその誘導体である。   The ligand of the triplet light-emitting complex whose central metal is iridium is a coordinate bond or covalent bond between iridium atoms such as 8-quinolinol and its derivatives, benzoquinolinol and its derivatives, and nitrogen and oxygen atoms. Ligand, 2-phenyl-pyridine and its derivatives, etc., ligands that are coordinated or covalently bonded by nitrogen and carbon atoms, acetylacetone and its derivatives, etc., by coordinate bonds or covalent bonds Examples of the ligand to be bonded are mentioned. Preferred are 2-phenyl-pyridine and derivatives thereof, acetylacetone and derivatives thereof, and more preferred are 2-phenyl-pyridine and derivatives thereof.

高分子化合物が上述したような燐光発光性化合物から誘導される構成単位を有する場合、燐光発光性化合物は、高分子化合物との相溶性が高い、すなわち相分離を生じにくいものであると好ましい。これにより、高分子化合物の溶液加工性が良好となって発光素子に適用する際に膜を形成し易くなる。なお、燐光発光性化合物は、後述するように高分子化合物とは別に添加することもできるが、その場合、それらを含む組成物が、膜等の形成に適用されることがある。そのような組成物とする場合であっても、燐光発光性化合物が高分子化合物との相溶性が高いものであると、優れた溶液加工性が得られ、膜等の形成が容易となる傾向にある。   When the polymer compound has a structural unit derived from the phosphorescent compound as described above, the phosphorescent compound is preferably highly compatible with the polymer compound, that is, is less likely to cause phase separation. As a result, the solution processability of the polymer compound is improved, and a film can be easily formed when applied to a light emitting device. Note that the phosphorescent compound can be added separately from the polymer compound as described later. In that case, a composition containing the phosphorescent compound may be applied to the formation of a film or the like. Even in the case of such a composition, if the phosphorescent compound is highly compatible with the polymer compound, excellent solution processability is obtained, and formation of a film or the like tends to be easy. It is in.

上記の観点から、燐光発光性化合物は、当該燐光発光性化合物が有している配位子に適当な置換基を有するものであると好ましい。置換基としては、アルキル基、アルコキシ基、アリール基、1価の芳香族複素間基、アラルキル基等の置換基が好ましく、それらは更に置換基を有していてもよい。この置換基は、水素原子以外の原子の総数が3個以上であることが好ましく、5個以上であることがより好ましく、7個以上であることが更に好ましく、10個以上であることが特に好ましい。また、この置換基は、配位子毎に存在していることが好ましい。その場合、置換基の種類は、配位子毎に同一であっても異なっていてもよい。   From the above viewpoint, the phosphorescent compound is preferably one having an appropriate substituent for the ligand of the phosphorescent compound. The substituent is preferably a substituent such as an alkyl group, an alkoxy group, an aryl group, a monovalent aromatic heterocyclic group, and an aralkyl group, and these may further have a substituent. This substituent preferably has a total number of atoms other than hydrogen atoms of 3 or more, more preferably 5 or more, still more preferably 7 or more, and particularly preferably 10 or more. preferable. Moreover, it is preferable that this substituent exists for every ligand. In that case, the type of the substituent may be the same or different for each ligand.

上記の置換基としては、特に、更なる置換基を有していてもよいアリール基もしくは芳香族複素環基からなるデンドロンが好ましい。デンドロンは分枝構造(branching structure)であり、デンドロンを置換基として導入することによって、燐光発光性化合物は、溶液加工特性が向上するほか、例えば、電荷輸送性などの機能性(functinality)が付与されたり、また発光色が好適に調整されたりして、高い機能性を有する燐光発光性化合物となることができる。デンドロンを有する高度に枝分かれした巨大分子はデンドリマーと呼ばれることがあり、例えば、WO02/066575、WO02/066552、WO02/067343等に開示されており、種々の機能を得ることを目的として設計・合成されている。   As the substituent, a dendron composed of an aryl group or an aromatic heterocyclic group which may have a further substituent is particularly preferable. The dendron has a branching structure. By introducing dendron as a substituent, the phosphorescent compound has improved solution processing characteristics and, for example, a function such as charge transportability is imparted. In addition, a phosphorescent compound having high functionality can be obtained by appropriately adjusting the emission color. Highly branched macromolecules with dendrons are sometimes called dendrimers, and are disclosed, for example, in WO02 / 066655, WO02 / 066552, WO02 / 066733, and designed and synthesized for the purpose of obtaining various functions. ing.

燐光発光性化合物としては、より具体的には、例えば、以下の化合物が挙げられる。

Figure 0005859828

Figure 0005859828
More specifically, examples of the phosphorescent compound include the following compounds.
Figure 0005859828

Figure 0005859828

Figure 0005859828
Figure 0005859828

また、好適な実施形態の高分子化合物が有することができる燐光発光性化合物から誘導される構成単位としては、例えば、以下の構成単位が挙げられる。

Figure 0005859828
Moreover, as a structural unit induced | guided | derived from the phosphorescent compound which the polymer compound of suitable embodiment can have, the following structural units are mentioned, for example.
Figure 0005859828

Figure 0005859828
Figure 0005859828

(高分子化合物の構造)
次に、上述した各構成単位によって構成される高分子化合物の構造について説明する。
(Structure of polymer compound)
Next, the structure of the polymer compound constituted by each structural unit described above will be described.

高分子化合物は、式(1)、(2)及び(3)で表される構成単位、並びに式(4)及び(5)のうちの少なくとも一方の構成単位を有しており、式(1)で表される構成単位と式(2)で表される構成単位とが直接結合した構造(構成連鎖)を含まない。このような構成を有する高分子化合物によって、高い発光効率が得られるとともに、発光素子とした場合に優れた輝度安定性が得られるようになる。   The polymer compound has structural units represented by formulas (1), (2) and (3), and at least one structural unit of formulas (4) and (5). ) And the structure (structural chain) in which the structural unit represented by the formula (2) is directly bonded. With the polymer compound having such a configuration, high luminous efficiency can be obtained, and excellent luminance stability can be obtained when a light emitting device is obtained.

ここで、式(1)で表される構成単位と式(2)で表される構成単位とが直接結合した構成連鎖を含まないとは、下記の式(A)で表される構成連鎖を含まないことを意味する。式中の符号や各種の符号が付された基は、基本的に上述した同一の符号及び同じ符号が付された基と同義であるが、式(A)の構成連鎖においては、R1aが水素原子である場合も含む。また、式(A)で表される構成連鎖には、式(A)が左右反転した構造も含まれる。

Figure 0005859828
Here, the constitutional chain represented by the following formula (A) means that the constitutional unit in which the structural unit represented by the formula (1) and the structural unit represented by the formula (2) are directly bonded is not included. It means not included. In the formula, a group to which a symbol or various symbols are attached is basically synonymous with the group having the same symbol or the same symbol as described above, but in the constituent chain of formula (A), R 1a is Including the case of a hydrogen atom. In addition, the structural chain represented by the formula (A) includes a structure in which the formula (A) is horizontally reversed.
Figure 0005859828

ただし、本実施形態の高分子化合物は、複数種類の構成単位を有することから、その製造において重合反応を完全に制御することが困難であり、意図しない重合反応等が生じて化合物中にわずかに式(A)で表される構成連鎖が含まれる場合がある。したがって、本実施形態においては、高分子化合物中、式(1)で表される構成単位の隣に配置された構成単位の全個数のうち、式(2)で表される構成単位の個数の割合が、0.05未満である条件を満たす場合、高分子化合物中には、式(A)で表される構成連鎖は含まれないと見なすこととする。高分子化合物においては、この割合は0.02未満であることが好ましく、0であることがより好ましい。   However, since the polymer compound of the present embodiment has a plurality of types of structural units, it is difficult to completely control the polymerization reaction in the production thereof, and an unintended polymerization reaction or the like occurs, resulting in a slight amount in the compound. In some cases, a structural chain represented by the formula (A) is included. Therefore, in the present embodiment, among the total number of structural units arranged next to the structural unit represented by the formula (1) in the polymer compound, the number of structural units represented by the formula (2) When the ratio satisfies the condition of less than 0.05, the polymer compound is regarded as not including the constituent chain represented by the formula (A). In the polymer compound, this ratio is preferably less than 0.02, more preferably 0.

このように式(A)で表される構成連鎖が含まれないことから、高分子化合物は、以下のような構造を有することが好ましい。まず、高分子化合物においては、式(2)で表される構成単位の両側に、式(3)で表される構成単位が直接結合していることが好ましい。すなわち、高分子化合物において、式(2)で表される構成単位は、式(B)で表される構成連鎖を形成していると好適である。なお、式(B)中の符号や各種の符号が付された基は、全て上述した同一の符号及び同じ符号が付された基と同義である。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。

Figure 0005859828
Thus, since the structural chain represented by Formula (A) is not included, the polymer compound preferably has the following structure. First, in the polymer compound, it is preferable that the structural unit represented by the formula (3) is directly bonded to both sides of the structural unit represented by the formula (2). That is, in the polymer compound, it is preferable that the structural unit represented by the formula (2) forms a structural chain represented by the formula (B). In addition, the group | base to which the code | symbol in Formula (B) and various code | symbol were attached | subjected is synonymous with the group to which the same code | symbol mentioned above and the same code | symbol were attached | subjected all. A plurality of the same symbols and groups with the same symbols in the formula may be the same or different.
Figure 0005859828

また、高分子化合物においては、式(1)で表される構成単位の両側に、式(4)及び(5)で表される構成単位の少なくとも一方の構成単位が直接結合していることが好ましい。すなわち、式(1)で表される構成単位は、式(C)、(D)又は(E)で表される構成連鎖を形成していると好適である。なお、式(C)、(D)、(E)中の符号や各種の符号が付された基は、全て上述した同一の符号及び同じ符号が付された基と同義である。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。また、式(D)で表される構成連鎖には、下記の式が左右反転した構造も含まれる。   In the polymer compound, at least one of the structural units represented by the formulas (4) and (5) may be directly bonded to both sides of the structural unit represented by the formula (1). preferable. That is, it is preferable that the structural unit represented by the formula (1) forms a structural chain represented by the formula (C), (D) or (E). In addition, the group | base to which the code | symbol in Formula (C), (D), (E) and various code | symbols were attached | subjected is synonymous with the group to which the same code | symbol mentioned above and the same code | symbol were attached | subjected all. A plurality of the same symbols and groups with the same symbols in the formula may be the same or different. Moreover, the structure chain represented by the formula (D) includes a structure in which the following formula is horizontally reversed.

Figure 0005859828
Figure 0005859828

高分子化合物において、式(1)で表される構成単位は、式(C)、(D)及び(E)で表される構成連鎖のうち、式(C)で表される構成連鎖を有していることが好ましい。式(1)で表される構成単位が、式(C)で表される構成連鎖を形成していることで、優れた輝度安定性が得られ易くなる。   In the polymer compound, the structural unit represented by the formula (1) has a structural chain represented by the formula (C) among the structural chains represented by the formulas (C), (D), and (E). It is preferable. Since the structural unit represented by the formula (1) forms the structural chain represented by the formula (C), excellent luminance stability is easily obtained.

また、高分子化合物においては、式(4)で表される構成単位の両側に、式(1)及び(3)で表される構成単位のうちの少なくとも一方の構成単位が結合していることが好ましい。すなわち、式(1)で表される構成単位は、式(F)、(G)又は(H)で表される構成連鎖を形成していると好適である。なお、式(F)、(G)、(H)中の符号や各種の符号が付された基は、全て上述した同一の符号及び同じ符号が付された基と同義である。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。また、式(G)で表される構成連鎖には、下記の式が左右反転した構造も含まれる。   In the polymer compound, at least one of the structural units represented by the formulas (1) and (3) is bonded to both sides of the structural unit represented by the formula (4). Is preferred. That is, it is preferable that the structural unit represented by the formula (1) forms a structural chain represented by the formula (F), (G), or (H). In addition, the group | base to which the code | symbol and various code | symbol in Formula (F), (G), (H) were attached | subjected are all synonymous with the group to which the same code | symbol mentioned above and the same code | symbol were attached | subjected. A plurality of the same symbols and groups with the same symbols in the formula may be the same or different. In addition, the structural chain represented by the formula (G) includes a structure in which the following formula is horizontally reversed.

Figure 0005859828
Figure 0005859828

高分子化合物において、式(4)で表される構成単位は、式(F)、(G)及び(H)で表される構成連鎖のうち、式(H)で表される構成連鎖を有していることが好ましい。式(4)で表される構成単位が、式(H)で表される構成連鎖を形成していることで、優れた輝度安定性が得られ易くなる。   In the polymer compound, the structural unit represented by the formula (4) has a structural chain represented by the formula (H) among the structural chains represented by the formulas (F), (G), and (H). It is preferable. Since the structural unit represented by the formula (4) forms the structural chain represented by the formula (H), excellent luminance stability is easily obtained.

さらに、高分子化合物においては、式(5)で表される構成単位の両側に、式(1)及び(3)で表される構成単位のうちの少なくとも一方の構成単位が結合していることが好ましい。すなわち、式(5)で表される構成単位は、式(I)、(J)又は(K)で表される構成連鎖を形成していると好適である。なお、式(I)、(J)、(K)中の符号や各種の符号が付された基は、全て上述した同一の符号及び同じ符号が付された基と同義である。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。また、式(J)で表される構成連鎖には、下記の式が左右反転した構造も含まれる。   Furthermore, in the polymer compound, at least one of the structural units represented by the formulas (1) and (3) is bonded to both sides of the structural unit represented by the formula (5). Is preferred. That is, it is preferable that the structural unit represented by the formula (5) forms a structural chain represented by the formula (I), (J) or (K). In addition, all the groups | bases which the code | symbol in Formula (I), (J), (K) and various code | symbol were attached | subjected are synonymous with the group to which the same code | symbol mentioned above and the same code | symbol were attached | subjected. A plurality of the same symbols and groups with the same symbols in the formula may be the same or different. In addition, the structural chain represented by the formula (J) includes a structure in which the following formula is horizontally reversed.

Figure 0005859828
Figure 0005859828

高分子化合物において、式(5)で表される構成単位は、式(I)、(J)及び(K)で表される構成連鎖のうち、式(K)で表される構成連鎖を有していることが好ましい。式(5)で表される構成単位が、式(K)で表される構成連鎖を形成していることで、優れた発光効率が得られ易くなる。   In the polymer compound, the structural unit represented by the formula (5) has a structural chain represented by the formula (K) among the structural chains represented by the formulas (I), (J), and (K). It is preferable. Since the structural unit represented by the formula (5) forms the structural chain represented by the formula (K), excellent light emission efficiency is easily obtained.

また、高分子化合物は、化合物自体やこれを用いて形成した発光素子の輝度安定性が更に向上し、且つ、発光素子の良好な駆動電圧が得られるので、式(3)で表される構成単位同士が直接結合した構成連鎖を含まないことが好ましく、式(1)で表される構成単位同士が直接結合した構成連鎖を含まないことが好ましく、また、式(1)で表される構成単位と式(3)で表される構成単位とが直接結合した構成連鎖を含まないことが好ましい。   In addition, the high molecular compound further improves the luminance stability of the compound itself and a light-emitting element formed using the compound, and provides a favorable driving voltage of the light-emitting element. Therefore, the structure represented by the formula (3) It is preferable that the structural chain in which the units are directly bonded is not included, and it is preferable that the structural unit in which the structural units represented by the formula (1) are directly bonded is not included, and the structure is expressed by the formula (1). It is preferable not to include a structural chain in which the unit and the structural unit represented by the formula (3) are directly bonded.

高分子化合物の末端構造は限定されないが、末端基が重合活性基であると、高分子化合物を発光素子の作製に用いた場合に得られる発光素子の発光効率や寿命が低下するおそれがあるので、末端基は、重合活性基ではない安定な基が好ましい。この末端基は、高分子の主鎖と共役結合しているものが好ましく、例えば、炭素−炭素結合を介してアリール基又は1価の芳香族複素環基と結合しているものが挙げられる。このアリール基や1価の芳香族複素環基としては、置換又は無置換のフェニル基が好ましく、アルキル基、又はアリール基で置換されたフェニル基、或いは無置換のフェニル基がより好ましい。   The terminal structure of the polymer compound is not limited, but if the terminal group is a polymerization active group, the light emitting efficiency and life of the light emitting device obtained when the polymer compound is used for production of the light emitting device may be reduced. The terminal group is preferably a stable group that is not a polymerization active group. This terminal group is preferably conjugated to the main chain of the polymer, and examples thereof include those bonded to an aryl group or a monovalent aromatic heterocyclic group via a carbon-carbon bond. The aryl group or monovalent aromatic heterocyclic group is preferably a substituted or unsubstituted phenyl group, more preferably an alkyl group, a phenyl group substituted with an aryl group, or an unsubstituted phenyl group.

本実施形態の高分子化合物は、高分子化合物の全質量中の、式(1)で表される構成単位、式(2)で表される構成単位、式(3)で表される構成単位、式(4)で表される構成単位、及び式(5)で表される構成単位の合計の質量比率が、高分子化合物全体を1としたとき、0.9以上であると好ましい。ただし、上述のように、高分子化合物が、燐光発光性化合物から誘導される構成単位を更に有している場合は、式(1)〜(5)で表される構成単位に、燐光発光性化合物から誘導される構成単位を加えた合計の質量比率が、高分子化合物全体を1としたとき、0.9以上であることが好ましい。このような条件を満たすことによって、高い発光効率と優れた輝度安定性が得られ易くなる。   The polymer compound of the present embodiment includes a structural unit represented by the formula (1), a structural unit represented by the formula (2), and a structural unit represented by the formula (3) in the total mass of the polymer compound. The total mass ratio of the structural unit represented by formula (4) and the structural unit represented by formula (5) is preferably 0.9 or more when the entire polymer compound is 1. However, as described above, when the polymer compound further includes a structural unit derived from a phosphorescent compound, the structural unit represented by the formulas (1) to (5) is phosphorescent. The total mass ratio including the structural units derived from the compound is preferably 0.9 or more when the entire polymer compound is 1. By satisfying such a condition, it becomes easy to obtain high luminous efficiency and excellent luminance stability.

また、高分子化合物の分子量は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と言う)によるポリスチレン換算の数平均分子量(Mn)が、1×10〜1×10のものであると好ましく、5×10〜1×10のものであるとより好ましく、5×10〜5×10のものであると更に好ましい。また、高分子化合物のGPCによるポリスチレン換算の重量平均分子量(Mw)は、1×10〜1×10であると好ましく、良好な成膜性や発光効率が得られるので、1×10〜5×10であるとより好ましく、1×10〜1×10であると更に好ましく、1×10〜5×10であると一層好ましい。 The molecular weight of the polymer compound is preferably such that the number average molecular weight (Mn) in terms of polystyrene by gel permeation chromatography (hereinafter referred to as “GPC”) is 1 × 10 3 to 1 × 10 8. It is more preferably 5 × 10 3 to 1 × 10 6 , and even more preferably 5 × 10 3 to 5 × 10 5 . Moreover, the weight average molecular weight (Mw) in terms of polystyrene by GPC of the polymer compound is preferably 1 × 10 3 to 1 × 10 8 , and good film formability and light emission efficiency can be obtained, so 1 × 10 4. More preferably, it is ˜5 × 10 6 , further preferably 1 × 10 4 to 1 × 10 6 , and further more preferably 1 × 10 4 to 5 × 10 5 .

さらに、発光素子等を作製するためのプロセスにおける耐久性や、発光素子の駆動中の発熱に対する安定性や耐熱性が良好になるので、高分子化合物のガラス転移温度は、70℃以上が好ましく、80℃以上がより好ましい。また、その上限は、200℃が好ましい。   Furthermore, since durability in a process for producing a light emitting element and the like, and stability against heat generation during driving of the light emitting element and heat resistance are improved, the glass transition temperature of the polymer compound is preferably 70 ° C. or more, 80 degreeC or more is more preferable. The upper limit is preferably 200 ° C.

本実施形態の高分子化合物の形態は、例えば、線状ポリマー、分岐ポリマー、ハイパーブランチポリマー、環状ポリマー、櫛形ポリマー、星型ポリマー、網目ポリマー等である。また、高分子化合物は、ホモポリマー、交互コポリマー、周期コポリマー、ランダムコポリマー、ブロックコポリマー、グラフトコポリマー等の任意の組成及び規則性を有するポリマーであってもよい。   The form of the polymer compound of this embodiment is, for example, a linear polymer, a branched polymer, a hyperbranched polymer, a cyclic polymer, a comb polymer, a star polymer, a network polymer, or the like. The polymer compound may be a polymer having an arbitrary composition and regularity such as a homopolymer, an alternating copolymer, a periodic copolymer, a random copolymer, a block copolymer, and a graft copolymer.

上述したような構造を有する本実施形態の高分子化合物は、発光素子の材料(例えば、発光材料、電荷輸送材料)として有用である。この高分子化合物を用いた発光素子は、高発光効率で駆動できる発光素子である。したがって、この発光素子は、液晶ディスプレイのバックライト、照明用としての曲面状や平面状の光源、セグメントタイプの表示素子、ドットマトリックスのフラットパネルディスプレイ等の表示装置に有用である。さらに、本実施形態の高分子化合物は、レーザー用色素、有機太陽電池用材料、有機トランジスタ用の有機半導体、導電性薄膜、有機半導体薄膜等の伝導性薄膜用材料、蛍光や燐光を発する発光性薄膜用材料としても有用である。   The polymer compound of the present embodiment having the structure as described above is useful as a material of a light emitting device (for example, a light emitting material or a charge transport material). A light-emitting element using this polymer compound is a light-emitting element that can be driven with high luminous efficiency. Therefore, the light emitting element is useful for a display device such as a backlight of a liquid crystal display, a curved or flat light source for illumination, a segment type display element, a dot matrix flat panel display. Furthermore, the polymer compound of the present embodiment includes a laser dye, an organic solar cell material, an organic semiconductor for an organic transistor, a conductive thin film, a conductive thin film material such as an organic semiconductor thin film, and a light emitting property that emits fluorescence or phosphorescence. It is also useful as a thin film material.

[高分子化合物の製造方法]
本実施形態の高分子化合物は、高分子化合物を構成する式(1)〜(5)で表される構成単位やその他の構成単位を形成するための単量体(原料単量体)を、上述したような高分子化合物の構造が得られるように反応させることによって製造することができる。ここで、原料単量体としては、各構成単位における高分子鎖に結合している2つの結合手が、重合反応により結合を形成することが可能な脱離基(重合活性基)に置き換わった構造を有するものを用いることができる。高分子化合物に燐光発光性化合物から誘導される構成単位を導入する場合、その原料単量体としては、上述したような燐光発光性化合物の配位子部分に、直接、又は、アリーレン基や2価の芳香族複素環基を介して、重合活性基を導入した化合物を適用することができる。重合は、例えば、公知のクロスカップリング等の重合方法を適用して単量体を共重合させることにより行うことができる。
[Method for producing polymer compound]
The polymer compound of the present embodiment is a monomer (raw material monomer) for forming the structural unit represented by the formulas (1) to (5) constituting the polymer compound and other structural units. It can manufacture by making it react so that the structure of a high molecular compound as mentioned above may be obtained. Here, as a raw material monomer, two bonds bonded to the polymer chain in each structural unit were replaced with a leaving group (polymerization active group) capable of forming a bond by a polymerization reaction. What has a structure can be used. When a structural unit derived from a phosphorescent compound is introduced into the polymer compound, the raw material monomer may be directly or directly on the ligand part of the phosphorescent compound as described above or an arylene group or 2 A compound into which a polymerization active group is introduced via a valent aromatic heterocyclic group can be applied. The polymerization can be performed, for example, by copolymerizing monomers by applying a known polymerization method such as cross coupling.

上述したような式(A)で表される構成連鎖を含まず、しかも式(B)〜(K)で表されるような好適な構成連鎖を有する高分子化合物を製造するには、予め所望の構成連鎖に対応する構造の原料単量体(複合原料単量体)を合成しておき、これを用いて共重合を行うことが好ましい。複合原料単量体は、所望とする構成連鎖に含まれる構成単位を形成するための単量体同士を、クロスカップリングさせる方法等によって合成することができる。   In order to produce a polymer compound that does not include the structural chain represented by the formula (A) as described above and has a suitable structural chain represented by the formulas (B) to (K), it is desired in advance. It is preferable to synthesize a raw material monomer (composite raw material monomer) having a structure corresponding to the above structural chain and perform copolymerization using this. The composite raw material monomer can be synthesized by a method of cross-coupling monomers for forming a structural unit included in a desired structural chain.

高分子化合物の製造においては、原料単量体(複合原料単量体)として、式(11)で表される化合物を用いることが好ましい。かかる化合物は、式(1)で表される構成単位の原料単量体と、式(4)で表される構成単位の原料単量体から形成される。式(11)で表される化合物を用いることにより、得られる高分子化合物は、式(1)で表される構成単位の両側に式(4)で表される構成単位が結合した、式(6)で表される構造(構成連鎖)を有するものとなる。その結果、得られる高分子化合物は、式(A)で表される構成連鎖を含まず、高い発光効率及び優れた輝度安定性を発揮し易いものとなる。   In the production of the polymer compound, it is preferable to use a compound represented by the formula (11) as a raw material monomer (composite raw material monomer). Such a compound is formed from the raw material monomer of the structural unit represented by the formula (1) and the raw material monomer of the structural unit represented by the formula (4). By using the compound represented by the formula (11), the resulting polymer compound has the formula (4) in which the structural unit represented by the formula (4) is bonded to both sides of the structural unit represented by the formula (1). It has a structure (constituent chain) represented by 6). As a result, the obtained polymer compound does not include the constituent chain represented by the formula (A), and easily exhibits high luminous efficiency and excellent luminance stability.

より好適には、高分子化合物は、式(11)で表される化合物、式(14)で表される化合物、及び式(15)で表される化合物を含む単量体混合物を重合させて製造することができる。式(14)で表される化合物は、式(2)で表される構成単位の原料単量体であり、式(15)で表される化合物は、式(3)で表される構成単位の原料単量体である。重合は、単量体混合物を必要に応じて溶媒に溶解させ、アルカリ、触媒又は配位子を用いて、公知のクロスカップリング反応等の重合(縮合重合)反応を生じさせることによって行うことができる。   More preferably, the polymer compound is obtained by polymerizing a monomer mixture containing a compound represented by formula (11), a compound represented by formula (14), and a compound represented by formula (15). Can be manufactured. The compound represented by the formula (14) is a raw material monomer of the structural unit represented by the formula (2), and the compound represented by the formula (15) is a structural unit represented by the formula (3). The raw material monomer. Polymerization may be performed by dissolving the monomer mixture in a solvent as necessary, and causing a polymerization (condensation polymerization) reaction such as a known cross-coupling reaction using an alkali, a catalyst, or a ligand. it can.

このような高分子化合物の製造方法において、単量体混合物は、その全モル数を100としたとき、式(11)で表される化合物、式(14)で表される化合物及び式(15)で表される化合物の合計モル数が、60〜100となるように配合することが好ましく、70〜100となるように配合することがより好ましい。   In such a method for producing a polymer compound, the monomer mixture has a compound represented by the formula (11), a compound represented by the formula (14), and a formula (15) when the total number of moles is 100. It is preferable to mix | blend so that the total number of moles of the compound represented by 60 may become 100-100, and it is more preferable to mix | blend so that it may become 70-100.

式(11)、(14)及び(15)中の符号や各種の符号が付された基は、それぞれ、上述した式(1)、(2)及び(3)中の同じ符号や同じ符号が付された基と同様であり、それらの好適例としても同様のものが適用できる。   In the formulas (11), (14), and (15), the groups to which the codes and various codes are attached are the same codes and the same codes in the above-described formulas (1), (2), and (3), respectively. It is the same as the group attached | subjected, The same thing is applicable also as those suitable examples.

高分子化合物の製造においては、式(11)、(14)及び(15)で表される化合物に加えて、式(16)で表される化合物及び式(17)で表される化合物のうちの少なくとも一方の化合物を更に用いることができる。式(16)で表される化合物は、式(4)で表される構成単位の原料単量体であり、式(17)で表される化合物は、式(5)で表される構成単位の原料単量体である。これらの化合物を用いることによって、高分子化合物における式(4)で表される構成単位の割合を増加させたり、式(5)で表される構成単位を導入したりすることができる。   In the production of the polymer compound, in addition to the compounds represented by the formulas (11), (14) and (15), among the compounds represented by the formula (16) and the compounds represented by the formula (17) At least one of the compounds can be further used. The compound represented by the formula (16) is a raw material monomer of the structural unit represented by the formula (4), and the compound represented by the formula (17) is a structural unit represented by the formula (5). The raw material monomer. By using these compounds, the proportion of the structural unit represented by the formula (4) in the polymer compound can be increased, or the structural unit represented by the formula (5) can be introduced.

式(16)及び式(17)中の基は、それぞれ、上述した式(4)及び(5)中の同じ符号が付された基と同様であり、それらの好適例としても同様のものが適用できる。   The groups in the formulas (16) and (17) are the same as the groups having the same reference numerals in the above-described formulas (4) and (5), respectively. Applicable.

式(11)で表される化合物としては、k=1である化合物を用いることが好ましい。これにより、当該化合物の合成が容易になるほか、この化合物を用いて重合を行う際の重合の制御が容易となる傾向にある。   As the compound represented by the formula (11), it is preferable to use a compound in which k = 1. This facilitates the synthesis of the compound and tends to facilitate the control of the polymerization when the compound is used for polymerization.

なかでも、式(11)で表される化合物としては、式(12)で表される化合物及び式(13)で表される化合物のうちの少なくとも一方が好ましい。なお、これらの式中の符号や各種の符号が付された基は、いずれも上述した同一の符号や同じ符号が付された基と同義であり、それらの好適例としても、上記と同様のものが適用できる。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。

Figure 0005859828

また、式(12)で表される化合物としては、式(12−1)で表される化合物が好ましい。
Figure 0005859828
Especially, as a compound represented by Formula (11), at least one of the compound represented by Formula (12) and the compound represented by Formula (13) is preferable. In addition, the group to which the code | symbol in these formulas and various code | symbols were attached | subjected is all synonymous with the group to which the same code | symbol mentioned above or the same code | symbol was attached | subjected, and those examples are also the same as the above Things can be applied. A plurality of the same symbols and groups with the same symbols in the formula may be the same or different.
Figure 0005859828

Moreover, as a compound represented by Formula (12), the compound represented by Formula (12-1) is preferable.
Figure 0005859828

式(12−1)中、R12aはメチル基を表し、R12bは水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたフェニル基を表し、R12cは水素原子又はメチル基を表し、R12dはアルキル基、アルキル基又はアリール基で置換されたアリール基を表し、R12eはアルキル基又はアリール基で置換されたアリール基を表す。2つのR12cは、互いに同一であっても異なっていてもよく、2つのR12dは、互いに同一であっても異なっていてもよく、2つのR12eは、互いに同一であっても異なっていてもよい。X11aは、いずれも上記と同義であり、2つのX11aは、互いに同一であっても異なってもよい。 In formula (12-1), R 12a represents a methyl group, R 12b represents a hydrogen atom, an alkyl group, an unsubstituted or phenyl group substituted with an alkyl group or an aryl group, and R 12c represents a hydrogen atom or a methyl group. R 12d represents an aryl group substituted with an alkyl group, an alkyl group or an aryl group, and R 12e represents an aryl group substituted with an alkyl group or an aryl group. The two R 12c may be the same or different from each other, the two R 12d may be the same or different from each other, and the two R 12e may be the same or different from each other. May be. X 11a is as defined above, and the two X 11a may be the same as or different from each other.

式(12−1)において、R12dは、炭素数1〜8のアルキル基、又は、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であって且つそのアルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であり、R12eは、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であって且つそのアルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であると好ましい。特に、R12d及びR12eは、式(12−2)で表される基、すなわち、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であって且つそのアルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であると好ましい。

Figure 0005859828

[式(12−2)中、R12f、R12g及びR12hは、それぞれ独立に、水素原子、又は炭素数1〜12のアルキル基を表す。但し、R12f、R12g及びR12hのうちの少なくとも一つは、炭素数6〜12のアルキル基である。式(12−1)において、複数存在する式(12−2)で表される基は、それぞれ同一であっても異なっていてもよい。] In the formula (12-1), R 12d is an alkyl group having 1 to 8 carbon atoms, or an aryl group substituted with one or more and 3 or less alkyl groups having 1 to 12 carbon atoms, and the alkyl group At least one of the groups is an aryl group which is an alkyl group having 6 to 12 carbon atoms, and R 12e is an aryl group substituted with one or more and 3 or less alkyl groups having 1 to 12 carbon atoms, In addition, it is preferable that at least one of the alkyl groups is an aryl group which is an alkyl group having 6 to 12 carbon atoms. In particular, R 12d and R 12e are a group represented by the formula (12-2), that is, an aryl group substituted with an alkyl group having 1 to 3 carbon atoms and having 1 to 12 carbon atoms, and the alkyl It is preferable that at least one of the groups is an aryl group which is an alkyl group having 6 to 12 carbon atoms.
Figure 0005859828

[In the formula (12-2), R 12f , R 12g and R 12h each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. However, at least one of R 12f , R 12g and R 12h is an alkyl group having 6 to 12 carbon atoms. In the formula (12-1), a plurality of groups represented by the formula (12-2) may be the same or different. ]

上述したような原料単量体がそれぞれ両末端に有している重合活性基であるX11a、X14a、X15a、X16a及びX17aは、得られる高分子化合物を用いた発光素子による発光効率が更に向上するので、次のような組み合わせであることが好ましい。すなわち、X11a、X14a、X16a、X17aが、置換基(a)群から選ばれる基であり、X15aが置換基(b)群から選ばれる基であること、或いは、X11a、X14a、X16a、X17aが置換基(b)群から選ばれる基であり、X15aが置換基(a)群から選ばれる基であることが好ましい。これらのうち、前者のX11a、X14a、X16a、X17aが置換基(a)群から選ばれる基であり、X15aが置換基(b)群から選ばれる基である組み合わせがより好ましい。 X 11a , X 14a , X 15a , X 16a and X 17a , which are polymerization active groups at both ends of the raw material monomers as described above, are emitted by a light emitting device using the resulting polymer compound. Since the efficiency is further improved, the following combinations are preferable. That is, X 11a , X 14a , X 16a , X 17a is a group selected from the substituent (a) group, and X 15a is a group selected from the substituent (b) group, or X 11a , X 14a , X 16a and X 17a are preferably groups selected from the substituent (b) group, and X 15a is preferably a group selected from the substituent (a) group. Among these, the former X 11a , X 14a , X 16a , and X 17a are groups selected from the substituent (a) group, and a combination in which X 15a is a group selected from the substituent (b) group is more preferable. .

ここで、置換基(a)群中の−O−S(=O)20で表される基、置換基(b)群中の−B(OR21で表される基、及び−Sn(R22で表される基におけるR20、R21及びR22の一例であるアルキル基としては、炭素数が1〜20であるものが好ましく、1〜15であるものがより好ましく、1〜10であるものが更に好ましい。また、R20の一例であるアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基としては、フェニル基、4−トリル基、4−メトキシフェニル基、4−ニトロフェニル基、3−ニトロフェニル基、2−ニトロフェニル基、4−トリフルオロメチルフェニル基が好ましい。R20、R21及びR22がこれらの基であると、単量体を重合させる際の反応性が良好となり、高分子化合物の合成が容易となる傾向にある。 Here, the group represented by —O—S (═O) 2 R 20 in the substituent (a) group, the group represented by —B (OR 21 ) 2 in the substituent (b) group, and As an alkyl group which is an example of R 20 , R 21 and R 22 in the group represented by —Sn (R 22 ) 3 , those having 1 to 20 carbon atoms are preferable, and those having 1 to 15 are more preferable. What is 1-10 is still more preferable. Examples of the aryl group which may be substituted with an alkyl group, an alkoxy group, a nitro group, a fluorine atom or a cyano group, which are examples of R20, include a phenyl group, a 4-tolyl group, a 4-methoxyphenyl group, and 4-nitro. A phenyl group, a 3-nitrophenyl group, a 2-nitrophenyl group, and a 4-trifluoromethylphenyl group are preferable. When R 20 , R 21 and R 22 are these groups, the reactivity when the monomer is polymerized tends to be good, and the synthesis of the polymer compound tends to be easy.

置換基(a)群中の−O−S(=O)20で表される基としては、例えば、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、フェニルスルホニルオキシ基、4−メチルフェニルスルホニルオキシ基、4−トリフルオロメチルフェニルスルホニルオキシ基等が挙げられる。 Examples of the group represented by —O—S (═O) 2 R 20 in the substituent group (a) include a methanesulfonyloxy group, a trifluoromethanesulfonyloxy group, a phenylsulfonyloxy group, and 4-methylphenylsulfonyl. An oxy group, 4-trifluoromethylphenylsulfonyloxy group, etc. are mentioned.

置換基(b)群中の−B(OR21で表される基としては、以下の式で表される基等が挙げられる。

Figure 0005859828
Examples of the group represented by —B (OR 21 ) 2 in the substituent (b) group include groups represented by the following formulas.
Figure 0005859828

また、置換基(b)群中の−BFで表される基としては、−BF で表される基が挙げられる。さらに、置換基(b)群中の−Sn(R22で表される基としては、トリメチルスタナニル基、トリエチルスタナニル基、トリブチルスタナニル基等が挙げられる。 Further, the group represented by -BF 4 Q 1 in the substituent group (b), -BF 4 - include groups represented by K +. Furthermore, examples of the group represented by —Sn (R 22 ) 3 in the substituent group (b) include a trimethylstannanyl group, a triethylstannanyl group, and a tributylstannanyl group.

式(11)、(14)、(15)、(16)及び(17)で表される化合物は、これらを原料単量体として用い、重合させて高分子化合物を形成する場合、純度の高い高分子化合物を得るために、重合前の各化合物も高純度化しておくことが好ましい。高純度の高分子化合物を用いて発光素子を形成することで、発光効率や輝度安定性を高めることが可能となる。   The compounds represented by the formulas (11), (14), (15), (16) and (17) have high purity when these are used as raw material monomers and polymerized to form a polymer compound. In order to obtain a polymer compound, it is preferable that each compound before polymerization is also highly purified. By forming a light-emitting element using a high-purity polymer compound, light emission efficiency and luminance stability can be improved.

式(11)、(14)、(15)、(16)及び(17)で表される化合物の高純度化は、例えば、蒸留、昇華精製、再結晶等の方法で精製することにより行うことができる。各化合物は、高純度であるほど望ましい。例えば、UV検出器(検出波長254nm)を用いた高速液体クロマトグラフィー(HPLC)による分析において、各化合物のピークが示す面積百分率値が98.5%以上であることが好ましく、99.0%以上であることがより好ましく、99.5%以上であることが更に好ましい。   The purification of the compounds represented by the formulas (11), (14), (15), (16) and (17) is performed, for example, by purifying by a method such as distillation, sublimation purification, recrystallization and the like. Can do. The higher the purity of each compound, the better. For example, in the analysis by high performance liquid chromatography (HPLC) using a UV detector (detection wavelength 254 nm), the area percentage value indicated by the peak of each compound is preferably 98.5% or more, and 99.0% or more. It is more preferable that it is 99.5% or more.

式(11)、(14)、(15)、(16)及び(17)で表される化合物を用いて生じさせる重合反応として、例えば、アリールカップリング反応による方法としては、Suzukiカップリング反応により重合する方法(ケミカル レビュー(Chem.Rev.),第 巻,2457−2483頁(1995年))、Grignard反応により重合する方法(Bull.Chem.Soc.Jpn.,第51巻、2091頁(1978年))、Ni(0)触媒により重合する方法(プログレス イン ポリマー サイエンス(Progress in Polymer Science),第17巻,1153〜1205頁,1992年)、Stilleカップリング反応を用いる方法(ヨーロピアン ポリマー ジャーナル(European Polymer Journal),第41巻,2923−2933頁(2005年))等が挙げられる。   As a polymerization reaction generated using the compounds represented by the formulas (11), (14), (15), (16), and (17), for example, as a method using an aryl coupling reaction, a Suzuki coupling reaction may be used. Polymerization method (Chemical Review (Chem. Rev.), Vol. 2, 2457-2483 (1995)), Polymerization method by Grignard reaction (Bull. Chem. Soc. Jpn., 51, 2091 (1978) )), A method of polymerizing with a Ni (0) catalyst (Progress in Polymer Science, Vol. 17, 1153-1205, 1992), a method using a Stille coupling reaction (European Polymer Journal ( Europ an, Polymer Journal), Vol. 41, pp. 2923-2933 (2005)), and the like.

これらのなかでも、重合方法としては、Suzukiカップリング反応により重合する方法、Ni(0)触媒により重合する方法が、原料単量体の合成がし易く、かつ、重合反応時の操作が簡便であるので、好ましい。また、高分子化合物の構造制御のし易さを考慮すると、Suzukiカップリング反応、Grignard反応、Stilleカップリング反応等のクロスカップリング反応により重合する方法がより好ましく、Suzukiカップリング反応により重合する反応が特に好ましい。   Among these, as a polymerization method, a method of polymerizing by a Suzuki coupling reaction and a method of polymerizing by a Ni (0) catalyst are easy to synthesize raw material monomers and simple in operation during the polymerization reaction. This is preferable. In view of the ease of structure control of the polymer compound, a polymerization method by a cross coupling reaction such as a Suzuki coupling reaction, a Grignard reaction, a Stille coupling reaction, or the like is more preferable, and a reaction by polymerization by a Suzuki coupling reaction is more preferable. Is particularly preferred.

式(11)、(14)、(15)、(16)及び(17)で表される化合物が有している重合活性基であるX11a、X14a、X15a、X16a及びX17aで表される基としては、重合反応の種類に応じて適切な基を選択すればよい。例えば、Suzukiカップリング反応により重合する場合、これらの基としては、臭素原子、ヨウ素原子、塩素原子、−B(OR21)で表される基が好ましく、臭素原子又は−B(OR21)で表される基がより好ましい。重合活性基としてこれらの基を有する場合、式(11)、(14)、(15)、(16)及び(17)で表される化合物を合成することが簡便となるほか、重合の際の取り扱い性も良好となる。 X 11a , X 14a , X 15a , X 16a and X 17a which are polymerization active groups possessed by the compounds represented by formulas (11), (14), (15), (16) and (17) As the group to be represented, an appropriate group may be selected according to the type of polymerization reaction. For example, when polymerizing by a Suzuki coupling reaction, these groups are preferably a bromine atom, an iodine atom, a chlorine atom, a group represented by —B (OR 21 ) 2 , a bromine atom or —B (OR 21 ). The group represented by 2 is more preferable. When these groups are present as the polymerization active group, it is easy to synthesize the compounds represented by formulas (11), (14), (15), (16) and (17), and at the time of polymerization. The handleability is also improved.

なお、式(11)で表される化合物の合成においては、その合成方法にもよるが、式(11−2)で表される化合物が生じる場合がある。その場合は、X11aで表される基が、上述した置換基(b)群から選ばれる基となるように式(11)で表される化合物を合成することによって、目的とする化合物(式(11)で表される化合物)のみを取り出す精製操作が簡便となる傾向にある。そのような式(11)で表される化合物の合成方法としては、例えば、後述する実施例に示したような、トリアルキルシリル基を有する中間体を経由する方法や、ジャーナル オブ アメリカン ケミカル ソサイエティー(Journal of American Chemical Society)、第124巻、390−391頁(2002年)に記載されたイリジウム錯体触媒を用いた直接ボロン酸エステル化反応用いる方法が適用できる。

Figure 0005859828

[式中、R1a、R1b、R1c、Ar4a、k、X11aはいずれも上記と同義である。] In addition, in the synthesis | combination of the compound represented by Formula (11), depending on the synthesis method, the compound represented by Formula (11-2) may be generated. In that case, by synthesizing the compound represented by the formula (11) so that the group represented by X 11a is a group selected from the above-described substituent (b) group, the target compound (formula There is a tendency that the purification operation for taking out only the compound (11) is simplified. Examples of a method for synthesizing the compound represented by the formula (11) include a method via an intermediate having a trialkylsilyl group as shown in Examples described later, a journal of American Chemical Society ( A method using a direct boronic acid esterification reaction using an iridium complex catalyst described in Journal of American Chemical Society, Vol. 124, pages 390-391 (2002) can be applied.
Figure 0005859828

[Wherein, R 1a , R 1b , R 1c , Ar 4a , k, and X 11a are as defined above. ]

重合の方法としては、上述した置換基(a)群や置換基(b)群を重合活性基として有する式(11)、(14)、(15)、(16)及び(17)で表される化合物(原料単量体)等を、必要に応じて、適切な触媒や適切な塩基とともに反応させる方法が挙げられる。Suzukiカップリング反応、Grignard反応、Stilleカップリング反応等のクロスカップリング反応により重合する方法を選択する場合、所望の分子量を有する高分子化合物を得るためには、化合物全体における、置換基(a)群に含まれる基のモル数と、置換基(b)群に含まれる基のモル数との比率を調整すればよい。置換基(a)群に含まれる基の合計モル数に対する置換基(b)群に含まれる基の合計モル数の比率を、0.90〜1.10とすることが好ましく、0.95〜1.05とすることがより好ましく、0.98〜1.02とすることが更に好ましい。   The polymerization method is represented by the formulas (11), (14), (15), (16) and (17) having the above-described substituent (a) group and substituent (b) group as polymerization active groups. The compound (raw material monomer) etc. which are made to react with a suitable catalyst and a suitable base as needed are mentioned. In the case of selecting a polymerization method by cross coupling reaction such as Suzuki coupling reaction, Grignard reaction, Stille coupling reaction, in order to obtain a polymer compound having a desired molecular weight, the substituent (a) What is necessary is just to adjust the ratio of the mole number of the group contained in a group, and the mole number of the group contained in a substituent (b) group. The ratio of the total number of moles of the group contained in the substituent (b) group to the total number of moles of the group contained in the substituent (a) group is preferably 0.90 to 1.10, preferably 0.95 to 1.05 is more preferable, and 0.98 to 1.02 is still more preferable.

触媒としては、Suzukiカップリング反応による重合の場合、例えば、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ジクロロビストリフェニルホスフィンパラジウム等のパラジウム錯体等の遷移金属錯体や、これらの遷移金属錯体に、必要に応じて、トリフェニルホスフィン、トリ(t−ブチル)ホスフィン、トリス(o−メトキシフェニル)ホスフィン、トリシクロヘキシルホスフィン等の配位子が配位した触媒が挙げられる。   As the catalyst, in the case of polymerization by Suzuki coupling reaction, for example, palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate such as palladium acetate, dichlorobistriphenylphosphine palladium, etc. If necessary, ligands such as triphenylphosphine, tri (t-butyl) phosphine, tris (o-methoxyphenyl) phosphine, and tricyclohexylphosphine are coordinated to transition metal complexes and these transition metal complexes. A catalyst is mentioned.

これらの触媒は、予め合成したものを用いてもよいし、反応系中で調製したものをそのまま用いてもよい。また、これらの触媒は、一種単独で用いても二種以上を併用してもよい。   As these catalysts, those synthesized in advance may be used, or those prepared in the reaction system may be used as they are. Moreover, these catalysts may be used individually by 1 type, or may use 2 or more types together.

触媒を用いる場合、その使用量は、触媒としての有効量であればよい。例えば、用いる単量体のモル数の合計に対する触媒の量は、遷移金属換算で、0.00001〜3モル当量であると好ましく、0.00005〜0.5モル当量であるとより好ましく、0.0001〜0.2モル当量であると更に好ましい。   When a catalyst is used, the amount used may be an effective amount as a catalyst. For example, the amount of the catalyst with respect to the total number of moles of monomers used is preferably 0.00001 to 3 molar equivalents, more preferably 0.00005 to 0.5 molar equivalents in terms of transition metal, 0 More preferably, it is 0.0001 to 0.2 molar equivalent.

Suzukiカップリング反応による重合では、触媒として塩基を用いることが好ましい。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基が挙げられる。また、これらの塩基は、水溶液として用いてもよい。   In the polymerization by the Suzuki coupling reaction, it is preferable to use a base as a catalyst. Bases include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, tetraethyl hydroxide Examples include organic bases such as ammonium and tetrabutylammonium hydroxide. These bases may be used as an aqueous solution.

塩基を用いる場合、その量は、用いる原料単量体のモル数の合計に対して設定することが好ましく、0.5〜20モル当量であると好ましく、1〜10モル当量であるとより好ましい。   When a base is used, the amount is preferably set with respect to the total number of moles of raw material monomers used, preferably 0.5 to 20 molar equivalents, and more preferably 1 to 10 molar equivalents. .

重合反応は、溶媒の非存在下で行っても、溶媒の存在下で行ってもよいが、有機溶媒の存在下で行うことがより好ましい。有機溶媒としては、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等が挙げられる。副反応を十分に抑制するために、溶媒には、脱酸素処理を行うことが望ましい。有機溶媒は、一種単独で用いても二種以上を併用してもよい。   The polymerization reaction may be performed in the absence of a solvent or in the presence of a solvent, but it is more preferably performed in the presence of an organic solvent. Examples of the organic solvent include toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide and the like. In order to sufficiently suppress the side reaction, it is desirable that the solvent is subjected to deoxygenation treatment. An organic solvent may be used individually by 1 type, or may use 2 or more types together.

有機溶媒の使用量は、溶液中の原料単量体の合計の濃度が、0.1〜90重量%となる量であると好ましく、1〜50重量%となる量であるとより好ましく、2〜30重量%となる量であると更に好ましい。   The amount of the organic solvent used is preferably such that the total concentration of raw material monomers in the solution is 0.1 to 90% by weight, more preferably 1 to 50% by weight. More preferably, the amount is ˜30% by weight.

重合反応における反応温度は、好ましくは0〜200℃であり、より好ましくは20〜150℃であり、更に好ましくは20〜120℃である。また、反応時間は、0.5時間以上であると好ましく、2〜500時間であるとより好ましい。   The reaction temperature in the polymerization reaction is preferably 0 to 200 ° C, more preferably 20 to 150 ° C, still more preferably 20 to 120 ° C. The reaction time is preferably 0.5 hours or more, more preferably 2 to 500 hours.

重合反応は、置換基(b)群に含まれる基として、−MgY1で表される基を適用する場合は、脱水条件下で行うことが好ましい。一方、重合反応がSuzukiカップリング反応である場合、使用する塩基を水溶液として用いてもよく、また、溶媒として、有機溶媒に水を加えて用いてもよい。 The polymerization reaction is preferably performed under dehydration conditions when a group represented by -MgY 1 is applied as the group included in the substituent (b) group. On the other hand, when the polymerization reaction is a Suzuki coupling reaction, the base to be used may be used as an aqueous solution, or water may be added to an organic solvent as a solvent.

重合反応においては、得られる高分子化合物の末端に重合活性基(X11a、X14a、X15a、X16a、X17a等)が残存するのを避けるために、末端封止剤として、式(19)で示される化合物を更に用いてもよい。かかる化合物を加えて反応を行うことにより、高分子化合物の末端がアリール基又は1価の芳香族複素環基で置換された高分子化合物を得ることができる。式(19)で表される連鎖停止剤は、高分子化合物を製造する際の重合において、一種のみ用いても、二種以上用いてもよい。

Figure 0005859828

[式(19)中、Ar19aは、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の芳香族複素環基を表す。X19aは、上述した置換基(a)群、又は置換基(b)群から選ばれる基を表す。] In the polymerization reaction, in order to avoid polymerization active groups (X 11a , X 14a , X 15a , X 16a , X 17a etc.) remaining at the terminal of the resulting polymer compound, The compound represented by 19) may be further used. By carrying out the reaction by adding such a compound, a polymer compound in which the terminal of the polymer compound is substituted with an aryl group or a monovalent aromatic heterocyclic group can be obtained. The chain terminator represented by the formula (19) may be used alone or in combination of two or more in the polymerization for producing the polymer compound.
Figure 0005859828

[In the formula (19), Ar 19a represents an aryl group which may have a substituent or a monovalent aromatic heterocyclic group which may have a substituent. X 19a represents a group selected from the above-described substituent (a) group or substituent (b) group. ]

式(19)中、Ar19aで表されるアリール基、1価の芳香族複素環基としては、アリール基が好ましく、非置換又はアルキル基、アリール基、1価の芳香族複素環基若しくは置換アミノ基で置換されたアリール基がより好ましく、非置換又はアルキル基若しくはアリール基で置換されたアリール基が更に好ましく、非置換又はアルキル基若しくはアリール基で置換されたフェニル基が特に好ましい。 In formula (19), the aryl group represented by Ar 19a and the monovalent aromatic heterocyclic group are preferably aryl groups, unsubstituted or alkyl groups, aryl groups, monovalent aromatic heterocyclic groups or substituted An aryl group substituted with an amino group is more preferred, an aryl group substituted with an unsubstituted alkyl group or aryl group is further preferred, and a phenyl group unsubstituted or substituted with an alkyl group or aryl group is particularly preferred.

重合反応の後処理は、公知の方法で行うことができる。例えば、メタノール等の低級アルコールに重合反応で得られた反応液を加えて析出させた沈殿を濾過、乾燥させる方法により行うことができる。   The post-treatment of the polymerization reaction can be performed by a known method. For example, it can be carried out by a method of adding a reaction solution obtained by a polymerization reaction to a lower alcohol such as methanol and precipitating the precipitate, followed by filtration and drying.

このようにして得られた高分子化合物の純度が低い場合には、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の方法にて精製することができる。特に、高分子化合物を発光素子に用いる場合、その純度が発光特性等の素子の性能に影響を与えるため、縮合重合後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。   When the purity of the polymer compound thus obtained is low, it can be purified by a method such as recrystallization, continuous extraction with a Soxhlet extractor, column chromatography or the like. In particular, when a polymer compound is used for a light-emitting device, the purity affects the performance of the device such as light-emitting properties. Therefore, it is preferable to perform purification treatment such as reprecipitation purification and fractionation by chromatography after condensation polymerization.

本実施形態の高分子化合物は、所定の構成連鎖を有する制御された構造を有するものである。このような高分子化合物は、適用する重合反応に適した置換基を有する原料単量体を、適切な割合で用いて重合反応を行うことにより合成することが可能である。   The polymer compound of the present embodiment has a controlled structure having a predetermined constituent chain. Such a polymer compound can be synthesized by performing a polymerization reaction using a raw material monomer having a substituent suitable for the applied polymerization reaction in an appropriate ratio.

以下、好適な高分子化合物を得るための、好適な原料単量体、その原料単量体の有する重合反応に関与する置換基の種類や、それらの原料単量体の重合反応に用いる割合について、好ましい例を説明する。   Hereinafter, for obtaining suitable polymer compounds, suitable raw material monomers, types of substituents involved in the polymerization reaction of the raw material monomers, and ratios used for the polymerization reaction of those raw material monomers A preferred example will be described.

すなわち、好適な高分子化合物としては、下記表1に示す高分子化合物(EP−1)及び高分子化合物(EP−2)が挙げられる。これらの高分子化合物は、表1に示す種類及びモル数の割合で各種原料単量体を組み合わせた単量体混合物を、重合させることによって得られるものである。   That is, examples of suitable polymer compounds include polymer compounds (EP-1) and polymer compounds (EP-2) shown in Table 1 below. These polymer compounds are obtained by polymerizing a monomer mixture in which various raw material monomers are combined in the types and mole ratios shown in Table 1.

表1中、原料単量体の種類の欄は、原料単量体として、上述した式(11)、(14)、(15)、(16)及び(17)で表される化合物のいずれを用いたかを示している。なお、(Z)は、式(11)、(14)、(15)、(16)及び(17)で表される化合物のいずれとも異なる化合物であることを示している。また、重合活性基の欄の(a)、(b)とは、各原料単量体が、重合活性基(X11a、X14a、X15a、X16a又はX17aで表される基)として、上述した置換基(a)群又は置換基(b)群のいずれの基を有しているかを示している。 In Table 1, the column of the type of raw material monomer indicates any of the compounds represented by the above formulas (11), (14), (15), (16) and (17) as the raw material monomer. Indicates whether it was used. In addition, (Z) has shown that it is a compound different from all of the compounds represented by Formula (11), (14), (15), (16), and (17). In addition, (a) and (b) in the column of the polymerization active group indicate that each raw material monomer is a polymerization active group (a group represented by X 11a , X 14a , X 15a , X 16a or X 17a ). , Which group of the substituent (a) group or the substituent (b) group described above is included.

Figure 0005859828
Figure 0005859828

上述した高分子化合物のうち、その合成時の重合反応の制御がより容易であることから、高分子化合物(EP−2)がより好ましい。この高分子化合物EP−2としては、特に、下記表2に示す高分子化合物(EP−21)及び(EP−22)が、合成が容易であり、しかも発光効率及び輝度安定性が優れることから好ましい。表2中の表記は、いずれも表1と同様の意味である。すなわち、(12)は式(12)で表される化合物、(13)は式(13)で表される化合物、(Z)は、式(12)、(13)、(14)、(15)、(16)及び(17)で表される化合物のいずれとも異なる化合物であることを示している。   Of the above-described polymer compounds, the polymer compound (EP-2) is more preferable because the polymerization reaction during the synthesis is easier to control. As the polymer compound EP-2, in particular, the polymer compounds (EP-21) and (EP-22) shown in Table 2 below are easy to synthesize and have excellent luminous efficiency and luminance stability. preferable. The notations in Table 2 have the same meaning as in Table 1. That is, (12) is a compound represented by the formula (12), (13) is a compound represented by the formula (13), and (Z) is a formula (12), (13), (14), (15 ), (16), and (17).

Figure 0005859828
Figure 0005859828

上述した高分子化合物のうち、得られる高分子化合物を用いた発光素子の輝度安定性がより一層優れる観点から、高分子化合物(EP−21)が好ましい。この高分子化合物EP−21としては、特に、下記表3に示す高分子化合物(EP−23)が、更により一層輝度安定性を高める観点から好ましい。表3中の表記は、いずれも表1と同様の意味である。すなわち、(12−1)は式(12−1)で表される化合物であることを示している。

Figure 0005859828
Of the above-described polymer compounds, the polymer compound (EP-21) is preferred from the viewpoint of further improving the luminance stability of the light-emitting device using the resulting polymer compound. As the polymer compound EP-21, a polymer compound (EP-23) shown in Table 3 below is particularly preferable from the viewpoint of further improving the luminance stability. The notations in Table 3 have the same meaning as in Table 1. That is, (12-1) is a compound represented by the formula (12-1).
Figure 0005859828

[組成物]
好適な実施形態の組成物は、上述した高分子化合物と、正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種の材料とを含有する。このような組成物は、発光材料、正孔輸送材料又は電子輸送材料として用いることができる。なお、本実施形態の組成物において、高分子化合物、正孔輸送材料、電子輸送材料及び発光材料は、それぞれ、一種単独で用いても二種以上を併用してもよい。
[Composition]
The composition of a preferred embodiment contains the above-described polymer compound and at least one material selected from the group consisting of a hole transport material, an electron transport material, and a light emitting material. Such a composition can be used as a light-emitting material, a hole transport material, or an electron transport material. In the composition of this embodiment, the polymer compound, the hole transport material, the electron transport material, and the light emitting material may be used alone or in combination of two or more.

組成物において、「正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種の材料」と高分子化合物との比率は、組成物を発光材料に用いる場合、次の通りであると好適である。すなわち、高分子化合物100重量部に対する、「正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種の材料」の割合は、材料ごとに、0.01〜400重量部であると好ましく、0.05〜150重量部であるとより好ましい。   In the composition, the ratio of “at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material” to the polymer compound is as follows when the composition is used for the light emitting material. It is preferable. That is, the ratio of “at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material” to 100 parts by weight of the polymer compound is 0.01 to 400 parts by weight for each material. Preferably, it is 0.05 to 150 parts by weight.

正孔輸送材料としては、発光素子の正孔輸送材料として公知のものを適用できる。例えば、ポリビニルカルバゾール及びその誘導体、芳香族アミン−フルオレン共重合体及びその誘導体、芳香族アミン−フェニレン共重合体及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリアリールアミン及びその誘導体、ポリピロール及びその誘導体、ポリ(p−フェニレンビニレン)及びその誘導体、ポリ(2,5−チエニレンビニレン)及びその誘導体が挙げられる。これらの誘導体は、アリーレン基や2価の芳香族複素環基を共重合成分として有していてもよい。   As the hole transport material, those known as hole transport materials for light-emitting elements can be used. For example, polyvinyl carbazole and derivatives thereof, aromatic amine-fluorene copolymer and derivatives thereof, aromatic amine-phenylene copolymer and derivatives thereof, polysilane and derivatives thereof, polysiloxane having an aromatic amine in the side chain or main chain Derivatives, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polyarylamine and derivatives thereof, polypyrrole and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5 -Thienylene vinylene) and its derivatives. These derivatives may have an arylene group or a divalent aromatic heterocyclic group as a copolymerization component.

電子輸送材料としては、発光素子の電子輸送材料として公知のものを適用できる。例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、トリアリールトリアジン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体が挙げられる。これらの誘導体は、アリーレン基や2価の芳香族複素環基を共重合成分として有していてもよい。   As the electron transporting material, a known material can be applied as the electron transporting material of the light emitting element. For example, oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, Examples include diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, triaryltriazines and derivatives thereof, polyquinolines and derivatives thereof, polyquinoxalines and derivatives thereof, and polyfluorenes and derivatives thereof. These derivatives may have an arylene group or a divalent aromatic heterocyclic group as a copolymerization component.

発光材料としては、優れた発光効率が得られるので、上述したような燐光発光性化合物を含有する材料が好ましい。また、その他にも、発光材料としては、蛍光発光性化合物を用いることができる。蛍光発光性化合物には、低分子蛍光材料、高分子蛍光材料がある。低分子蛍光材料は、通常、400〜700nmの波長範囲に蛍光発光の極大ピークを有する材料である。低分子蛍光材料の分子量は、3000未満であると好ましく、100〜2000であるとより好ましく、100〜1000であると更に好ましい。   As the light-emitting material, a material containing a phosphorescent compound as described above is preferable because excellent luminous efficiency can be obtained. In addition, as the light emitting material, a fluorescent compound can be used. Fluorescent compounds include low molecular fluorescent materials and high molecular fluorescent materials. The low-molecular fluorescent material is a material that usually has a maximum peak of fluorescence emission in a wavelength range of 400 to 700 nm. The molecular weight of the low molecular fluorescent material is preferably less than 3000, more preferably 100 to 2000, and even more preferably 100 to 1000.

低分子蛍光材料としては、発光素子の発光材料として公知のものが適用できる。例えば、ナフタレン誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、キナクリドン誘導体、キサンテン系色素、クマリン系色素、シアニン系色素、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、オリゴチオフェン誘導体等の色素系材料;アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体等の、中心金属に、Al、Zn、Be等又はTb、Eu、Dy等の希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を有する金属錯体等の金属錯体系材料が挙げられる。   As the low-molecular fluorescent material, those known as the light-emitting material of the light-emitting element can be applied. For example, naphthalene derivatives, anthracene and derivatives thereof, perylene and derivatives thereof, quinacridone derivatives, xanthene dyes, coumarin dyes, cyanine dyes, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, Color materials such as distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds, pyridine ring compounds, oligothiophene derivatives; aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, It has a rare earth metal such as Al, Zn, Be or Tb, Eu, Dy, etc. as the central metal such as porphyrin zinc complex and europium complex, and oxadiazole, thiadiazole, phenyl as the ligand Lysine, phenylbenzimidazole, metal complex material such as a metal complex having a quinoline structure and the like.

高分子蛍光材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体等の、上記の低分子蛍光材料として例示した色素体や金属錯体系発光材料を高分子化した材料が挙げられる。   Examples of polymeric fluorescent materials include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, and polyvinyl carbazole derivatives, and the like. Examples include materials obtained by polymerizing complex light emitting materials.

組成物が、燐光発光性化合物を含有する組成物である場合、燐光発光性化合物の割合は、高分子化合物100重量部に対して、0.01〜80重量部であると好ましく、0.1〜50重量部であるとより好ましい。   When the composition is a composition containing a phosphorescent compound, the proportion of the phosphorescent compound is preferably 0.01 to 80 parts by weight with respect to 100 parts by weight of the polymer compound. More preferably, it is -50 weight part.

[溶液]
好適な実施形態の溶液は、高分子化合物と溶媒とを含有するものである。溶液としては、例えば、上記の組成物が溶媒を含有してなるものも含まれる。このような溶液は、印刷法等に適用するのに有利であり、一般に、インクやインク組成物等と呼ぶことがある。本実施形態の溶液は、必要に応じて、正孔輸送材料、電子輸送材料、発光材料、安定剤、増粘剤(粘度を高めるための高分子量の化合物)、粘度を低くするための低分子量の化合物、界面活性剤、酸化防止剤等、上述した実施形態の高分子化合物以外の高分子量の化合物等を含んでいてもよい。なお、溶液に含まれる各成分は、それぞれ、一種単独で含まれていても、二種以上を組み合わせて含まれていてもよい。
[solution]
The solution of a preferred embodiment contains a polymer compound and a solvent. Examples of the solution include those in which the above composition contains a solvent. Such a solution is advantageous for application to a printing method or the like, and is generally sometimes referred to as an ink or an ink composition. The solution of the present embodiment includes a hole transport material, an electron transport material, a light emitting material, a stabilizer, a thickener (a high molecular weight compound for increasing the viscosity), and a low molecular weight for decreasing the viscosity, as necessary. These compounds, surfactants, antioxidants and the like may contain high molecular weight compounds other than the polymer compounds of the above-described embodiments. In addition, each component contained in a solution may be contained individually by 1 type, or may be contained in combination of 2 or more types.

溶液における高分子化合物の割合は、溶液全体を100重量部としたとき、0.1〜99重量部であると好ましく、0.5〜40重量部であるとより好ましく、0.5〜20重量部であると更に好ましい。   The ratio of the polymer compound in the solution is preferably 0.1 to 99 parts by weight, more preferably 0.5 to 40 parts by weight, and 0.5 to 20 parts by weight when the whole solution is 100 parts by weight. Part is more preferable.

溶液の粘度は、適用する印刷法の種類等に応じて調整すればよい。例えば、インクジェットプリント法等の溶液が吐出装置を経由する方法に適用する場合には、吐出時の目づまりや飛行曲がりを防止するために、25℃において、1〜20mPa・sの範囲であることが好ましい。粘度は、溶媒の含有量を制御する等によって調整することができる。   What is necessary is just to adjust the viscosity of a solution according to the kind etc. of the printing method to apply. For example, when applied to a method in which a solution such as an ink jet printing method passes through a discharge device, it should be in the range of 1 to 20 mPa · s at 25 ° C. in order to prevent clogging and flight bending at the time of discharge. Is preferred. The viscosity can be adjusted by controlling the content of the solvent.

溶液を構成する溶媒は、溶質となる固形分を溶解又は均一に分散できるものが好ましい。溶媒としては、クロロホルム、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n−ペンタン、n−ヘキサン、n−へプタン、n−オクタン、n−ノナン、n−デカン等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、ベンゾフェノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2−ヘキサンジオール等の多価アルコール及びその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。   The solvent that constitutes the solution is preferably a solvent that can dissolve or uniformly disperse the solid content as a solute. Solvents include chloro solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole; toluene, xylene, etc. An aromatic hydrocarbon solvent such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, etc .; an acetone, methyl ethyl ketone, Ketone solvents such as cyclohexanone, benzophenone and acetophenone; ester solvents such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, methyl benzoate and phenyl acetate; ethylene glycol, ethylene glycol monobutyl ether, ethylene glycol Polyethyl alcohol and its derivatives such as monoethyl ether, ethylene glycol monomethyl ether, dimethoxyethane, propylene glycol, diethoxymethane, triethylene glycol monoethyl ether, glycerin, 1,2-hexanediol, methanol, ethanol, propanol, isopropanol And alcohol solvents such as cyclohexanol; sulfoxide solvents such as dimethyl sulfoxide; amide solvents such as N-methyl-2-pyrrolidone and N, N-dimethylformamide. A solvent may be used individually by 1 type, or may use 2 or more types together.

溶媒は、成膜性や素子特性が良好になるので、2種以上を併用することが好ましい。なかでも、2〜3種を併用することがより好ましく、2種を併用することが特に好ましい。   Since the film formability and device characteristics are improved, it is preferable to use two or more solvents in combination. Especially, it is more preferable to use 2-3 types together, and it is especially preferable to use 2 types together.

溶液に2種の溶媒が含まれる場合、そのうちの1種の溶媒は、25℃において固体状態のものであってもよい。良好な成膜性が得られるので、少なくとも1種の溶媒は、沸点が180℃以上であることが好ましく、200℃以上であることがより好ましい。また、好適な粘度が得られるので、2種の溶媒のいずれも、60℃において1重量%以上の濃度で上記実施形態の高分子化合物を溶解できるものであることが好ましい。また、2種の溶媒のうちの少なくとも1種の溶媒は、25℃において1重量%以上の濃度で高分子化合物が溶解できるものであることが好ましい。   When the solution contains two types of solvents, one of the solvents may be in a solid state at 25 ° C. In order to obtain good film formability, the at least one solvent preferably has a boiling point of 180 ° C. or higher, and more preferably 200 ° C. or higher. Moreover, since a suitable viscosity is obtained, it is preferable that both of the two types of solvents can dissolve the polymer compound of the above embodiment at a concentration of 1% by weight or more at 60 ° C. In addition, at least one of the two solvents is preferably a solvent capable of dissolving the polymer compound at a concentration of 1% by weight or more at 25 ° C.

溶液中に2種以上の溶媒が含まれる場合、成膜に適した粘度が得られるので、溶媒中の沸点が最も高いものの割合が、全溶媒の重量の40〜90重量%であることが好ましく、50〜90重量%であることがより好ましく、65〜85重量%であることが更に好ましい。   When two or more kinds of solvents are contained in the solution, a viscosity suitable for film formation can be obtained. Therefore, the ratio of the solvent having the highest boiling point is preferably 40 to 90% by weight of the total solvent weight. 50 to 90% by weight, more preferably 65 to 85% by weight.

また、溶液が増粘剤を含む場合、増粘剤は、高分子化合物と同じ溶媒に可溶であり、発光や電荷輸送を阻害しないものであればよい。例えば、高分子量のポリスチレン、高分子量のポリメチルメタクリレート等を用いることができる。増粘剤として用いる化合物は、ポリスチレン換算の重量平均分子量が5×10以上であるものが好ましく、1×10以上であるものがより好ましい。 Moreover, when a solution contains a thickener, a thickener should just be soluble in the same solvent as a high molecular compound, and does not inhibit light emission and electric charge transport. For example, high molecular weight polystyrene, high molecular weight polymethyl methacrylate, or the like can be used. The compound used as the thickener preferably has a polystyrene equivalent weight average molecular weight of 5 × 10 5 or more, more preferably 1 × 10 6 or more.

さらに、酸化防止剤は、溶液の保存安定性を向上させるためのものである。酸化防止剤は、高分子化合物と同じ溶媒に可溶であり、発光や電荷輸送を阻害しないもの、又は、発光素子の作製時に除去が可能なものであればよい。例えば、フェノール系酸化防止剤、リン系酸化防止剤等が挙げられる。   Furthermore, the antioxidant is for improving the storage stability of the solution. The antioxidant is not particularly limited as long as it is soluble in the same solvent as the polymer compound and does not inhibit light emission or charge transport, or can be removed when a light emitting element is manufactured. For example, a phenolic antioxidant, a phosphorus antioxidant, etc. are mentioned.

溶液には、更に、水、金属及びその塩、ケイ素、リン、フッ素、塩素、臭素等を重量基準で1〜1000ppmの範囲で含んでいてもよい。金属としては、リチウム、ナトリウム、カルシウム、カリウム、鉄、銅、ニッケル、アルミニウム、亜鉛、クロム、マンガン、コバルト、白金、イリジウム等が挙げられる。但し、上記溶液を発光素子の作製に用いる場合においては、上記金属及びその塩、ケイ素、リン、フッ素、塩素、臭素等は、重量基準で100ppm未満であることが好ましく、10ppm未満であることがより好ましく、用いる溶媒に関して、蒸留精製等を実施することで、それらの含有量を予め下げておくことで更なる低減を図ることが更に好ましい。   The solution may further contain water, metal and a salt thereof, silicon, phosphorus, fluorine, chlorine, bromine and the like in a range of 1 to 1000 ppm by weight. Examples of the metal include lithium, sodium, calcium, potassium, iron, copper, nickel, aluminum, zinc, chromium, manganese, cobalt, platinum, iridium and the like. However, in the case where the above solution is used for the production of a light emitting device, the metal and its salt, silicon, phosphorus, fluorine, chlorine, bromine and the like are preferably less than 100 ppm on a weight basis, and less than 10 ppm. More preferably, with respect to the solvent to be used, it is more preferable to further reduce the content by reducing the content in advance by carrying out distillation purification or the like.

[薄膜]
好適な実施形態の薄膜は、高分子化合物を含有するものである。例えば、発光性薄膜、導電性薄膜、有機半導体薄膜等が挙げられる。薄膜は、その用途に応じて、上述した組成物を構成する各成分を組み合わせて含んでいてもよい。
[Thin film]
The thin film of a preferred embodiment contains a polymer compound. For example, a luminescent thin film, a conductive thin film, an organic semiconductor thin film, etc. are mentioned. The thin film may contain a combination of the components constituting the above-described composition according to the application.

薄膜は、高分子化合物若しくは組成物をそのまま、又は、上述した溶液の状態で用いて、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、キャピラリーコート法、ノズルコート法等を行うことにより作製することができる。   As for the thin film, the polymer compound or the composition is used as it is or in the state of the above solution, and the spin coating method, the casting method, the micro gravure coating method, the gravure coating method, the bar coating method, the roll coating method, the wire bar coating. It can be produced by performing a method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a capillary coating method, a nozzle coating method or the like.

例えば、上述した溶液を用いて薄膜を作製する場合は、溶液に含まれる高分子化合物のガラス転移温度にもよるが、100℃以上の温度(例えば、130℃〜200℃)でベークすることが好ましい。   For example, when a thin film is produced using the above-described solution, the film may be baked at a temperature of 100 ° C. or higher (eg, 130 ° C. to 200 ° C.), depending on the glass transition temperature of the polymer compound contained in the solution. preferable.

薄膜は、発光性薄膜である場合、発光素子の輝度や発光電圧が良好になるので、発光量子収率が30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることが更に好ましく、60%以上であることが特に好ましい。   When the thin film is a light-emitting thin film, the luminance and light emission voltage of the light emitting element are improved, so that the light emission quantum yield is preferably 30% or more, more preferably 40% or more, and more preferably 50% or more. More preferably, it is particularly preferably 60% or more.

薄膜は、導電性薄膜である場合、表面抵抗率が1kΩ/sq.以下であることが好ましく、100Ω/sq.以下であることがより好ましく、10Ω/sq.以下であることが更に好ましい。導電性薄膜の場合、ルイス酸やイオン性化合物等をドープすることによって、電気伝導度を高めることができる。なお、「Ω/sq.」は表面抵抗率を表す単位である。   When the thin film is a conductive thin film, the surface resistivity is 1 kΩ / sq. Or less, preferably 100 Ω / sq. More preferably, it is more preferably 10Ω / sq. Or less. In the case of a conductive thin film, the electrical conductivity can be increased by doping a Lewis acid or an ionic compound. “Ω / sq.” Is a unit representing surface resistivity.

さらに、薄膜は、有機半導体薄膜である場合、当該薄膜が有している電子移動度及び正孔移動度のうちの大きい方の値が、10−5cm/V/秒以上であることが好ましく、10−3cm/V/秒以上であることがより好ましく、10−1cm/V/秒以上であることが更に好ましい。例えば、SiO等の絶縁膜とゲート電極とを形成したSi基板上に、この有機半導体薄膜を形成し、さらにAu等によりソース電極及びドレイン電極を形成することによって、有機トランジスタを作製することができる。 Furthermore, when the thin film is an organic semiconductor thin film, the larger one of the electron mobility and hole mobility of the thin film may be 10 −5 cm 2 / V / second or more. Preferably, it is 10 −3 cm 2 / V / second or more, more preferably 10 −1 cm 2 / V / second or more. For example, an organic transistor can be manufactured by forming this organic semiconductor thin film on a Si substrate on which an insulating film such as SiO 2 and a gate electrode are formed, and further forming a source electrode and a drain electrode with Au or the like. it can.

[発光素子]
好適な実施形態の発光素子は、陽極及び陰極からなる電極と、これらの電極間に設けられた上記実施形態の高分子化合物又は組成物を含有する有機層とを備えている。発光素子は、有機層を一層のみ有するものであってもよく、二層以上有するものであってもよい。有機層を二層以上備える場合には、少なくとも一層が上述した実施形態の高分子化合物又は組成物を含有していればよい。
[Light emitting element]
A light emitting device of a preferred embodiment includes an electrode composed of an anode and a cathode, and an organic layer containing the polymer compound or composition of the above embodiment provided between these electrodes. The light emitting element may have only one organic layer, or may have two or more layers. When two or more organic layers are provided, at least one layer only needs to contain the polymer compound or composition of the above-described embodiment.

上記実施形態の高分子化合物又は組成物を含有する有機層は、発光素子において、発光層、正孔輸送層や電子輸送層として機能することができる。そのため、本実施形態の発光素子は、これらの層のうちの少なくとも1つが、上記実施形態の高分子化合物又は組成物を含有する有機層により構成されることが好ましい。なかでも、発光素子は、発光層が上記実施形態の高分子化合物又は組成物を含有する有機層からなることが好ましい。発光素子は、陰極、陽極、及び発光層として機能する有機層(以下、単に「発光層」という。)以外にも、それらの層の間等に、その他の層を有していてもよい。なお、各層は、一層からなるものであっても、二層以上からなるものであってもよい。また、各層を構成している材料や化合物は、一種単独であっても二種以上が併用されていてもよい。   The organic layer containing the polymer compound or composition of the above embodiment can function as a light emitting layer, a hole transport layer, or an electron transport layer in a light emitting device. For this reason, in the light emitting device of this embodiment, it is preferable that at least one of these layers is composed of an organic layer containing the polymer compound or composition of the above embodiment. Especially, it is preferable that a light emitting element consists of an organic layer in which a light emitting layer contains the polymer compound or composition of the said embodiment. In addition to the cathode, the anode, and the organic layer functioning as the light emitting layer (hereinafter simply referred to as “light emitting layer”), the light emitting element may have other layers between these layers. Each layer may be composed of one layer or may be composed of two or more layers. Moreover, the material and compound which comprise each layer may be single 1 type, or 2 or more types may be used together.

例えば、陽極と発光層との間に設けられる層としては、正孔注入層、正孔輸送層、電子ブロック層等が挙げられる。このような層が陽極と発光層との間に一層のみ設けられた場合には、当該層は正孔注入層である。陽極と発光層との間に二層以上設けられた場合には、陽極に接する層が正孔注入層であり、それ以外の層が正孔輸送層である。   For example, examples of the layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer. When only one layer is provided between the anode and the light emitting layer, the layer is a hole injection layer. When two or more layers are provided between the anode and the light emitting layer, the layer in contact with the anode is a hole injection layer, and the other layers are hole transport layers.

正孔注入層は、陰極からの正孔注入効率を改善する機能を有する層である。正孔輸送層は、正孔注入層又は陽極により近い層からの正孔注入を改善する機能を有する層である。一方、これらの層が電子の輸送を堰き止める機能を有する場合、それらの層は、電子ブロック層である。対象となる層が、電子の輸送を堰き止める機能を有するかどうかは、電子電流のみを流す素子を作製し、電流値の減少が生じることを測定することによって確認することができる。   The hole injection layer is a layer having a function of improving hole injection efficiency from the cathode. The hole transport layer is a layer having a function of improving hole injection from a hole injection layer or a layer closer to the anode. On the other hand, when these layers have a function of blocking electron transport, these layers are electron blocking layers. Whether or not the target layer has a function of blocking electron transport can be confirmed by fabricating an element that allows only electron current to flow and measuring that a decrease in the current value occurs.

陰極と発光層との間に設けられた層としては、電子注入層、電子輸送層、正孔ブロック層等が挙げられる。このような層が陰極と発光層との間に一層のみ設けられた場合には、当該層は電子注入層である。陰極と発光層との間に二層以上設けられた場合には、陰極に接している層が電子注入層であり、それ以外の層が電子輸送層である。   Examples of the layer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer. In the case where only one layer is provided between the cathode and the light emitting layer, the layer is an electron injection layer. When two or more layers are provided between the cathode and the light emitting layer, the layer in contact with the cathode is an electron injection layer, and the other layers are electron transport layers.

電子注入層は、陰極からの電子注入効率を改善する機能を有する層である。電子輸送層は、電子注入層又は陰極により近い層からの電子注入を改善する機能を有する層である。これらの層が正孔の輸送を堰き止める機能を有する場合には、これらの層を正孔ブロック層と称することがある。正孔の輸送を堰き止める機能を有するかどうかは、正孔(ホール)電流のみを流す素子を作製し、その電流値の減少が生じることを測定することによって確認することができる。   The electron injection layer is a layer having a function of improving electron injection efficiency from the cathode. The electron transport layer is a layer having a function of improving electron injection from an electron injection layer or a layer closer to the cathode. When these layers have a function of blocking hole transport, these layers may be referred to as a hole blocking layer. Whether or not it has a function of blocking hole transport can be confirmed by preparing a device that allows only a hole current to flow and measuring that the current value decreases.

上述した各層を備える構成を有する発光素子の構造としては、例えば、以下のa)〜d)の構造が挙げられる。下記の構造中「/」は各層が隣接して積層されていることを示す(以下同様)。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
Examples of the structure of the light-emitting element having the configuration including each layer described above include the following structures a) to d). In the following structure, “/” indicates that each layer is laminated adjacently (the same applies hereinafter).
a) Anode / light emitting layer / cathode b) Anode / hole transport layer / light emitting layer / cathode c) Anode / light emitting layer / electron transport layer / cathode d) Anode / hole transport layer / light emitting layer / electron transport layer / cathode

なお、電極(陰極、陽極)に隣接して設けた正孔輸送層、電子輸送層のうち、電極からの電荷(正孔、電子)の注入効率を改善する機能を有し、素子の駆動電圧を低下させる効果を有するものは、電荷注入層(正孔注入層、電子注入層)と呼ばれる場合もある。   Of the hole transport layer and electron transport layer provided adjacent to the electrode (cathode, anode), it has the function of improving the injection efficiency of charges (holes, electrons) from the electrode, and the drive voltage of the device Those having the effect of lowering the density may be called charge injection layers (hole injection layers, electron injection layers).

電極(陰極、陽極)との密着性の向上や、電極からの電荷注入の改善のために、電極に隣接して、電荷注入層や絶縁層を更に設けてもよい。また、電荷輸送層や発光層の界面には、層間の界面における密着性の向上や構成材料の混合の防止等のために、薄いバッファー層を更に設けてもよい。積層する層の順番や数、及び各層の厚さは、発光効率や素子寿命を勘案して調整することができる。   A charge injection layer or an insulating layer may be further provided adjacent to the electrode in order to improve adhesion to the electrode (cathode, anode) or charge injection from the electrode. In addition, a thin buffer layer may be further provided at the interface between the charge transport layer and the light emitting layer in order to improve adhesion at the interface between layers or prevent mixing of constituent materials. The order and number of layers to be stacked, and the thickness of each layer can be adjusted in consideration of light emission efficiency and element lifetime.

例えば、電荷注入層を更に設けた発光素子の構造としては、以下のe)〜p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電荷輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電荷輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
For example, the structure of the light emitting device further provided with the charge injection layer includes the following structures e) to p).
e) Anode / charge injection layer / light emitting layer / cathode f) Anode / light emitting layer / charge injection layer / cathode g) Anode / charge injection layer / light emitting layer / charge injection layer / cathode h) Anode / charge injection layer / hole Transport layer / light emitting layer / cathode i) anode / hole transport layer / light emitting layer / charge injection layer / cathode j) anode / charge injection layer / hole transport layer / light emitting layer / charge injection layer / cathode k) anode / charge Injection layer / light emitting layer / charge transport layer / cathode l) anode / light emitting layer / electron transport layer / charge injection layer / cathode m) anode / charge injection layer / light emitting layer / electron transport layer / charge injection layer / cathode n) anode / Charge injection layer / hole transport layer / light emitting layer / charge transport layer / cathode o) anode / hole transport layer / light emitting layer / electron transport layer / charge injection layer / cathode p) anode / charge injection layer / hole transport Layer / light emitting layer / electron transport layer / charge injection layer / cathode

一例として、上記j)の構造を有する発光素子の断面構成を図1に示す。すなわち、図1に示す発光素子10は、基板0上に、陽極1、正孔注入層(電荷注入層)2、正孔輸送層3、発光層4、電子注入層(電荷注入層)6及び陰極7がこの順に積層された構造を有している。   As an example, FIG. 1 shows a cross-sectional configuration of a light-emitting element having the structure j). That is, the light-emitting element 10 shown in FIG. 1 includes an anode 1, a hole injection layer (charge injection layer) 2, a hole transport layer 3, a light-emitting layer 4, an electron injection layer (charge injection layer) 6 and a substrate 0. The cathode 7 has a structure in which they are stacked in this order.

上述したa)〜p)のような構造を有する発光素子における各層の構成は、例えば、次の通りである。   The configuration of each layer in the light emitting device having the structure as described above in a) to p) is, for example, as follows.

(陽極)
陽極は、通常、透明又は半透明であり、電気伝導度の高い金属酸化物、金属硫化物や金属の薄膜から構成され、それらの中でも透過率が高い材料から構成されることが好ましい。陽極の材料としては、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性無機化合物を用いて作製された膜、NESA等や、金、白金、銀、銅等が用いられる。なかでも、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。陽極の作製には、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等の方法を用いることができる。また、陽極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
(anode)
The anode is usually transparent or translucent, and is composed of a metal oxide, metal sulfide or metal thin film having high electrical conductivity, and among these, it is preferably composed of a material having high transmittance. As the material of the anode, a film formed using indium oxide, zinc oxide, tin oxide, and a conductive inorganic compound composed of indium tin oxide (ITO), indium zinc oxide, or the like, which is a composite thereof. , NESA, etc., gold, platinum, silver, copper, etc. are used. Of these, ITO, indium / zinc / oxide, and tin oxide are preferable. For the production of the anode, methods such as a vacuum deposition method, a sputtering method, an ion plating method, and a plating method can be used. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an anode.

陽極の厚さは、光の透過性と電気伝導度とを考慮して選択することができる。例えば、10nm〜10μmであると好ましく、20nm〜1μmであるとより好ましく、40nm〜500nmであると更に好ましい。   The thickness of the anode can be selected in consideration of light transmittance and electric conductivity. For example, the thickness is preferably 10 nm to 10 μm, more preferably 20 nm to 1 μm, and still more preferably 40 nm to 500 nm.

(正孔注入層)
正孔注入層に用いられる材料としては、フェニルアミン系化合物、スターバースト型アミン系化合物、フタロシアニン系化合物、酸化バナジウム、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の導電性高分子等が挙げられる。
(Hole injection layer)
Materials used for the hole injection layer include phenylamine compounds, starburst amine compounds, phthalocyanine compounds, oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide, amorphous carbon, polyaniline, and derivatives thereof. And conductive polymers such as polythiophene and derivatives thereof.

正孔注入層が、導電性高分子や上述した実施形態の高分子化合物である場合、その電気伝導度を向上させるために、正孔注入層には、必要に応じて、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオン等のアニオンをドープしてもよい。   When the hole injection layer is a conductive polymer or the polymer compound of the above-described embodiment, in order to improve the electrical conductivity, the hole injection layer may include polystyrene sulfonate ions, Anions such as alkylbenzene sulfonate ions and camphor sulfonate ions may be doped.

(正孔輸送層)
正孔輸送層に用いられる材料としては、正孔輸送材料として例示したものが挙げられる。なお、正孔輸送層に用いられる材料が低分子化合物である場合には、低分子化合物を高分子バインダーに分散させて用いることが好ましい。上記実施形態の高分子化合物が正孔輸送層に用いられる場合は、高分子化合物が、正孔輸送性基(芳香族アミノ基、チエニル基等)を、高分子化合物の構成単位及び/又は置換基として含むことが好ましい。
(Hole transport layer)
Examples of the material used for the hole transport layer include those exemplified as the hole transport material. In addition, when the material used for a positive hole transport layer is a low molecular compound, it is preferable to disperse | distribute and use a low molecular compound in a high molecular binder. When the polymer compound of the above embodiment is used for the hole transport layer, the polymer compound replaces the hole transporting group (aromatic amino group, thienyl group, etc.) with the structural unit and / or substitution of the polymer compound. It is preferable to include as a group.

なかでも、正孔輸送層に用いられる正孔輸送材料としては、ポリビニルカルバゾール及びその誘導体、芳香族アミン−フルオレン共重合体及びその誘導体、芳香族アミン−フェニレン共重合体及びその誘導体、ポリアリールアミン及びその誘導体のほか、本発明の高分子化合物が好ましい。   Among them, examples of the hole transport material used for the hole transport layer include polyvinyl carbazole and derivatives thereof, aromatic amine-fluorene copolymers and derivatives thereof, aromatic amine-phenylene copolymers and derivatives thereof, and polyarylamines. In addition to and derivatives thereof, the polymer compound of the present invention is preferred.

正孔輸送層の成膜方法としては、正孔輸送層に用いられる材料が低分子化合物である場合には、高分子バインダーとの混合溶液を用いた成膜が挙げられ、高分子化合物である場合には、この高分子化合物を含む溶液を用いた成膜が挙げられる。   As a film forming method of the hole transport layer, when the material used for the hole transport layer is a low molecular compound, film formation using a mixed solution with a polymer binder is exemplified. In some cases, film formation using a solution containing this polymer compound can be mentioned.

溶液を用いた成膜に用いる溶媒は、正孔輸送層に用いられる材料を溶解させるものであればよい。溶媒としては、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が挙げられる。   The solvent used for film formation using a solution may be any solvent that dissolves the material used for the hole transport layer. Solvents include chloro solvents such as chloroform, methylene chloride, dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate, Examples include ester solvents such as ethyl cellosolve acetate.

溶液を用いた成膜には、溶液を用いたスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。   For film formation using a solution, a spin coating method using a solution, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, a spray coating method, Coating methods such as a screen printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used.

低分子化合物を組み合わせる高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適である。この高分子バインダーとしては、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。   As the polymer binder to be combined with the low molecular weight compound, those that do not extremely inhibit charge transport are preferable, and those that do not strongly absorb visible light are preferable. Examples of the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.

正孔輸送層の厚さは、駆動電圧と発光効率を考慮して選択することができる。ただし、ピンホールが容易に発生しないような厚さを有することが必要である一方、厚過ぎると、発光素子の駆動電圧が高くなることがある。そこで、正孔輸送層の厚さは、1nm〜1μmであると好ましく、2nm〜500nmであるとより好ましく、5nm〜200nmであると更に好ましい。   The thickness of the hole transport layer can be selected in consideration of driving voltage and light emission efficiency. However, it is necessary to have such a thickness that pinholes do not easily occur. On the other hand, if it is too thick, the driving voltage of the light emitting element may be increased. Therefore, the thickness of the hole transport layer is preferably 1 nm to 1 μm, more preferably 2 nm to 500 nm, and still more preferably 5 nm to 200 nm.

(発光層)
発光層は、蛍光又は燐光を発する有機化合物(低分子化合物、高分子化合物)と、必要に応じてこれを補助するドーパントとから形成される。本実施形態の発光素子における発光層は、上述した実施形態の高分子化合物及び発光材料等を含むものであることが好ましい。なお、発光材料が低分子化合物である場合には、高分子バインダーに分散させて用いることが好ましい。
(Light emitting layer)
The light emitting layer is formed from an organic compound (low molecular compound or high molecular compound) that emits fluorescence or phosphorescence and a dopant that assists the organic compound as necessary. The light emitting layer in the light emitting device of the present embodiment preferably includes the polymer compound and the light emitting material of the above-described embodiment. In the case where the light emitting material is a low molecular compound, it is preferably used by being dispersed in a polymer binder.

発光層には、発光効率を向上させたり、発光波長を変化させたりするために、ドーパントを添加することができる。ドーパントとしては、アントラセン誘導体、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾン等が挙げられる。   A dopant can be added to the light emitting layer in order to improve the light emission efficiency or change the light emission wavelength. Examples of the dopant include anthracene derivatives, perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.

発光層の厚さは、駆動電圧と発光効率を考慮して選択することができ、例えば、2〜200nmであると好ましい。   The thickness of the light emitting layer can be selected in consideration of driving voltage and light emission efficiency, and is preferably 2 to 200 nm, for example.

発光層の成膜方法としては、発光材料を含む溶液を基体の上又は上方に塗布する方法、真空蒸着法、転写法等を用いることができる。溶液を用いた成膜を行う場合、溶媒としては、正孔輸送層の溶液による成膜において例示したものと同様の溶媒を適用できる。発光材料を含む溶液を基体の上又は上方に塗布する方法としては、スピンコート法、ディップコート法、インクジェット法、フレキソ印刷法、グラビア印刷法、スリットコート法等の印刷法を用いることができる。発光材料が、昇華性を有する低分子化合物の場合には、真空蒸着法により成膜を行うこともできる。また、レーザーによる転写や熱転写により、所望の位置に発光層を形成する方法も用いることができる。   As a method for forming the light emitting layer, a method of applying a solution containing a light emitting material on or above the substrate, a vacuum deposition method, a transfer method, or the like can be used. In the case of performing film formation using a solution, as the solvent, the same solvents as those exemplified in the film formation using a solution of the hole transport layer can be applied. As a method for applying a solution containing a light emitting material on or above the substrate, a printing method such as a spin coating method, a dip coating method, an ink jet method, a flexographic printing method, a gravure printing method, or a slit coating method can be used. In the case where the light emitting material is a low molecular compound having sublimation properties, film formation can also be performed by a vacuum evaporation method. A method of forming a light emitting layer at a desired position by laser transfer or thermal transfer can also be used.

(電子輸送層)
電子輸送層に用いられる材料としては、上記実施形態の高分子化合物や、上述した電子輸送材料等が挙げられる。上記実施形態の高分子化合物が電子輸送層に用いられる場合は、高分子化合物が、電子輸送性基(オキサジアゾール基、オキサチアジアゾール基、ピリジル基、ピリミジル基、ピリダジル基、トリアジル基等)を、高分子化合物の構成単位及び/又は置換基として含むことが好ましい。
(Electron transport layer)
Examples of the material used for the electron transport layer include the polymer compound of the above embodiment and the electron transport material described above. When the polymer compound of the above embodiment is used for an electron transport layer, the polymer compound has an electron transporting group (oxadiazole group, oxathiadiazole group, pyridyl group, pyrimidyl group, pyridazyl group, triazyl group, etc.). It is preferable to contain as a structural unit and / or a substituent of the polymer compound.

これらのなかでも、電子輸送層に用いる電子輸送材料としては、上記実施形態の高分子化合物、オキサジアゾール誘導体、ベンゾキノン及びその誘導体、アントラキノン及びその誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、トリアリールトリアジン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体が好ましい。   Among these, as the electron transport material used for the electron transport layer, the polymer compound of the above embodiment, oxadiazole derivative, benzoquinone and its derivative, anthraquinone and its derivative, 8-hydroxyquinoline and a metal complex of its derivative, Triaryltriazine and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives are preferred.

電子輸送層の成膜方法としては、電子輸送層に用いられる材料が低分子化合物である場合、粉末を用いた真空蒸着法、溶液又は溶融状態での成膜による方法が挙げられる。一方、電子輸送層に用いられる材料が高分子化合物である場合には、溶液又は溶融状態での成膜による方法が挙げられる。溶液又は溶融状態での成膜には、高分子バインダーを併用してもよい。溶液を用いた成膜は、上述したような溶液を用いた正孔輸送層の成膜方法と同様にして行うことができる。   As a method for forming the electron transport layer, when the material used for the electron transport layer is a low molecular compound, a vacuum deposition method using powder, a method by film formation in a solution or a molten state, and the like can be given. On the other hand, when the material used for the electron transport layer is a polymer compound, a method of film formation in a solution or in a molten state can be mentioned. For film formation in a solution or a molten state, a polymer binder may be used in combination. The film formation using the solution can be performed in the same manner as the film formation method of the hole transport layer using the solution as described above.

電子輸送層の厚さは、駆動電圧と発光効率を考慮して調整することができる。ただし、ピンホールが容易に発生しないような厚さを有することが必要である一方、厚過ぎると、発光素子の駆動電圧が高くなることがある。そこで、電子輸送層の膜厚は、1nm〜1μmであると好ましく、2nm〜500nmであるとより好ましく、5nm〜200nmであると更に好ましい。   The thickness of the electron transport layer can be adjusted in consideration of driving voltage and light emission efficiency. However, it is necessary to have such a thickness that pinholes do not easily occur. On the other hand, if it is too thick, the driving voltage of the light emitting element may be increased. Therefore, the thickness of the electron transport layer is preferably 1 nm to 1 μm, more preferably 2 nm to 500 nm, and still more preferably 5 nm to 200 nm.

(電子注入層)
電子注入層の構成は、発光層の種類に応じて選択することができる。例えば、Ca層の単層構造からなる電子注入層、Caを除いた周期表1族と2族の金属であり、かつ仕事関数が1.5〜3.0eVの金属及びその金属の酸化物、ハロゲン化物及び炭酸化物から選ばれる1種又は2種以上で形成された層とCa層との積層構造からなる電子注入層等が挙げられる。仕事関数が1.5〜3.0eVの、周期表1族の金属又はその酸化物、ハロゲン化物、炭酸化物としては、リチウム、フッ化リチウム、酸化ナトリウム、酸化リチウム、炭酸リチウム等が挙げられる。また、仕事関数が1.5〜3.0eVの、Caを除いた周期表2族の金属又はその酸化物、ハロゲン化物、炭酸化物としては、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化バリウム、酸化ストロンチウム、炭酸マグネシウム等が挙げられる。
(Electron injection layer)
The configuration of the electron injection layer can be selected according to the type of the light emitting layer. For example, an electron injection layer having a single layer structure of Ca layer, a metal of Periodic Table Group 1 and Group 2 excluding Ca, and a work function of 1.5 to 3.0 eV metal and an oxide of the metal, The electron injection layer etc. which consist of the laminated structure of the layer formed by the 1 type (s) or 2 or more types chosen from a halide and a carbonate and a Ca layer are mentioned. Examples of the metal of the periodic table 1 group having a work function of 1.5 to 3.0 eV or oxides, halides, and carbonates thereof include lithium, lithium fluoride, sodium oxide, lithium oxide, and lithium carbonate. In addition, the work function is 1.5 to 3.0 eV, a metal belonging to Group 2 of the periodic table excluding Ca, or oxides, halides, and carbonates thereof, strontium, magnesium oxide, magnesium fluoride, strontium fluoride, Examples include barium fluoride, strontium oxide, and magnesium carbonate.

電子注入層は、蒸着法、スパッタリング法、印刷法等によって形成することができる。また、電子注入層の厚さは、1nm〜1μmが好ましい。   The electron injection layer can be formed by vapor deposition, sputtering, printing, or the like. The thickness of the electron injection layer is preferably 1 nm to 1 μm.

(陰極)
陰極の材料としては、仕事関数が小さく発光層への電子注入が容易な材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、若しくは上記金属のうち2種以上の合金、又はそれらのうち1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金、或いはグラファイト又はグラファイト層間化合物等が用いられる。合金としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。
(cathode)
As a material for the cathode, a material having a small work function and easy electron injection into the light emitting layer is preferable. For example, metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, or the above metals Or an alloy of one or more of them and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, or a graphite or graphite layer A compound or the like is used. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.

陰極を2層以上の積層構造とする場合には、金属、金属酸化物、金属フッ化物、これらの合金と、アルミニウム、銀、クロム等の金属との積層構造が好ましい。   When the cathode has a laminate structure of two or more layers, a laminate structure of a metal, metal oxide, metal fluoride, or an alloy thereof and a metal such as aluminum, silver, or chromium is preferable.

陰極は、例えば、真空蒸着法、スパッタリング法、金属薄膜を熱圧着するラミネート法等によって形成することができる。陰極の厚さは、電気伝導度や耐久性を考慮して選択することができる。例えば、10nm〜10μmであると好ましく、20nm〜1μmであるとより好ましく、50nm〜500nmであると更に好ましい。   The cathode can be formed by, for example, a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression bonded, or the like. The thickness of the cathode can be selected in consideration of electric conductivity and durability. For example, the thickness is preferably 10 nm to 10 μm, more preferably 20 nm to 1 μm, and further preferably 50 nm to 500 nm.

(保護層)
陰極の作製後には、その上部に、発光素子を保護するための保護層を更に形成してもよい。特に、発光素子を長期安定的に用いるためには、この発光素子を外部から保護するために、保護層及び/又は保護カバーを装着することが好ましい。
(Protective layer)
After the cathode is manufactured, a protective layer for protecting the light emitting element may be further formed thereon. In particular, in order to use the light emitting element stably for a long period of time, it is preferable to attach a protective layer and / or a protective cover in order to protect the light emitting element from the outside.

保護層の構成材料としては、高分子量の化合物、金属酸化物、金属フッ化物、金属ホウ化物等を用いることができる。また、保護カバーとしては、金属板、ガラス板、表面に低透水率処理を施したプラスチック板等を用いることができる。保護カバーを用いた発光素子の保護方法としては、保護カバーを熱硬化樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が挙げられる。この際、スペーサーを用いて空間を維持すれば、素子の損傷を防ぐことが容易となる。さらに、この空間に窒素やアルゴンのような不活性ガスを封入すれば、陰極の酸化を防止することができる。また、酸化バリウム等の乾燥剤をこの空間内に設置すれば、製造工程で吸着した水分又は硬化樹脂を通り抜けて浸入する微量の水分が素子に損傷を与えるのを抑制することが容易となる。発光素子においては、これらのうち、いずれか1つ以上の方策を採ることが好ましい。   As a constituent material of the protective layer, a high molecular weight compound, metal oxide, metal fluoride, metal boride and the like can be used. In addition, as the protective cover, a metal plate, a glass plate, a plastic plate having a surface subjected to low water permeability treatment, or the like can be used. Examples of a method for protecting a light emitting element using a protective cover include a method in which the protective cover is bonded to a device substrate with a thermosetting resin or a photocurable resin and sealed. At this time, if the space is maintained using a spacer, it becomes easy to prevent damage to the element. Furthermore, if an inert gas such as nitrogen or argon is sealed in this space, the oxidation of the cathode can be prevented. Further, if a desiccant such as barium oxide is installed in this space, it becomes easy to suppress damage to the element by moisture adsorbed in the manufacturing process or a minute amount of moisture entering through the cured resin. In a light emitting element, it is preferable to take any one or more of these measures.

以上説明した好適な実施形態の発光素子は、面状光源、表示装置(セグメント表示装置、ドットマトリックス表示装置)、液晶表示装置のバックライト等として用いることができる。   The light emitting element of the preferred embodiment described above can be used as a planar light source, a display device (segment display device, dot matrix display device), a backlight of a liquid crystal display device, and the like.

例えば、発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得る方法としては、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成して実質的に非発光とする方法、陽極若しくは陰極の一方、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号等を表示できるセグメントタイプの表示素子が得られる。   For example, in order to obtain planar light emission using a light emitting element, the planar anode and cathode may be arranged so as to overlap each other. In addition, as a method of obtaining pattern-like light emission, a method of installing a mask provided with a pattern-like window on the surface of a planar light-emitting element, or a substantially non-light-emitting organic layer is formed by forming an extremely thick organic layer. There are a method of emitting light and a method of forming one or both of an anode and a cathode in a pattern. By forming a pattern by any one of these methods and arranging several electrodes so that they can be turned on and off independently, a segment type display element capable of displaying numbers, letters, simple symbols and the like can be obtained.

さらに、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法や、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動させてもよい。   Further, in order to obtain a dot matrix element, both the anode and the cathode may be formed in stripes and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors or a method using a color filter or a fluorescence conversion filter. The dot matrix element can be driven passively or may be driven actively in combination with a TFT or the like.

上述した面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、面状の照明用光源等として好適に用いることができる。また、上記の表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置として用いることができる。さらに、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。   The planar light-emitting element described above is self-luminous and thin, and can be suitably used as a planar light source for a backlight of a liquid crystal display device, a planar illumination light source, or the like. The display element can be used as a display device such as a computer, a television, a mobile terminal, a mobile phone, a car navigation, a viewfinder of a video camera. Furthermore, if a flexible substrate is used, it can also be used as a curved light source or display device.

以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することができる。   The preferred embodiments of the present invention have been described above, but the present invention is not necessarily limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.

以下、実施例によって本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example.

[測定方法]
以下の実施例では、数平均分子量及び重量平均分子量の測定、高速液体クロマトグラフィー(HPLC)、並びにガラス転移温度の測定を、以下のようにして実施した。
[Measuring method]
In the following examples, measurement of number average molecular weight and weight average molecular weight, high performance liquid chromatography (HPLC), and measurement of glass transition temperature were carried out as follows.

(数平均分子量及び重量平均分子量の測定)
ポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、GPC(島津製作所製、商品名:LC−10Avp)により求めた。この際、測定する高分子化合物は、約0.05重量%の濃度になるようテトラヒドロフランに溶解させて、GPCに10μl注入した。GPCの移動相にはテトラヒドロフランを用い、2.0ml/分の流速で流した。カラムは、PLgel MIXED−B(ポリマーラボラトリーズ社製)を用いた。検出器にはUV−VIS検出器(島津製作所製、商品名:SPD−10Avp)を用いた。
(Measurement of number average molecular weight and weight average molecular weight)
The number average molecular weight (Mn) in terms of polystyrene and the weight average molecular weight (Mw) in terms of polystyrene were determined by GPC (manufactured by Shimadzu Corporation, trade name: LC-10Avp). At this time, the polymer compound to be measured was dissolved in tetrahydrofuran to a concentration of about 0.05% by weight, and 10 μl was injected into GPC. Tetrahydrofuran was used for the mobile phase of GPC, and flowed at a flow rate of 2.0 ml / min. As the column, PLgel MIXED-B (manufactured by Polymer Laboratories) was used. A UV-VIS detector (manufactured by Shimadzu Corporation, trade name: SPD-10Avp) was used as the detector.

(NMRの測定)
NMRの測定は、特に記載がない限りは、測定試料5〜20mgを約0.5mlの有機溶媒に溶解させて、NMR(バリアン(Varian,Inc.)製、商品名:MERCURY 300)を用いて行った。
(NMR measurement)
Unless otherwise specified, NMR measurement is carried out by dissolving 5 to 20 mg of a measurement sample in about 0.5 ml of an organic solvent and using NMR (trade name: MERCURY 300, manufactured by Varian, Inc.). went.

(高速液体クロマトグラフィー(HPLC))
化合物の純度の指標として、HPLC面積百分率の値を用いた。この値は、特に記載がない限り、高速液体クロマトグラフィー(HPLC、島津製作所製、商品名:LC−20A)による、254nmにおける値とする。この際、測定する化合物は、0.01〜0.2重量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、HPLCに、濃度に応じて1〜10μl注入した。HPLCの移動相には、アセトニトリル及びテトラヒドロフランを用い、1ml/分の流速で、アセトニトリル/テトラヒドロフラン=100/0〜0/100(容積比)のグラジエント分析で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)を用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD−M20A)を用いた。
(High performance liquid chromatography (HPLC))
The HPLC area percentage value was used as an indicator of the purity of the compound. Unless otherwise specified, this value is a value at 254 nm according to high performance liquid chromatography (HPLC, manufactured by Shimadzu Corporation, trade name: LC-20A). At this time, the compound to be measured was dissolved in tetrahydrofuran or chloroform so that the concentration was 0.01 to 0.2% by weight, and 1 to 10 μl was injected into HPLC depending on the concentration. Acetonitrile and tetrahydrofuran were used for the mobile phase of HPLC, and were flowed by a gradient analysis of acetonitrile / tetrahydrofuran = 100/0 to 0/100 (volume ratio) at a flow rate of 1 ml / min. As the column, Kaseisorb LC ODS 2000 (manufactured by Tokyo Chemical Industry Co., Ltd.) was used. A photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used as the detector.

(ガラス転移温度の測定)
ガラス転移温度の測定は、DSC(TA Instruments社製、商品名:DSC2920)により行った。各高分子化合物(サンプル、共重合体や重合体)を、200℃まで加熱した後、−50℃まで急冷して30分間保持した。そして、30℃まで温度を上げた後、毎分10℃の昇温速度で300℃まで測定を行った。
(Measurement of glass transition temperature)
The glass transition temperature was measured by DSC (trade name: DSC2920, manufactured by TA Instruments). Each polymer compound (sample, copolymer or polymer) was heated to 200 ° C., then rapidly cooled to −50 ° C. and held for 30 minutes. And after raising temperature to 30 degreeC, it measured to 300 degreeC with the temperature increase rate of 10 degreeC / min.

[原料単量体の合成]
まず、以下の化合物や高分子化合物の製造に用いた原料単量体の合成方法について説明する。
[Synthesis of raw material monomers]
First, a method for synthesizing raw material monomers used in the production of the following compounds and polymer compounds will be described.

なお、以下に記載の単量体CM4(2,7−ジブロモ−9,9−ビス(4−ヘキシルフェニル)フルオレン)、単量体CM5(2,7−ジブロモ−9,9−ジオクチルフルオレン)、単量体CM7(9,9−ジオクチル−(1,3,2−ジオキサボロラン−2−イル)−フルオレン)、単量体CM8(N,N−ビス(4−ブロモフェニル)−N’,N’−ビス(4−n−ブチルフェニル)−1,4−フェニレンジアミン)、単量体CM9(N,N−ビス(4−ブロモフェニル)−N−(ビシクロ[4.2.0]オクタ−1,3,5−トリエン−3−イル)−アミン)は公知の合成法に従い合成して、HPLC面積百分率値(UV254nm)で99.5%以上を示したものを用いた。また、単量体CM6は市販の化合物を再結晶により精製し、HPLC面積百分率値(UV254nm)で99.5%以上を示したものを用いた。   In addition, monomer CM4 (2,7-dibromo-9,9-bis (4-hexylphenyl) fluorene) described below, monomer CM5 (2,7-dibromo-9,9-dioctylfluorene), Monomer CM7 (9,9-dioctyl- (1,3,2-dioxaborolan-2-yl) -fluorene), monomer CM8 (N, N-bis (4-bromophenyl) -N ′, N ′ -Bis (4-n-butylphenyl) -1,4-phenylenediamine), monomer CM9 (N, N-bis (4-bromophenyl) -N- (bicyclo [4.2.0] octa-1 , 3,5-trien-3-yl) -amine) was synthesized according to a known synthesis method, and the HPLC area percentage value (UV254 nm) showed 99.5% or more. As the monomer CM6, a commercially available compound was purified by recrystallization, and an HPLC area percentage value (UV254 nm) showing 99.5% or more was used.

Figure 0005859828
Figure 0005859828

また、以下に記載の単量体CM10(2,5−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1,4−ジヘキシルベンゼン)、及び単量体CM11も、同様に公知の合成法に従い合成して、HPLC面積百分率値(UV254nm)で99.5%以上を示したものを用いた。

Figure 0005859828
In addition, monomer CM10 (2,5-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -1,4-dihexylbenzene) described below, and Monomer CM11 was also synthesized according to a known synthesis method in the same manner, and a monomer having a HPLC area percentage value (UV254 nm) of 99.5% or more was used.
Figure 0005859828

(単量体CM1の合成)
下記の工程(C1a)を行って、単量体CM1を合成した。

Figure 0005859828
(Synthesis of monomer CM1)
The following step (C1a) was performed to synthesize monomer CM1.
Figure 0005859828

<工程(C1a)>
アルゴンガス雰囲気下、1000mlフラスコ中、マグネシウム小片(19.45g、800mmol)に、少量の脱水テトラヒドロフランと1,2−ジブロモエタン(1.50g、8mmol)を順次加えた。発熱と発泡により、マグネシウムが活性化されたことを確認した後に、2,6−ジブロモトルエン(49.99g、200mmol)を脱水テトラヒドロフラン(200ml)に溶解した溶液を約2時間かけて滴下した。滴下終了後、80℃のオイルバスにより加熱し、還流下で1時間攪拌した。
<Process (C1a)>
Under argon gas atmosphere, a small amount of dehydrated tetrahydrofuran and 1,2-dibromoethane (1.50 g, 8 mmol) were sequentially added to a small piece of magnesium (19.45 g, 800 mmol) in a 1000 ml flask. After confirming that magnesium was activated by heat generation and foaming, a solution of 2,6-dibromotoluene (49.99 g, 200 mmol) dissolved in dehydrated tetrahydrofuran (200 ml) was added dropwise over about 2 hours. After completion of dropping, the mixture was heated in an oil bath at 80 ° C. and stirred for 1 hour under reflux.

それから、オイルバスを外し、脱水テトラヒドロフラン(400ml)で希釈し、更に氷浴にて冷却してから、2−イソプロピルオキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(148.85g、800mmol)を加えた。氷浴をはずし、80℃のオイルバスで加熱することにより、還流下で1時間半攪拌した。オイルバスを外し、更に氷浴にて冷却してから、飽和塩化アンモニウム水溶液(50ml)を加え、30分間攪拌した。   Then, the oil bath was removed, diluted with dehydrated tetrahydrofuran (400 ml), further cooled in an ice bath, and then 2-isopropyloxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ( 148.85 g, 800 mmol). The ice bath was removed, and the mixture was heated in an oil bath at 80 ° C., and stirred for 1.5 hours under reflux. After removing the oil bath and further cooling in an ice bath, a saturated aqueous ammonium chloride solution (50 ml) was added and stirred for 30 minutes.

その後、氷浴を外し、ヘキサン(1500ml)を加え、30分間激しく攪拌した。攪拌を停止し、そのまま15分間静置した後に、シリカゲルを敷き詰めたグラスフィルターによりろ過し、ヘキサン(1000ml)でシリカゲルを洗浄し、合一したろ液を減圧濃縮することにより、粗生成物(72.0g)を得た。同様の操作を再度行い、粗生成物(75.4g)を得た。   Thereafter, the ice bath was removed, hexane (1500 ml) was added, and the mixture was vigorously stirred for 30 minutes. Stirring was stopped and the mixture was allowed to stand for 15 minutes, followed by filtration through a glass filter spread with silica gel. The silica gel was washed with hexane (1000 ml), and the combined filtrate was concentrated under reduced pressure to give a crude product (72 0.0 g) was obtained. The same operation was performed again to obtain a crude product (75.4 g).

次に、粗生成物の全量(147.4g)にメタノール(740ml)を加え、85℃のオイルバスを用いて1時間加熱還流下で攪拌した。オイルバスを外し、攪拌しながら室温まで冷却した後に、固体をろ取し、メタノール(100ml)で洗浄、減圧乾燥させることにより、白色結晶を得た(59.7g)。乾燥させた結晶をイソプロパノール(780ml)に加熱溶解させた後、静置した状態でゆっくりと室温まで冷却することにより結晶を析出させ、ろ取し、メタノール(100ml)で洗浄し、さらに50℃で一晩の間減圧乾燥させることにより、目的物である単量体CM1(50.8g、HPLC面積百分率(紫外線波長254nm)で99.8%、収率37%)を白色結晶として得た。単量体CM1の分析結果は次の通りであった。   Next, methanol (740 ml) was added to the total amount of the crude product (147.4 g), and the mixture was stirred with heating under reflux for 1 hour using an oil bath at 85 ° C. After removing the oil bath and cooling to room temperature with stirring, the solid was collected by filtration, washed with methanol (100 ml), and dried under reduced pressure to obtain white crystals (59.7 g). The dried crystals are dissolved in isopropanol (780 ml) by heating and then allowed to stand and slowly cooled to room temperature to precipitate crystals, which are collected by filtration, washed with methanol (100 ml), and further washed at 50 ° C. By drying under reduced pressure overnight, the target monomer CM1 (50.8 g, HPLC area percentage (ultraviolet wavelength 254 nm) 99.8%, yield 37%) was obtained as white crystals. The analysis result of monomer CM1 was as follows.

H−NMR(300MHz、CDCl
δ(ppm)=1.34(s、24H)、2.74(s、3H)、7.14(t、1H)、7.79(d、2H).
1 H-NMR (300 MHz, CDCl 3 )
δ (ppm) = 1.34 (s, 24H), 2.74 (s, 3H), 7.14 (t, 1H), 7.79 (d, 2H).

(単量体CM2の合成)
下記の工程(C2a)を行って化合物CM2aを得た後、工程(C2b)を行って、単量体CM2を得た。

Figure 0005859828
(Synthesis of monomer CM2)
The following step (C2a) was performed to obtain compound CM2a, and then step (C2b) was performed to obtain monomer CM2.
Figure 0005859828

<工程(C2a)>
アルゴンガス雰囲気下、遮光した300ml丸底フラスコ中、1,4−ジイソプロピルベンゼン(24.34g、150mmol)、鉄粉(0.838g、15mmol)、脱水クロロホルム(40ml)、トリフルオロ酢酸(1.71g、15mmol)を混合攪拌し、氷浴にて冷却したところに、臭素(55.1g、345mmol)の脱水クロロホルム(92ml)希釈溶液を30分間かけて滴下し、氷浴にて冷却したまま、更に5時間攪拌し反応させて、反応液を得た。
<Process (C2a)>
1,4-diisopropylbenzene (24.34 g, 150 mmol), iron powder (0.838 g, 15 mmol), dehydrated chloroform (40 ml), trifluoroacetic acid (1.71 g) in a 300 ml round bottom flask protected from light in an argon gas atmosphere. 15 mmol) was mixed and stirred and cooled in an ice bath, and a diluted solution of bromine (55.1 g, 345 mmol) in dehydrated chloroform (92 ml) was added dropwise over 30 minutes. The reaction was obtained by stirring for 5 hours to obtain a reaction solution.

反応終了後、10重量%水酸化ナトリウム水溶液を氷浴にて冷却したところに、得られた反応液をゆっくりと加え、更に15分間攪拌した。分液により有機層と水層を分離し、水層からクロロホルム(100ml)で抽出し、得られた有機層を合一した後に、10重量%亜硫酸ナトリウム水溶液(200ml)を加え、室温にて30分間攪拌した。この時、有機層の色は薄黄色からほぼ無色透明に変化した。   After completion of the reaction, a 10% by weight aqueous sodium hydroxide solution was cooled in an ice bath, and the resulting reaction solution was slowly added, followed by further stirring for 15 minutes. The organic layer and the aqueous layer were separated by liquid separation, extracted from the aqueous layer with chloroform (100 ml), and the obtained organic layers were combined. Then, a 10 wt% aqueous sodium sulfite solution (200 ml) was added, and the mixture was stirred at room temperature for 30 Stir for minutes. At this time, the color of the organic layer changed from pale yellow to almost colorless and transparent.

次に、水層を分液により除去し、得られた有機層を15重量%の食塩水(200ml)で洗浄し、無水硫酸マグネシウム(30g)で乾燥させ、溶媒を減圧濃縮により留去することで、薄黄色油状物約47gを得た。これにエタノール(15g)を加え、振り混ぜて均一にした後に、−10℃の冷凍庫に3時間静置することで、結晶を析出させ、ろ取し、少量のメタノールで洗浄した後、室温にて一晩の間減圧乾燥させることにより、目的物である1,4−ジブロモ−2,5-ジイソプロピルベンゼン(化合物CM2a、30.8g、収率64%)を白色結晶として得た。得られた化合物CM2aの分析結果は次の通りであった。   Next, the aqueous layer is removed by liquid separation, and the obtained organic layer is washed with 15% by weight brine (200 ml), dried over anhydrous magnesium sulfate (30 g), and the solvent is distilled off by concentration under reduced pressure. Yielded about 47 g of a light yellow oil. Ethanol (15 g) was added to this, shaken and homogenized, and left in a freezer at −10 ° C. for 3 hours to precipitate crystals, collected by filtration, washed with a small amount of methanol, and then brought to room temperature. By drying under reduced pressure overnight, the target product 1,4-dibromo-2,5-diisopropylbenzene (compound CM2a, 30.8 g, yield 64%) was obtained as white crystals. The analysis result of the obtained compound CM2a was as follows.

H−NMR(300MHz、CDCl
δ(ppm)=1.24(d、12H)、3.30(m、2H)、7.50(s、2H).
1 H-NMR (300 MHz, CDCl 3 )
δ (ppm) = 1.24 (d, 12H), 3.30 (m, 2H), 7.50 (s, 2H).

<工程(C2b)>
アルゴンガス雰囲気下、1000mlフラスコ中、マグネシウム小片(9.724g、400mmol)に少量の脱水テトラヒドロフランと1,2−ジブロモエタン(0.75g、4mmol)を順次加えた。発熱と発泡により、マグネシウムが活性化されたことを確認した後に、上記で得られた化合物CM2a(32.0g、100mmol)を脱水テトラヒドロフラン(100ml)に溶解した溶液を約1時間かけて滴下した。滴下終了後、80℃のオイルバスにより加熱し、還流下で1時間攪拌した。
<Process (C2b)>
A small amount of dehydrated tetrahydrofuran and 1,2-dibromoethane (0.75 g, 4 mmol) were sequentially added to a small piece of magnesium (9.724 g, 400 mmol) in a 1000 ml flask under an argon gas atmosphere. After confirming that magnesium was activated by heat generation and foaming, a solution of the compound CM2a (32.0 g, 100 mmol) obtained above in dehydrated tetrahydrofuran (100 ml) was added dropwise over about 1 hour. After completion of dropping, the mixture was heated in an oil bath at 80 ° C. and stirred for 1 hour under reflux.

それから、オイルバスを外し、脱水テトラヒドロフラン(200ml)で希釈し、更に氷浴により冷却してから、2−イソプロピルオキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(74.4g、400mmol)を加えた。氷浴をはずし、80℃のオイルバスで加熱することにより、還流下で1時間半攪拌した。オイルバスを外し、更に氷浴により冷却してから、飽和塩化アンモニウム水溶液(25ml)を加え、30分間攪拌した。   Then, the oil bath was removed, diluted with dehydrated tetrahydrofuran (200 ml), further cooled in an ice bath, and then 2-isopropyloxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (74 .4 g, 400 mmol) was added. The ice bath was removed, and the mixture was heated in an oil bath at 80 ° C., and stirred for 1.5 hours under reflux. After removing the oil bath and further cooling with an ice bath, a saturated aqueous solution of ammonium chloride (25 ml) was added and stirred for 30 minutes.

その後、氷浴を外し、ヘキサン(2000ml)を加え、30分間激しく攪拌した。攪拌を停止し、そのまま15分間静置した後に、シリカゲルを敷き詰めたグラスフィルターによりろ過し、さらにこのシリカゲルをヘキサン(1000ml)で洗浄し、合一したろ液を減圧濃縮することにより、粗生成物(59.0g)を得た。同様の操作を上記の8割のスケールで再度行うことにより、粗生成物(44.8g)を得た。上記の工程を繰返し行うことで、必要量の粗生成物を得た。   Thereafter, the ice bath was removed, hexane (2000 ml) was added, and the mixture was vigorously stirred for 30 minutes. Stirring was stopped, and the mixture was allowed to stand for 15 minutes, and then filtered through a glass filter spread with silica gel. The silica gel was washed with hexane (1000 ml), and the combined filtrate was concentrated under reduced pressure to give a crude product. (59.0 g) was obtained. The same operation was performed again on the above 80% scale to obtain a crude product (44.8 g). The necessary amount of crude product was obtained by repeating the above steps.

粗生成物(103.8g)にメタノール(520ml)を加え、75℃のオイルバスを用いて1時間加熱還流下で攪拌した。オイルバスを外し攪拌しながら室温まで冷却した後に、固体をろ取し、メタノール(100ml)で洗浄、減圧乾燥させることにより、白色結晶を得た(48.8g、HPLC面積百分率(紫外線波長254nm)で93.3%)。乾燥させた結晶をイソプロパノール(690ml)に加熱溶解させた後、静置した状態でゆっくりと室温まで冷却することにより結晶を析出させ、ろ取し、メタノール(50ml)で洗浄し、さらに50℃で一晩の間減圧乾燥させることにより、目的物である単量体CM2、すなわち、1,4−ジイソプロピル−2,5−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゼンを白色結晶として得た(44.6g、HPLC面積百分率(紫外線波長254nm)で99.8%、収率60%)。単量体CM2の分析結果は次の通りであった。   Methanol (520 ml) was added to the crude product (103.8 g), and the mixture was stirred with heating under reflux for 1 hour using an oil bath at 75 ° C. After removing the oil bath and cooling to room temperature with stirring, the solid was collected by filtration, washed with methanol (100 ml) and dried under reduced pressure to obtain white crystals (48.8 g, HPLC area percentage (ultraviolet wavelength 254 nm)). 93.3%). The dried crystals are dissolved in isopropanol (690 ml) by heating and then allowed to stand and slowly cooled to room temperature to precipitate crystals, which are collected by filtration, washed with methanol (50 ml), and further washed at 50 ° C. By drying under reduced pressure overnight, the target monomer CM2, namely 1,4-diisopropyl-2,5-bis (4,4,5,5-tetramethyl-1,3,2- Dioxaborolan-2-yl) benzene was obtained as white crystals (44.6 g, 99.8% by HPLC area percentage (ultraviolet wavelength 254 nm), yield 60%). The analysis result of monomer CM2 was as follows.

H−NMR(300MHz、CDCl
δ(ppm)=1.23(d、12H),1.34(s、24H)、3.58(m、2H)、7.61(s、2H).
1 H-NMR (300 MHz, CDCl 3 )
δ (ppm) = 1.23 (d, 12H), 1.34 (s, 24H), 3.58 (m, 2H), 7.61 (s, 2H).

(単量体CM3の合成)
下記の工程(C3a)を行って化合物CM3aを得た後、工程(C3b)を行って、単量体CM3を得た。

Figure 0005859828
(Synthesis of monomer CM3)
The following step (C3a) was performed to obtain compound CM3a, and then step (C3b) was performed to obtain monomer CM3.
Figure 0005859828

<工程(C3a)>
窒素雰囲気下、1,4−ジブロモベンゼン(27.1g)の脱水ジエチルエーテル(217ml)溶液をドライアイス/メタノール混合浴を用いて冷却した。得られた懸濁液に2.77Mのn−ブチルリチウムのヘキサン溶液(37.2ml)をゆっくりと滴下した後、1時間攪拌し、リチウム試薬を調製した。
<Process (C3a)>
Under a nitrogen atmosphere, a solution of 1,4-dibromobenzene (27.1 g) in dehydrated diethyl ether (217 ml) was cooled using a dry ice / methanol mixed bath. A 2.77M n-butyllithium hexane solution (37.2 ml) was slowly added dropwise to the resulting suspension, and the mixture was stirred for 1 hour to prepare a lithium reagent.

窒素雰囲気下、塩化シアヌル(10.0g)の脱水ジエチルエーテル(68ml)懸濁液をドライアイス/メタノール混合浴を用いて冷却し、上記のリチウム試薬をゆっくり加えた後に室温まで昇温し、室温で反応させた。得られた生成物を濾過し、減圧乾燥させた。その後、得られた固体(16.5g)を精製して、13.2gの針状結晶(化合物CM3a)を得た。   Under a nitrogen atmosphere, a suspension of cyanuric chloride (10.0 g) in dehydrated diethyl ether (68 ml) was cooled using a dry ice / methanol mixed bath, the lithium reagent was slowly added, and the temperature was raised to room temperature. It was made to react with. The resulting product was filtered and dried under reduced pressure. Thereafter, the obtained solid (16.5 g) was purified to obtain 13.2 g of acicular crystals (compound CM3a).

<工程(C3b)>
窒素雰囲気下、マグネシウム(1.37g)に脱水テトラヒドロフラン(65ml)を加えた懸濁液に、4−ドデシルブロモベンゼン(14.2g)の脱水テトラヒドロフラン(15ml)溶液を少量ずつ加え、加熱して、還流下で攪拌した。放冷後、反応液にマグネシウム(0.39g)を追加し、再び加熱して、還流下で反応させ、グリニャール試薬を調製した。
<Process (C3b)>
Under a nitrogen atmosphere, a solution of 4-dodecylbromobenzene (14.2 g) in anhydrous tetrahydrofuran (15 ml) was added little by little to a suspension of magnesium (1.37 g) in anhydrous tetrahydrofuran (65 ml) and heated. Stir under reflux. After allowing to cool, magnesium (0.39 g) was added to the reaction solution, heated again and reacted under reflux to prepare a Grignard reagent.

窒素雰囲気下、上記で得られた化合物CM3a(12.0g)の脱水テトラヒドロフラン(100ml)懸濁液に、上記のグリニャール試薬を撹拌しながら加え、加熱還流させた。放冷後、反応液を、希塩酸水溶液で洗浄した。有機層と水層を分け、水層をジエチルエーテルで抽出した。得られた有機層を合わせて、再び水で洗浄し、有機層を無水硫酸マグネシウムで脱水させた後、濾過し、濃縮した。得られた白色固体をシリカゲルカラムで精製し、更に再結晶することによって、目的物である単量体CM3(6.5g)を白色固体として得た。得られた単量体CM3は、HPLC面積百分率値(UV254nm)で99.5%以上を示した。   Under a nitrogen atmosphere, the above-mentioned Grignard reagent was added to a suspension of compound CM3a (12.0 g) obtained above in dehydrated tetrahydrofuran (100 ml) with stirring, and the mixture was heated to reflux. After cooling, the reaction solution was washed with dilute hydrochloric acid aqueous solution. The organic layer and the aqueous layer were separated, and the aqueous layer was extracted with diethyl ether. The obtained organic layers were combined and washed again with water. The organic layer was dehydrated with anhydrous magnesium sulfate, filtered, and concentrated. The obtained white solid was purified with a silica gel column and further recrystallized to obtain the target monomer CM3 (6.5 g) as a white solid. The obtained monomer CM3 showed 99.5% or more by HPLC area percentage value (UV254 nm).

[複合原料単量体の合成]
次に、後述する高分子化合物の合成に用いた複合原料単量体の合成方法について説明する。
[Synthesis of composite raw material monomers]
Next, a method for synthesizing the composite raw material monomer used for the synthesis of the polymer compound described later will be described.

(実施例1−1:単量体M1(式(12−1)で表される化合物)の合成)
単量体CM4を用いて下記の工程(1a)を行い化合物M1aを得、次いで工程(1b)を行って化合物M1bを得た後、更に工程(1c)を行って、上記の式(12−1)で表される化合物である単量体M1を得た。

Figure 0005859828
(Example 1-1: Synthesis of monomer M1 (compound represented by formula (12-1)))
The following step (1a) is carried out using monomer CM4 to obtain compound M1a, then step (1b) is carried out to obtain compound M1b, and further step (1c) is carried out to obtain the above formula (12- Monomer M1 which is a compound represented by 1) was obtained.
Figure 0005859828

<工程(1a)>
アルゴンガス雰囲気下、単量体CM4(60.33g)をテトラヒドロフラン(THF、750ml)に溶解させた後に、約−78℃のドライアイス/メタノールバスにより冷却したところへ、sec−ブチルリチウム(1mol/l、100ml)を約40分間かけてゆっくりと滴下することにより加えた。滴下終了後、約−30℃までゆっくりと昇温した後に、再度、約−78℃のドライアイス/メタノールバスにより冷却した。
<Step (1a)>
In an argon gas atmosphere, monomer CM4 (60.33 g) was dissolved in tetrahydrofuran (THF, 750 ml), and then cooled with a dry ice / methanol bath at about −78 ° C. to sec-butyllithium (1 mol / mol). l, 100 ml) was slowly added dropwise over about 40 minutes. After completion of the dropwise addition, the temperature was slowly raised to about -30 ° C, and then cooled again with a dry ice / methanol bath at about -78 ° C.

次に、この溶液に、クロロトリメチルシラン(20.34g)を約10分間かけてゆっくりと加え、同温度で10分間攪拌した後、室温までゆっくりと昇温した。イオン交換水(8g)を加えた後に、揮発分を減圧濃縮することにより除き、約74gの油状物を得た。これにヘキサン(500ml)を加えて希釈した後に、シリカゲルショートカラムにより、不純物を除去し、さらに減圧濃縮により揮発分を除去することにより、化合物M1aを薄黄色油状物として得た。化合物M1aはこれ以上の精製はせずに、次工程に用いた。   Next, chlorotrimethylsilane (20.34 g) was slowly added to this solution over about 10 minutes, stirred at the same temperature for 10 minutes, and then slowly warmed to room temperature. After adding ion-exchanged water (8 g), volatile components were removed by concentration under reduced pressure to obtain about 74 g of an oily substance. Hexane (500 ml) was added thereto for dilution, and then impurities were removed by a silica gel short column, and further volatiles were removed by concentration under reduced pressure to obtain Compound M1a as a pale yellow oil. Compound M1a was used in the next step without further purification.

<工程(1b)>
アルゴンガス雰囲気下、化合物M1a(61g)、単量体CM1(13.42g)、トルエン(200ml)を混合し、均一な溶液を得た後に、20重量%テトラエチルアンモニウムヒドロキシド水溶液(Aldrich社製、86.15g)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(137mg)を加え、オイルバスにて加熱しながら、還流下で8時間攪拌した。次いで、室温まで冷却し、トルエンで希釈した後に、水層を除去し、得られた油層をイオン交換水、及び15重量%食塩水で順次洗浄した。
<Step (1b)>
In an argon gas atmosphere, compound M1a (61 g), monomer CM1 (13.42 g), and toluene (200 ml) were mixed to obtain a uniform solution, and then a 20 wt% tetraethylammonium hydroxide aqueous solution (manufactured by Aldrich, 86.15 g) and dichlorobis (triphenylphosphine) palladium (II) (137 mg) were added, and the mixture was stirred under reflux for 8 hours while heating in an oil bath. Subsequently, after cooling to room temperature and diluting with toluene, the aqueous layer was removed, and the obtained oil layer was washed successively with ion-exchanged water and 15% by weight saline.

得られた溶液、およびトルエンをシリカゲルショートカラムに順次通液し、得られた溶液を合一した後に減圧濃縮することにより、約64gの濃褐色油状物を得た。これにヘキサンを加え、60℃に加熱することにより均一な溶液を得た。これにエタノールを加え、室温にて3時間攪拌することにより析出した固体をろ取し、エタノールで洗浄、減圧乾燥することにより、粗生成物(35g)を得た。   The obtained solution and toluene were sequentially passed through a silica gel short column, and the obtained solutions were combined and then concentrated under reduced pressure to obtain about 64 g of a dark brown oily substance. Hexane was added thereto and heated to 60 ° C. to obtain a uniform solution. Ethanol was added thereto, and the solid precipitated by stirring at room temperature for 3 hours was collected by filtration, washed with ethanol, and dried under reduced pressure to obtain a crude product (35 g).

得られた粗生成物にヘキサンを加え、加熱しながら還流下で1時間攪拌し、室温まで冷却した後に固体をろ取する操作を6回繰り返すことにより、化合物M1bを得た(23.16g)。化合物M1bの分析結果は次の通りであった。   Hexane was added to the obtained crude product, and the mixture was stirred for 1 hour under reflux with heating. After cooling to room temperature, the solid was filtered off six times to obtain Compound M1b (23.16 g). . The analysis result of Compound M1b was as follows.

H−NMR(300MHz、THF−d
δ(ppm)=7.86(dd,4H)、7.64(s、2H)、7.56(d,2H)、7.44(s,2H)、7.36(d,2H)、7.16(m、11H)、7.03(d,2H)、2.55(t,8H)、2.09(s、3H)、1.58(m,8H)、1.31(m,24H)、0.88(t,12H)、0.25(s,18H).
1 H-NMR (300 MHz, THF-d 8 )
δ (ppm) = 7.86 (dd, 4H), 7.64 (s, 2H), 7.56 (d, 2H), 7.44 (s, 2H), 7.36 (d, 2H), 7.16 (m, 11H), 7.03 (d, 2H), 2.55 (t, 8H), 2.09 (s, 3H), 1.58 (m, 8H), 1.31 (m , 24H), 0.88 (t, 12H), 0.25 (s, 18H).

<工程(1c)>
アルゴンガス雰囲気下、上記で得られた化合物M1b(22.9g)、N−ブロモスクシンイミド(7.1g)、N,N−ジメチルホルムアミド(DMF、570ml)、酢酸(114ml)を混合し、80℃のオイルバスにより加熱しながら、4時間攪拌した後、室温まで冷却した。得られた反応液をメタノール(1900ml)にゆっくりと加え、析出した固体をろ取、減圧乾燥することにより、固体(29g)を得た。
<Step (1c)>
Under an argon gas atmosphere, the compound M1b (22.9 g) obtained above, N-bromosuccinimide (7.1 g), N, N-dimethylformamide (DMF, 570 ml) and acetic acid (114 ml) were mixed and mixed at 80 ° C. The mixture was stirred for 4 hours while being heated in an oil bath, and then cooled to room temperature. The obtained reaction liquid was slowly added to methanol (1900 ml), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a solid (29 g).

得られた固体を、中圧シリカゲルカラムクロマトグラフィー(ヘキサン/トルエン=100/0〜70/30)で精製し、さらに、酢酸エチル/メタノールを用いて再結晶することにより、目的物である単量体M1(10.8g)を得た。得られた単量体M1はHPLC面積百分率値(UV254nm)で99.5%以上を示した。単量体M1の分析結果は次の通りであった。   The obtained solid was purified by medium pressure silica gel column chromatography (hexane / toluene = 100/0 to 70/30), and further recrystallized from ethyl acetate / methanol to obtain the target single monomer. The body M1 (10.8 g) was obtained. The obtained monomer M1 showed 99.5% or more by HPLC area percentage value (UV254nm). The analysis result of the monomer M1 was as follows.

H−NMR(300MHz、THF−d
δ(ppm)=7.87(d,2H)、7.78(d.2H)、7.60(s,2H)、7.53(d,2H)、7.42(s,2H)、7.37(d.2H)、7.17(m,11H)、7.05(d,8H)、2.56(t,8H)、2.06(s,3H)、1.59(m,8H)、1.36(m,24H)、0.88(t,12H).
1 H-NMR (300 MHz, THF-d 8 )
δ (ppm) = 7.87 (d, 2H), 7.78 (d.2H), 7.60 (s, 2H), 7.53 (d, 2H), 7.42 (s, 2H), 7.37 (d.2H), 7.17 (m, 11H), 7.05 (d, 8H), 2.56 (t, 8H), 2.06 (s, 3H), 1.59 (m , 8H), 1.36 (m, 24H), 0.88 (t, 12H).

(実施例1−2:単量体M1d(式(12−1)で表される化合物)、及び、単量体M1e(式(12−1)で表される化合物)の合成)
上記工程(1a)及び(1b)により得られた化合物M1bを用いて、下記工程(1d)及び(1e)を行い、上記の式(12−1)で表される化合物である単量体M1d及びM1eをそれぞれ得る。

Figure 0005859828
(Example 1-2: Synthesis of monomer M1d (compound represented by formula (12-1)) and monomer M1e (compound represented by formula (12-1))
Monomer M1d, which is a compound represented by the above formula (12-1), is obtained by performing the following steps (1d) and (1e) using compound M1b obtained in steps (1a) and (1b). And M1e, respectively.
Figure 0005859828

<工程(1d)>
アルゴンガス雰囲気下、上記で得られた化合物M1b(1g)をジクロロメタン(10ml)に溶解した溶液を、予め0℃に冷却した三臭化ホウ素のジクロロメタン溶液(1mol/l濃度、20ml)中に、ゆっくりと滴下することにより加える。この溶液について0℃にて攪拌を続け、液体クロマトグラフィーによる分析により原料の消失を確認した後に、減圧濃縮により溶媒を除去する。得られた固体を再結晶することにより、化合物M1dが得られる。
<Step (1d)>
Under an argon gas atmosphere, a solution obtained by dissolving the compound M1b (1 g) obtained above in dichloromethane (10 ml) was added to a boron tribromide dichloromethane solution (1 mol / l concentration, 20 ml) previously cooled to 0 ° C. Add by slowly dripping. The solution is continuously stirred at 0 ° C. After confirming disappearance of the raw material by analysis by liquid chromatography, the solvent is removed by concentration under reduced pressure. By recrystallizing the obtained solid, compound M1d is obtained.

<工程(1e)>
上記と同様の操作により得られる化合物M1d(1g)にピナコール(5g)、酢酸エチル(20ml)を加え、加熱還流下で攪拌した後に、トルエンで希釈し、シリカゲルショートカラムに通液した溶液を中圧シリカゲルカラムクロマトグラフィー(ヘキサン/トルエン)にて精製することにより、化合物M1eが得られる。
<Step (1e)>
Pinacol (5 g) and ethyl acetate (20 ml) were added to compound M1d (1 g) obtained by the same operation as above, stirred under heating and reflux, diluted with toluene, and passed through a silica gel short column. By purifying with pressure silica gel column chromatography (hexane / toluene), compound M1e is obtained.

(実施例2−1:単量体M2(式(13)で表される化合物)の合成)
単量体CM1を用いて下記の工程(2a)を行って、上記の式(13)で表される化合物である単量体M2を得た。

Figure 0005859828
(Example 2-1: Synthesis of monomer M2 (compound represented by formula (13)))
The following step (2a) was performed using the monomer CM1 to obtain a monomer M2, which is a compound represented by the above formula (13).
Figure 0005859828

<工程(2a)>
アルゴンガス雰囲気下、単量体CM1(6.881g)、4−ブロモヨードベンゼン(14.15g)、テトラキストリフェニルホスフィンパラジウム(0)(0.92g)、炭酸銀(16.55g)、テトラヒドロフラン(100ml)を混合し、50℃のオイルバスで加熱しながら、5時間攪拌した後に、クロロホルム(250g)、テトラヒドロフラン(20g)で希釈し、室温にて、不溶物をろ別した。
<Step (2a)>
Under an argon gas atmosphere, monomer CM1 (6.881 g), 4-bromoiodobenzene (14.15 g), tetrakistriphenylphosphine palladium (0) (0.92 g), silver carbonate (16.55 g), tetrahydrofuran ( 100 ml) was mixed, and the mixture was stirred for 5 hours while heating in an oil bath at 50 ° C., then diluted with chloroform (250 g) and tetrahydrofuran (20 g), and insoluble matters were filtered off at room temperature.

得られたろ液に活性白土(Wako社製、30g)を加え、室温にて30分間攪拌した後に、固体をろ別した。ろ液を濃縮し、約17gのオレンジ色油状物を得た。得られた油状物を中圧シリカゲルクロマトグラフィー(ヘキサン)で精製し、得られた白色固体約10gをクロロホルム/メタノールを用いて再結晶することにより、目的物である単量体M2(3.97g)を白色結晶として得た。得られた単量体M2のHPLC面積百分率値(UV254nm)は99.93%を示した。   Activated clay (manufactured by Wako, 30 g) was added to the obtained filtrate, and the mixture was stirred at room temperature for 30 minutes, and then the solid was filtered off. The filtrate was concentrated to give about 17 g of an orange oil. The obtained oil was purified by medium pressure silica gel chromatography (hexane), and about 10 g of the obtained white solid was recrystallized using chloroform / methanol to obtain the target monomer M2 (3.97 g). ) Was obtained as white crystals. The HPLC area percentage value (UV254 nm) of the obtained monomer M2 was 99.93%.

(実施例2−2:単量体M2b(式(13)で表される化合物)の合成)
上記で得た単量体M2を用い下記の工程(2b)を行って、上記の式(13)で表される化合物である単量体M2bを得る。

Figure 0005859828
(Example 2-2: Synthesis of monomer M2b (compound represented by formula (13)))
The following step (2b) is performed using the monomer M2 obtained above to obtain a monomer M2b which is a compound represented by the above formula (13).
Figure 0005859828

<工程(2b)>
アルゴンガス雰囲気下、上記で得られた化合物M2、ビス(ピナコラート)ジボロン、ビス(ジフェニルホスフィノ)フェロセン、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸カリウム、及び、1,4−ジオキサンを混合し、加熱還流下で一晩攪拌し、不溶物をろ過により除去し、濃縮して、ヘキサン/トルエン混合溶媒に再溶解する。その後、シリカゲルショートカラムに通液することに得られる溶液を、活性炭吸着処理、及び、中圧シリカゲルカラムクロマトグラフィーにより精製することにより、化合物M2bが得られる。
<Step (2b)>
Under an argon gas atmosphere, the compound M2, bis (pinacolato) diboron, bis (diphenylphosphino) ferrocene, tris (dibenzylideneacetone) dipalladium (0), potassium acetate, and 1,4-dioxane obtained above were added. Mix, stir overnight under reflux with heating, remove insolubles by filtration, concentrate and redissolve in hexane / toluene mixed solvent. Thereafter, the solution obtained by passing through a silica gel short column is purified by activated carbon adsorption treatment and medium pressure silica gel column chromatography to obtain compound M2b.

[高分子化合物の製造]
上記で得た原料単量体や複合原料単量体を用いて、以下に示す方法により各種の高分子化合物を製造した。
[Production of polymer compounds]
Using the raw material monomers and composite raw material monomers obtained above, various polymer compounds were produced by the methods shown below.

(実施例3:高分子化合物P1の合成)
窒素雰囲気下、単量体CM2(1.115g)、単量体M1(0.8301g)、単量体CM3(0.4320g)、及び単量体CM5(0.7665g)と、溶媒となるトルエン(43ml)との混合物を約80℃に加熱した後に、酢酸パラジウム(0.61mg)、トリス(2−メトキシフェニル)ホスフィン(3.82mg)、20重量%テトラエチルアンモニウムヒドロキシド水溶液(9.6g)を加え、オイルバスで更に加熱しながら、還流下で、約8時間攪拌した。
(Example 3: Synthesis of polymer compound P1)
In a nitrogen atmosphere, monomer CM2 (1.115 g), monomer M1 (0.8301 g), monomer CM3 (0.4320 g), monomer CM5 (0.7665 g), and toluene as a solvent (43 ml) was heated to about 80 ° C., and then palladium acetate (0.61 mg), tris (2-methoxyphenyl) phosphine (3.82 mg), 20 wt% tetraethylammonium hydroxide aqueous solution (9.6 g) And stirred for about 8 hours under reflux while further heating in an oil bath.

次に、フェニルボロン酸(116mg)、酢酸パラジウム(0.61mg)、トリス(2−メトキシフェニル)ホスフィン(3.82mg)、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液(9.6g)を加え、オイルバスで更に加熱しながら、還流下で、約13時間攪拌した。   Next, phenylboronic acid (116 mg), palladium acetate (0.61 mg), tris (2-methoxyphenyl) phosphine (3.82 mg), and 20 wt% tetraethylammonium hydroxide aqueous solution (9.6 g) were added. The mixture was stirred for about 13 hours under reflux while further heating in an oil bath.

水層を分液により除去した後に、N,N−ジエチルジチオカルバミド酸ナトリウム三水和物(0.76g)をイオン交換水(15ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。   After removing the aqueous layer by liquid separation, a solution prepared by dissolving sodium N, N-diethyldithiocarbamate trihydrate (0.76 g) in ion-exchanged water (15 ml) was added and heated to 85 ° C. for 2 hours. Stir.

有機層を水層と分離した後、有機層を3.6重量%塩酸(約40ml)で2回、2.5重量%アンモニア水溶液(約40ml)で2回、イオン交換水(約40ml)で5回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約110ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約760ml)に滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、高分子化合物P1(1.8g)を得た。   After separating the organic layer from the aqueous layer, the organic layer was washed twice with 3.6 wt% hydrochloric acid (about 40 ml), twice with 2.5 wt% aqueous ammonia (about 40 ml), and ion-exchanged water (about 40 ml). Washed sequentially 5 times. The organic layer was added dropwise to methanol to precipitate the polymer compound, which was collected by filtration and dried to obtain a solid. This solid is dissolved in toluene (about 110 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 760 ml) to precipitate a polymer compound, which is collected by filtration. Then, the polymer compound P1 (1.8 g) was obtained by drying.

高分子化合物P1のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=7.0×10、Mw=1.8×10であり、ガラス転移温度は155℃であった。高分子化合物P1は、下記の表4に示す単量体の仕込み比により得られていることから、下記の表5に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P1は、複合原料単量体である単量体M1を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P1c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene of the polymer compound P1 are Mn = 7.0 × 10 4 and Mw = 1.8 × 10 5 , and the glass transition temperature is 155 ° C. there were. Since the high molecular compound P1 is obtained by the monomer charge ratio shown in Table 4 below, it has the structural units shown in Table 5 below and their molar ratios. Since the polymer compound P1 is synthesized using the monomer M1 that is a composite raw material monomer, both sides of the structural unit represented by the above formula (1) are always represented by the formula (4). It is a polymer compound having a constituent chain (constituent chain represented by the formula (P1c)) as a unit, and is therefore presumed to have no constituent chain corresponding to the above formula (A).

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

(実施例4:高分子化合物P2の合成)
窒素雰囲気下、単量体CM2(1.526g)、単量体M2(0.3777g)、単量体CM3(0.5973g)、及び単量体CM5(1.060g)と、溶媒となるトルエン(38ml)との混合物を約80℃に加熱した後に、酢酸パラジウム(0.84mg)、トリス(2−メトキシフェニル)ホスフィン(5.28mg)、20重量%テトラエチルアンモニウムヒドロキシド水溶液(13.2g)を加え、オイルバスで更に加熱しながら、還流下で、約4時間攪拌した。
(Example 4: Synthesis of polymer compound P2)
In a nitrogen atmosphere, monomer CM2 (1.526 g), monomer M2 (0.3777 g), monomer CM3 (0.5973 g), monomer CM5 (1.060 g), and toluene as a solvent (38 ml) was heated to about 80 ° C., followed by palladium acetate (0.84 mg), tris (2-methoxyphenyl) phosphine (5.28 mg), 20 wt% tetraethylammonium hydroxide aqueous solution (13.2 g). And stirred for about 4 hours under reflux while further heating in an oil bath.

次に、フェニルボロン酸(185mg)、酢酸パラジウム(0.84mg)、トリス(2−メトキシフェニル)ホスフィン(5.28mg)、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液(13.2g)を加え、オイルバスで更に加熱しながら、還流下で、約17時間攪拌した。   Next, phenylboronic acid (185 mg), palladium acetate (0.84 mg), tris (2-methoxyphenyl) phosphine (5.28 mg), and a 20 wt% tetraethylammonium hydroxide aqueous solution (13.2 g) were added. While further heating in an oil bath, the mixture was stirred for about 17 hours under reflux.

水層を分液により除去した後に、N,N−ジエチルジチオカルバミド酸ナトリウム三水和物(1.05g)をイオン交換水(21ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。   After removing the aqueous layer by liquid separation, a solution prepared by dissolving sodium N, N-diethyldithiocarbamate trihydrate (1.05 g) in ion-exchanged water (21 ml) was added and heated to 85 ° C. for 2 hours. Stir.

トルエン(51ml)を加えてから有機層を水層と分離した後、有機層を3.6重量%塩酸(約40ml)で2回、2.5重量%アンモニア水溶液(約40ml)で2回、イオン交換水(約40ml)で4回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約110ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約760ml)に滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、高分子化合物P2(1.47g)を得た。   After adding toluene (51 ml) and separating the organic layer from the aqueous layer, the organic layer was washed twice with 3.6 wt% hydrochloric acid (about 40 ml), twice with 2.5 wt% aqueous ammonia (about 40 ml), Washing was sequentially performed 4 times with ion-exchanged water (about 40 ml). The organic layer was added dropwise to methanol to precipitate the polymer compound, which was collected by filtration and dried to obtain a solid. This solid is dissolved in toluene (about 110 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 760 ml) to precipitate a polymer compound, which is collected by filtration. Then, the polymer compound P2 (1.47 g) was obtained by drying.

高分子化合物P2のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=7.4×10、Mw=2.0×10であり、ガラス転移温度は168℃であった。高分子化合物P2は、下記の表6に示す単量体の仕込み比により得られていることから、以下の表7に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P2は、複合原料単量体である単量体M2を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P2c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記式(A)に該当する構成連鎖を有さないものであると推定される。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene of the polymer compound P2 are Mn = 7.4 × 10 4 and Mw = 2.0 × 10 5 , and the glass transition temperature is 168 ° C. there were. Since the high molecular compound P2 is obtained by the monomer charging ratio shown in Table 6 below, it has the structural units shown in Table 7 below and their molar ratios. And since the high molecular compound P2 was synthesize | combined using the monomer M2 which is a composite raw material monomer, the both sides of the structural unit shown by said Formula (1) are always shown by Formula (4). It is a polymer compound having a constituent chain (constituent chain represented by the formula (P2c)) as a unit, and is therefore presumed to have no constituent chain corresponding to the above formula (A).

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

(高分子化合物CP1の合成)
窒素雰囲気下、単量体CM2(1.1261g)、単量体CM1(0.2341g)、単量体CM4(0.8747g)、単量体CM3(0.4320g)、及び単量体CM5(0.7665g)と、溶媒となるトルエン(40ml)との混合物を約80℃に加熱した後に、酢酸パラジウム(0.76mg)、トリス(2−メトキシフェニル)ホスフィン(4.77mg)、20重量%テトラエチルアンモニウムヒドロキシド水溶液(12.0g)を加え、オイルバスで更に加熱しながら、還流下で、約4時間攪拌した。
(Synthesis of polymer compound CP1)
In a nitrogen atmosphere, monomer CM2 (1.1261 g), monomer CM1 (0.2341 g), monomer CM4 (0.8747 g), monomer CM3 (0.4320 g), and monomer CM5 ( 0.7665 g) and toluene as a solvent (40 ml) were heated to about 80 ° C., and then palladium acetate (0.76 mg), tris (2-methoxyphenyl) phosphine (4.77 mg), 20% by weight An aqueous tetraethylammonium hydroxide solution (12.0 g) was added, and the mixture was stirred for about 4 hours under reflux while further heating in an oil bath.

次に、フェニルボロン酸(167mg)、酢酸パラジウム(0.76mg)、トリス(2−メトキシフェニル)ホスフィン(4.77mg)、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液(12.0g)を加え、オイルバスで更に加熱しながら、還流下で、約23時間攪拌した。   Next, phenylboronic acid (167 mg), palladium acetate (0.76 mg), tris (2-methoxyphenyl) phosphine (4.77 mg), and 20 wt% tetraethylammonium hydroxide aqueous solution (12.0 g) were added. The mixture was stirred for about 23 hours under reflux while further heating in an oil bath.

水層を分液により除去した後に、N,N−ジエチルジチオカルバミド酸ナトリウム三水和物(0.95g)をイオン交換水(19ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。   After removing the aqueous layer by liquid separation, a solution of sodium N, N-diethyldithiocarbamate trihydrate (0.95 g) in ion-exchanged water (19 ml) was added, and the mixture was heated at 85 ° C. for 2 hours. Stir.

有機層を水層と分離した後、有機層を3.6重量%塩酸(約40ml)で2回、2.5重量%アンモニア水溶液(約40ml)で2回、イオン交換水(約40ml)で4回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約110ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約760ml)に滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、高分子化合物CP1(1.62g)を得た。   After separating the organic layer from the aqueous layer, the organic layer was washed twice with 3.6 wt% hydrochloric acid (about 40 ml), twice with 2.5 wt% aqueous ammonia (about 40 ml), and ion-exchanged water (about 40 ml). Washed sequentially 4 times. The organic layer was added dropwise to methanol to precipitate the polymer compound, which was collected by filtration and dried to obtain a solid. This solid is dissolved in toluene (about 110 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 760 ml) to precipitate a polymer compound, which is collected by filtration. The polymer compound CP1 (1.62 g) was obtained by drying.

高分子化合物CP1のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=9.0×10、Mw=2.8×10であり、ガラス転移温度は154℃であった。高分子化合物CP1は、表8に示す単量体の仕込み比により得られていることから、表9に示す構成単位及びモル比率を有する。そして、各構成単位に対応する原料単量体をそれぞれ別々に用いて重合を行ったことから、上記の式(A)に該当する構成連鎖(式(CP1c)で表される構成連鎖)を含む高分子化合物であると推定される。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene of the polymer compound CP1 are Mn = 9.0 × 10 4 and Mw = 2.8 × 10 5 , and the glass transition temperature is 154 ° C. there were. The polymer compound CP1 has the structural units and molar ratios shown in Table 9 because it is obtained by the monomer charge ratio shown in Table 8. And since the raw material monomer corresponding to each structural unit was separately used for polymerization, the structural chain corresponding to the above formula (A) (the structural chain represented by the formula (CP1c)) is included. Presumed to be a polymer compound.

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

(高分子化合物CP2の合成)
窒素雰囲気下、単量体CM2(1.576g)、単量体CM1(0.3236g)、単量体CM6(0.4418g)、単量体CM3(0.5972g)、及び単量体CM5(1.060g)と、溶媒となるトルエン(34ml)との混合物を約80℃に加熱した後に、酢酸パラジウム(1.05mg)、トリス(2−メトキシフェニル)ホスフィン(6.60mg)、20重量%テトラエチルアンモニウムヒドロキシド水溶液(16.5g)を加え、オイルバスで更に加熱しながら、還流下で、約7時間攪拌した。
(Synthesis of polymer compound CP2)
In a nitrogen atmosphere, monomer CM2 (1.576 g), monomer CM1 (0.3236 g), monomer CM6 (0.4418 g), monomer CM3 (0.5972 g), and monomer CM5 ( 1.060 g) and toluene as a solvent (34 ml) were heated to about 80 ° C., and then palladium acetate (1.05 mg), tris (2-methoxyphenyl) phosphine (6.60 mg), 20% by weight Tetraethylammonium hydroxide aqueous solution (16.5 g) was added, and the mixture was further stirred for about 7 hours under reflux while further heating in an oil bath.

次に、フェニルボロン酸(231mg)、酢酸パラジウム(1.05mg)、トリス(2−メトキシフェニル)ホスフィン(6.60mg)、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液(16.5g)を加え、オイルバスで更に加熱しながら、還流下で、約23時間攪拌した。   Next, phenylboronic acid (231 mg), palladium acetate (1.05 mg), tris (2-methoxyphenyl) phosphine (6.60 mg), and a 20 wt% tetraethylammonium hydroxide aqueous solution (16.5 g) were added, The mixture was stirred for about 23 hours under reflux while further heating in an oil bath.

水層を分液により除去した後に、N,N−ジエチルジチオカルバミド酸ナトリウム三水和物(1.32g)をイオン交換水(26ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。   After the aqueous layer was removed by liquid separation, a solution of sodium N, N-diethyldithiocarbamate trihydrate (1.32 g) in ion-exchanged water (26 ml) was added, and the mixture was heated at 85 ° C. for 2 hours. Stir.

トルエン(56ml)を加えてから有機層を水層と分離した後、有機層を3.6重量%塩酸(約40ml)で2回、2.5重量%アンモニア水溶液(約40ml)で2回、イオン交換水(約40ml)で4回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約110ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約760ml)に滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、高分子化合物CP2(1.46g)を得た。   After adding toluene (56 ml) and separating the organic layer from the aqueous layer, the organic layer was washed twice with 3.6 wt% hydrochloric acid (about 40 ml), twice with 2.5 wt% aqueous ammonia (about 40 ml), Washing was sequentially performed 4 times with ion-exchanged water (about 40 ml). The organic layer was added dropwise to methanol to precipitate the polymer compound, which was collected by filtration and dried to obtain a solid. This solid is dissolved in toluene (about 110 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 760 ml) to precipitate a polymer compound, which is collected by filtration. The polymer compound CP2 (1.46 g) was obtained by drying.

高分子化合物CP2のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=6.7×10、Mw=1.9×10であり、ガラス転移温度は166℃であった。高分子化合物CP1は、下記の表10に示す単量体の仕込み比により得られていることから、下記の表11に示す構成単位及びモル比率を有する。そして、各構成単位に対応する原料単量体をそれぞれ別々に用いて重合を行ったことから、式(A)に該当する上記の式(CP1c)で表される構成連鎖を含む高分子化合物であると推定される。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene of the polymer compound CP2 are Mn = 6.7 × 10 4 and Mw = 1.9 × 10 5 , and the glass transition temperature is 166 ° C. there were. Since the high molecular compound CP1 is obtained by the charging ratio of monomers shown in Table 10 below, it has structural units and molar ratios shown in Table 11 below. And since it polymerized using the raw material monomer corresponding to each structural unit separately, respectively, it is a high molecular compound containing the structural chain represented by said formula (CP1c) corresponding to Formula (A). Presumed to be.

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

(高分子化合物CP3の合成)
窒素雰囲気下、単量体CM7(21.218g)、単量体CM5(5.487g)、単量体CM8(16.377g)、単量体CM9(2.575g)、メチルトリオクチルアンモニウムクロライド(商品名:Aliquat(登録商標)336、アルドリッチ社製)(5.17g)と溶媒となるトルエン(400ml)の混合物を約80℃に加熱した後に、ビストリフェニルホスフィンパラジウムジクロリド(56.2mg)、17.5重量%炭酸ナトリウム水溶液(109ml)を加え、オイルバスで更に加熱しながら、還流下で、約6時間攪拌した。
(Synthesis of polymer compound CP3)
Under nitrogen atmosphere, monomer CM7 (21.218 g), monomer CM5 (5.487 g), monomer CM8 (16.377 g), monomer CM9 (2.575 g), methyltrioctylammonium chloride ( Product name: Aliquat (registered trademark) 336, manufactured by Aldrich) (5.17 g) and toluene (400 ml) serving as a solvent were heated to about 80 ° C., and then bistriphenylphosphine palladium dichloride (56.2 mg), 17 A 5 wt% aqueous sodium carbonate solution (109 ml) was added, and the mixture was further stirred for about 6 hours under reflux while further heating in an oil bath.

次に、フェニルボロン酸(0.49g)、を加え、オイルバスで更に加熱しながら、還流下で、約2時間攪拌した。   Next, phenylboronic acid (0.49 g) was added, and the mixture was stirred for about 2 hours under reflux while further heating in an oil bath.

水層を分液により除去した後に、N,N−ジエチルジチオカルバミド酸ナトリウム三水和物(24.3g)をイオン交換水(240ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。   After removing the aqueous layer by liquid separation, a solution of sodium N, N-diethyldithiocarbamate trihydrate (24.3 g) in ion-exchanged water (240 ml) was added, and the mixture was heated at 85 ° C. for 2 hours. Stir.

有機層を水層と分離した後、有機層をイオン交換水(約520ml)で2回、3重量%酢酸水溶液(約52ml)で2回、イオン交換水(約520ml)で2回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約1240ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約6200ml)に滴下し高分子化合物を沈殿させ、ろ取、乾燥させることにより、高分子化合物CP3(26.23g)を得た。   After separating the organic layer from the aqueous layer, the organic layer was washed with ion-exchanged water (about 520 ml) twice, 3% by weight acetic acid aqueous solution (about 52 ml) twice, and ion-exchanged water (about 520 ml) twice. did. The organic layer was added dropwise to methanol to precipitate the polymer compound, which was collected by filtration and dried to obtain a solid. This solid is dissolved in toluene (about 1240 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 6200 ml) to precipitate a polymer compound, which is collected by filtration. The polymer compound CP3 (26.23 g) was obtained by drying.

高分子化合物CP3のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=7.8×10、Mw=2.6×10であり、ガラス転移温度は115℃であった。この高分子化合物CP3は、表12に示す単量体の仕込み比により得られていることから、以下の表13に示す構成単位及びモル比率を有するポリマーと推定される。かかる高分子化合物CP3は、本発明の高分子化合物の構成単位の組み合わせを有しないものである。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene of the polymer compound CP3 are Mn = 7.8 × 10 4 , Mw = 2.6 × 10 5 , and the glass transition temperature is 115 ° C. there were. Since this high molecular compound CP3 is obtained by the charging ratio of monomers shown in Table 12, it is presumed to be a polymer having the structural units and molar ratios shown in Table 13 below. Such a polymer compound CP3 does not have a combination of structural units of the polymer compound of the present invention.

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

[発光材料の調製]
以下の方法により、発光材料であるイリジウム錯体(EM−A)の合成を行った。係る合成法は、WO02/066552に記載の合成法に従ったものである。
[Preparation of luminescent material]
The iridium complex (EM-A) which is a light emitting material was synthesized by the following method. Such a synthesis method is in accordance with the synthesis method described in WO02 / 066552.

まず、不活性ガス雰囲気下、2−ブロモピリジンと、1.2当量の3−ブロモフェニルボロン酸とのSuzukiカップリング(触媒:テトラキス(トリフェニルホスフィン)パラジウム(0)、塩基:2M炭酸ナトリウム水溶液、溶媒:エタノール、トルエン)により、下記式で表される2−(3'−ブロモフェニル)ピリジンを得た。

Figure 0005859828
First, Suzuki coupling of 2-bromopyridine and 1.2 equivalent of 3-bromophenylboronic acid under an inert gas atmosphere (catalyst: tetrakis (triphenylphosphine) palladium (0), base: 2M aqueous sodium carbonate solution , Solvent: ethanol, toluene), 2- (3′-bromophenyl) pyridine represented by the following formula was obtained.
Figure 0005859828

次に、不活性ガス雰囲気下、トリブロモベンゼンと、2.2当量の4−tert−ブチルフェニルボロン酸とのSuzukiカップリング(触媒:テトラキス(トリフェニルホスフィン)パラジウム(0)、塩基:2M炭酸ナトリウム水溶液、溶媒:エタノール、トルエン)により下記式で表されるブロモ化合物を得た。

Figure 0005859828
Next, Suzuki coupling of tribromobenzene and 2.2 equivalents of 4-tert-butylphenylboronic acid under an inert gas atmosphere (catalyst: tetrakis (triphenylphosphine) palladium (0), base: 2M carbonic acid A bromo compound represented by the following formula was obtained using an aqueous sodium solution and a solvent: ethanol and toluene.
Figure 0005859828

不活性ガス雰囲気下、このブロモ化合物を、無水THFに溶解後、−78℃に冷却し、やや過剰のtert−ブチルリチウムを滴下した。冷却下、B(OCを更に滴下し、室温にて反応させた。得られた反応液を3M塩酸水で後処理して、下記式で表されるボロン酸化合物を得た。

Figure 0005859828
Under an inert gas atmosphere, this bromo compound was dissolved in anhydrous THF, cooled to −78 ° C., and a slight excess of tert-butyllithium was added dropwise. Under cooling, B (OC 4 H 9 ) 3 was further added dropwise and reacted at room temperature. The resulting reaction solution was post-treated with 3M aqueous hydrochloric acid to obtain a boronic acid compound represented by the following formula.
Figure 0005859828

不活性ガス雰囲気下、上記で得た2−(3'−ブロモフェニル)ピリジンと、1.2当量の上記ボロン酸化合物とのSuzukiカップリング(触媒:テトラキス(トリフェニルホスフィン)パラジウム(0)、塩基:2M炭酸ナトリウム水溶液、溶媒:エタノール、トルエン)により、下記式で表される配位子(即ち、配位子となる化合物)を得た。

Figure 0005859828
Under an inert gas atmosphere, Suzuki coupling of 2- (3′-bromophenyl) pyridine obtained above with 1.2 equivalents of the boronic acid compound (catalyst: tetrakis (triphenylphosphine) palladium (0), A ligand represented by the following formula (that is, a compound to be a ligand) was obtained using a base: 2M aqueous sodium carbonate solution, solvent: ethanol, toluene).
Figure 0005859828

アルゴン雰囲気下、上記で得た配位子と、4当量のIrCl3・3H2O、2−エトキシエタノール、イオン交換水を仕込み、還流させた。析出した固体を吸引濾過した。得られた固体をエタノール、イオン交換水の順番で洗浄後、乾燥させ、下記式で表される黄色粉体を得た。

Figure 0005859828
Under an argon atmosphere, the above-obtained ligand, 4 equivalents of IrCl 3 .3H 2 O, 2-ethoxyethanol, and ion-exchanged water were charged and refluxed. The precipitated solid was suction filtered. The obtained solid was washed in the order of ethanol and ion-exchanged water and then dried to obtain a yellow powder represented by the following formula.
Figure 0005859828

そして、アルゴン雰囲気下、上記の黄色粉体に、2当量の上述した配位子を加え、グリコール系溶媒中で加熱することにより、下記式で表されるイリジウム錯体(発光材料EM−A)を得た。

Figure 0005859828
Then, in an argon atmosphere, 2 equivalents of the above-described ligand is added to the yellow powder, and the mixture is heated in a glycol solvent, whereby an iridium complex represented by the following formula (luminescent material EM-A) is obtained. Obtained.
Figure 0005859828

得られたイリジウム錯体の分析結果は、次の通りである。
H NMR (300MHz,CHCl
δ(ppm)=1.38(s,54H)、δ6.93(dd,J=6.3,6.6Hz,3H)、7.04(br,3H)、7.30(d,J=7.9Hz,3H)、7.48(d,J=7.3Hz,12H)、7.61−7.70(m,21H)、7.82(s,6H)、8.01(s,3H)、8.03(d,J=7.9Hz,3H).
LC/MS(APCI posi):[M+H]+1677
The analysis result of the obtained iridium complex is as follows.
1 H NMR (300 MHz, CHCl 3 )
δ (ppm) = 1.38 (s, 54H), δ 6.93 (dd, J = 6.3, 6.6 Hz, 3H), 7.04 (br, 3H), 7.30 (d, J = 7.9 Hz, 3H), 7.48 (d, J = 7.3 Hz, 12H), 7.61-7.70 (m, 21H), 7.82 (s, 6H), 8.01 (s, 3H), 8.03 (d, J = 7.9 Hz, 3H).
LC / MS (APCI posi): [M + H] +1677

[発光素子の作製]
上記で得られた高分子化合物及び発光材料を用いて組成物及びその溶液を調製し、それらを用いて各種の発光素子を作製した。
[Production of light-emitting element]
A composition and a solution thereof were prepared using the polymer compound and the light-emitting material obtained above, and various light-emitting elements were produced using them.

(実施例5)
<組成物MP1及びその溶液の調製>
高分子化合物P1及び発光材料EM−Aを重量比70:30で混合してなる組成物MP1を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.8重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP1の1.8重量%キシレン溶液」と言う。
(Example 5)
<Preparation of composition MP1 and its solution>
A composition MP1 obtained by mixing the polymer compound P1 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid content concentration of 1.8% by weight. It was made to melt | dissolve. The solution thus obtained is hereinafter referred to as “1.8 wt% xylene solution of composition MP1”.

<発光素子DP1の作製>
スパッタ法により45nmの厚みでITO膜を付けたガラス基板に、ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(H.C.Stark社製、商品名:CLEVIOS P AI4083、以下、「CLEVIOS P」と言う)を用いてスピンコートにより65nmの厚みで成膜し、ホットプレート上で、200℃で10分間乾燥させた。次に、高分子化合物CP3の0.7重量%キシレン溶液を用いて、スピンコートにより3000rpmの回転速度で成膜し、窒素ガス雰囲気化ホットプレート上で180℃で60分間乾燥させた。この膜厚は約20nmであった。
<Production of Light-Emitting Element DP1>
Poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid solution (manufactured by HC Stark, trade name: CLEVIOS P AI4083, below) on a glass substrate on which an ITO film having a thickness of 45 nm was formed by sputtering. , Referred to as “CLEVIOS P”) by spin coating to a thickness of 65 nm and dried on a hot plate at 200 ° C. for 10 minutes. Next, a 0.7 wt% xylene solution of the polymer compound CP3 was used to form a film by spin coating at a rotation speed of 3000 rpm, and dried at 180 ° C. for 60 minutes on a nitrogen gas atmosphere hot plate. This film thickness was about 20 nm.

次に、組成物MP1の1.8重量%キシレン溶液を用いてスピンコートにより1220rpmの回転速度で成膜した。その膜厚は約80nmであった。これを窒素ガス雰囲気下ホットプレート上で180℃で10分間乾燥させた後、陰極としてバリウムを約5nm、次いでアルミニウムを約120nm蒸着して、発光素子DP1を作製した。なお、金属の蒸着は、真空度が1×10-4Pa以下に到達した後に開始した。 Next, a 1.8 wt% xylene solution of composition MP1 was used to form a film at a rotational speed of 1220 rpm by spin coating. The film thickness was about 80 nm. This was dried on a hot plate under a nitrogen gas atmosphere at 180 ° C. for 10 minutes, and then barium was vapor-deposited at about 5 nm and then aluminum was vapor-deposited at about 120 nm as a cathode, thereby producing a light emitting device DP1. The metal deposition was started after the degree of vacuum reached 1 × 10 −4 Pa or less.

得られた発光素子DP1の素子構成は、ITO(陽極)/CLEVIOS P(正孔注入層、65nm)/高分子化合物CP3(正孔輸送層)/組成物MP1(発光層)/Ba(5nm)/Al(120nm)(Ba及びAlを合わせて陰極)となる。   The element structure of the obtained light emitting element DP1 is ITO (anode) / CLEVIOS P (hole injection layer, 65 nm) / polymer compound CP3 (hole transport layer) / composition MP1 (light emitting layer) / Ba (5 nm). / Al (120 nm) (Ba and Al together are cathode).

<特性評価>
得られた発光素子DP1に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は41cd/Aであり、そのときの電圧は7.6Vであった。輝度1000cd/mでの駆動電圧は6.6Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は38cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は48.7時間であり、輝度半減寿命は466時間であった。
<Characteristic evaluation>
When voltage was applied to the resultant light emitting device DP1, green light emission having a peak wavelength (EL) of 520 nm was exhibited. The maximum luminous efficiency was 41 cd / A, and the voltage at that time was 7.6V. The driving voltage at a luminance of 1000 cd / m 2 is 6.6 V, and the chromaticity coordinates C.I. I. E. 1931 was (x, y) = (0.31, 0.64), and the light emission efficiency at that time was 38 cd / A. When the initial luminance was set to 8000 cd / m 2 and driving at constant current was performed, the time required to reduce the luminance by 20% was 48.7 hours, and the luminance half life was 466 hours.

(比較例1)
<組成物MCP1及びその溶液の調製>
高分子化合物CP1と発光材料EM−Aとを重量比70:30で混合してなる組成物MCP1を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.8重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MCP1の1.8重量%キシレン溶液」と言う。
(Comparative Example 1)
<Preparation of composition MCP1 and its solution>
A composition MCP1 obtained by mixing the polymer compound CP1 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid concentration of 1.8 wt. % Was dissolved. The solution thus obtained is hereinafter referred to as “1.8 wt% xylene solution of composition MCP1”.

<発光素子DCP1の作製>
実施例5における組成物MP1の1.8重量%キシレン溶液に代えて、組成物MCP1の1.8重量%キシレン溶液を用い、さらにスピンコートの回転数を1220rpmから1800rpmに変更したこと以外は、実施例5と同様にして、発光素子DCP1を作製した。
<Production of Light-Emitting Element DCP1>
In place of the 1.8 wt% xylene solution of the composition MP1 in Example 5 instead of using the 1.8 wt% xylene solution of the composition MCP1, and further changing the spin coating speed from 1220 rpm to 1800 rpm, A light emitting device DCP1 was produced in the same manner as in Example 5.

<特性評価>
得られた発光素子DCP1に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は42cd/Aであり、そのときの電圧は8.4Vであった。輝度1000cd/mでの駆動電圧は6.7Vであり、色度座標C.I.E.1931は(x,y)=(0.308,0.637)であり、そのときの発光効率は40cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は40.2時間であり、輝度半減寿命は393時間であった。
<Characteristic evaluation>
When voltage was applied to the obtained light-emitting element DCP1, green light emission having a peak wavelength (EL) of 520 nm was exhibited. The maximum luminous efficiency was 42 cd / A, and the voltage at that time was 8.4V. The driving voltage at a luminance of 1000 cd / m 2 is 6.7 V, and the chromaticity coordinates C.I. I. E. 1931 was (x, y) = (0.308, 0.637), and the light emission efficiency at that time was 40 cd / A. When the initial luminance was set to 8000 cd / m 2 and driving at constant current was performed, the time required to reduce the luminance by 20% was 40.2 hours, and the luminance half life was 393 hours.

(DP1とDCP1との対比)
実施例5で得た発光素子DP1及び比較例1で得た発光素子DCP1でそれぞれ得られた、最大発光効率と輝度20%減までに要した時間を比較した。「輝度20%減までに要した時間」の結果は、発光素子による輝度が経時的に低下する度合いを示す指標となる値である。この値が小さいほど、輝度が低下し難い、すなわち輝度安定性に優れることを意味し、発光素子が長寿命であることを示している。下記の表14には、DCP1で得られた結果を1としたときの、DP1で得られた結果の相対値を示した。

Figure 0005859828
(Contrast between DP1 and DCP1)
The maximum light emission efficiency and the time required to reduce the luminance by 20% were compared for the light emitting device DP1 obtained in Example 5 and the light emitting device DCP1 obtained in Comparative Example 1, respectively. The result of “time required to reduce luminance by 20%” is a value serving as an index indicating the degree of decrease in luminance due to the light emitting element over time. A smaller value means that the luminance is less likely to decrease, that is, the luminance stability is excellent, indicating that the light-emitting element has a long lifetime. Table 14 below shows the relative values of the results obtained with DP1 when the result obtained with DCP1 is 1.
Figure 0005859828

実施例5で得た発光素子DP1に用いた高分子化合物P1は、比較例1で得た発光素子DCP1に用いた高分子化合物CP1と同様の構成単位を有するものであるが、上記の式(A)で表される構成連鎖を有さない点で相違するものである。そして、実施例5で得た発光素子DP1は、比較例1で得た発光素子DCP1に比べると、同程度の最大発光効率が得られるほか、輝度20%減までに要する時間が極めて長いことから、輝度安定性に優れていることが判明した。   The polymer compound P1 used for the light emitting device DP1 obtained in Example 5 has the same structural unit as the polymer compound CP1 used for the light emitting device DCP1 obtained in Comparative Example 1, but the above formula ( A is different in that it does not have the structural chain represented by A). The light-emitting element DP1 obtained in Example 5 has the same maximum luminous efficiency as the light-emitting element DCP1 obtained in Comparative Example 1, and the time required to reduce the luminance by 20% is extremely long. It was found that the luminance stability was excellent.

(実施例6)
<組成物MP2及びその溶液の調製>
高分子化合物P2と発光材料EM−Aとを重量比70:30で混合してなる組成物MP2を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.8重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP2の1.8重量%キシレン溶液」と言う。
(Example 6)
<Preparation of composition MP2 and its solution>
A composition MP2 obtained by mixing the polymer compound P2 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid content concentration of 1.8 wt. % Was dissolved. The solution thus obtained is hereinafter referred to as “1.8 wt% xylene solution of composition MP2”.

(発光素子DP2の作製)
実施例5における、組成物MP1の1.8重量%キシレン溶液に代えて、組成物MP2の1.8重量%キシレン溶液を用い、さらにスピンコートの回転数を1220rpmから1830rpmに変更したこと以外は、実施例5と同様にして、発光素子DP2を作製した。
(Production of light emitting element DP2)
Instead of the 1.8 wt% xylene solution of composition MP1 in Example 5, a 1.8 wt% xylene solution of composition MP2 was used, and the spin coat rotation speed was changed from 1220 rpm to 1830 rpm. A light emitting device DP2 was fabricated in the same manner as in Example 5.

<特性評価>
得られた発光素子DP2に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は30cd/Aであり、そのときの電圧は7.6Vであった。輝度1000cd/mでの駆動電圧は6.3Vであり、色度座標C.I.E.1931は(x,y)=(0.309,0.636)であり、そのときの発光効率は27cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は17.9時間であり、輝度半減寿命は118時間であった。
<Characteristic evaluation>
When voltage was applied to the obtained light emitting device DP2, green light emission with a peak wavelength (EL) of 520 nm was exhibited. The maximum luminous efficiency was 30 cd / A, and the voltage at that time was 7.6V. The driving voltage at a luminance of 1000 cd / m 2 is 6.3 V, and the chromaticity coordinates C.I. I. E. 1931 was (x, y) = (0.309, 0.636), and the light emission efficiency at that time was 27 cd / A. When the initial luminance was set to 8000 cd / m 2 and driving at constant current was performed, the time required to reduce the luminance by 20% was 17.9 hours, and the luminance half-life was 118 hours.

(比較例2)
<組成物MCP2及びその溶液の調製>
高分子化合物CP2と発光材料EM−Aとを重量比70:30で混合してなる組成物MCP2を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.8重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MCP2の1.8重量%キシレン溶液」と言う。
(Comparative Example 2)
<Preparation of composition MCP2 and its solution>
A composition MCP2 obtained by mixing the polymer compound CP2 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid concentration of 1.8 wt. % Was dissolved. The solution thus obtained is hereinafter referred to as “a 1.8 wt% xylene solution of the composition MCP2”.

<発光素子DCP2の作製>
実施例5における、組成物MP1の1.8重量%キシレン溶液に代えて、組成物MCP2の1.8重量%キシレン溶液を用い、さらにスピンコートの回転数を1220rpmから1840rpmに変更したこと以外は、実施例5と同様にして、発光素子DCP2を作製した。
<Production of Light-Emitting Element DCP2>
Instead of the 1.8 wt% xylene solution of composition MP1 in Example 5, a 1.8 wt% xylene solution of composition MCP2 was used, and the spin coat rotation speed was changed from 1220 rpm to 1840 rpm. A light emitting device DCP2 was fabricated in the same manner as in Example 5.

<特性評価>
発光素子DCP2に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は32cd/Aであり、そのときの電圧は7.6Vであった。輝度1000cd/mでの駆動電圧は6.4Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は30cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は12.4時間であり、輝度半減寿命は107時間であった。
(DP2とDCP2との対比)
<Characteristic evaluation>
When voltage was applied to the light emitting element DCP2, green light emission with a peak wavelength (EL) of 520 nm was exhibited. The maximum luminous efficiency was 32 cd / A, and the voltage at that time was 7.6V. The driving voltage at a luminance of 1000 cd / m 2 is 6.4 V, and the chromaticity coordinates C.I. I. E. 1931 was (x, y) = (0.31, 0.64), and the light emission efficiency at that time was 30 cd / A. When the initial luminance was set to 8000 cd / m 2 and driving at constant current, the time required to reduce the luminance by 20% was 12.4 hours and the luminance half life was 107 hours.
(Contrast of DP2 and DCP2)

実施例6で得た発光素子DP2及び比較例2で得た発光素子DCP2でそれぞれ得られた、最大発光効率と輝度20%減までに要した時間を比較した。表15には、DCP2で得られた結果を1としたときの、DP2で得られた結果の相対値を示した。

Figure 0005859828
The maximum light emission efficiency and the time required to reduce the luminance by 20% respectively obtained by the light emitting element DP2 obtained in Example 6 and the light emitting element DCP2 obtained in Comparative Example 2 were compared. Table 15 shows the relative values of the results obtained with DP2 when the result obtained with DCP2 is 1.
Figure 0005859828

実施例6で得た発光素子DP2に用いた高分子化合物P2は、比較例2で得た発光素子DCP2に用いた高分子化合物CP2と同様の構成単位を有するものであるが、上記の式(A)で表される構成連鎖を有さない点で相違するものである。そして、実施例6で得た発光素子DP2は、比較例2で得た発光素子DCP2に比べると、同程度の最大発光効率が得られるほか、輝度20%減までに要する時間が極めて長いことから、輝度安定性に優れていることが判明した。   The polymer compound P2 used in the light-emitting device DP2 obtained in Example 6 has the same structural unit as the polymer compound CP2 used in the light-emitting device DCP2 obtained in Comparative Example 2, but the above formula ( A is different in that it does not have the structural chain represented by A). The light emitting element DP2 obtained in Example 6 has the same maximum light emission efficiency as the light emitting element DCP2 obtained in Comparative Example 2, and the time required to reduce the luminance by 20% is extremely long. It was found that the luminance stability was excellent.

[高分子化合物の製造]
(実施例7:高分子化合物P3の合成)
窒素ガス雰囲気下、単量体CM10(1.0245g)、単量体CM4(0.3785g)、単量体M1(1.0743g)、単量体CM3(0.3732g)、及び、トルエン46mlを混合してモノマー溶液を調製した。窒素ガス雰囲気下、モノマー溶液を加熱し、酢酸パラジウム0.5mg、トリス(2−メトキシフェニル)ホスフィン2.9mgを加えた後、100℃で20重量%テトラエチルアンモニウムヒドロキシド水溶液6.9mlを20分間かけて滴下した。テトラエチルアンモニウムヒドロキシド水溶液の滴下開始から4.5時間、100℃で攪拌した。次に、得られた溶液に、フェニルボロン酸113.9mg、酢酸パラジウム0.5mg、トリス(2−メトキシフェニル)ホスフィン2.9mg、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液6.9mlを追加して、更に17.5時間攪拌した。
[Production of polymer compounds]
(Example 7: Synthesis of polymer compound P3)
In a nitrogen gas atmosphere, monomer CM10 (1.0245 g), monomer CM4 (0.3785 g), monomer M1 (1.0743 g), monomer CM3 (0.3732 g), and 46 ml of toluene were added. A monomer solution was prepared by mixing. In a nitrogen gas atmosphere, the monomer solution is heated, 0.5 mg of palladium acetate and 2.9 mg of tris (2-methoxyphenyl) phosphine are added, and then 6.9 ml of a 20 wt% tetraethylammonium hydroxide aqueous solution is added at 100 ° C. for 20 minutes. It was dripped over. It stirred at 100 degreeC for 4.5 hours from the dripping start of tetraethylammonium hydroxide aqueous solution. Next, 113.9 mg of phenylboronic acid, 0.5 mg of palladium acetate, 2.9 mg of tris (2-methoxyphenyl) phosphine, and 6.9 ml of a 20 wt% tetraethylammonium hydroxide aqueous solution were added to the obtained solution. The mixture was further stirred for 17.5 hours.

反応溶液から水層を除いた後、N,N−ジエチルジチオカルバミド酸ナトリウム三水和物0.58g、及び、イオン交換水12mlを加え、85℃で2時間攪拌した。得られた溶液において、有機層を水層と分離した後、有機層を3.6重量%塩酸(2回)、2.5重量%アンモニア水溶液(2回)、イオン交換水(4回)の順番で洗浄した。   After removing the aqueous layer from the reaction solution, 0.58 g of sodium N, N-diethyldithiocarbamate trihydrate and 12 ml of ion-exchanged water were added and stirred at 85 ° C. for 2 hours. In the obtained solution, the organic layer was separated from the aqueous layer, and then the organic layer was added with 3.6 wt% hydrochloric acid (twice), 2.5 wt% aqueous ammonia solution (twice), and ion-exchanged water (four times). Washed in order.

有機層をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させ、固体を得た。この固体をトルエンに溶解させ、あらかじめトルエンを通液したシリカゲル/アルミナカラムに溶液を通液し、通液された溶出液をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させることにより、高分子化合物P3を得た。高分子化合物P3の収量は1.623gであった。   When the organic layer was added dropwise to methanol, a solid precipitated. This solid was filtered and dried to obtain a solid. When this solid was dissolved in toluene, the solution was passed through a silica gel / alumina column through which toluene was passed in advance, and the passed eluate was dropped into methanol, whereby a solid was precipitated. The solid was filtered and then dried to obtain a polymer compound P3. The yield of the polymer compound P3 was 1.623 g.

高分子化合物P3のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=1.0×10、Mw=2.4×10であり、ガラス転移温度は101℃であった。高分子化合物P3は、下記の表16に示す単量体の仕込み比により得られていることから、下記の表17に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P3は、複合原料単量体である単量体M1を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P1c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene of the polymer compound P3 are Mn = 1.0 × 10 4 and Mw = 2.4 × 10 4 , and the glass transition temperature is 101 ° C. there were. Since the high molecular compound P3 is obtained by the monomer charge ratio shown in Table 16 below, it has the structural units shown in Table 17 below and their molar ratios. Since the polymer compound P3 is synthesized using the monomer M1, which is a composite raw material monomer, both sides of the structural unit represented by the above formula (1) are always represented by the formula (4). It is a polymer compound having a constituent chain (constituent chain represented by the formula (P1c)) as a unit, and is therefore presumed to have no constituent chain corresponding to the above formula (A).

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

(実施例8:高分子化合物P4の合成)
窒素ガス雰囲気下、単量体CM10(0.8985g)、単量体M1(1.4655g)、単量体CM3(0.3820g)、及び、トルエン47mlを混合してモノマー溶液を調製した。窒素ガス雰囲気下、モノマー溶液を加熱し、酢酸パラジウム0.4mg、トリス(2−メトキシフェニル)ホスフィン2.6mgを加えた後、100℃で20重量%テトラエチルアンモニウムヒドロキシド水溶液6.1mlを30分間かけて滴下した。テトラエチルアンモニウムヒドロキシド水溶液の滴下開始から4.5時間、100℃で攪拌した。次に、得られた溶液に、フェニルボロン酸111.0mg、酢酸パラジウム0.4mg、トリス(2−メトキシフェニル)ホスフィン2.6mg、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液6.1mlを追加して、更に16.5時間攪拌した。
(Example 8: Synthesis of polymer compound P4)
In a nitrogen gas atmosphere, monomer CM10 (0.8985 g), monomer M1 (1.4655 g), monomer CM3 (0.3820 g), and 47 ml of toluene were mixed to prepare a monomer solution. Under a nitrogen gas atmosphere, the monomer solution is heated, 0.4 mg of palladium acetate and 2.6 mg of tris (2-methoxyphenyl) phosphine are added, and then 6.1 ml of a 20 wt% tetraethylammonium hydroxide aqueous solution is added at 100 ° C. for 30 minutes. It was dripped over. It stirred at 100 degreeC for 4.5 hours from the dripping start of tetraethylammonium hydroxide aqueous solution. Next, 111.0 mg of phenylboronic acid, 0.4 mg of palladium acetate, 2.6 mg of tris (2-methoxyphenyl) phosphine, and 6.1 ml of 20 wt% tetraethylammonium hydroxide aqueous solution were added to the obtained solution. The mixture was further stirred for 16.5 hours.

反応溶液から水層を除いた後、N,N−ジエチルジチオカルバミド酸ナトリウム三水和物0.51g、及び、イオン交換水10mlを加え、85℃で5.5時間攪拌した。得られた溶液において、有機層を水層と分離した後、有機層を3.6重量%塩酸(2回)、2.5重量%アンモニア水溶液(2回)、イオン交換水(4回)の順番で洗浄した。   After removing the aqueous layer from the reaction solution, 0.51 g of sodium N, N-diethyldithiocarbamate trihydrate and 10 ml of ion-exchanged water were added and stirred at 85 ° C. for 5.5 hours. In the obtained solution, the organic layer was separated from the aqueous layer, and then the organic layer was added with 3.6 wt% hydrochloric acid (twice), 2.5 wt% aqueous ammonia solution (twice), and ion-exchanged water (four times). Washed in order.

有機層をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させ、固体を得た。この固体をトルエンに溶解させ、あらかじめトルエンを通液したシリカゲル/アルミナカラムに溶液を通液し、通液された溶出液をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させて、高分子化合物P4を得た。高分子化合物P4の収量は1.643gであった。   When the organic layer was added dropwise to methanol, a solid precipitated. This solid was filtered and dried to obtain a solid. When this solid was dissolved in toluene, the solution was passed through a silica gel / alumina column through which toluene was passed in advance, and the passed eluate was dropped into methanol, whereby a solid was precipitated. This solid was filtered and dried to obtain a polymer compound P4. The yield of the polymer compound P4 was 1.443 g.

高分子化合物P4のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=8.8×10、Mw=2.3×10であり、ガラス転移温度は110℃であった。高分子化合物P4は、下記の表18に示す単量体の仕込み比により得られていることから、下記の表19に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P4は、複合原料単量体である単量体M1を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P1c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene of the polymer compound P4 are Mn = 8.8 × 10 3 and Mw = 2.3 × 10 4 , and the glass transition temperature is 110 ° C. there were. Since the high molecular compound P4 is obtained by the monomer charging ratio shown in Table 18 below, it has the structural units shown in Table 19 below and their molar ratios. Since the polymer compound P4 is synthesized using the monomer M1, which is a composite raw material monomer, both sides of the structural unit represented by the above formula (1) are always represented by the formula (4). It is a polymer compound having a constituent chain (constituent chain represented by the formula (P1c)) as a unit, and is therefore presumed to have no constituent chain corresponding to the above formula (A).

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

(実施例9:高分子化合物P5の合成)
窒素ガス雰囲気下、単量体CM10(1.4949g)、単量体M2(0.3016g)、単量体CM3(0.3813g)、及び、トルエン42mlを混合してモノマー溶液を調製した。窒素ガス雰囲気下、このモノマー溶液を加熱し、そこに、酢酸パラジウム0.7mg、トリス(2−メトキシフェニル)ホスフィン4.2mgを加えた後、100℃で20重量%テトラエチルアンモニウムヒドロキシド水溶液10.2mlを滴下した。テトラエチルアンモニウムヒドロキシド水溶液の滴下開始から5時間、100℃で攪拌した。次に、得られた溶液に、フェニルボロン酸36.9mg、酢酸パラジウム0.7mg、トリス(2−メトキシフェニル)ホスフィン4.2mg、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液10.2mlを追加して、更に約18時間攪拌した。
(Example 9: Synthesis of polymer compound P5)
In a nitrogen gas atmosphere, monomer CM10 (1.4949 g), monomer M2 (0.3016 g), monomer CM3 (0.3813 g), and 42 ml of toluene were mixed to prepare a monomer solution. Under a nitrogen gas atmosphere, this monomer solution was heated, and 0.7 mg of palladium acetate and 4.2 mg of tris (2-methoxyphenyl) phosphine were added thereto, and then 20 wt% tetraethylammonium hydroxide aqueous solution at 100 ° C. 2 ml was added dropwise. It stirred at 100 degreeC for 5 hours from the dripping start of tetraethylammonium hydroxide aqueous solution. Next, 36.9 mg of phenylboronic acid, 0.7 mg of palladium acetate, 4.2 mg of tris (2-methoxyphenyl) phosphine, and 10.2 ml of a 20 wt% tetraethylammonium hydroxide aqueous solution were added to the obtained solution. The mixture was further stirred for about 18 hours.

反応溶液から水層を除いた後、そこに、N,N−ジエチルジチオカルバミド酸ナトリウム三水和物0.84g、及び、イオン交換水17mlを加え、85℃で5時間攪拌した。得られた溶液において、有機層を水層と分離した後、有機層を3.6重量%塩酸(2回)、2.5重量%アンモニア水溶液(2回)、イオン交換水(6回)の順番で洗浄した。   After removing the aqueous layer from the reaction solution, 0.84 g of sodium N, N-diethyldithiocarbamate trihydrate and 17 ml of ion-exchanged water were added thereto and stirred at 85 ° C. for 5 hours. In the obtained solution, the organic layer was separated from the aqueous layer, and then the organic layer was added with 3.6 wt% hydrochloric acid (twice), 2.5 wt% aqueous ammonia solution (twice), and ion-exchanged water (6 times). Washed in order.

有機層をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後乾燥させ固体を得た。この固体をトルエンに溶解させ、あらかじめトルエンを通液したシリカゲル/アルミナカラムに溶液を通液し、通液された溶出液をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させて、高分子化合物P5を得た。高分子化合物P5の収量は1.145gであった。   When the organic layer was added dropwise to methanol, a solid precipitated. This solid was filtered and dried to obtain a solid. When this solid was dissolved in toluene, the solution was passed through a silica gel / alumina column through which toluene was passed in advance, and the passed eluate was dropped into methanol, whereby a solid was precipitated. This solid was filtered and dried to obtain a polymer compound P5. The yield of the polymer compound P5 was 1.145 g.

高分子化合物P5のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=2.0×105、Mw=1.3×106であり、ガラス転移温度は91℃であった。高分子化合物P5は、下記の表20に示す単量体の仕込み比により得られていることから、下記の表21に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P5は、複合原料単量体である単量体M2を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P2c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene of the polymer compound P5 are Mn = 2.0 × 10 5 and Mw = 1.3 × 10 6 , and the glass transition temperature is 91 ° C. there were. Since the high molecular compound P5 is obtained by the monomer charging ratio shown in Table 20 below, it has the structural units shown in Table 21 below and their molar ratios. Since the polymer compound P5 is synthesized using the monomer M2 that is a composite raw material monomer, both sides of the structural unit represented by the above formula (1) are always represented by the formula (4). It is a polymer compound having a constituent chain (constituent chain represented by the formula (P2c)) as a unit, and is therefore presumed to have no constituent chain corresponding to the formula (A).

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

(実施例10:高分子化合物P6の合成)
窒素ガス雰囲気下、単量体CM10(0.2492g)、単量体CM4(0.1289g)、単量体M2(0.0402g)、単量体CM3(0.0763g)、単量体CM11(0.1256g)、及び、トルエン10mlを混合してモノマー溶液を調製した。窒素ガス雰囲気下、このモノマー溶液を加熱し、そこに、酢酸パラジウム0.2mg、トリス(2−メトキシフェニル)ホスフィン1.4mgを加えた後、100℃で20重量%テトラエチルアンモニウムヒドロキシド水溶液2.5mlを加えた。テトラエチルアンモニウムヒドロキシド水溶液の滴下開始から4.5時間、100℃で攪拌した。次に、得られた溶液に、フェニルボロン酸12.2mg、酢酸パラジウム0.2mg、トリス(2−メトキシフェニル)ホスフィン1.4mg、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液2.5mlを追加して、更に14時間攪拌した。
(Example 10: Synthesis of polymer compound P6)
In a nitrogen gas atmosphere, monomer CM10 (0.2492 g), monomer CM4 (0.1289 g), monomer M2 (0.0402 g), monomer CM3 (0.0763 g), monomer CM11 ( 0.1256 g) and 10 ml of toluene were mixed to prepare a monomer solution. Under a nitrogen gas atmosphere, the monomer solution was heated, and 0.2 mg of palladium acetate and 1.4 mg of tris (2-methoxyphenyl) phosphine were added thereto, and then a 20 wt% tetraethylammonium hydroxide aqueous solution at 100 ° C. 5 ml was added. It stirred at 100 degreeC for 4.5 hours from the dripping start of tetraethylammonium hydroxide aqueous solution. Next, 12.2 mg of phenylboronic acid, 0.2 mg of palladium acetate, 1.4 mg of tris (2-methoxyphenyl) phosphine, and 2.5 ml of 20 wt% tetraethylammonium hydroxide aqueous solution were added to the obtained solution. The mixture was further stirred for 14 hours.

反応溶液から水層を除いた後、そこに、N,N−ジエチルジチオカルバミド酸ナトリウム三水和物0.14g、及び、イオン交換水2.7mlを加え、85℃で2時間攪拌した。得られた溶液において、有機層を水層と分離した後、有機層を3.6重量%塩酸(2回)、2.5重量%アンモニア水溶液(2回)、イオン交換水(4回)の順番で洗浄した。   After removing the aqueous layer from the reaction solution, 0.14 g of sodium N, N-diethyldithiocarbamate trihydrate and 2.7 ml of ion-exchanged water were added thereto, followed by stirring at 85 ° C. for 2 hours. In the obtained solution, the organic layer was separated from the aqueous layer, and then the organic layer was added with 3.6 wt% hydrochloric acid (twice), 2.5 wt% aqueous ammonia solution (twice), and ion-exchanged water (four times). Washed in order.

有機層をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後乾燥させ固体を得た。この固体をトルエンに溶解させ、あらかじめトルエンを通液したシリカゲル/アルミナカラムに溶液を通液し、通液された溶出液をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させて、高分子化合物P6を得た。高分子化合物P6の収量は0.346gであった。   When the organic layer was added dropwise to methanol, a solid precipitated. This solid was filtered and dried to obtain a solid. When this solid was dissolved in toluene, the solution was passed through a silica gel / alumina column through which toluene was passed in advance, and the passed eluate was dropped into methanol, whereby a solid was precipitated. This solid was filtered and dried to obtain a polymer compound P6. The yield of the polymer compound P6 was 0.346 g.

高分子化合物P6のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=6.6×10、Mw=2.0×10であった。高分子化合物P6は、下記の表22に示す単量体の仕込み比により得られていることから、下記の表23に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P6は、複合原料単量体である単量体M2を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P2c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。 The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene of the polymer compound P6 were Mn = 6.6 × 10 4 and Mw = 2.0 × 10 5 . Since the high molecular compound P6 is obtained by the monomer charge ratio shown in Table 22 below, it has the structural units shown in Table 23 below and their molar ratios. Since the polymer compound P6 is synthesized using the monomer M2 that is a composite raw material monomer, both sides of the structural unit represented by the above formula (1) are always represented by the formula (4). It is a polymer compound having a constituent chain (constituent chain represented by the formula (P2c)) as a unit, and is therefore presumed to have no constituent chain corresponding to the formula (A).

Figure 0005859828
Figure 0005859828

Figure 0005859828
Figure 0005859828

[発光素子の作製]
上記で得られた高分子化合物及び発光材料を用いて組成物及びその溶液を調製し、それらを用いて各種の発光素子を作製した。
[Production of light-emitting element]
A composition and a solution thereof were prepared using the polymer compound and the light-emitting material obtained above, and various light-emitting elements were produced using them.

(実施例11)
<組成物MP3及びその溶液の調製>
高分子化合物P3の3.0重量%キシレン溶液及び発光材料EM−Aを重量比70:30で混合してなる組成物MP3を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.6重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP3の1.6重量%キシレン溶液」と言う。
(Example 11)
<Preparation of composition MP3 and its solution>
A composition MP3 obtained by mixing a 3.0% by weight xylene solution of the polymer compound P3 and a light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Inc., grade for electronic industry) in an all solid state. It was dissolved so that the partial concentration was 1.6% by weight. The solution thus obtained is hereinafter referred to as “1.6 wt% xylene solution of composition MP3”.

<発光素子DP3の作製>
スパッタ法により45nmの厚みでITO膜を付けたガラス基板に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ−1200(Plextronics社製)を用いてスピンコートにより65nmの厚みで成膜し、ホットプレート上で、170℃、15分間乾燥させた。次に、高分子化合物CP3の0.7重量%キシレン溶液を用いて、スピンコートにより1890rpmの回転速度で成膜し、窒素ガス雰囲気化ホットプレート上で180℃で60分間乾燥させた。この膜厚は約20nmであった。
<Production of Light-Emitting Element DP3>
On a glass substrate with an ITO film having a thickness of 45 nm formed by sputtering, a film having a thickness of 65 nm is formed by spin coating using AQ-1200 (manufactured by Plextronics), which is a polythiophene / sulfonic acid-based hole injecting agent. It was dried at 170 ° C. for 15 minutes on a hot plate. Next, a 0.7 wt% xylene solution of the polymer compound CP3 was used to form a film by spin coating at a rotational speed of 1890 rpm, and dried at 180 ° C. for 60 minutes on a nitrogen gas atmosphere hot plate. This film thickness was about 20 nm.

次に、組成物MP3の1.6重量%キシレン溶液を用いてスピンコートにより2020rpmの回転速度で成膜した。その膜厚は約80nmであった。これを酸素濃度及び水分濃度が10ppm以下(重量基準)の窒素雰囲気下で、130℃、10分間乾燥させ発光層とした。1.0×10−4Pa以下にまで減圧した後、陰極として、組成物MP3膜上にフッ化ナトリウムを約3nm、次いでアルミニウムを約80nm蒸着して、発光素子DP3を作製した。 Next, a 1.6 wt% xylene solution of composition MP3 was used to form a film at a rotation speed of 2020 rpm by spin coating. The film thickness was about 80 nm. This was dried at 130 ° C. for 10 minutes in a nitrogen atmosphere having an oxygen concentration and a water concentration of 10 ppm or less (weight basis) to obtain a light emitting layer. After reducing the pressure to 1.0 × 10 −4 Pa or less, sodium fluoride was deposited on the composition MP3 film at about 3 nm and then aluminum was deposited at about 80 nm as a cathode to produce a light emitting device DP3.

得られた発光素子DP3の素子構成は、ITO(陽極)/AQ−1200(正孔注入層、65nm)/高分子化合物CP3(正孔輸送層)/組成物MP3(発光層)/NaF(3nm)/Al(80nm)(NaF及びAlを合わせて陰極)となる。   The element structure of the obtained light emitting element DP3 is ITO (anode) / AQ-1200 (hole injection layer, 65 nm) / polymer compound CP3 (hole transport layer) / composition MP3 (light emitting layer) / NaF (3 nm). ) / Al (80 nm) (NaF and Al together are cathode).

<特性評価>
得られた発光素子DP3について、0Vから12Vまで電圧して素子を発光させ、発光輝度、効率、色度を測定したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は40cd/Aであり、そのときの電圧は8.2Vであった。輝度1000cd/mでの駆動電圧は6.0Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.63)であり、そのときの発光効率は37cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は73.1時間であり、輝度半減寿命は663時間であった。結果を表24に示す。
<Characteristic evaluation>
With respect to the obtained light emitting device DP3, the device was made to emit light by applying voltage from 0 V to 12 V, and the light emission luminance, efficiency, and chromaticity were measured. The maximum luminous efficiency was 40 cd / A, and the voltage at that time was 8.2V. The driving voltage at a luminance of 1000 cd / m 2 is 6.0 V, and the chromaticity coordinates C.I. I. E. 1931 was (x, y) = (0.31, 0.63), and the light emission efficiency at that time was 37 cd / A. When the initial luminance was set to 8000 cd / m 2 and driving at constant current, the time required to reduce the luminance by 20% was 73.1 hours, and the luminance half life was 663 hours. The results are shown in Table 24.

(実施例12)
<組成物MP4及びその溶液の調製>
高分子化合物P4と発光材料EM−Aとを重量比70:30で混合してなる組成物MP4を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が3.0重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP4の3.0重量%キシレン溶液」と言う。
(Example 12)
<Preparation of composition MP4 and its solution>
A composition MP4 obtained by mixing the polymer compound P4 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid content concentration of 3.0 wt. % Was dissolved. The solution thus obtained is hereinafter referred to as “a 3.0 wt% xylene solution of composition MP4”.

<発光素子DP4の作製>
実施例11における組成物MP3の1.6重量%キシレン溶液に代えて、組成物MP4の3.0重量%キシレン溶液を用い、さらにスピンコートの回転数を2020rpmから2100rpmに変更したこと以外は、実施例11と同様にして、発光素子DP4を作製した。
<Production of Light-Emitting Element DP4>
Instead of the 1.6 wt% xylene solution of the composition MP3 in Example 11, a 3.0 wt% xylene solution of the composition MP4 was used, and the spin coat rotation speed was changed from 2020 rpm to 2100 rpm, In the same manner as in Example 11, a light-emitting element DP4 was produced.

<特性評価>
得られた発光素子DP4に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は41cd/Aであり、そのときの電圧は8.0Vであった。輝度1000cd/mでの駆動電圧は5.8Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は38cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は88.8時間であり、輝度半減寿命は752時間であった。結果を表24に示す。
<Characteristic evaluation>
When voltage was applied to the resultant light emitting device DP4, green light emission with a peak wavelength (EL) of 520 nm was exhibited. The maximum luminous efficiency was 41 cd / A, and the voltage at that time was 8.0V. The driving voltage at a luminance of 1000 cd / m 2 is 5.8 V, and the chromaticity coordinates C.I. I. E. 1931 was (x, y) = (0.31, 0.64), and the light emission efficiency at that time was 38 cd / A. When the initial luminance was set to 8000 cd / m 2 and driving at constant current, the time required to reduce the luminance by 20% was 88.8 hours, and the luminance half life was 752 hours. The results are shown in Table 24.

(実施例13)
<組成物MP5及びその溶液の調製>
高分子化合物P5と発光材料EM−Aとを重量比70:30で混合してなる組成物MP5を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.6重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP5の1.6重量%キシレン溶液」と言う。
(Example 13)
<Preparation of composition MP5 and its solution>
A composition MP5 obtained by mixing the polymer compound P5 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Inc., grade for electronic industry) with a total solid concentration of 1.6 wt. % Was dissolved. The solution thus obtained is hereinafter referred to as “1.6 wt% xylene solution of composition MP5”.

<発光素子DP5の作製>
実施例11における組成物MP3の1.6重量%キシレン溶液に代えて、組成物MP5の1.6重量%キシレン溶液を用い、さらにスピンコートの回転数を2020rpmから2500rpmに変更したこと以外は、実施例11と同様にして、発光素子DP5を作製した。
<Production of Light-Emitting Element DP5>
Instead of the 1.6 wt% xylene solution of the composition MP3 in Example 11, a 1.6 wt% xylene solution of the composition MP5 was used, and the spin coat rotation speed was changed from 2020 rpm to 2500 rpm, A light emitting device DP5 was produced in the same manner as in Example 11.

<特性評価>
得られた発光素子DP5に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は43cd/Aであり、そのときの電圧は8.0Vであった。輝度1000cd/mでの駆動電圧は6.2Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は42cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は40.9時間であり、輝度半減寿命は385時間であった。結果を表24に示す。
<Characteristic evaluation>
When voltage was applied to the resultant light emitting device DP5, green light emission with a peak wavelength (EL) of 520 nm was exhibited. The maximum luminous efficiency was 43 cd / A, and the voltage at that time was 8.0V. The driving voltage at a luminance of 1000 cd / m 2 is 6.2 V, and the chromaticity coordinates C.I. I. E. 1931 was (x, y) = (0.31, 0.64), and the light emission efficiency at that time was 42 cd / A. When the initial luminance was set to 8000 cd / m 2 and driving at constant current was performed, the time required to reduce the luminance by 20% was 40.9 hours, and the luminance half life was 385 hours. The results are shown in Table 24.

(実施例14)
<高分子化合物P6の溶液の調製>
高分子化合物P6を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.6重量%となるように溶解させた。こうして得られた溶液を、以下、「高分子化合物P6の1.6重量%キシレン溶液」と言う。
(Example 14)
<Preparation of solution of polymer compound P6>
The polymer compound P6 was dissolved in xylene (manufactured by Kanto Chemical Co., Inc., grade for electronic industry) so that the total solid content concentration was 1.6% by weight. The solution thus obtained is hereinafter referred to as “1.6 wt% xylene solution of polymer compound P6”.

<発光素子DP6の作製>
実施例11における組成物MP3の1.6重量%キシレン溶液に代えて、高分子化合物P6の1.6重量%キシレン溶液を用い、さらにスピンコートの回転数を2020rpmから1950rpmに変更したこと以外は、実施例11と同様にして、発光素子DP6を作製した。
<Production of Light-Emitting Element DP6>
Instead of the 1.6 wt% xylene solution of the composition MP3 in Example 11, a 1.6 wt% xylene solution of the polymer compound P6 was used, and the spin coat rotation speed was changed from 2020 rpm to 1950 rpm. In the same manner as in Example 11, a light emitting device DP6 was produced.

<特性評価>
得られた発光素子DP6に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は46cd/Aであり、そのときの電圧は8.4Vであった。輝度1000cd/mでの駆動電圧は5.8Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は42cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は38.6時間であり、輝度半減寿命は385時間であった。結果を表24に示す。

Figure 0005859828
<Characteristic evaluation>
When voltage was applied to the resultant light emitting device DP6, green light emission with a peak wavelength (EL) of 520 nm was exhibited. The maximum luminous efficiency was 46 cd / A, and the voltage at that time was 8.4V. The driving voltage at a luminance of 1000 cd / m 2 is 5.8 V, and the chromaticity coordinates C.I. I. E. 1931 was (x, y) = (0.31, 0.64), and the light emission efficiency at that time was 42 cd / A. When the initial luminance was set to 8000 cd / m 2 and driving at constant current, the time required to reduce the luminance by 20% was 38.6 hours and the luminance half-life was 385 hours. The results are shown in Table 24.
Figure 0005859828

実施例11で得た発光素子DP3、実施例12で得た発光素子DP4、実施例13で得た発光素子DP5、実施例14で得た発光素子DP6は、いずれも上記の式(A)で表される構成連鎖を有さない高分子化合物を用いた発光素子であり、いずれの発光素子も、高い最大発光効率を示すのに加えて、輝度20%減までに要する時間が極めて長いことから、輝度安定性に優れていることが判明した。なかでも、燐光発光性化合物から誘導される構成単位を含む高分子化合物P6を用いた発光素子DP6は、燐光発光性化合物との組成物を用いた発光素子DP5と同様の輝度安定性を有し、高い最大発光効率を示すことが判明した。

The light emitting element DP3 obtained in Example 11, the light emitting element DP4 obtained in Example 12, the light emitting element DP5 obtained in Example 13, and the light emitting element DP6 obtained in Example 14 are all represented by the above formula (A). It is a light-emitting element using a polymer compound that does not have a structural chain represented. All of the light-emitting elements exhibit high maximum light emission efficiency, and in addition, the time required to reduce the luminance by 20% is extremely long. It was found that the luminance stability was excellent. Among them, the light emitting device DP6 using the polymer compound P6 containing a structural unit derived from the phosphorescent compound has the same luminance stability as the light emitting device DP5 using the composition with the phosphorescent compound. It was found that the maximum luminous efficiency was high.

Claims (23)

式(1)で表される構成単位、式(2)で表される構成単位及び式(3)で表される構成単位、並びに、式(4)で表される構成単位及び式(5)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を含む高分子鎖を有しており、且つ、
前記高分子鎖中に、式(1)で表される構成単位と式(2)で表される構成単位とが直接結合した構造を含まない、高分子化合物。
Figure 0005859828
Figure 0005859828
Figure 0005859828
Figure 0005859828
Figure 0005859828
[式(1)中、R1aは、アルキル基、アリール基、1価の芳香族複素環基、アラルキル基又は置換アミノ基を表し、R1b及びR1cは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。なお、2つのR1cは、それぞれ同一であっても異なっていてもよい。
式(2)中、Ar2a及びAr2bは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基であって、式(1)で表される構成単位とは異なる構造を有する基を表す。Ar2cは、アリール基、又は、1価の芳香族複素環基を表す。Ar2a、Ar2b及びAr2cで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。t及びtは、それぞれ独立に、1又は2である。なお、Ar2a及びAr2bが複数存在する場合、それらは同一であっても異なっていてもよい。
式(3)で表される構成単位は、式(1)で表される構成単位とは異なる構造である。式(3)中、Ar3aは、アリーレン基、又は、2価の芳香族複素環基を表す。R3a及びR3bは、それぞれ独立に、アルキル基、アリール基、又は、1価の芳香族複素環基であって、Ar3aにおける前記高分子鎖と結合している炭素原子の隣の炭素原子に結合している基である。Ar3aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を置換基として更に有していてもよい。
式(4)で表される構成単位は、式(1)で表される構成単位及び式(3)で表される構成単位とはそれぞれ異なる構造である。式(4)中、Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、Ar4aが複数存在する場合、それらは同一であっても異なっていてもよい。
式(5)中、Ar5a、Ar5b、Ar5c、Ar5d及びAr5hは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基を表す。Ar5e、Ar5f及びAr5gは、それぞれ独立に、アリール基又は1価の芳香族複素環基を表す。Ar5a、Ar5b、Ar5c、Ar5d、Ar5e、Ar5f、Ar5g及びAr5hで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。Ar5d、Ar5e、Ar5f及びAr5gで表される基は、それぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接結合するか、或いは、−O−、−S−、−C(=O)−、−C(=O)−O−、−N(R)−、−C(=O)−N(R)−、又は−C(R−で表される基を介して結合して、5〜7員環を形成していてもよい。これらの式中のRは、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表す。n及びnは、それぞれ独立に、0又は1であり、nは、0、1又は2である。]
The structural unit represented by formula (1), the structural unit represented by formula (2) and the structural unit represented by formula (3), and the structural unit represented by formula (4) and formula (5) A polymer chain containing at least one structural unit selected from the group consisting of structural units represented by:
A polymer compound that does not include a structure in which the structural unit represented by the formula (1) and the structural unit represented by the formula (2) are directly bonded in the polymer chain.
Figure 0005859828
Figure 0005859828
Figure 0005859828
Figure 0005859828
Figure 0005859828
[In formula (1), R 1a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an aralkyl group or a substituted amino group, and R 1b and R 1c each independently represent a hydrogen atom, an alkyl Represents a group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group, substituted carboxyl group, fluorine atom or cyano group. The two R 1c s may be the same or different.
In the formula (2), Ar 2a and Ar 2b each independently represent an arylene group or a divalent aromatic heterocyclic group, and a group having a structure different from the structural unit represented by the formula (1). Represent. Ar 2c represents an aryl group or a monovalent aromatic heterocyclic group. The groups represented by Ar 2a , Ar 2b and Ar 2c are alkyl groups, aryl groups, monovalent aromatic heterocyclic groups, alkoxy groups, aryloxy groups, aralkyl groups, arylalkoxy groups, substituted amino groups, substituted carbonyls. A group, a substituted carboxyl group, a fluorine atom or a cyano group may further be included as a substituent. t 1 and t 2 are each independently 1 or 2. In the case where Ar 2a and Ar 2b there are a plurality, they may be different even in the same.
The structural unit represented by Formula (3) has a different structure from the structural unit represented by Formula (1). In formula (3), Ar 3a represents an arylene group or a divalent aromatic heterocyclic group. R 3a and R 3b are each independently an alkyl group, an aryl group, or a monovalent aromatic heterocyclic group, and a carbon atom adjacent to the carbon atom bonded to the polymer chain in Ar 3a It is a group bonded to The group represented by Ar 3a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent.
The structural unit represented by formula (4) has a structure different from the structural unit represented by formula (1) and the structural unit represented by formula (3). In formula (4), Ar 4a represents an arylene group or a divalent aromatic heterocyclic group. The group represented by Ar 4a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent. k is an integer of 1 to 3. When a plurality of Ar 4a are present, they may be the same or different.
In formula (5), Ar 5a , Ar 5b , Ar 5c , Ar 5d and Ar 5h each independently represent an arylene group or a divalent aromatic heterocyclic group. Ar 5e , Ar 5f and Ar 5g each independently represent an aryl group or a monovalent aromatic heterocyclic group. The groups represented by Ar 5a , Ar 5b , Ar 5c , Ar 5d , Ar 5e , Ar 5f , Ar 5g and Ar 5h are an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group A group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, a fluorine atom or a cyano group may further be included as a substituent. The groups represented by Ar 5d , Ar 5e , Ar 5f and Ar 5g are each directly bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, or —O -, - S -, - C (= O) -, - C (= O) -O -, - N (R A) -, - C (= O) -N (R A) -, or -C ( It may combine through a group represented by R A ) 2 — to form a 5- to 7-membered ring. R A in these formulas represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, or an aralkyl group. n 1 and n 2 are each independently 0 or 1, and n 3 is 0, 1 or 2. ]
式(2)で表される構成単位の両側に、式(3)で表される構成単位が隣接している、請求項1記載の高分子化合物。   The polymer compound according to claim 1, wherein the structural unit represented by the formula (3) is adjacent to both sides of the structural unit represented by the formula (2). 式(1)で表される構成単位の両側に、式(4)で表される構成単位及び式(5)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位が隣接している、請求項1又は2記載の高分子化合物。   On both sides of the structural unit represented by formula (1), at least one structural unit selected from the group consisting of the structural unit represented by formula (4) and the structural unit represented by formula (5) is adjacent. The polymer compound according to claim 1 or 2. 式(1)で表される構成単位の両側に式(4)で表される構成単位が隣接した、式(6)で表される構造を有する、請求項3に記載の高分子化合物。
Figure 0005859828
[式(6)中、R1a、R1b、R1c、Ar4a及びkは、それぞれ前記と同義である。ただし、2つのkは、互いに同一であっても異なっていてもよく、複数のAr4aは、それぞれ同一であっても異なっていてもよい。]
The high molecular compound of Claim 3 which has a structure represented by Formula (6) with which the structural unit represented by Formula (4) was adjacent to the both sides of the structural unit represented by Formula (1).
Figure 0005859828
[In Formula (6), R < 1a >, R < 1b >, R < 1c >, Ar < 4a > and k are respectively synonymous with the above. However, two k may be the same or different from each other, and the plurality of Ar 4a may be the same or different from each other. ]
式(3)で表される構成単位として、式(7)で表される構成単位を有する、請求項1〜4のいずれか一項に記載の高分子化合物。
Figure 0005859828
[式(7)中、R7a及びR7cは、それぞれ独立に、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基又はシアノ基を表し、R7b及びR7dは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。]
The high molecular compound as described in any one of Claims 1-4 which has a structural unit represented by Formula (7) as a structural unit represented by Formula (3).
Figure 0005859828
[In Formula (7), R 7a and R 7c are each independently an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, or a substituted amino group. Represents a substituted carbonyl group, a substituted carboxyl group or a cyano group, and R 7b and R 7d each independently represent a hydrogen atom, an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, An aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, a fluorine atom or a cyano group; ]
式(4)で表される構成単位として、式(9)で表される構成単位及び式(10)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を有する、請求項1〜5のいずれか一項に記載の高分子化合物。
Figure 0005859828
Figure 0005859828
[式(9)中、R9a及びR9cは、それぞれ独立に、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表し、R9aとR9cとが互いに結合していてもよい。]
The structural unit represented by formula (4) has at least one structural unit selected from the group consisting of the structural unit represented by formula (9) and the structural unit represented by formula (10). The polymer compound according to any one of 1 to 5.
Figure 0005859828
Figure 0005859828
[In Formula (9), R 9a and R 9c each independently represent an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, or an aralkyl group, and R 9a and R 9c are bonded to each other. May be. ]
1aが、アルキル基、アリール基又はアラルキル基である、請求項1〜6のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 6, wherein R 1a is an alkyl group, an aryl group, or an aralkyl group. 高分子化合物の全質量中の、式(1)で表される構成単位、式(2)で表される構成単位、式(3)で表される構成単位、式(4)で表される構成単位及び式(5)で表される構成単位の合計の質量比率が、高分子化合物全体を1としたとき、0.9以上である、請求項1〜7のいずれか一項に記載の高分子化合物。   The structural unit represented by formula (1), the structural unit represented by formula (2), the structural unit represented by formula (3), and the formula (4) in the total mass of the polymer compound. The total mass ratio of the structural unit and the structural unit represented by the formula (5) is 0.9 or more, assuming that the entire polymer compound is 1, 8. High molecular compound. 燐光発光性化合物から誘導される構成単位を更に含む、請求項1〜8のいずれか一項に記載の高分子化合物。   The polymer compound according to any one of claims 1 to 8, further comprising a structural unit derived from a phosphorescent compound. 式(12−1)で表される化合物。
Figure 0005859828
[式(12−1)中、R12aはメチル基を表し、R12bは水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたフェニル基を表し、R12cは水素原子又はメチル基を表し、R12dはアルキル基、アルキル基又はアリール基で置換されたアリール基を表し、R12eはアルキル基又はアリール基で置換されたアリール基を表す。2つのR12cは、互いに同一であっても異なっていてもよく、2つのR12dは、互いに同一であっても異なっていてもよく、2つのR12eは、互いに同一であっても異なっていてもよい。X11aは、下記の置換基(a)群から選ばれる基、又は下記の置換基(b)群から選ばれる基を表す。2つのX11aは、互いに同一であっても異なってもよい。
(置換基(a)群)
塩素原子、臭素原子、ヨウ素原子、−O−S(=O)20(R20はアルキル基、又はアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
(置換基(b)群)
−B(OR21(R21は水素原子又はアルキル基を示し、2つのR21は、互いに同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、−BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、−Sn(R22(R22は水素原子又はアルキル基を示し、3つのR22は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、−MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、−ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。]
A compound represented by formula (12-1).
Figure 0005859828
[In the formula (12-1), R 12a represents a methyl group, R 12b represents a hydrogen atom, an alkyl group, an unsubstituted or phenyl group substituted with an alkyl group or an aryl group, and R 12c represents a hydrogen atom or a methyl group. R 12d represents an aryl group substituted with an alkyl group, an alkyl group or an aryl group, and R 12e represents an aryl group substituted with an alkyl group or an aryl group. The two R 12c may be the same or different from each other, the two R 12d may be the same or different from each other, and the two R 12e may be the same or different from each other. May be. X 11a represents a group selected from the following substituent (a) group or a group selected from the following substituent (b) group. Two X 11a may be the same as or different from each other.
(Substituent group (a) group)
Chlorine atom, bromine atom, iodine atom, —O—S (═O) 2 R 20 (R 20 is an alkyl group, or an aryl group optionally substituted with an alkyl group, an alkoxy group, a nitro group, a fluorine atom, or a cyano group. A group represented by:
(Substituent (b) group)
—B (OR 21 ) 2 (R 21 represents a hydrogen atom or an alkyl group, and two R 21 s may be the same as or different from each other, and may be bonded to each other to form a ring). A group represented by —BF 4 Q 1 (Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium), —Sn (R 22 ) 3 (R 22 is hydrogen) An atom or an alkyl group, and three R 22 s may be the same or different and may be bonded to each other to form a ring; a group represented by —MgY 1 (Y 1 represents a chlorine atom) And a group represented by —ZnY 2 (Y 2 represents a chlorine atom, a bromine atom or an iodine atom). ]
12dが、炭素数1〜8のアルキル基、又は、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であって且つ該アルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基であり、R12eが、1つ以上3つ以下の炭素数1〜12のアルキル基で置換されたアリール基であって且つ該アルキル基の少なくとも1つ以上が炭素数6〜12のアルキル基であるアリール基である、請求項10記載の化合物。 R 12d is an alkyl group having 1 to 8 carbon atoms or an aryl group substituted with 1 to 3 carbon atoms having 1 to 12 carbon atoms, and at least one of the alkyl groups is carbon. An aryl group which is an alkyl group having 6 to 12, wherein R 12e is an aryl group substituted with one or more and three or less alkyl groups having 1 to 12 carbon atoms, and at least one of the alkyl groups The compound according to claim 10, wherein the aryl group is an alkyl group having 6 to 12 carbon atoms. 12d及びR12eが、式(12−2)で表される基である、請求項11記載の化合物。
Figure 0005859828
[式(12−2)中、R12f、R12g及びR12hは、それぞれ独立に、水素原子、又は炭素数1〜12のアルキル基を表す。但し、R12f、R12g及びR12hのうちの少なくとも一つは、炭素数6〜12のアルキル基である。式(12−1)において、複数存在する式(12−2)で表される基は、それぞれ同一であっても異なっていてもよい。]
The compound of Claim 11 whose R < 12d> and R <12e> are group represented by Formula (12-2).
Figure 0005859828
[In the formula (12-2), R 12f , R 12g and R 12h each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. However, at least one of R 12f , R 12g and R 12h is an alkyl group having 6 to 12 carbon atoms. In the formula (12-1), a plurality of groups represented by the formula (12-2) may be the same or different. ]
請求項1〜9のいずれか一項に記載の高分子化合物と、正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも1種の材料と、を含有する、組成物。   A composition comprising the polymer compound according to claim 1 and at least one material selected from the group consisting of a hole transport material, an electron transport material, and a light emitting material. 前記発光材料が、燐光発光性化合物を含有する、請求項13記載の組成物。 The composition according to claim 13 , wherein the light emitting material contains a phosphorescent compound. 請求項1〜9のいずれか一項に記載の高分子化合物、又は、請求項13若しくは14に記載の組成物と、
溶媒と、を含有する溶液。
The polymer compound according to any one of claims 1 to 9, or the composition according to claim 13 or 14 ,
A solution containing a solvent.
請求項1〜9のいずれか一項に記載の高分子化合物、又は、請求項13若しくは14に記載の組成物を含有する薄膜。 A thin film containing the polymer compound according to any one of claims 1 to 9, or the composition according to claim 13 or 14 . 陽極と、陰極と、前記陽極と前記陰極との間に設けられた請求項1〜9のいずれか一項に記載の高分子化合物、又は、請求項13若しくは14に記載の組成物を含有する有機層と、を備える発光素子。 The polymer compound according to any one of claims 1 to 9, or the composition according to claim 13 or 14 provided between an anode, a cathode, and the anode and the cathode. A light-emitting element comprising an organic layer. 請求項17記載の発光素子を備える面状光源。 A planar light source comprising the light emitting device according to claim 17 . 請求項17記載の発光素子を備える表示素子。 A display device comprising the light emitting device according to claim 17 . 式(11)で表される化合物、式(14)で表される化合物及び式(15)で表される化合物を含む単量体混合物を重合させて、式(6)で表される構造、式(2)で表される構成単位及び式(3)で表される構成単位を含む高分子化合物を得る工程を有しており、
前記単量体混合物は、その全モル数を100としたとき、式(11)で表される化合物、式(14)で表される化合物及び式(15)で表される化合物の合計モル数が、60〜100である、高分子化合物の製造方法。
Figure 0005859828
Figure 0005859828
Figure 0005859828
Figure 0005859828
[式(11)及び式(6)中、R1aは、アルキル基、アリール基、1価の芳香族複素環基、アラルキル基又は置換アミノ基を表し、R1b及びR1cは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。2つのR1cは、それぞれ同一であっても異なっていてもよい。Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、複数存在するAr4aは、それぞれ同一であっても異なっていてもよく、2つのkも、互いに同一であっても異なっていてもよい。式(11)中、X11aは、下記置換基(a)群から選ばれる基、又は下記置換基(b)群から選ばれる基を表す。2つのX11aは、互いに同一であっても異なってもよい。
(置換基(a)群)
塩素原子、臭素原子、ヨウ素原子、−O−S(=O)20(R20はアルキル基、又はアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
(置換基(b)群)
−B(OR21(R21は水素原子又はアルキル基を示し、2個存在するR21は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、−BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、−Sn(R22(R22は水素原子又はアルキル基を示し、3個存在するR22は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、−MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、−ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。
式(14)及び式(2)中、Ar2a及びAr2bは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基を表す。Ar2cは、アリール基、又は、1価の芳香族複素環基を表す。Ar2a、Ar2b及びAr2cで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。t及びtは、それぞれ独立に、1又は2である。なお、Ar2a及びAr2bが複数存在する場合、それらは同一であっても異なっていてもよい。式(14)中、X14aは、X11aと同義である。
式(15)及び式(3)中、Ar3aは、アリーレン基、又は、2価の芳香族複素環基を表す。R3a及びR3bは、それぞれ独立に、アルキル基、アリール基、又は、1価の芳香族複素環基であって、Ar3aにおけるX15aと結合している炭素原子の隣の炭素原子に結合している基である。Ar3aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を置換基として更に有していてもよい。式(15)中、X15aは、X11aと同義である。]
A compound represented by formula (11), a compound represented by formula (14) and a monomer mixture containing a compound represented by formula (15) are polymerized to form a structure represented by formula (6); Having a step of obtaining a polymer compound comprising the structural unit represented by formula (2) and the structural unit represented by formula (3),
The total number of moles of the compound represented by the formula (11), the compound represented by the formula (14), and the compound represented by the formula (15) when the total number of moles of the monomer mixture is 100. The manufacturing method of the high molecular compound whose is 60-100.
Figure 0005859828
Figure 0005859828
Figure 0005859828
Figure 0005859828
[In Formula (11) and Formula (6), R 1a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an aralkyl group or a substituted amino group, and R 1b and R 1c each independently represent , Hydrogen atom, alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group, substituted carboxyl group, fluorine atom or cyano group Represents. Two R 1c s may be the same or different. Ar 4a represents an arylene group or a divalent aromatic heterocyclic group. The group represented by Ar 4a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent. k is an integer of 1 to 3. A plurality of Ar 4a may be the same or different, and two k may be the same or different from each other. In formula (11), X 11a represents a group selected from the following substituent (a) group or a group selected from the following substituent (b) group. Two X 11a may be the same as or different from each other.
(Substituent group (a) group)
Chlorine atom, bromine atom, iodine atom, —O—S (═O) 2 R 20 (R 20 is an alkyl group, or an aryl group optionally substituted with an alkyl group, an alkoxy group, a nitro group, a fluorine atom, or a cyano group. A group represented by:
(Substituent (b) group)
—B (OR 21 ) 2 (R 21 represents a hydrogen atom or an alkyl group, and two R 21 s may be the same or different and may be bonded to each other to form a ring). A group represented by -BF 4 Q 1 (Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium), -Sn (R 22 ) 3 (R 22 represents A hydrogen atom or an alkyl group, and three R 22 s that may be the same or different and may be bonded to each other to form a ring), -MgY 1 (Y 1 Represents a chlorine atom, a bromine atom or an iodine atom.), A group represented by —ZnY 2 (Y 2 represents a chlorine atom, a bromine atom or an iodine atom).
In Formula (14) and Formula (2), Ar 2a and Ar 2b each independently represent an arylene group or a divalent aromatic heterocyclic group. Ar 2c represents an aryl group or a monovalent aromatic heterocyclic group. The groups represented by Ar 2a , Ar 2b and Ar 2c are alkyl groups, aryl groups, monovalent aromatic heterocyclic groups, alkoxy groups, aryloxy groups, aralkyl groups, arylalkoxy groups, substituted amino groups, substituted carbonyls. A group, a substituted carboxyl group, a fluorine atom or a cyano group may further be included as a substituent. t 1 and t 2 are each independently 1 or 2. In the case where Ar 2a and Ar 2b there are a plurality, they may be different even in the same. In the formula (14), X 14a has the same meaning as X 11a .
In Formula (15) and Formula (3), Ar 3a represents an arylene group or a divalent aromatic heterocyclic group. R 3a and R 3b are each independently an alkyl group, an aryl group, or a monovalent aromatic heterocyclic group, and bonded to the carbon atom adjacent to the carbon atom bonded to X 15a in Ar 3a . It is a group. The group represented by Ar 3a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent. In the formula (15), X 15a has the same meaning as X 11a . ]
前記単量体混合物は、式(16)で表される化合物及び式(17)で表される化合物からなる群より選ばれる少なくとも1種の化合物を更に含む、請求項20記載の高分子化合物の製造方法。
Figure 0005859828
Figure 0005859828
[式(16)中、Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、Ar4aが複数存在する場合、それらは同一であっても異なっていてもよい。X16aは、X11aと同義である。
式(17)中、Ar5a、Ar5b、Ar5c、Ar5d及びAr5hは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基を表す。Ar5e、Ar5f及びAr5gは、それぞれ独立に、アリール基又は1価の芳香族複素環基を表す。Ar5a、Ar5b、Ar5c、Ar5d、Ar5e、Ar5f、Ar5g及びAr5hで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。Ar5d、Ar5e、Ar5f及びAr5gで表される基は、それぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接結合するか、或いは、−O−、−S−、−C(=O)−、−C(=O)−O−、−N(R)−、−C(=O)−N(R)−、又は−C(R−で表される基を介して結合して、5〜7員環を形成していてもよい。これらの式中のRは、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表す。n及びnは、それぞれ独立に、0又は1であり、nは、0、1又は2である。X17aは、X11aと同義である。]
21. The polymer compound according to claim 20 , wherein the monomer mixture further includes at least one compound selected from the group consisting of a compound represented by formula (16) and a compound represented by formula (17). Production method.
Figure 0005859828
Figure 0005859828
[In the formula (16), Ar 4a represents an arylene group or a divalent aromatic heterocyclic group. The group represented by Ar 4a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent. k is an integer of 1 to 3. When a plurality of Ar 4a are present, they may be the same or different. X 16a has the same meaning as X 11a .
In formula (17), Ar 5a , Ar 5b , Ar 5c , Ar 5d and Ar 5h each independently represent an arylene group or a divalent aromatic heterocyclic group. Ar 5e , Ar 5f and Ar 5g each independently represent an aryl group or a monovalent aromatic heterocyclic group. The groups represented by Ar 5a , Ar 5b , Ar 5c , Ar 5d , Ar 5e , Ar 5f , Ar 5g and Ar 5h are an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group A group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, a fluorine atom or a cyano group may further be included as a substituent. The groups represented by Ar 5d , Ar 5e , Ar 5f and Ar 5g are each directly bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, or —O -, - S -, - C (= O) -, - C (= O) -O -, - N (R A) -, - C (= O) -N (R A) -, or -C ( It may combine through a group represented by R A ) 2 — to form a 5- to 7-membered ring. R A in these formulas represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, or an aralkyl group. n 1 and n 2 are each independently 0 or 1, and n 3 is 0, 1 or 2. X 17a has the same meaning as X 11a . ]
11a、X14a、X16a及びX17aが、前記置換基(a)群から選ばれる基であり、X15aが、前記置換基(b)群から選ばれる基である、請求項21記載の高分子化合物の製造方法。 X 11a, X 14a, X 16a and X 17a is a group selected from the substituent group (a), X 15a is a group selected from the substituent group (b), according to claim 21, wherein A method for producing a polymer compound. 11a、X14a、X16a及びX17aが、前記置換基(b)群から選ばれる基であり、X15aが、前記置換基(a)群から選ばれる基である、請求項21記載の高分子化合物の製造方法。 X 11a, X 14a, X 16a and X 17a is a group selected from the substituent group (b), X 15a is a group selected from the substituent group (a), according to claim 21, wherein A method for producing a polymer compound.
JP2011262370A 2010-11-30 2011-11-30 Polymer compound, method for producing the same, and light emitting device Active JP5859828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262370A JP5859828B2 (en) 2010-11-30 2011-11-30 Polymer compound, method for producing the same, and light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010267684 2010-11-30
JP2010267684 2010-11-30
JP2011262370A JP5859828B2 (en) 2010-11-30 2011-11-30 Polymer compound, method for producing the same, and light emitting device

Publications (2)

Publication Number Publication Date
JP2012131993A JP2012131993A (en) 2012-07-12
JP5859828B2 true JP5859828B2 (en) 2016-02-16

Family

ID=46171834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262370A Active JP5859828B2 (en) 2010-11-30 2011-11-30 Polymer compound, method for producing the same, and light emitting device

Country Status (3)

Country Link
JP (1) JP5859828B2 (en)
TW (1) TW201233703A (en)
WO (1) WO2012073902A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720097B2 (en) 2009-01-20 2015-05-20 住友化学株式会社 Metaphenylene polymer compound and light emitting device using the same
US10897025B2 (en) 2015-05-26 2021-01-19 Lg Chem, Ltd. Electroactive materials
JP6972912B2 (en) * 2016-10-28 2021-11-24 住友化学株式会社 Composition and light emitting device using it
EP3859806A4 (en) * 2018-09-28 2021-10-20 Showa Denko Materials Co., Ltd. Organic electronic material and organic electronic element
US20230140039A1 (en) * 2020-03-27 2023-05-04 Lg Chem, Ltd. Novel Polymer and Organic Light Emitting Device Comprising Same
JP2022130290A (en) * 2021-02-25 2022-09-06 住友化学株式会社 Composition and light emitting element using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528322B1 (en) * 2001-09-28 2005-11-15 삼성에스디아이 주식회사 Blue Electroluminescent Polymer And Organo-electroluminescent Device Using Thereof
JP2009020698A (en) * 2007-07-11 2009-01-29 Sony Corp Registration device, collation device, data structure and storage medium
EP2275469A4 (en) * 2008-04-25 2012-11-28 Sumitomo Chemical Co Polymeric compound having residue of nitrogenated heterocyclic compound
JP5720097B2 (en) * 2009-01-20 2015-05-20 住友化学株式会社 Metaphenylene polymer compound and light emitting device using the same
WO2012008550A1 (en) * 2010-07-16 2012-01-19 住友化学株式会社 Polymer compound, composition containing polymer compound, liquid composition, thin film and element, and surface light source and display device using element

Also Published As

Publication number Publication date
WO2012073902A1 (en) 2012-06-07
JP2012131993A (en) 2012-07-12
TW201233703A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5720097B2 (en) Metaphenylene polymer compound and light emitting device using the same
JP5866189B2 (en) Polymer compound, method for producing the same, and light emitting device
JP6090317B2 (en) Polymer compound and light emitting device using the same
JP6090316B2 (en) Polymer compound and light emitting device using the same
JP5353186B2 (en) Amine-based polymer compound and light emitting device using the same
JP5782318B2 (en) Composition containing polymer compound and light emitting device using the same
JP6331617B2 (en) Metal complex and light emitting device using the same
WO2013146806A1 (en) Polymer compound and light emitting element using same
JP2007126652A (en) Copolymer and polymeric light-emitting element
KR20100075830A (en) Compound, method for producing the same, ink composition using the compound, thin film, organic transistor, and organic electroluminescent device
JP5859828B2 (en) Polymer compound, method for producing the same, and light emitting device
KR20110095371A (en) Amine polymer compound and light-emitting element using same
JP6519108B2 (en) Composition and light emitting device using the same
WO2005026231A1 (en) Polymer complex compound and polymeric luminescent element employing the same
JP5866990B2 (en) Polymer compound and production method thereof
JP2006241347A (en) Polymer and polymeric light-emitting element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151217

R150 Certificate of patent or registration of utility model

Ref document number: 5859828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350