JP5857091B2 - Stereoscopic image display device - Google Patents
Stereoscopic image display device Download PDFInfo
- Publication number
- JP5857091B2 JP5857091B2 JP2014116353A JP2014116353A JP5857091B2 JP 5857091 B2 JP5857091 B2 JP 5857091B2 JP 2014116353 A JP2014116353 A JP 2014116353A JP 2014116353 A JP2014116353 A JP 2014116353A JP 5857091 B2 JP5857091 B2 JP 5857091B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- optical film
- liquid crystal
- layer
- hard coat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010408 film Substances 0.000 claims description 302
- 239000012788 optical film Substances 0.000 claims description 161
- 150000001875 compounds Chemical class 0.000 claims description 154
- 239000002245 particle Substances 0.000 claims description 119
- 239000004973 liquid crystal related substance Substances 0.000 claims description 95
- 239000007788 liquid Substances 0.000 claims description 93
- 230000003287 optical effect Effects 0.000 claims description 85
- 239000000203 mixture Substances 0.000 claims description 65
- 238000002834 transmittance Methods 0.000 claims description 25
- 239000011230 binding agent Substances 0.000 claims description 19
- 210000002858 crystal cell Anatomy 0.000 claims description 12
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 314
- 238000000576 coating method Methods 0.000 description 71
- 239000000243 solution Substances 0.000 description 67
- 239000011248 coating agent Substances 0.000 description 66
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 59
- 229920000642 polymer Polymers 0.000 description 58
- 229920002301 cellulose acetate Polymers 0.000 description 57
- 239000002904 solvent Substances 0.000 description 46
- 238000000034 method Methods 0.000 description 42
- -1 polyethylene terephthalate Polymers 0.000 description 42
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 36
- 239000010419 fine particle Substances 0.000 description 35
- 239000000463 material Substances 0.000 description 33
- 239000000758 substrate Substances 0.000 description 33
- 229920002678 cellulose Polymers 0.000 description 29
- 239000000178 monomer Substances 0.000 description 29
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- 238000002360 preparation method Methods 0.000 description 27
- 239000001913 cellulose Substances 0.000 description 26
- 239000002585 base Substances 0.000 description 25
- 239000006224 matting agent Substances 0.000 description 24
- 230000001681 protective effect Effects 0.000 description 24
- 238000001035 drying Methods 0.000 description 23
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 22
- 239000003795 chemical substances by application Substances 0.000 description 20
- 229910052731 fluorine Inorganic materials 0.000 description 20
- 239000000377 silicon dioxide Substances 0.000 description 19
- 239000007787 solid Substances 0.000 description 19
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 18
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 239000011737 fluorine Substances 0.000 description 18
- 229920002451 polyvinyl alcohol Polymers 0.000 description 18
- 239000004372 Polyvinyl alcohol Substances 0.000 description 17
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 16
- 229910002012 Aerosil® Inorganic materials 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- 239000004014 plasticizer Substances 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 13
- 238000006116 polymerization reaction Methods 0.000 description 13
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- 239000003999 initiator Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 238000006467 substitution reaction Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 239000000654 additive Substances 0.000 description 11
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 10
- 229920002313 fluoropolymer Polymers 0.000 description 10
- 239000004811 fluoropolymer Substances 0.000 description 10
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 10
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 239000003431 cross linking reagent Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- 125000006162 fluoroaliphatic group Chemical group 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 125000005647 linker group Chemical group 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- PCKZAVNWRLEHIP-UHFFFAOYSA-N 2-hydroxy-1-[4-[[4-(2-hydroxy-2-methylpropanoyl)phenyl]methyl]phenyl]-2-methylpropan-1-one Chemical compound C1=CC(C(=O)C(C)(O)C)=CC=C1CC1=CC=C(C(=O)C(C)(C)O)C=C1 PCKZAVNWRLEHIP-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 6
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000007607 die coating method Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920000515 polycarbonate Polymers 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 239000003505 polymerization initiator Substances 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 239000013557 residual solvent Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000005268 rod-like liquid crystal Substances 0.000 description 6
- 238000007127 saponification reaction Methods 0.000 description 6
- LPSFUJXLYNJWPX-UHFFFAOYSA-N 1,1'-biphenyl;diphenyl hydrogen phosphate Chemical compound C1=CC=CC=C1C1=CC=CC=C1.C=1C=CC=CC=1OP(=O)(O)OC1=CC=CC=C1 LPSFUJXLYNJWPX-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 238000000149 argon plasma sintering Methods 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 125000000732 arylene group Chemical group 0.000 description 5
- 239000008199 coating composition Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000004049 embossing Methods 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 239000002346 layers by function Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 4
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000007756 gravure coating Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 229910001507 metal halide Inorganic materials 0.000 description 4
- 150000005309 metal halides Chemical class 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000012798 spherical particle Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- 229920002284 Cellulose triacetate Polymers 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 3
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- XDRLAGOBLZATBG-UHFFFAOYSA-N 1-phenylpenta-1,4-dien-3-one Chemical compound C=CC(=O)C=CC1=CC=CC=C1 XDRLAGOBLZATBG-UHFFFAOYSA-N 0.000 description 2
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 2
- GJKGAPPUXSSCFI-UHFFFAOYSA-N 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Chemical compound CC(C)(O)C(=O)C1=CC=C(OCCO)C=C1 GJKGAPPUXSSCFI-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 2
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- MWKAGZWJHCTVJY-UHFFFAOYSA-N 3-hydroxyoctadecan-2-one Chemical compound CCCCCCCCCCCCCCCC(O)C(C)=O MWKAGZWJHCTVJY-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical class CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000010556 emulsion polymerization method Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 238000007765 extrusion coating Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007888 film coating Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 229910052736 halogen Chemical group 0.000 description 2
- 150000002367 halogens Chemical group 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 125000005185 naphthylcarbonyl group Chemical group C1(=CC=CC2=CC=CC=C12)C(=O)* 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 125000002811 oleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000012719 thermal polymerization Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- AUXIEQKHXAYAHG-UHFFFAOYSA-N 1-phenylcyclohexane-1-carbonitrile Chemical class C=1C=CC=CC=1C1(C#N)CCCCC1 AUXIEQKHXAYAHG-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- RNIPJYFZGXJSDD-UHFFFAOYSA-N 2,4,5-triphenyl-1h-imidazole Chemical class C1=CC=CC=C1C1=NC(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)N1 RNIPJYFZGXJSDD-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- CBECDWUDYQOTSW-UHFFFAOYSA-N 2-ethylbut-3-enal Chemical compound CCC(C=C)C=O CBECDWUDYQOTSW-UHFFFAOYSA-N 0.000 description 1
- WLNDDIWESXCXHM-UHFFFAOYSA-N 2-phenyl-1,4-dioxane Chemical class C1OCCOC1C1=CC=CC=C1 WLNDDIWESXCXHM-UHFFFAOYSA-N 0.000 description 1
- OXPDQFOKSZYEMJ-UHFFFAOYSA-N 2-phenylpyrimidine Chemical class C1=CC=CC=C1C1=NC=CC=N1 OXPDQFOKSZYEMJ-UHFFFAOYSA-N 0.000 description 1
- HCGFUIQPSOCUHI-UHFFFAOYSA-N 2-propan-2-yloxyethanol Chemical compound CC(C)OCCO HCGFUIQPSOCUHI-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- BXSMMAVTEURRGG-UHFFFAOYSA-N 3-chlorohexane Chemical compound CCCC(Cl)CC BXSMMAVTEURRGG-UHFFFAOYSA-N 0.000 description 1
- ACQVEWFMUBXEMR-UHFFFAOYSA-N 4-bromo-2-fluoro-6-nitrophenol Chemical compound OC1=C(F)C=C(Br)C=C1[N+]([O-])=O ACQVEWFMUBXEMR-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229920002085 Dialdehyde starch Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- QRMHDGWGLNLHMN-UHFFFAOYSA-N Methyl methoxyacetate Chemical compound COCC(=O)OC QRMHDGWGLNLHMN-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000005337 azoxy group Chemical group [N+]([O-])(=N*)* 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- ZLSMCQSGRWNEGX-UHFFFAOYSA-N bis(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=C(N)C=C1 ZLSMCQSGRWNEGX-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 125000004802 cyanophenyl group Chemical group 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000003074 decanoyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 150000002012 dioxanes Chemical class 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- CKSRFHWWBKRUKA-UHFFFAOYSA-N ethyl 2-ethoxyacetate Chemical compound CCOCC(=O)OCC CKSRFHWWBKRUKA-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- MDQRDWAGHRLBPA-UHFFFAOYSA-N fluoroamine Chemical class FN MDQRDWAGHRLBPA-UHFFFAOYSA-N 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000000268 heptanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000003104 hexanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Chemical group 0.000 description 1
- 229910052739 hydrogen Chemical group 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910021432 inorganic complex Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- PPFNAOBWGRMDLL-UHFFFAOYSA-N methyl 2-ethoxyacetate Chemical compound CCOCC(=O)OC PPFNAOBWGRMDLL-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- IZXDTJXEUISVAJ-UHFFFAOYSA-N n-methyl-n-octadecyloctadecan-1-amine;hydrochloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[NH+](C)CCCCCCCCCCCCCCCCCC IZXDTJXEUISVAJ-UHFFFAOYSA-N 0.000 description 1
- JTHNLKXLWOXOQK-UHFFFAOYSA-N n-propyl vinyl ketone Natural products CCCC(=O)C=C JTHNLKXLWOXOQK-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N para-benzoquinone Natural products O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000001791 phenazinyl group Chemical class C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- DLRJIFUOBPOJNS-UHFFFAOYSA-N phenetole Chemical compound CCOC1=CC=CC=C1 DLRJIFUOBPOJNS-UHFFFAOYSA-N 0.000 description 1
- OPYYWWIJPHKUDZ-UHFFFAOYSA-N phenyl cyclohexanecarboxylate Chemical class C1CCCCC1C(=O)OC1=CC=CC=C1 OPYYWWIJPHKUDZ-UHFFFAOYSA-N 0.000 description 1
- WDHYRUBXLGOLKR-UHFFFAOYSA-N phosphoric acid;prop-2-enoic acid Chemical compound OC(=O)C=C.OP(O)(O)=O WDHYRUBXLGOLKR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Chemical group 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229940042596 viscoat Drugs 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Polarising Elements (AREA)
Description
本発明は、透明支持体の一方の面に光学異方性層を有し、他の面にハードコート層を有する光学フィルム、該光学フィルムを有する偏光板、及び画像表示装置に関する。特に、液晶表示装置用表面フィルムとして好適に用いられる光学フィルム、該光学フィルムを保護フィルムとして含む偏光板、また、前記ハードコート層が視認側に、前記光学異方性層が偏光膜側になるように前記光学フィルムを表面に配置した液晶表示装置に関する。 The present invention relates to an optical film having an optically anisotropic layer on one surface of a transparent support and a hard coat layer on the other surface, a polarizing plate having the optical film, and an image display device. In particular, an optical film suitably used as a surface film for a liquid crystal display device, a polarizing plate including the optical film as a protective film, the hard coat layer on the viewing side, and the optical anisotropic layer on the polarizing film side Thus, the present invention relates to a liquid crystal display device having the optical film disposed on the surface.
液晶表示装置(LCD)は、薄型、軽量で、かつ消費電力が小さいことから広く使用されている。液晶表示装置は、液晶セル及び偏光板を含む。偏光板は、通常、保護膜と偏光膜とからなり、ポリビニルアルコールフィルムからなる偏光膜をヨウ素にて染色し、延伸を行い、その両面を保護膜にて積層して得られる。透過型液晶表示装置では、一般的に、この偏光板を液晶セルの両側に取り付け、更には一枚以上の光学補償フィルム(位相差フィルム)が2つの偏光板の内側(液晶セル側)に配置されている。また、光学補償フィルムを前記保護膜として用いることもある。光学補償フィルムとしては例えば、基材フィルム上にディスコティック液晶性化合物が配向状態を保った状態で固定化された光学異方性層を有するものが広く用いられている。
近年、液晶表示装置の高機能化のために、透過型液晶表示装置を用いた立体画像表示装置の開発が進められている。例えば特許文献1には、立体画像表示の方式として、液晶セルを出射した直線偏光光の偏光軸が垂直方向で+45°の光学軸を有するλ/4の正面レターデーションを有する位相差フィルム(λ/4板)を偏光板の外側に配置する時分割2眼立体視の透過型液晶表示装置が記載されている。
Liquid crystal display devices (LCDs) are widely used because they are thin, lightweight, and have low power consumption. The liquid crystal display device includes a liquid crystal cell and a polarizing plate. The polarizing plate is usually composed of a protective film and a polarizing film, and is obtained by dyeing a polarizing film made of a polyvinyl alcohol film with iodine, stretching, and laminating both surfaces with a protective film. In a transmissive liquid crystal display device, this polarizing plate is generally attached to both sides of a liquid crystal cell, and one or more optical compensation films (retardation films) are arranged inside two liquid crystal plates (liquid crystal cell side). Has been. An optical compensation film may be used as the protective film. As an optical compensation film, for example, a film having an optically anisotropic layer in which a discotic liquid crystalline compound is fixed in an aligned state on a base film is widely used.
In recent years, in order to increase the functionality of liquid crystal display devices, development of stereoscopic image display devices using transmissive liquid crystal display devices has been underway. For example, Patent Document 1 discloses a phase difference film (λ) having a front retardation of λ / 4 in which the polarization axis of linearly polarized light emitted from a liquid crystal cell has an optical axis of + 45 ° in the vertical direction as a stereoscopic image display method. / 4 plate) is disposed outside the polarizing plate, and a time-division two-eye stereoscopic transmission type liquid crystal display device is described.
λ/4の正面レターデーションを有する位相差フィルムとしては、延伸フィルムを用いるものと、透明基材フィルム上に硬化型液晶性化合物によって形成される光学異方性層を有するものとが挙げられる。
このうち、延伸フィルムは一般に長さ方向又は幅方向に延伸して作成されるため、遅相軸は長さ方向に対し平行又は直交である。
偏光板の作成において、位相差フィルムと偏光子を貼り合わせる場合、位相差フィルムと偏光子がロール・トゥ・ロールで貼合されることが生産効率上好ましい。
一方、液晶表示装置では一般にポリビニルアルコールの延伸フィルムが偏光膜として用いられており、偏光の吸収軸は長さ方向と平行である。
従って、偏光軸に対して45°方向に遅相軸を有する位相差フィルムと偏光子をロール・トゥ・ロールで貼合するためには45°方向に遅相軸を有する位相差フィルムのロールフィルムが必要なため、延伸フィルムはロール・トゥ・ロールでの貼り合わせには適さない。
これに対し、硬化型液晶性化合物によって形成される光学異方性層を有する位相差フィルムは、ラビングなどの方法で液晶性化合物の配向方向を制御することで遅相軸の方向を自由に変えることができるため、ロール・トゥ・ロールでの貼り合わせに適している。
Examples of the retardation film having a front retardation of λ / 4 include those using a stretched film and those having an optically anisotropic layer formed of a curable liquid crystalline compound on a transparent substrate film.
Among these, since a stretched film is generally produced by stretching in the length direction or the width direction, the slow axis is parallel or orthogonal to the length direction.
In the production of the polarizing plate, when the retardation film and the polarizer are bonded, it is preferable in terms of production efficiency that the retardation film and the polarizer are bonded by roll-to-roll.
On the other hand, in a liquid crystal display device, a stretched film of polyvinyl alcohol is generally used as a polarizing film, and the absorption axis of polarized light is parallel to the length direction.
Therefore, in order to bond a retardation film having a slow axis in the 45 ° direction with respect to the polarization axis and a polarizer by roll-to-roll, a roll film of a retardation film having a slow axis in the 45 ° direction. Therefore, the stretched film is not suitable for bonding by roll-to-roll.
In contrast, a retardation film having an optically anisotropic layer formed of a curable liquid crystalline compound can freely change the direction of the slow axis by controlling the orientation direction of the liquid crystalline compound by a method such as rubbing. Therefore, it is suitable for roll-to-roll bonding.
特許文献2にはトリアセチルセルロースフィルムを基材フィルムとして重合性棒状液晶性化合物が配向した45°方向に遅相軸を有するロールフィルム状のλ/4板を作成し、それをロール・トゥ・ロールで偏光子と貼合して楕円偏光板を作成できることが示されている。このようにして作成される楕円偏光板は、光学異方性層/配向膜/基材フィルム/偏光子/保護フィルムという構成を有し、液晶セルは光学異方性側に、保護フィルムは表示装置の視認側に配置される。
特許文献2に記載はないが、表示装置の表面側に配置される保護フィルムは耐擦傷性の機能付与を目的に通常ハードコートフィルムが保護フィルムとして用いられることが考えられる。
一方、上記特許文献1の時分割2眼立体視の透過型液晶表示装置におけるλ/4板として上記特許文献2に記載の構成の楕円偏光板を用いた場合、光学異方性層が表示装置の視認側に配置されるために、耐擦傷性付与のためにハードコートフィルムが最表面に用いられることが好ましいと考えられる。光学異方性層の表面にハードコートフィルム(通常、透明支持体上にハードコート層を設けてなる)を設けようとすると、ハードコート層/透明支持体/粘着剤層/光学異方性層/配向膜/基材フィルム/偏光子/保護フィルムという構成になり、表面の部材(偏光板)が厚くなってしまうという問題が生じる。
In Patent Document 2, a roll film-like λ / 4 plate having a slow axis in the 45 ° direction in which a polymerizable rod-like liquid crystal compound is oriented is prepared using a triacetyl cellulose film as a base film, and the roll-to- It has been shown that an elliptically polarizing plate can be made by laminating with a polarizer with a roll. The elliptically polarizing plate thus prepared has a configuration of optically anisotropic layer / alignment film / base film / polarizer / protective film, the liquid crystal cell is on the optically anisotropic side, and the protective film is displayed. Located on the viewing side of the device.
Although not described in Patent Document 2, it is considered that a hard coat film is usually used as a protective film for the purpose of imparting a scratch-resistant function to the protective film disposed on the surface side of the display device.
On the other hand, when the elliptically polarizing plate having the structure described in Patent Document 2 is used as the λ / 4 plate in the time-division binocular stereoscopic transmission liquid crystal display device disclosed in Patent Document 1, the optically anisotropic layer is a display device. Therefore, it is considered that a hard coat film is preferably used on the outermost surface for imparting scratch resistance. When a hard coat film (usually provided with a hard coat layer on a transparent support) is provided on the surface of the optical anisotropic layer, the hard coat layer / transparent support / adhesive layer / optical anisotropic layer / Alignment film / base film / polarizer / protective film, resulting in a problem that the surface member (polarizing plate) becomes thick.
以上をまとめると、位相差と表面耐擦傷性を付与することができ、かつ薄型化の要求を満たす偏光板を提供することができる光学フィルムの開発が必要である。
更に、本発明者らは従来知見をもとに、光学異方性層を用いた時分割2眼立体視の透過型液晶表示装置に適した表面フィルムの開発に着手したところ、従来知られていなかった、新たな2つの問題を発見した。
第1の問題は特許文献2に記載されているトリアセチルセルロースフィルムを基材フィルムとして、重合性棒状液晶性化合物から作成されるλ/4層を搭載した時分割2眼立体視の透過型液晶表示装置は、正面の表示性能には優れているものの、斜め方向から見た時にクロストークが観察され画像品位が低下するという問題である。この問題は、光学フィルムのRe及びRthを制御し、Nzファクター(Rth/Re+0.5)を0.5に近くすることができれば、解決し得ることを本発明者らは見出した。本発明の光学フィルムの構成(光学異方性層/配向膜/透明支持体/ハードコート層)は、Nzを0.5に近くすることができるが、後述する比較例試料139のように、単にλ/4板上にハードコートフィルムを形成した(基材フィルム/配向膜/光学異方性層/粘着剤層/透明支持体/ハードコート層という)構成ではNzは1より大きく、斜め方向から見た時にクロストークが解消されないことがわかった。
第2の問題は、透明基材フィルムと光学異方性層との屈折率差に起因する干渉むらが発生し、それを搭載した液晶表示装置の表示品位を低下させるという問題である。特に、「ハードコート層/透明支持体/粘着剤層/光学異方性層/配向膜/基材フィルム/偏光子/保護フィルム」という構成では、光学異方性層と隣接する基材フィルムや粘着剤層の界面で発生する反射光による干渉ムラが顕著になることがわかった。
To summarize the above, it is necessary to develop an optical film that can provide retardation and surface scratch resistance and can provide a polarizing plate that satisfies the demand for thinning.
Furthermore, the present inventors have started the development of a surface film suitable for a time-division binocular stereoscopic transmission type liquid crystal display device using an optically anisotropic layer based on conventional knowledge. I found two new problems that did not exist.
The first problem is a time-division binocular stereoscopic transmission type liquid crystal equipped with a λ / 4 layer prepared from a polymerizable rod-like liquid crystalline compound using a triacetyl cellulose film described in Patent Document 2 as a base film. Although the display device is excellent in front display performance, there is a problem in that when viewed from an oblique direction, crosstalk is observed and image quality is degraded. The present inventors have found that this problem can be solved by controlling Re and Rth of the optical film and making the Nz factor (Rth / Re + 0.5) close to 0.5. The configuration of the optical film of the present invention (optically anisotropic layer / alignment film / transparent support / hard coat layer) can make Nz close to 0.5, but like a comparative sample 139 described later, In a configuration in which a hard coat film is simply formed on a λ / 4 plate (base film / alignment film / optically anisotropic layer / adhesive layer / transparent support / hard coat layer), Nz is greater than 1 and oblique direction It was found that crosstalk was not resolved when viewed from the above.
The second problem is that interference unevenness due to a difference in refractive index between the transparent substrate film and the optically anisotropic layer occurs, and the display quality of a liquid crystal display device on which the same is mounted is deteriorated. In particular, in the configuration of “hard coat layer / transparent support / adhesive layer / optically anisotropic layer / alignment film / substrate film / polarizer / protective film”, a substrate film adjacent to the optically anisotropic layer, It was found that interference unevenness due to reflected light generated at the interface of the pressure-sensitive adhesive layer becomes remarkable.
本発明は、表面保護フィルムと位相差フィルムの機能を有する複合フィルムに関するもので、生産性が高く、表面硬度が高く、干渉むらがなく、搭載した画像表示装置の画像品位にも優れ、偏光板の薄型化に好適な光学フィルムを提供することである。また、このような光学フィルムを搭載した偏光板や液晶表示装置にも関する。 The present invention relates to a composite film having functions of a surface protective film and a retardation film, and has high productivity, high surface hardness, no interference unevenness, excellent image quality of a mounted image display device, and a polarizing plate It is providing the optical film suitable for thickness reduction. The present invention also relates to a polarizing plate and a liquid crystal display device equipped with such an optical film.
本発明者らは、鋭意検討の結果、ハードコート層と光学異方性層の基材を共通化し、透明支持体の一方の面に光学異方性層を有し、他の面にハードコート層を有する光学フィルムにおいて、光学フィルムの面内レターデーションと厚さ方向のレターデーションを制御することで、これらの問題を解決できることを見出し、本発明の完成に至った。
特にセルロースアシレートからなる支持体を用い、円盤状液晶性化合物を含有する組成物から形成される光学異方性を有するものは斜め方向の画像品位にも特に優れていた。
As a result of intensive studies, the inventors have made the hard coat layer and the optically anisotropic layer common, have the optically anisotropic layer on one side of the transparent support, and the hard coat on the other side. In the optical film having a layer, it was found that these problems can be solved by controlling the in-plane retardation and the retardation in the thickness direction of the optical film, and the present invention has been completed.
In particular, those having optical anisotropy formed from a composition containing a discotic liquid crystalline compound using a support composed of cellulose acylate were particularly excellent in oblique image quality.
以下の構成により、本発明の上記課題は達成することができる。
<1>
視認側から、光学フィルムと、偏光膜と、液晶セルとをこの順に有する立体画像表示装置であって、
前記光学フィルムが、
透明支持体の一方の面上に光学異方性層を有し、もう一方の面上にハードコート層を有する光学フィルムであって、
前記光学フィルムが前記透明支持体と前記光学異方性層の間に配向膜を有し、
前記光学フィルムの550nmにおける面内レターデーションが80〜200nmであり、波長550nmにおける厚さ方向のレターデーションが−70〜70nmであり、
前記光学フィルムの波長550nmにおける面内レターデーションRe(550)と厚さ方向のレターデーションRth(550)から算出されるNz(=Rth(550)/Re(550)+0.5)が−0.50〜1.50であり、
前記光学フィルムが、ハードコート層が視認側に、光学異方性層が偏光膜側になるように配置された液晶表示装置。
<2>
前記光学フィルムのNz(=Rth(550)/Re(550)+0.5)が−0.10〜1.10である<1>に記載の液晶表示装置。
<3>
前記光学フィルムの光学異方性層が液晶性化合物を含有する組成物から形成されたものである<1>又は<2>に記載の液晶表示装置。
<4>
前記液晶性化合物がディスコティック液晶性化合物である<3>に記載の液晶表示装置。
<5>
前記光学フィルムのハードコート層が積層した側の表面の表面凹凸形状が、JIS B0601に基づく算術平均粗さRaが0〜0.08μmである、<1>〜<4>のいずれか1項に記載の液晶表示装置。
<6>
前記光学フィルムの表面ヘイズが1.0%未満である、<1>〜<5>のいずれか1項に記載の液晶表示装置。
<7>
前記光学フィルムの内部ヘイズが1〜10%である、<1>〜<6>のいずれか1項に記載の液晶表示装置。
<8>
前記光学フィルムの透明支持体の380nmの透過率が10%以下である、<1>〜<7>のいずれか1項に記載の液晶表示装置。
<9>
前記光学フィルムのハードコート層中に、バインダーと透光性粒子を含有し、透光性粒子の平均粒径が1〜12μmであり、バインダーと透光性粒子の屈折率差の絶対値が0.01以上0.05未満である、<1>〜<8>のいずれか1項に記載の液晶表示装置。
<10>
前記光学フィルムのハードコート層の前記透明支持体とは反対側に、前記透明支持体より屈折率の低い低屈折率層を有する<1>〜<9>のいずれか1項に記載の液晶表示装置。
本発明は、上記<1>〜<10>に関するものであるが、その他の事項(たとえば下記1〜16に記載した事項など)についても参考のために記載した。
The above-described problem of the present invention can be achieved by the following configuration.
<1>
From the viewing side, a stereoscopic image display device having an optical film, a polarizing film, and a liquid crystal cell in this order,
The optical film is
An optical film having an optically anisotropic layer on one surface of a transparent support and a hard coat layer on the other surface,
The optical film has an alignment film between the transparent support and the optically anisotropic layer,
In-plane retardation at 550 nm of the optical film is 80 to 200 nm, retardation in the thickness direction at a wavelength of 550 nm is −70 to 70 nm,
Nz (= Rth (550) / Re (550) +0.5) calculated from the in-plane retardation Re (550) at a wavelength of 550 nm of the optical film and the retardation Rth (550) in the thickness direction is −0. 50 to 1.50,
A liquid crystal display device in which the optical film is disposed such that the hard coat layer is on the viewing side and the optical anisotropic layer is on the polarizing film side.
<2>
The liquid crystal display device according to <1>, wherein Nz (= Rth (550) / Re (550) +0.5) of the optical film is −0.10 to 1.10.
< 3 >
The liquid crystal display device according to <1> or <2> , wherein the optically anisotropic layer of the optical film is formed from a composition containing a liquid crystalline compound.
< 4 >
The liquid crystal display device according to < 3 >, wherein the liquid crystal compound is a discotic liquid crystal compound.
< 5 >
In any one of <1> to < 4 >, the surface unevenness shape of the surface on which the hard coat layer of the optical film is laminated has an arithmetic average roughness Ra based on JIS B0601 of 0 to 0.08 μm. The liquid crystal display device described.
< 6 >
The liquid crystal display device according to any one of <1> to < 5 >, wherein a surface haze of the optical film is less than 1.0%.
< 7 >
The liquid crystal display device according to any one of <1> to < 6 >, wherein an internal haze of the optical film is 1 to 10%.
< 8 >
The liquid crystal display device according to any one of <1> to < 7 >, wherein a transmittance of 380 nm of the transparent support of the optical film is 10% or less.
< 9 >
The hard coat layer of the optical film contains a binder and translucent particles, the average particle diameter of the translucent particles is 1 to 12 μm, and the absolute value of the refractive index difference between the binder and the translucent particles is 0. The liquid crystal display device according to any one of <1> to < 8 >, which is 0.01 or more and less than 0.05.
< 10 >
The liquid crystal display according to any one of <1> to < 9 >, wherein a low refractive index layer having a refractive index lower than that of the transparent support is provided on the opposite side of the hard coat layer of the optical film from the transparent support. apparatus.
The present invention relates to the above <1> to < 10 >, but other matters (for example, items described in the following 1 to 16) are also described for reference.
1.
透明支持体の一方の面上に光学異方性層を有し、もう一方の面上にハードコート層を有する光学フィルムであって、
光学フィルムの550nmにおける面内レターデーションが80〜200nmであり、波長550nmにおける厚さ方向のレターデーションが−70〜70nmである光学フィルム。
2.
前記透明支持体と前記光学異方性層の間に配向膜を有する、上記1に記載の光学フィルム。
3.
前記透明支持体の波長550nmにおける厚さ方向のレターデーションが20〜100nmである上記1又は2に記載の光学フィルム。
4.
前記光学異方性層が液晶性化合物を含有する組成物から形成されたものである上記1〜3のいずれか1項に記載の光学フィルム。
5.
前記液晶性化合物がディスコティック液晶性化合物である上記4に記載の光学フィルム。
6.
前記光学フィルムのハードコート層が積層した側の表面の表面凹凸形状が、JIS B0601に基づく算術平均粗さRaが0〜0.08μmである、上記1〜5のいずれか1項に記載の光学フィルム。
7.
前記光学フィルムの表面ヘイズが1%以下である、上記1〜6のいずれか1項に記載の光学フィルム。
8.
前記光学フィルムの内部ヘイズが1〜10%である、上記1〜7のいずれか1項に記載の光学フィルム。
9.
前記透明支持体の380nmの透過率が10%以下である、上記1〜8のいずれか1項に記載の光学フィルム。
10.
前記ハードコート層中に、バインダーと透光性粒子を含有し、透光性粒子の平均粒径が1〜12μmであり、バインダーと透光性粒子の屈折率差の絶対値が0.01以上0.05未満である、上記1〜9のいずれか1項に記載の光学フィルム。
11.
前記ハードコート層の前記透明支持体とは反対側に、前記透明支持体より屈折率の低い低屈折率層を有する上記1〜10のいずれか1項に記載の光学フィルム。
12.
長さ方向を基準に正面レターデーションの遅相軸が時計回り又は反時計回りに5〜85°である、長尺ロール状の上記1〜11のいずれか1項に記載の光学フィルム。
13.
液晶表示装置用表面フィルムである上記1〜12のいずれか1項に記載の光学フィルム。
14.
少なくとも1つの保護膜と偏光膜とを有する偏光板であって、前記少なくとも1つの保護膜が上記1〜13のいずれか1項に記載の光学フィルムであり、前記光学フィルムの光学異方性層側の表面と前記偏光膜とが貼合された偏光板。
15.
上記1〜13のいずれか1項に記載の光学フィルム、又は上記14に記載の偏光板を少なくとも1つ含む画像表示装置。
16.
視認側から、上記1〜13のいずれか1項に記載の光学フィルムと、偏光膜と、液晶セルとをこの順に有する液晶表示装置であって、前記光学フィルムが、ハードコート層が視認側に、光学異方性層が偏光膜側になるように配置された液晶表示装置。
1.
An optical film having an optically anisotropic layer on one surface of a transparent support and a hard coat layer on the other surface,
An optical film having an in-plane retardation at 550 nm of 80 to 200 nm, and a retardation in the thickness direction at a wavelength of 550 nm of −70 to 70 nm.
2.
2. The optical film as described in 1 above, having an alignment film between the transparent support and the optically anisotropic layer.
3.
3. The optical film as described in 1 or 2 above, wherein the transparent support has a retardation in the thickness direction at a wavelength of 550 nm of 20 to 100 nm.
4).
4. The optical film as described in any one of 1 to 3 above, wherein the optically anisotropic layer is formed from a composition containing a liquid crystalline compound.
5.
5. The optical film as described in 4 above, wherein the liquid crystalline compound is a discotic liquid crystalline compound.
6).
The optical surface according to any one of 1 to 5 above, wherein the surface irregularity shape of the surface on which the hard coat layer of the optical film is laminated has an arithmetic average roughness Ra based on JIS B0601 of 0 to 0.08 μm. the film.
7).
The optical film according to any one of 1 to 6 above, wherein the surface haze of the optical film is 1% or less.
8).
The optical film according to any one of 1 to 7 above, wherein an internal haze of the optical film is 1 to 10%.
9.
The optical film according to any one of 1 to 8 above, wherein the transparent support has a transmittance of 380 nm of 10% or less.
10.
The hard coat layer contains a binder and translucent particles, the translucent particles have an average particle diameter of 1 to 12 μm, and the absolute value of the difference in refractive index between the binder and the translucent particles is 0.01 or more. 10. The optical film as described in any one of 1 to 9 above, which is less than 0.05.
11.
11. The optical film as described in any one of 1 to 10 above, wherein a low refractive index layer having a refractive index lower than that of the transparent support is provided on the opposite side of the hard coat layer from the transparent support.
12
The optical film according to any one of 1 to 11 in the form of a long roll, wherein a slow axis of front retardation is 5 to 85 ° clockwise or counterclockwise with respect to the length direction.
13.
13. The optical film as described in any one of 1 to 12 above, which is a surface film for a liquid crystal display device.
14
A polarizing plate having at least one protective film and a polarizing film, wherein the at least one protective film is the optical film described in any one of 1 to 13 above, and the optical anisotropic layer of the optical film The polarizing plate with which the surface of the side and the said polarizing film were bonded.
15.
14. An image display device comprising at least one of the optical film described in any one of 1 to 13 or the polarizing plate described in 14 above.
16.
It is a liquid crystal display which has the optical film of any one of said 1-13, a polarizing film, and a liquid crystal cell in this order from the visual recognition side, Comprising: The said optical film has a hard-coat layer in the visual recognition side. A liquid crystal display device arranged so that the optically anisotropic layer is on the polarizing film side.
本発明によれば、生産性が高く、表面硬度が高く、干渉むらがなく、搭載した画像表示装置の画像品位(光学補償に優れ、クロストークなどがない)にも優れ、偏光板やそれを搭載した画像表示装置の薄型化に好適な光学フィルムを提供することができる。
また、本発明の光学フィルムは、透過型液晶表示装置をベースとした立体型画像表示装置に適している。
According to the present invention, the productivity is high, the surface hardness is high, there is no interference unevenness, the image quality of the mounted image display device (excellent optical compensation, no crosstalk, etc.) is excellent. An optical film suitable for reducing the thickness of the mounted image display device can be provided.
The optical film of the present invention is suitable for a stereoscopic image display device based on a transmissive liquid crystal display device.
以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these. In the present specification, when a numerical value represents a physical property value, a characteristic value, etc., the description “(numerical value 1) to (numerical value 2)” means “(numerical value 1) or more and (numerical value 2) or less”. .
本発明の光学フィルムは、透明支持体の一方の面上に光学異方性層を有し、もう一方の面上にハードコート層を有する光学フィルムであって、光学フィルムの波長550nmにおける面内レターデーション(Re(550))が80〜200nmであり、厚さ方向のレターデーション(Rth(550))が−70〜70nmである。 The optical film of the present invention is an optical film having an optically anisotropic layer on one surface of a transparent support and a hard coat layer on the other surface, wherein the optical film is in-plane at a wavelength of 550 nm. The retardation (Re (550)) is 80 to 200 nm, and the retardation in the thickness direction (Rth (550)) is -70 to 70 nm.
以下、本発明の光学フィルム、偏光板、画像表示装置に使用される材料、及びそれらの製造方法について詳細に説明する。 Hereinafter, the materials used for the optical film, the polarizing plate and the image display device of the present invention, and the production methods thereof will be described in detail.
[透明支持体]
[透明支持体の材質]
本発明の透明支持体を形成する材料としては、光学性能透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるポリマーが好ましい。本発明でいう透明とは、可視光の透過率が60%以上であることを示し、好ましくは80%以上であり、特に好ましくは90%以上である。例えば、ポリカーボネート系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又は前記ポリマーを混合したポリマーも例としてあげられる。また本発明の高分子フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の紫外線硬化型、熱硬化型の樹脂の硬化層として形成することもできる。
[Transparent support]
[Material of transparent support]
As a material for forming the transparent support of the present invention, a polymer excellent in optical performance transparency, mechanical strength, thermal stability, moisture shielding property, isotropy and the like is preferable. The term “transparent” as used in the present invention indicates that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more. Examples include polycarbonate polymers, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymers such as polymethyl methacrylate, and styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin). Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers, polyethersulfone polymers , Polyether ether ketone polymers, polyphenylene sulfide polymers, vinylidene chloride polymers, vinyl alcohol polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers, or polymers mixed with the above polymers Take an example. The polymer film of the present invention can also be formed as a cured layer of an ultraviolet-curable or thermosetting resin such as acrylic, urethane, acrylic urethane, epoxy, or silicone.
また、本発明の透明支持体を形成する材料としては、熱可塑性ノルボルネン系樹脂を好ましく用いることが出来る。熱可塑性ノルボルネン系樹脂としては、日本ゼオン(株)製のゼオネックス、ゼオノア、JSR(株)製のアートン等があげられる。 Further, as a material for forming the transparent support of the present invention, a thermoplastic norbornene resin can be preferably used. Examples of the thermoplastic norbornene-based resin include ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., and ARTON manufactured by JSR Corporation.
また、本発明の透明支持体を形成する材料としては、従来偏光板の透明保護フィルムとして用いられてきた、トリアセチルセルロースに代表される、セルロース系ポリマー(特に好ましくは、セルロースアシレート)を好ましく用いることができる。以下に、本発明の透明支持体の例として、主にセルロースアシレートについて詳細を説明するが、その技術的事項は、他の高分子フィルムについても同様に適用できることは明らかである。 Further, as a material for forming the transparent support of the present invention, a cellulose polymer (particularly preferably, cellulose acylate) represented by triacetyl cellulose, which has been conventionally used as a transparent protective film of a polarizing plate, is preferable. Can be used. Hereinafter, cellulose acylate will be mainly described in detail as an example of the transparent support of the present invention, but it is obvious that the technical matters can be applied to other polymer films as well.
[セルロースアシレート置換度]
次に上述のセルロースを原料に製造される本発明のセルロースアシレートについて記載する。セルロースアシレートはセルロースの水酸基がアシル化されたもので、その置換基はアシル基の炭素原子数が2のアセチル基から炭素原子数が22のものまでいずれも用いることができる。本発明のセルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸の結合度を測定し、計算によって置換度を得ることができる。測定方法としては、ASTMのD−817−91に準じて実施することが出来る。
[Substitution degree of cellulose acylate]
Next, the cellulose acylate of the present invention produced from the above-mentioned cellulose will be described. Cellulose acylate is obtained by acylating a hydroxyl group of cellulose, and the substituent can be any acetyl group having 2 carbon atoms in the acyl group to those having 22 carbon atoms. In the cellulose acylate of the present invention, the degree of substitution of cellulose with a hydroxyl group is not particularly limited, but the degree of binding of acetic acid and / or a fatty acid having 3 to 22 carbon atoms substituted with a hydroxyl group of cellulose is measured and substituted by calculation. You can get a degree. As a measuring method, it can carry out according to ASTM D-817-91.
セルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基へのアシル置換度が2.50〜3.00であることが好ましい。更には置換度が2.75〜3.00であることが好ましく、2.85〜3.00であることがより好ましい。 In the cellulose acylate, the substitution degree of the hydroxyl group of cellulose is not particularly limited, but the acyl substitution degree of the cellulose hydroxyl group is preferably 2.50 to 3.00. Furthermore, the substitution degree is preferably 2.75 to 3.00, and more preferably 2.85 to 3.00.
セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸のうち、炭素数2〜22のアシル基としては、脂肪族基でも芳香族基でもよく特に限定されず、単一でも2種類以上の混合物でもよい。これらによりアシル化されたセルロースエステルとしては、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれ更に置換された基を有していてもよい。好ましいアシル基としては、アセチル基、プロピオニル基、ブタノイル基、へプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、iso−ブタノイル基、t−ブタノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などを挙げることが出来る。これらの中でも、アセチル基、プロピオニル基、ブタノイル基、ドデカノイル基、オクタデカノイル基、t−ブタノイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などが好ましく、アセチル基、プロピオニル基、ブタノイル基がより好ましい。 Among the acetic acid and / or the fatty acid having 3 to 22 carbon atoms substituted for the hydroxyl group of cellulose, the acyl group having 2 to 22 carbon atoms may be an aliphatic group or an aromatic group, and is not particularly limited. It may be a mixture of more than one type. Examples of the cellulose ester acylated by these include alkylcarbonyl ester, alkenylcarbonyl ester, aromatic carbonyl ester, aromatic alkylcarbonyl ester and the like of cellulose, and each may further have a substituted group. Preferred acyl groups include acetyl group, propionyl group, butanoyl group, heptanoyl group, hexanoyl group, octanoyl group, decanoyl group, dodecanoyl group, tridecanoyl group, tetradecanoyl group, hexadecanoyl group, octadecanoyl group, iso -Butanoyl group, t-butanoyl group, cyclohexanecarbonyl group, oleoyl group, benzoyl group, naphthylcarbonyl group, cinnamoyl group and the like can be mentioned. Among these, acetyl group, propionyl group, butanoyl group, dodecanoyl group, octadecanoyl group, t-butanoyl group, oleoyl group, benzoyl group, naphthylcarbonyl group, cinnamoyl group and the like are preferable, and acetyl group, propionyl group, butanoyl group are preferable. Groups are more preferred.
[セルロースアシレートの重合度]
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で180〜700であり、セルロースアセテートにおいては、180〜550がより好ましく、180〜400が更に好ましく、180〜350が特に好ましい。
[Degree of polymerization of cellulose acylate]
The degree of polymerization of cellulose acylate preferably used in the present invention is 180 to 700 in terms of viscosity average polymerization degree, and in cellulose acetate, 180 to 550 is more preferable, 180 to 400 is more preferable, and 180 to 350 is particularly preferable. .
[透明支持体の添加剤]
本発明における透明支持体には、種々の添加剤(例えば、光学的異方性調整剤、波長分散調整剤、微粒子、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、など)を加えることができ、これらについて以下に説明する。また、透明支持体がセルロースアシレートフィルムである場合、その添加する時期はドープ作製工程(セルロースアシレート溶液の作製工程)における何れでも良いが、ドープ作製工程の最後に添加剤を添加し調製する工程を行ってもよい。
[Additive for transparent support]
Various additives (for example, optical anisotropy adjusting agent, wavelength dispersion adjusting agent, fine particles, plasticizer, ultraviolet ray preventing agent, deterioration preventing agent, release agent, etc.) are added to the transparent support in the present invention. These will be described below. In addition, when the transparent support is a cellulose acylate film, the addition time may be any in the dope preparation process (preparation process of cellulose acylate solution), but an additive is added and prepared at the end of the dope preparation process. You may perform a process.
[紫外線吸収剤]
本発明の光学フィルムの透明支持体は紫外線吸収剤(UV吸収剤)を含有することが好ましい。紫外線吸収剤を含有することで紫外線吸収性を付与することができる。透明支持体に紫外線吸収剤を含有させることで、外光に含まれる紫外線に曝されることで、支持体の黄変(例えば波長400nmの透過率低下として観察される。)や支持体の一方の面に積層される光学異方性層のレターデーション変化(例えばRe変化として観測される。)を防止することができる。UV吸収剤の具体例としては、例えば特開2006−199855号公報の[0059]から[0135]に記載の化合物が挙げられる。
透明支持体の380nmの透過率は50%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、5%以下であることが特に好ましい。
[Ultraviolet absorber]
The transparent support of the optical film of the present invention preferably contains an ultraviolet absorber (UV absorber). By containing the ultraviolet absorber, ultraviolet absorptivity can be imparted. By including an ultraviolet absorber in the transparent support, the support is yellowed (for example, observed as a decrease in transmittance at a wavelength of 400 nm) or one of the supports when exposed to ultraviolet rays contained in external light. It is possible to prevent retardation change (for example, observed as Re change) of the optically anisotropic layer laminated on the surface. Specific examples of the UV absorber include compounds described in JP-A-2006-199855, [0059] to [0135].
The transmittance at 380 nm of the transparent support is preferably 50% or less, more preferably 20% or less, still more preferably 10% or less, and particularly preferably 5% or less.
[マット剤微粒子]
本発明における透明支持体には、マット剤として微粒子を加えることが好ましい。微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットルが好ましく、100〜200g/リットルが更に好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
[Matting agent fine particles]
It is preferable to add fine particles as a matting agent to the transparent support in the present invention. Examples of the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate. . Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable. The silicon dioxide fine particles preferably have a primary average particle size of 20 nm or less and an apparent specific gravity of 70 g / liter or more. Those having an average primary particle size as small as 5 to 16 nm are more preferred because they can reduce the haze of the film. The apparent specific gravity is preferably 90 to 200 g / liter, and more preferably 100 to 200 g / liter. A larger apparent specific gravity is preferable because a high-concentration dispersion can be produced, and haze and aggregates are improved.
これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凸部を形成させる。2次平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下が更に好ましく、0.6μm以上1.1μm以下が最も好ましい。1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とする。また、フィルム表面の凹凸の状態はAFMなどの手法により測定することができる。 These fine particles usually form secondary particles having an average particle diameter of 0.1 to 3.0 μm, and these fine particles are present as aggregates of primary particles in the film, and 0.1 to 0.1 μm on the film surface. A convex part of 3.0 μm is formed. The secondary average particle size is preferably from 0.2 to 1.5 μm, more preferably from 0.4 to 1.2 μm, and most preferably from 0.6 to 1.1 μm. The primary and secondary particle sizes were determined by observing the particles in the film with a scanning electron microscope and determining the diameter of a circle circumscribing the particles as the particle size. Also, 200 particles are observed at different locations, and the average value is taken as the average particle diameter. Moreover, the uneven | corrugated state of the film surface can be measured by techniques, such as AFM.
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 As the fine particles of silicon dioxide, for example, commercially available products such as Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (above Nippon Aerosil Co., Ltd.) can be used. Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。 Among these, Aerosil 200V and Aerosil R972V are fine particles of silicon dioxide having a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more, and the coefficient of friction is maintained while keeping the turbidity of the optical film low. It is particularly preferable because it has a great effect of reducing the effect.
[光学的異方性を低下させる化合物]
透明支持体の光学的異方性を低下させる化合物の具体例としては、例えば特開2006−199855号公報の[0035]から[0058]記載の化合物が挙げられるが、これら化合物に限定されない。
[Compound that reduces optical anisotropy]
Specific examples of the compound for reducing the optical anisotropy of the transparent support include, for example, compounds described in JP-A 2006-199855, [0035] to [0058], but are not limited to these compounds.
[可塑剤、劣化防止剤、剥離剤]
光学的異方性を低下させる化合物、UV吸収剤、マット剤の他に、前述のように、用途に応じた種々の添加剤(例えば、可塑剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。これらの素材の詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている。
[Plasticizer, degradation inhibitor, release agent]
In addition to compounds that reduce optical anisotropy, UV absorbers, and matting agents, as described above, various additives (for example, plasticizers, deterioration inhibitors, release agents, infrared absorbers) depending on the application. , Etc.), which may be solid or oily. Details of these materials are described in detail on pages 16 to 22 in the Japan Institute of Invention Disclosure Technical Bulletin (Public Technical Number 2001-1745, published on March 15, 2001, Japan Institute of Invention).
[ナーリング]
本発明における透明支持体は、幅広で薄膜であっても、ロール状態でハンドリングした際にブラックバンドの発生やフィルムの変形を抑制するために、透明支持体のフィルム端部にナーリング部を有することが好ましい。ナーリング部とは、透明長尺支持体の幅方向の端部に凹凸を付与して端部を嵩高くしたものであり、両端部に設けることが好ましい。ナーリング部として凹凸を付与する方法としては、フィルムに加熱されたエンボスロールを押し当てることにより形成することが出来る。エンボスロールには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることが出来る。本発明に係るナーリング部の高さは、フィルム表面からエンボス凸部までの高さを言う。ナーリングは、透明支持体の表裏の両面に設けることもでき、片面に3以上設けることもできる。ナーリング部の高さは、光学異方性層及びハードコート層を含む光学機能層全体の膜厚よりも1μm以上高くすることが好ましく、1本のナーリング部の幅は、5mm〜30mmの範囲であることが好ましい。フィルムの表裏の両面にナーリング部を設ける場合は、ナーリング部の高さの和が少なくとも1μm以上高くなればよい。1μm以上にすることで、ブラックバンドの発生やフィルムの変形を抑制効果が現れる。ナーリング部の高さは好ましくは光学機能層全体の膜厚よりも2μm〜10μmの範囲で高くすることである。この範囲にすることで、ブラックバンドの発生やフィルムの変形が防止でき、巻きずれやナーリング部のふくらみによる支持体変形などの弊害も発生しない。
[Knurling]
Even if the transparent support in the present invention is wide and thin, it has a knurling part at the film end of the transparent support in order to suppress the generation of black bands and film deformation when handled in a roll state. Is preferred. A knurling part is what gives unevenness to the edge part of the width direction of a transparent long support body, and makes the edge part bulky, and it is preferred to provide in both ends. As a method of providing unevenness as a knurling portion, it can be formed by pressing a heated embossing roll on the film. Fine embossing is formed on the embossing roll. By pressing this embossing roll, unevenness can be formed on the film and the end can be made bulky. The height of the knurling part which concerns on this invention says the height from a film surface to an embossing convex part. The knurling can be provided on both the front and back surfaces of the transparent support, or three or more on one side. The height of the knurling part is preferably 1 μm or more higher than the film thickness of the entire optical functional layer including the optically anisotropic layer and the hard coat layer, and the width of one knurling part is in the range of 5 mm to 30 mm. Preferably there is. In the case where knurling portions are provided on both the front and back surfaces of the film, the sum of the heights of the knurling portions may be increased by at least 1 μm. By controlling the thickness to 1 μm or more, the effect of suppressing the generation of black bands and film deformation appears. The height of the knurling part is preferably higher in the range of 2 μm to 10 μm than the film thickness of the entire optical functional layer. By setting it within this range, it is possible to prevent the occurrence of a black band and the deformation of the film, and no adverse effects such as winding deviation and deformation of the support due to the swelling of the knurling portion occur.
[光学異方性層]
本発明の光学フィルムが有する光学異方性層について説明する。光学異方性層とは、前記透明支持体上に該層を形成することで位相差を生じさせる層をいう。
本発明における光学異方性層は、各種用途に合わせ材料及び製造条件を選択することができるが、重合性液晶性化合物を用いたλ/4膜が一つの好ましい態様である。
[Optically anisotropic layer]
The optical anisotropic layer which the optical film of the present invention has will be described. The optically anisotropic layer refers to a layer that generates a phase difference by forming the layer on the transparent support.
The optically anisotropic layer in the present invention can be selected from materials and production conditions in accordance with various uses, and a λ / 4 film using a polymerizable liquid crystalline compound is one preferred embodiment.
まず、光学特性の測定方法について説明する。本明細書において、Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、及び厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、又は測定値をプログラム等で変換して測定することができる。測定されるフィルムが、1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)が算出される。なお、この測定方法は、後述する光学異方性層中のディスコティック液晶分子の配向膜側の平均チルト角、その反対側の平均チルト角の測定においても一部利用される。
Rth(λ)は、前記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH、又はWRが算出する。なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値、及び入力された膜厚値(d)を基に、以下の式(A)、及び式(III)よりRthを算出することもできる。
First, a method for measuring optical characteristics will be described. In this specification, Re (λ) and Rth (λ) represent in-plane retardation and retardation in the thickness direction at the wavelength λ, respectively. Re (λ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of λ nm incident in the normal direction of the film. In selecting the measurement wavelength λnm, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like. When the film to be measured is represented by a uniaxial or biaxial refractive index ellipsoid, Rth (λ) is calculated by the following method. This measuring method is also partially used for measuring the average tilt angle on the alignment film side of the discotic liquid crystal molecules in the optically anisotropic layer, which will be described later, and the average tilt angle on the opposite side.
Rth (λ) is the film surface when Re (λ) is used and the in-plane slow axis (determined by KOBRA 21ADH or WR) is the tilt axis (rotation axis) (if there is no slow axis) Measurement is performed at a total of 6 points by injecting light of wavelength λ nm from each inclined direction in steps of 10 degrees from the normal direction to 50 ° on one side with respect to the film normal direction (with any rotation direction as the rotation axis). Then, KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value. In the above case, in the case of a film having a direction in which the retardation value is zero at a certain tilt angle with the in-plane slow axis from the normal direction as the rotation axis, retardation at a tilt angle larger than the tilt angle. The value is calculated by KOBRA 21ADH or WR after changing its sign to negative. The retardation value is measured from two inclined directions with the slow axis as the tilt axis (rotation axis) (if there is no slow axis, the arbitrary direction in the film plane is the rotation axis). Rth can also be calculated from the following formula (A) and formula (III) based on the value, the assumed value of the average refractive index, and the input film thickness value (d).
式(A): Formula (A):
なお、上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。また、式(A)におけるnxは、面内における遅相軸方向の屈折率を表し、nyは、面内においてnxに直交する方向の屈折率を表し、nzは、nx及びnyに直交する方向の屈折率を表す。 Note that Re (θ) represents a retardation value in a direction inclined by an angle θ from the normal direction. In the formula (A), nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction orthogonal to nx in the plane, and nz is the direction orthogonal to nx and ny. Represents the refractive index.
Rth=((nx+ny)/2−nz)×d・・・式(III) Rth = ((nx + ny) / 2−nz) × d (formula (III))
測定されるフィルムが、1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法により、Rth(λ)は算出される。Rth(λ)は、前記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して−50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。また、上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについては、アッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx−nz)/(nx−ny)が更に算出される。 When the film to be measured is a film that cannot be expressed by a uniaxial or biaxial refractive index ellipsoid, that is, a film without a so-called optical axis, Rth (λ) is calculated by the following method. Rth (λ) is from −50 ° to the normal direction of the film, with Re (λ) being the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotary axis). Measured at 11 points by making light of wavelength λ nm incident in 10 ° steps up to + 50 °, and based on the measured retardation value, average refractive index assumption value and input film thickness value. KOBRA 21ADH or WR is calculated. In the above measurement, as the assumed value of the average refractive index, values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. If the average refractive index is not known, it can be measured with an Abbe refractometer. The average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59). The KOBRA 21ADH or WR calculates nx, ny, and nz by inputting the assumed value of the average refractive index and the film thickness. Nz = (nx−nz) / (nx−ny) is further calculated from the calculated nx, ny, and nz.
[光学異方性層のレターデーション]
本発明における光学異方性層の波長550nmにおける正面レターデーションRe(550)は80〜200nmが好ましく、90〜180nmがより好ましく、100〜170nmが更に好ましい。
また、本発明の光学フィルムの波長550nmにおける正面レターデーションRe(550)は80〜200nmであり、100〜170nmがより好ましく、110〜160nmが更に好ましい。
波長550nmにおける正面レターデーションRe(550)を上記範囲に抑制することにより、例えば、時分割2眼立体視の透過型液晶表示装置に搭載した時の正面のクロストークや、輝度低下を抑制することができる。特に視認者が顔を傾けて見た時に効果が顕著である。
光学フィルムの波長550nmにおける厚さ方向のレターデーションRth(550)は−70〜70nmであり、−60〜60nmが好ましく、−50〜50nmがより更に好ましく、−20〜20nmが特に好ましい。
Rth(550)を上記範囲に制御することにより、時分割2眼立体視の透過型液晶表示装置に搭載した時に斜め方向のクロストークや、輝度低下を抑制することができる。
上記の波長550nmにおける、Re(550)とRth(550)から算出されるNz(=Rth(550)/Re(550)+0.5)は−0.50〜1.50が好ましく、−0.10〜1.10がより好ましく、0.1〜0.9が更に好ましく、0.3〜0.7が特に好ましい。
[Retardation of optically anisotropic layer]
The front retardation Re (550) at a wavelength of 550 nm of the optically anisotropic layer in the present invention is preferably from 80 to 200 nm, more preferably from 90 to 180 nm, still more preferably from 100 to 170 nm.
The front retardation Re (550) at a wavelength of 550 nm of the optical film of the present invention is 80 to 200 nm, more preferably 100 to 170 nm, and still more preferably 110 to 160 nm.
By suppressing the front retardation Re (550) at a wavelength of 550 nm within the above range, for example, front crosstalk and luminance reduction when mounted on a transmission liquid crystal display device for time-division binocular stereoscopic viewing are suppressed. Can do. The effect is particularly remarkable when the viewer looks at his / her face.
The retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the optical film is −70 to 70 nm, preferably −60 to 60 nm, more preferably −50 to 50 nm, and particularly preferably −20 to 20 nm.
By controlling Rth (550) within the above range, it is possible to suppress crosstalk in an oblique direction and a decrease in luminance when mounted on a time-division binocular stereoscopic transmission type liquid crystal display device.
Nz (= Rth (550) / Re (550) +0.5) calculated from Re (550) and Rth (550) at the wavelength of 550 nm is preferably −0.50 to 1.50, and −0. 10 to 1.10 are more preferable, 0.1 to 0.9 are more preferable, and 0.3 to 0.7 are particularly preferable.
[液晶性化合物を含む光学異方性層]
本発明における光学異方性層は液晶性化合物を用いて形成されることが好ましい。用いられる液晶性化合物の種類については特に制限されない。例えば、低分子液晶性化合物を液晶状態においてネマチック配向に形成後、光架橋や熱架橋によって固定化して得られる光学異方性層や、高分子液晶性化合物を液晶状態においてネマチック配向に形成後、冷却することによって当該配向を固定化して得られる光学異方性層を用いることもできる。なお本発明では、光学異方性層に液晶性化合物が用いられる場合であっても、光学異方性層は、該液晶性化合物が重合等によって固定されて形成された層であり、層となった後はもはや液晶性を示す必要はない。重合性液晶性化合物は、多官能性重合性液晶でもよいし、単官能性重合性液晶性化合物でもよい。
また、液晶性化合物は、ディスコティック液晶性化合物(円盤状液晶性化合物とも称する)でもよいし、棒状液晶性化合物でもよいが、本発明の光学フィルムで好ましい光学特性(特に波長550nmにおける厚さ方向のレターデーションRth(550))を得るためには、ディスコティック液晶性化合物がより好ましい。
[Optically anisotropic layer containing liquid crystalline compound]
The optically anisotropic layer in the present invention is preferably formed using a liquid crystalline compound. The type of liquid crystal compound used is not particularly limited. For example, after forming a low molecular weight liquid crystalline compound in a nematic orientation in a liquid crystal state, an optically anisotropic layer obtained by fixing by photocrosslinking or thermal crosslinking, or after forming a polymer liquid crystalline compound in a nematic orientation in a liquid crystal state, An optically anisotropic layer obtained by fixing the orientation by cooling can also be used. In the present invention, even when a liquid crystalline compound is used for the optically anisotropic layer, the optically anisotropic layer is a layer formed by fixing the liquid crystalline compound by polymerization or the like. After that, it is no longer necessary to show liquid crystallinity. The polymerizable liquid crystal compound may be a polyfunctional polymerizable liquid crystal or a monofunctional polymerizable liquid crystal compound.
The liquid crystalline compound may be a discotic liquid crystalline compound (also referred to as a discotic liquid crystalline compound) or a rod-shaped liquid crystalline compound. In order to obtain the retardation Rth (550)), a discotic liquid crystalline compound is more preferable.
前記光学異方性層において、液晶性化合物の分子は、垂直配向、水平配向、ハイブリッド配向及び傾斜配向のいずれかの配向状態に固定化されていることが好ましい。視野角依存性が対称である位相差板を作製するためには、ディスコティック液晶性化合物の円盤面がフィルム面(光学異方性層の面方向)に対して実質的に垂直であるか、又は、棒状液晶性化合物の長軸がフィルム面(光学異方性層面)に対して実質的に水平であることが好ましい。ディスコティック液晶性化合物が実質的に垂直とは、フィルム面(光学異方性層面)とディスコティック液晶性化合物の円盤面とのなす角度の平均値が70°〜90°の範囲内であることを意味する。80°〜90°がより好ましく、85°〜90°が更に好ましい。棒状液晶性化合物が実質的に水平とは、フィルム面(光学異方性層面)と棒状液晶性化合物のダイレクターとのなす角度が0°〜20°の範囲内であることを意味する。0°〜10°がより好ましく、0°〜5°が更に好ましい。
液晶性化合物の分子をハイブリッド配向させて視野角依存性が非対称である光学補償フィルムを作製する場合、液晶性化合物のダイレクターの平均傾斜角は5〜85°であることが好ましく、10〜80°であることがより好ましく、15〜75°であることが更に好ましい。
In the optically anisotropic layer, it is preferable that the molecules of the liquid crystalline compound are fixed in any alignment state of vertical alignment, horizontal alignment, hybrid alignment, and tilt alignment. In order to produce a retardation plate whose viewing angle dependency is symmetric, the disc surface of the discotic liquid crystalline compound is substantially perpendicular to the film surface (surface direction of the optically anisotropic layer) Or it is preferable that the long axis of a rod-shaped liquid crystalline compound is substantially horizontal with respect to a film surface (optically anisotropic layer surface). The term “substantially perpendicular to the discotic liquid crystalline compound” means that the average value of the angle formed by the film surface (optically anisotropic layer surface) and the disc surface of the discotic liquid crystalline compound is in the range of 70 ° to 90 °. Means. 80 ° to 90 ° is more preferable, and 85 ° to 90 ° is still more preferable. That the rod-like liquid crystalline compound is substantially horizontal means that the angle formed by the film surface (optically anisotropic layer surface) and the director of the rod-like liquid crystalline compound is in the range of 0 ° to 20 °. 0 ° to 10 ° is more preferable, and 0 ° to 5 ° is still more preferable.
In the case of producing an optical compensation film in which the viewing angle dependency is asymmetric by hybrid alignment of liquid crystal compound molecules, the average tilt angle of the director of the liquid crystal compound is preferably 5 to 85 °, and 10 to 80 More preferably, the angle is more preferably 15 to 75 °.
本発明の光学フィルムにおいて光学異方性層は一層のみからなっていてもよいし、二層以上の光学異方性層の積層体であってもよい。 In the optical film of the present invention, the optically anisotropic layer may be composed of only one layer or a laminate of two or more optically anisotropic layers.
前記光学異方性層は、棒状液晶性化合物又はディスコティック液晶性化合物等の液晶性化合物と、所望により、後述する重合開始剤や配向制御剤や他の添加剤を含む塗布液を、支持体上に塗布することで形成することができる。支持体上に配向膜を形成し、該配向膜表面に前記塗布液を塗布して形成するのが好ましい。 The optically anisotropic layer comprises a coating liquid containing a liquid crystalline compound such as a rod-like liquid crystalline compound or a discotic liquid crystalline compound, and, if desired, a polymerization initiator, an alignment control agent and other additives described later. It can be formed by coating on top. It is preferable to form an alignment film on a support and apply the coating solution on the surface of the alignment film.
[ディスコティック液晶性化合物]
本発明では、前記光学フィルムが有する光学異方性層の形成に、ディスコティック液晶性化合物を用いるのが好ましい。ディスコティック液晶性化合物は、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載されている。ディスコティック液晶性化合物の重合については、特開平8−27284号公報に記載がある。
[Discotic liquid crystalline compounds]
In the present invention, it is preferable to use a discotic liquid crystalline compound for forming the optically anisotropic layer of the optical film. Discotic liquid crystalline compounds are disclosed in various documents (C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); edited by The Chemical Society of Japan, Quarterly Chemical Review, No. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10 Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985); J. Zhang et al., J Am.Chem.Soc., Vol.116, page 2655 (1994)). The polymerization of discotic liquid crystalline compounds is described in JP-A-8-27284.
本発明において好ましく用いることのできるディスコティック液晶性化合物の具体例としては、特開2009−97002号公報[0038]〜[0069]記載の化合物が挙げられる。また、トリフェニレン化合物で、波長分散の小さいディスコティック液晶性化合物としては、特開2007−108732号公報の段落[0062]〜[0067]記載の化合物等が挙げられる。 Specific examples of the discotic liquid crystalline compound that can be preferably used in the present invention include compounds described in JP-A-2009-97002 [0038] to [0069]. Further, examples of the discotic liquid crystalline compound having a small wavelength dispersion, which is a triphenylene compound, include compounds described in paragraphs [0062] to [0067] of JP-A No. 2007-108732.
前記のようにディスコティック液晶性化合物を用いて光学異方性層を形成する場合、フィルム面(光学異方性層面)とディスコティック液晶性化合物の円盤面とのなす角度の平均値が70°〜90°の範囲内であることが好ましく、80°〜90°がより好ましく、85°〜90°が更に好ましい。
透明支持体に求められる最適なレターデーションは光学異方性層を形成する材料によって異なる。光学異方性層がディスコティック液晶性化合物を含み、該ディスコティック液晶性化合物が上記角度で配向している場合、前記透明支持体の波長550nmにおける厚さ方向のレターデーションRth(550)は20〜100nmが好ましく、30〜90nmがより好ましく、40〜80nmが特に好ましい。透明支持体のRth(550)を上記範囲に制御することにより、光学フィルムのRth(550)を前記の好ましい範囲に制御することができる。
また透明支持体の波長550nmにおける面内レターデーションRe(550)は0〜10nmが好ましく、0〜8nmがより好ましく、0〜6nmが特に好ましい。
透明支持体としてセルロースアシレートフィルムを用いると、上記の好ましい厚さ方向のレターデーション及び面内レターデーションを容易に得ることができる。透明支持体としてセルロースアシレートフィルムを用い、かつ、光学異方性層にディスコティック液晶性化合物を用いる態様は、前述した光学フィルムとしての好ましい光学特性を得る上で特に好ましい。
When the optically anisotropic layer is formed using the discotic liquid crystalline compound as described above, the average angle formed by the film surface (optically anisotropic layer surface) and the disc surface of the discotic liquid crystalline compound is 70 °. It is preferably within the range of ˜90 °, more preferably 80 ° to 90 °, and still more preferably 85 ° to 90 °.
The optimum retardation required for the transparent support varies depending on the material forming the optically anisotropic layer. When the optically anisotropic layer contains a discotic liquid crystalline compound and the discotic liquid crystalline compound is oriented at the above angle, the retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the transparent support is 20 -100 nm is preferable, 30-90 nm is more preferable, and 40-80 nm is especially preferable. By controlling Rth (550) of the transparent support within the above range, Rth (550) of the optical film can be controlled within the above preferred range.
The in-plane retardation Re (550) at a wavelength of 550 nm of the transparent support is preferably 0 to 10 nm, more preferably 0 to 8 nm, and particularly preferably 0 to 6 nm.
When a cellulose acylate film is used as the transparent support, the above preferred thickness direction retardation and in-plane retardation can be easily obtained. An embodiment in which a cellulose acylate film is used as the transparent support and a discotic liquid crystalline compound is used in the optically anisotropic layer is particularly preferable for obtaining the preferable optical characteristics as the optical film described above.
[棒状液晶性化合物]
本発明では、光学異方性層に棒状液晶性化合物を用いてもよい。棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。棒状液晶性化合物を重合によって配向を固定することがより好ましい。液晶性化合物には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有するものが好適に用いられる。その部分構造の個数は好ましくは1〜6個、より好ましくは1〜3個である。重合性棒状液晶性化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、及び特開2001−328973号公報などに記載の化合物を用いることができる。
[Bar-shaped liquid crystalline compound]
In the present invention, a rod-like liquid crystalline compound may be used for the optically anisotropic layer. Examples of rod-like liquid crystalline compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only the above low-molecular liquid crystalline compounds but also high-molecular liquid crystalline compounds can be used. It is more preferable to fix the alignment of the rod-like liquid crystal compound by polymerization. As the liquid crystalline compound, those having a partial structure capable of causing polymerization or crosslinking reaction by actinic rays, electron beams, heat, or the like are suitably used. The number of the partial structures is preferably 1 to 6, more preferably 1 to 3. As the polymerizable rod-like liquid crystalline compound, Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No. 4,683,327, US Pat. No. 5,622,648, US Pat. No. 5,770,107, International Publication WO95 / 22586. No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, No. 6-16616, and No. 7-110469. 11-80081 and JP-A-2001-328773, etc. can be used.
前記のように透明支持体に求められる最適なレターデーションは光学異方性層を形成する材料によって異なる。光学異方性層が棒状液晶性化合物を含み、該棒状液晶性化合物が上記角度で配向している場合、前記透明支持体の波長550nmにおける厚さ方向のレターデーションRth(550)は−120〜20nmが好ましく、−100〜10nmがより好ましく、−80〜−50nmが特に好ましい。透明支持体のRth(550)を上記範囲に制御することにより、光学フィルムのRth(550)を前記の好ましい範囲に制御することができる。
また透明支持体の波長550nmにおける面内レターデーションRe(550)は0〜10nmが好ましく、0〜8nmがより好ましく、0〜6nmが特に好ましい。
As described above, the optimum retardation required for the transparent support varies depending on the material forming the optically anisotropic layer. When the optically anisotropic layer contains a rod-like liquid crystalline compound and the rod-like liquid crystalline compound is oriented at the above angle, the retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the transparent support is -120 to 20 nm is preferable, −100 to 10 nm is more preferable, and −80 to −50 nm is particularly preferable. By controlling Rth (550) of the transparent support within the above range, Rth (550) of the optical film can be controlled within the above preferred range.
The in-plane retardation Re (550) at a wavelength of 550 nm of the transparent support is preferably 0 to 10 nm, more preferably 0 to 8 nm, and particularly preferably 0 to 6 nm.
[垂直配向促進剤]
前記光学異方性層を形成する際に、液晶性化合物の分子を均一に垂直配向させるためには、配向膜界面側及び空気界面側において液晶性化合物を垂直に配向制御可能な配向制御剤を用いるのが好ましい。この目的のために、配向膜に、排除体積効果、静電気的効果又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物を、液晶性化合物とともに含有する組成物を用いて光学異方性層を形成するのが好ましい。また、空気界面側の配向制御に関しては液晶性化合物の配向時に空気界面に偏在し、その排除体積効果、静電気的効果、又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物を、液晶性化合物とともに含有する組成物を用いて光学異方性層を形成するのが好ましい。このような配向膜界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(配向膜界面側垂直配向剤)としては、ピリジニウム誘導体が好適に用いられる。空気界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(空気界面側垂直配向剤)としては、該化合物が空気界面側に偏在するのを促進する、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含む化合物が好適に用いられる。また、これらの化合物を配合することによって、例えば、液晶性組成物を塗布液として調製した場合に、該塗布液の塗布性が改善され、ムラ、ハジキの発生が抑制される。以下に垂直配向剤に関して詳細に説明する。
[Vertical alignment accelerator]
In order to uniformly align the molecules of the liquid crystalline compound when forming the optically anisotropic layer, an alignment controller capable of controlling the alignment of the liquid crystalline compound vertically on the alignment film interface side and the air interface side is provided. It is preferable to use it. For this purpose, an optically anisotropic composition using a composition containing, together with a liquid crystalline compound, an alignment film having a function of vertically aligning the liquid crystalline compound by an excluded volume effect, electrostatic effect or surface energy effect. It is preferable to form a conductive layer. In addition, regarding the orientation control on the air interface side, a compound that is unevenly distributed at the air interface at the time of orientation of the liquid crystalline compound, and that acts to vertically align the liquid crystalline compound by its excluded volume effect, electrostatic effect, or surface energy effect It is preferable to form an optically anisotropic layer using a composition contained together with a liquid crystal compound. As such a compound (alignment film interface side vertical alignment agent) that promotes the vertical alignment of the molecules of the liquid crystal compound on the alignment film interface side, a pyridinium derivative is preferably used. As a compound (air interface side vertical alignment agent) that promotes the vertical alignment of the molecules of the liquid crystal compound on the air interface side, a fluoro aliphatic group that promotes the uneven distribution of the compound on the air interface side, One or more hydrophilic groups selected from the group consisting of a carboxyl group (—COOH), a sulfo group (—SO 3 H), a phosphonoxy group {—OP (═O) (OH) 2 }, and salts thereof A compound is preferably used. Further, by blending these compounds, for example, when a liquid crystalline composition is prepared as a coating solution, the coating property of the coating solution is improved, and the occurrence of unevenness and repellency is suppressed. The vertical alignment agent will be described in detail below.
[配向膜界面側垂直配向剤]
本発明に使用可能な配向膜界面側垂直配向剤としては、ピリジニウム誘導体(ピリジニウム塩)が好適に用いられ、化合物の具体例としては、特開2006−113500号公報明細書中[0058]〜[0061]に記載の化合物が挙げられる。
[Alignment film interface side vertical alignment agent]
As the alignment film interface-side vertical alignment agent usable in the present invention, a pyridinium derivative (pyridinium salt) is preferably used. Specific examples of the compound include [0058] to [0058] in JP-A-2006-113500. 0061] can be mentioned.
前記光学異方性層形成用の組成物中における前記ピリジニウム誘導体の含有量の好ましい範囲は、その用途によって異なるが、前記組成物(塗布液として調製した場合は溶媒を除いた液晶性組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましい。 The preferred range of the content of the pyridinium derivative in the composition for forming an optically anisotropic layer varies depending on the application, but the composition (liquid crystalline composition excluding the solvent when prepared as a coating solution) In the inside, it is preferable that it is 0.005-8 mass%, and it is more preferable that it is 0.01-5 mass%.
[空気界面側垂直配向剤]
空気界面側垂直配向剤としては、下記フッ素系ポリマー(式(II)を部分構造として含む)又は一般式(III)で表される含フッ素化合物が好適に用いられる。
[Air interface side vertical alignment agent]
As the air interface side vertical alignment agent, the following fluorine-based polymer (including formula (II) as a partial structure) or a fluorine-containing compound represented by general formula (III) is preferably used.
まずフッ素系ポリマー(式(II)を部分構造として含む)について説明する。空気界面側垂直配向剤としては、フッ素系ポリマーが、フルオロ脂肪族基含有モノマーより誘導される繰り返し単位と下記式(II)で表される繰り返し単位とを含む共重合体であることが好ましい。 First, the fluorine-based polymer (including formula (II) as a partial structure) will be described. As the air interface side vertical alignment agent, the fluoropolymer is preferably a copolymer containing a repeating unit derived from a fluoroaliphatic group-containing monomer and a repeating unit represented by the following formula (II).
式中、R1、R2及びR3は、それぞれ独立に、水素原子又は置換基を表し;Lは下記の連結基群から選ばれる2価の連結基又は下記の連結基群から選ばれる2つ以上を組み合わせて形成される2価の連結基を表し、(連結基群)
単結合、−O−、−CO−、−NR4−(R4は水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(OR5)−(R5はアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基;
Qはカルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、又はホスホノキシ{−OP(=O)(OH)2}若しくはその塩を表す。
In the formula, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent; L is a divalent linking group selected from the following linking group group or 2 selected from the following linking group group. Represents a divalent linking group formed by combining two or more, (linking group group)
Single bond, —O—, —CO—, —NR 4 — (R 4 represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group), —S—, —SO 2 —, —P (═O) (OR 5 ) — (R 5 represents an alkyl group, an aryl group, or an aralkyl group), an alkylene group, and an arylene group;
Q represents a carboxyl group (—COOH) or a salt thereof, a sulfo group (—SO 3 H) or a salt thereof, or phosphonoxy {—OP (═O) (OH) 2 } or a salt thereof.
本発明に使用可能なフッ素系ポリマーは、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有することを特徴とする。ポリマーの種類としては、「改訂 高分子合成の化学」(大津隆行著、発行:株式会社化学同人、1968)1〜4ページに記載があり、例えば、ポリオレフィン類、ポリエステル類、ポリアミド類、ポリイミド類、ポリウレタン類、ポリカーボネート類、ポリスルホン類、ポリカーボナート類、ポリエーテル類、ポリアセタール類、ポリケトン類、ポリフェニレンオキシド類、ポリフェニレンスルフィド類、ポリアリレート類、PTFE類、ポリビニリデンフロライド類、セルロース誘導体などが挙げられる。前記フッ素系ポリマーは、ポリオレフィン類であることが好ましい。 The fluoropolymer usable in the present invention includes a fluoroaliphatic group, a carboxyl group (—COOH), a sulfo group (—SO 3 H), a phosphonoxy group {—OP (═O) (OH) 2 }, and their It contains one or more hydrophilic groups selected from the group consisting of salts. The types of polymers are described in “Revised Chemistry of Polymer Synthesis” (Takayuki Otsu, published by Kagaku Dojin Co., 1968), pages 1-4, for example, polyolefins, polyesters, polyamides, polyimides. , Polyurethanes, polycarbonates, polysulfones, polycarbonates, polyethers, polyacetals, polyketones, polyphenylene oxides, polyphenylene sulfides, polyarylates, PTFEs, polyvinylidene fluorides, cellulose derivatives, etc. It is done. The fluoropolymer is preferably a polyolefin.
前記フッ素系ポリマーは、フルオロ脂肪族基を側鎖に有するポリマーである。前記フルオロ脂肪族基は、炭素数1〜12であるのが好ましく、6〜10であるのがより好ましい。脂肪族基は、鎖状であっても環状であってもよく、鎖状である場合は直鎖状であっても分岐鎖状であってもよい。中でも、直鎖状の炭素数6〜10のフルオロ脂肪族基が好ましい。フッ素原子による置換の程度については特に制限はないが、脂肪族基中の50%以上の水素原子がフッ素原子に置換されているのが好ましく、60%以上が置換されているのがより好ましい。フルオロ脂肪族基は、エステル結合、アミド結合、イミド結合、ウレタン結合、ウレア結合、エーテル結合、チオエーテル結合、芳香族環などを介してポリマー主鎖と結合した側鎖に含まれる。 The fluorine-based polymer is a polymer having a fluoroaliphatic group in the side chain. The fluoroaliphatic group preferably has 1 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms. The aliphatic group may be linear or cyclic, and when it is linear, it may be linear or branched. Of these, a linear fluoroaliphatic group having 6 to 10 carbon atoms is preferable. The degree of substitution with fluorine atoms is not particularly limited, but 50% or more of hydrogen atoms in the aliphatic group are preferably substituted with fluorine atoms, and more preferably 60% or more are substituted. The fluoroaliphatic group is contained in a side chain bonded to the polymer main chain via an ester bond, an amide bond, an imide bond, a urethane bond, a urea bond, an ether bond, a thioether bond, an aromatic ring, or the like.
フッ素系ポリマーとして本発明に好ましく用いられるフルオロ脂肪族基含有共重合体の具体例として、特開2006−113500公報の段落[0110]〜[0114]に記載の化合物等が挙げられるが、本発明はそれら具体例によってなんら制限されるものではない。 Specific examples of the fluoroaliphatic group-containing copolymer preferably used in the present invention as a fluorine-based polymer include the compounds described in paragraphs [0110] to [0114] of JP-A-2006-113500. Is not limited by these specific examples.
本発明に用いる前記フッ素系ポリマーの質量平均分子量は1,000,000以下であるのが好ましく、500,000以下であるのがより好ましく、100,000以下であり、10000以上であるのが更に好ましい。この範囲にすることで、溶解性を満足しつつ液晶性化合物の配向制御に有効である。質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて、ポリスチレン(PS)換算の値として測定可能である。 The fluoropolymer used in the present invention preferably has a mass average molecular weight of 1,000,000 or less, more preferably 500,000 or less, 100,000 or less, and more preferably 10,000 or more. preferable. By setting it within this range, it is effective for controlling the alignment of the liquid crystal compound while satisfying the solubility. The mass average molecular weight can be measured as a value in terms of polystyrene (PS) using gel permeation chromatography (GPC).
組成物中における前記フッ素系ポリマーの含有量の好ましい範囲は、その用途によって異なるが、光学異方性層の形成に用いる場合は、組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜3質量%であるのが更に好ましい。前記フッ素系ポリマーの添加量が0.005質量%未満では効果が不十分であり、また8質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、光学フィルムとしての性能(例えばレターデーションの均一性等)に悪影響を及ぼす。 The preferred range of the content of the fluoropolymer in the composition varies depending on the application, but when used for forming the optically anisotropic layer, the composition (a composition excluding the solvent in the case of a coating solution) Among these, 0.005 to 8% by mass is preferable, 0.01 to 5% by mass is more preferable, and 0.05 to 3% by mass is even more preferable. If the addition amount of the fluorine-based polymer is less than 0.005% by mass, the effect is insufficient, and if it exceeds 8% by mass, the coating film cannot be sufficiently dried, or the performance as an optical film (for example, letter Adversely affects the uniformity of the foundation.
下記式(III)で表される含フッ素化合物。
(III) (R0)m−L0−(W)n
式中、R0はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、mは1以上の整数を表す。複数個のR0は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L0は(m+n)価の連結基を表し、Wはカルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、又はホスホノキシ{−OP(=O)(OH)2}若しくはその塩を表し、nは1以上の整数を表す。
A fluorine-containing compound represented by the following formula (III).
(III) (R 0 ) m -L 0- (W) n
In the formula, R 0 represents an alkyl group, an alkyl group having a CF 3 group at the terminal, or an alkyl group having a CF 2 H group at the terminal, and m represents an integer of 1 or more. A plurality of R 0 may be the same or different, but at least one represents an alkyl group having a CF 3 group or a CF 2 H group at the terminal. L 0 represents a (m + n) -valent linking group, W represents a carboxyl group (—COOH) or a salt thereof, a sulfo group (—SO 3 H) or a salt thereof, or phosphonoxy {—OP (═O) (OH) 2 } Or a salt thereof, and n represents an integer of 1 or more.
本発明に使用可能な式(III)にて表される含フッ素化合物の具体例として、特開2006−113500公報の段落[0136]〜[0140]に記載の化合物等が挙げられるが、本発明はそれら具体例によってなんら制限されるものではない。 Specific examples of the fluorine-containing compound represented by the formula (III) that can be used in the present invention include compounds described in paragraphs [0136] to [0140] of JP-A-2006-113500. Is not limited by these specific examples.
組成物中における前記含フッ素化合物の含有量の好ましい範囲は、その用途によって異なるが、光学異方性層の形成に用いる場合は、組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜3質量%であるのが更に好ましい。 The preferred range of the content of the fluorine-containing compound in the composition varies depending on the use, but when used for forming the optically anisotropic layer, the composition (a composition excluding the solvent in the case of a coating solution) Among these, 0.005 to 8% by mass is preferable, 0.01 to 5% by mass is more preferable, and 0.05 to 3% by mass is even more preferable.
[重合開始剤]
配向(好ましくは垂直配向)させた液晶性化合物は、配向状態を維持して固定する。固定化は、液晶性化合物に導入した重合性基(P)の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)及びオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
[Polymerization initiator]
The aligned (preferably vertically aligned) liquid crystal compound is fixed while maintaining the alignment state. The immobilization is preferably performed by a polymerization reaction of the polymerizable group (P) introduced into the liquid crystal compound. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator. A photopolymerization reaction is preferred. Examples of the photopolymerization initiator include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatic acyloin. Compound (described in US Pat. No. 2,722,512), polynuclear quinone compound (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US Pat. No. 3,549,367) Description), acridine and phenazine compounds (JP-A-60-105667, U.S. Pat. No. 4,239,850) and oxadiazole compounds (U.S. Pat. No. 4,212,970).
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることが更に好ましい。液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100〜800mJ/cm2であることが更に好ましい。光重合反応を促進するため、加熱条件下や0.1%以下の低酸素濃度化で光照射を実施してもよい。液晶性化合物を含有する光学異方性の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることが更に好ましく、1〜5μmであることが最も好ましい。 The amount of the photopolymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the solid content of the coating solution. It is preferable to use ultraviolet rays for light irradiation for polymerization of liquid crystalline molecules. The irradiation energy is preferably 20mJ / cm 2 ~50J / cm 2 , further preferably 100 to 800 mJ / cm 2. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions or at a low oxygen concentration of 0.1% or less. The thickness of optical anisotropy containing the liquid crystalline compound is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm, and most preferably 1 to 5 μm.
[光学異方性層の他の添加剤]
上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることができる。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
[Other additives for optically anisotropic layer]
Along with the liquid crystal compound, a plasticizer, a surfactant, a polymerizable monomer, and the like can be used in combination to improve the uniformity of the coating film, the strength of the film, the orientation of the liquid crystal compound, and the like. These materials are preferably compatible with the liquid crystal compound and do not inhibit the alignment.
重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶性化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報明細書中の段落番号[0018]〜[0020]記載のものが挙げられる。上記化合物の添加量は、液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。 Examples of the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Preferably, it is a polyfunctional radically polymerizable monomer and is preferably copolymerizable with the polymerizable group-containing liquid crystalline compound. Examples thereof include those described in paragraph numbers [0018] to [0020] in JP-A No. 2002-296423. The amount of the compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the liquid crystal molecules.
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報明細書中の段落番号[0028]〜[0056]記載の化合物、特願2003−295212号明細書中の段落番号[0069]〜[0126]記載の化合物が挙げられる。 Examples of the surfactant include conventionally known compounds, and fluorine compounds are particularly preferable. Specifically, for example, compounds described in paragraphs [0028] to [0056] in JP-A No. 2001-330725, and paragraphs [0069] to [0126] in Japanese Patent Application No. 2003-295212 are described. The compound of this is mentioned.
液晶性化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。
液晶性化合物のディスコティックネマティック液晶相−固相転移温度は、70〜300℃が好ましく、70〜170℃が更に好ましい。
The polymer used together with the liquid crystal compound is preferably capable of thickening the coating solution. A cellulose ester can be mentioned as an example of a polymer. Preferable examples of the cellulose ester include those described in paragraph [0178] of JP-A No. 2000-155216. The addition amount of the polymer is preferably in the range of 0.1 to 10% by mass, and in the range of 0.1 to 8% by mass with respect to the liquid crystal molecules so as not to inhibit the alignment of the liquid crystal compound. It is more preferable.
The discotic nematic liquid crystal phase-solid phase transition temperature of the liquid crystal compound is preferably 70 to 300 ° C, more preferably 70 to 170 ° C.
本発明の液晶性化合物を含有する光学異方性層の表面は、液晶性化合物が欠陥なく配向するためには、平滑であることが好ましい。粗さ曲線の算術平均粗さRa(JIS B 0601:1998)の範囲としては、0〜0.05μmが好ましく、更に好ましくは0.01〜0.04μmである。このような平滑な表面では、ロール状態で対向するハードコート層側表面との接触により、液晶性化合物を配向させるための含フッ素化合物が転写しやすい傾向がある。しかしながら、本発明は、対向するハードコート層側表面の形状や表面自由エネルギーを特定範囲にすることで解決できる。 The surface of the optically anisotropic layer containing the liquid crystalline compound of the present invention is preferably smooth so that the liquid crystalline compound is aligned without defects. The range of the arithmetic average roughness Ra (JIS B 0601: 1998) of the roughness curve is preferably 0 to 0.05 μm, more preferably 0.01 to 0.04 μm. On such a smooth surface, there is a tendency that the fluorine-containing compound for aligning the liquid crystalline compound tends to be transferred due to contact with the hard coat layer side surface facing in a roll state. However, the present invention can be solved by setting the shape and surface free energy of the opposing hard coat layer side surface within a specific range.
[塗布溶剤]
塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸エチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
[Coating solvent]
As a solvent used for preparing the coating solution, an organic solvent is preferably used. Examples of organic solvents include amides (eg, N, N-dimethylformamide), sulfoxides (eg, dimethyl sulfoxide), heterocyclic compounds (eg, pyridine), hydrocarbons (eg, benzene, hexane), alkyl halides (eg, , Chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
[塗布方法]
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
[Coating method]
The coating liquid can be applied by a known method (eg, wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method).
[配向膜]
本発明では、配向膜の表面に前記組成物を塗布して、液晶性化合物の分子を配向させるのが好ましい。本発明の光学フィルムは、前記透明支持体と前記光学異方性層の間に配向膜を有することが好ましい。配向膜は液晶性化合物の配向方向を規定する機能を有するため、本発明の好ましい態様を実現する上で利用するのが好ましい。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。即ち、配向状態が固定された配向膜上の光学異方性層のみを別の透明支持体上に転写して本発明の光学フィルム用光学基材を作製することも可能である。
配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。更に、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
配向膜は、ポリマーのラビング処理により形成することが好ましい。
[Alignment film]
In the present invention, it is preferable to align the molecules of the liquid crystal compound by applying the composition to the surface of the alignment film. The optical film of the present invention preferably has an alignment film between the transparent support and the optically anisotropic layer. Since the alignment film has a function of defining the alignment direction of the liquid crystalline compound, it is preferably used for realizing a preferred embodiment of the present invention. However, if the alignment state is fixed after aligning the liquid crystalline compound, the alignment film plays the role, and thus is not necessarily an essential component of the present invention. That is, it is also possible to produce the optical substrate for an optical film of the present invention by transferring only the optical anisotropic layer on the alignment film in which the alignment state is fixed onto another transparent support.
The alignment film is an organic compound (eg, ω-tricosanoic acid) formed by rubbing treatment of an organic compound (preferably polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodgett method (LB film). , Dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.
The alignment film is preferably formed by polymer rubbing treatment.
ポリマーの例には、例えば特開平8−338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールが更に好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。 Examples of the polymer include methacrylate copolymer, styrene copolymer, polyolefin, polyvinyl alcohol, modified polyvinyl alcohol, poly (N-methylol) described in paragraph No. [0022] of JP-A-8-338913. Acrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, polycarbonate and the like. Silane coupling agents can be used as the polymer. Water-soluble polymers (eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol) are preferred, gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred. .
ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%が更に好ましい。ポリビニルアルコールの重合度は100〜5000であることが好ましい。 The saponification degree of polyvinyl alcohol is preferably 70 to 100%, and more preferably 80 to 100%. The polymerization degree of polyvinyl alcohol is preferably 100 to 5000.
前記配向膜において、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。
架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償シートの強度を著しく改善することができる。
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報明細書中段落番号[0080]〜[0100]記載のもの等が挙げられる。
In the alignment film, a side chain having a crosslinkable functional group (eg, a double bond) is bonded to the main chain, or a crosslinkable functional group having a function of aligning liquid crystal molecules is introduced into the side chain. Is preferred. As the polymer used for the alignment film, either a polymer that can be crosslinked by itself or a polymer that is crosslinked by a crosslinking agent can be used, and a plurality of combinations thereof can be used.
When a side chain having a crosslinkable functional group is bonded to the main chain of the alignment film polymer or a crosslinkable functional group is introduced into a side chain having a function of aligning liquid crystal molecules, the alignment film polymer and the optically anisotropic film The polyfunctional monomer contained in the conductive layer can be copolymerized. As a result, not only between the polyfunctional monomer and the polyfunctional monomer, but also between the alignment film polymer and the alignment film polymer and between the polyfunctional monomer and the alignment film polymer is firmly bonded by a covalent bond. Therefore, the strength of the optical compensation sheet can be remarkably improved by introducing the crosslinkable functional group into the alignment film polymer.
The crosslinkable functional group of the alignment film polymer preferably contains a polymerizable group in the same manner as the polyfunctional monomer. Specific examples include those described in paragraphs [0080] to [0100] in JP-A-2000-155216.
配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール及びジアルデヒド澱粉が含まれる。二種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報明細書中の段落番号[0023]〜[0024]記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。 Apart from the crosslinkable functional group, the alignment film polymer can also be crosslinked using a crosslinking agent. Examples of the crosslinking agent include aldehydes, N-methylol compounds, dioxane derivatives, compounds that act by activating carboxyl groups, active vinyl compounds, active halogen compounds, isoxazole and dialdehyde starch. Two or more kinds of crosslinking agents may be used in combination. Specific examples include compounds described in paragraphs [0023] to [0024] in JP-A-2002-62426. Aldehydes having high reaction activity, particularly glutaraldehyde are preferred.
架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%が更に好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることが更に好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。 0.1-20 mass% is preferable with respect to a polymer, and, as for the addition amount of a crosslinking agent, 0.5-15 mass% is still more preferable. The amount of the unreacted crosslinking agent remaining in the alignment film is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less. By adjusting in this way, even if the alignment film is used for a long time in a liquid crystal display device or left in a high temperature and high humidity atmosphere for a long time, sufficient durability without reticulation can be obtained.
配向膜は、基本的に、配向膜形成材料である上記ポリマー、架橋剤及び添加剤を含む溶液を透明支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。架橋反応は、前記のように、透明支持体上に塗布した後、任意の時期に行なってよい。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で水:メタノールが0:100〜99:1が好ましく、0:100〜91:9であることが更に好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方層の層表面の欠陥が著しく減少する。 The alignment film is basically formed by applying a solution containing the polymer, the cross-linking agent, and the additive, which is an alignment film forming material, onto a transparent support, followed by heat drying (cross-linking) and rubbing treatment. be able to. As described above, the crosslinking reaction may be performed at an arbitrary time after coating on the transparent support. When a water-soluble polymer such as polyvinyl alcohol is used as the alignment film forming material, the coating solution is preferably a mixed solvent of an organic solvent (eg, methanol) having a defoaming action and water. The ratio of water: methanol is preferably 0: 100 to 99: 1, and more preferably 0: 100 to 91: 9. Thereby, generation | occurrence | production of a bubble is suppressed and the defect of the layer surface of an orientation film and also an optically anisotropic layer reduces remarkably.
配向膜形成時に利用する塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法が好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1〜10μmが好ましく、0.2〜5.0μmがより好ましく、0.3〜3.0μmが更に好ましく、0.4〜2.0μmが特に好ましい。加熱乾燥は、20℃〜110℃で行なうことができる。充分な架橋を形成するためには60℃〜100℃が好ましく、特に80℃〜100℃が好ましい。乾燥時間は1分〜36時間で行なうことができるが、好ましくは1分〜30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5〜5.5が好ましい。 The coating method used for forming the alignment film is preferably a spin coating method, a dip coating method, a curtain coating method, an extrusion coating method, a rod coating method or a roll coating method. A rod coating method is particularly preferable. Moreover, 0.1-10 micrometers is preferable, as for the film thickness after drying, 0.2-5.0 micrometers is more preferable, 0.3-3.0 micrometers is still more preferable, 0.4-2.0 micrometers is especially preferable. Heating and drying can be performed at 20 ° C to 110 ° C. In order to form sufficient cross-linking, 60 ° C to 100 ° C is preferable, and 80 ° C to 100 ° C is particularly preferable. The drying time can be 1 minute to 36 hours, preferably 1 minute to 30 minutes. The pH is also preferably set to an optimum value for the cross-linking agent to be used, and when glutaraldehyde is used, pH 4.5 to 5.5 is preferable.
配向膜は、透明支持体上に設けられることが好ましい。配向膜は、上記のようにポリマー層を架橋したのち、表面をラビング処理することにより得ることができる。 The alignment film is preferably provided on the transparent support. The alignment film can be obtained by rubbing the surface after crosslinking the polymer layer as described above.
前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さ及び太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。 For the rubbing treatment, a treatment method widely adopted as a liquid crystal alignment treatment process of LCD can be applied. That is, a method of obtaining the orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber or the like can be used. In general, it is carried out by rubbing several times using a cloth in which fibers having a uniform length and thickness are flocked on average.
配向膜のラビング処理面に前記組成物を塗布して、液晶性化合物の分子を配向させる。その後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させることで、前記光学異方性層を形成することができる。 The said composition is apply | coated to the rubbing process surface of alignment film, and the molecule | numerator of a liquid crystalline compound is aligned. Thereafter, if necessary, the alignment film polymer and the polyfunctional monomer contained in the optically anisotropic layer are reacted, or the alignment film polymer is crosslinked using a crosslinking agent, thereby the optically anisotropic layer. Can be formed.
[ハードコート層]
本発明の光学フィルムにおけるハードコート層について説明する。
本発明において、ハードコート層とは、該層を形成することで透明支持体の鉛筆硬度が上昇する層をいう。実用的には、ハードコート層積層後の鉛筆硬度(JIS K5400)はH以上が好ましく、更に好ましくは2H以上であり、最も好ましくは3H以上である。
ハードコート層の厚みは、0.4〜35μmが好ましく、更に好ましくは1〜30μmであり、最も好ましくは1.5〜20μmである。
本発明においてハードコート層は1層でも複数でもかまわない。ハードコート層が複数層の場合、全てのハードコート層の膜厚の合計が上位範囲であることが好ましい。
本発明の光学フィルムは干渉むらを目立ち難くするために、1%以上の内部ヘイズを有し、ハードコート層が形成された側の表面は、実質的に平滑であることが黒しまりの観点から好ましい。
より具体的には以下の内部ヘイズ、表面ヘイズ、Raに関する条件を満たすことが好ましい。
[Hard coat layer]
The hard coat layer in the optical film of the present invention will be described.
In the present invention, the hard coat layer refers to a layer in which the pencil hardness of the transparent support is increased by forming the layer. Practically, the pencil hardness (JIS K5400) after laminating the hard coat layer is preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher.
The thickness of the hard coat layer is preferably 0.4 to 35 μm, more preferably 1 to 30 μm, and most preferably 1.5 to 20 μm.
In the present invention, the hard coat layer may be a single layer or a plurality of layers. When there are a plurality of hard coat layers, it is preferable that the total film thickness of all the hard coat layers is in the upper range.
From the viewpoint of blackening, the optical film of the present invention has an internal haze of 1% or more in order to make interference unevenness inconspicuous, and the surface on the side where the hard coat layer is formed is substantially smooth. preferable.
More specifically, it is preferable to satisfy the conditions regarding the following internal haze, surface haze, and Ra.
ハードコート層の内部ヘイズは干渉ムラ及び黒しまりの観点から1〜20%が好ましく、1〜15%がより好ましく、1〜10%が更に好ましい。内部ヘイズを上記範囲に制御することで、光学異方性層に起因する干渉むらが目立ちにくく、黒しまり感も良好な範囲にすることができる。
また、本発明の光学フィルムの内部ヘイズは1〜20%が好ましく、1〜15%がより好ましく、1〜10%が更に好ましい。
The internal haze of the hard coat layer is preferably 1 to 20%, more preferably 1 to 15%, and still more preferably 1 to 10% from the viewpoint of uneven interference and blackening. By controlling the internal haze within the above range, interference unevenness due to the optically anisotropic layer is hardly noticeable, and the darkening feeling can be made in a good range.
Further, the internal haze of the optical film of the present invention is preferably 1 to 20%, more preferably 1 to 15%, and still more preferably 1 to 10%.
ハードコート層積層面の表面の表面ヘイズは干渉ムラ及び黒しまりの観点から1.0%未満であることが好ましく、0.6%以下であることがより好ましく、0.4%以下であることが更に好ましい。
また、本発明の光学フィルムの表面ヘイズは1.0%未満であることが好ましく、0.6%以下であることがより好ましく、0.4%以下であることが更に好ましい。
The surface haze of the hard coat layer lamination surface is preferably less than 1.0%, more preferably 0.6% or less, and 0.4% or less from the viewpoint of interference unevenness and blackening. Is more preferable.
The surface haze of the optical film of the present invention is preferably less than 1.0%, more preferably 0.6% or less, and further preferably 0.4% or less.
ハードコート層の積層面(透明支持体とは反対側の表面)は実質的に平滑である。本発明において、ハードコート層の積層面の粗さ曲線の算術平均粗さRa(JIS B 0601:1998)は0.08μm以下であることが好ましく、0.07μm以下がより好ましく、0.06μm以下が更に好ましく、0.05μm以下が特に好ましい。 The laminated surface of the hard coat layer (surface opposite to the transparent support) is substantially smooth. In the present invention, the arithmetic mean roughness Ra (JIS B 0601: 1998) of the roughness curve of the laminated surface of the hard coat layer is preferably 0.08 μm or less, more preferably 0.07 μm or less, and 0.06 μm or less. Is more preferable, and 0.05 μm or less is particularly preferable.
[ハードコート層形成材料物]
本発明において、ハードコート層は、不飽和二重結合を有する化合物、透光性粒子、重合開始剤、必要に応じて含フッ素又はシリコーン系化合物、溶剤を含有する組成物を、支持体上に直接又は他の層を介して塗布・乾燥・硬化することにより形成することができる。以下各成分について説明する。
[Hard coat layer forming material]
In the present invention, the hard coat layer comprises a compound containing an unsaturated double bond, a light-transmitting particle, a polymerization initiator, and a fluorine-containing or silicone-based compound, if necessary, a composition on a support. It can be formed by coating, drying, and curing directly or through another layer. Each component will be described below.
[不飽和二重結合を有する化合物]
本発明のハードコート層形成用組成物には不飽和二重結合を有する化合物を含有することができる。不飽和二重結合を有する化合物はバインダーとして機能することができ、重合性不飽和基を2つ以上有する多官能モノマーであることが好ましい。該重合性不飽和基を2つ以上有する多官能モノマーは、硬化剤として機能することができ、塗膜の強度や耐擦傷性を向上させることが可能となる。重合性不飽和基は3つ以上であることがより好ましい。これらモノマーは、1又は2官能のモノマーと3官能以上のモノマーを併用して用いることもできる。
[Compound having an unsaturated double bond]
The composition for forming a hard coat layer of the present invention can contain a compound having an unsaturated double bond. The compound having an unsaturated double bond can function as a binder, and is preferably a polyfunctional monomer having two or more polymerizable unsaturated groups. The polyfunctional monomer having two or more polymerizable unsaturated groups can function as a curing agent, and can improve the strength and scratch resistance of the coating film. The number of polymerizable unsaturated groups is more preferably 3 or more. These monomers can be used in combination of a monofunctional or bifunctional monomer and a trifunctional or higher monomer.
不飽和二重結合を有する化合物としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性官能基を有する化合物が挙げられ、中でも、(メタ)アクリロイル基及び−C(O)OCH=CH2が好ましい。特に好ましくは下記の1分子内に3つ以上の(メタ)アクリロイル基を含有する化合物を用いることができる。 Examples of the compound having an unsaturated double bond include compounds having a polymerizable functional group such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group and —C (O ) OCH = CH 2 is preferred. Particularly preferably, a compound containing three or more (meth) acryloyl groups in one molecule described below can be used.
重合性の不飽和結合を有する化合物の具体例としては、アルキレングリコールの(メタ)アクリル酸ジエステル類、ポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類、多価アルコールの(メタ)アクリル酸ジエステル類、エチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類、エポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類等を挙げることができる。 Specific examples of the compound having a polymerizable unsaturated bond include (meth) acrylic acid diesters of alkylene glycol, (meth) acrylic acid diesters of polyoxyalkylene glycol, and (meth) acrylic acid diesters of polyhydric alcohol. , (Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts, epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, and the like.
中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。例えば、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−クロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。 Among these, esters of polyhydric alcohol and (meth) acrylic acid are preferable. For example, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol (meth) acrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate , Pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, PO modified trimethylolpropane tri (meth) acrylate, EO modified Tri (meth) acrylate phosphate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate Rate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-chlorohexane tetramethacrylate, polyurethane polyacrylate, polyester polyacrylate, caprolactone modified tris And (acryloxyethyl) isocyanurate.
(メタ)アクリロイル基を有する多官能アクリレート系化合物類は市販されているものを用いることもでき、新中村化学工業(株)社製NKエステル A−TMMT、日本化薬(株)製KAYARAD DPHA等を挙げることができる。多官能モノマーについては、特開2009−98658号公報の段落[0114]〜[0122]に記載されており、本発明においても同様である。 Commercially available polyfunctional acrylate compounds having a (meth) acryloyl group can be used, such as NK ester A-TMMT manufactured by Shin-Nakamura Chemical Co., Ltd., KAYARAD DPHA manufactured by Nippon Kayaku Co., Ltd. Can be mentioned. The polyfunctional monomer is described in paragraphs [0114] to [0122] of JP-A-2009-98658, and the same applies to the present invention.
不飽和二重結合を有する化合物としては、水素結合性の置換基を有する化合物であることが、支持体との密着性、低カール、後述する含フッ素又はシリコーン系化合物の固定性の点から好ましい。水素結合性の置換基とは、窒素、酸素、硫黄、ハロゲンなどの電気陰性度が大きな原子と水素結合とが共有結合で結びついた置換基を指し、具体的にはOH−、SH−、−NH−、CHO−、CHN−などが挙げられ、ウレタン(メタ)アクリレート類や水酸基を有する(メタ)アクリレート類が好ましい。市販されている(メタ)アクリロイル基を有する多官能アクリレートを用いることもでき、新中村化学工業(株)社製NKオリゴ U4HA、同NKエステルA−TMM−3、日本化薬(株)製KAYARAD PET−30等を挙げることができる。 The compound having an unsaturated double bond is preferably a compound having a hydrogen-bonding substituent from the viewpoint of adhesion to the support, low curl, and fluorine-containing or silicone-based compound fixation described later. . The hydrogen-bonding substituent refers to a substituent in which an atom having a large electronegativity such as nitrogen, oxygen, sulfur, or halogen and a hydrogen bond are covalently bonded. Specifically, OH—, SH—, — NH-, CHO-, CHN- and the like can be mentioned, and urethane (meth) acrylates and (meth) acrylates having a hydroxyl group are preferable. Commercially available polyfunctional acrylates having a (meth) acryloyl group can also be used. Shin Nakamura Chemical Co., Ltd. NK Oligo U4HA, NK Ester A-TMM-3, Nippon Kayaku Co., Ltd. KAYARAD PET-30 etc. can be mentioned.
本発明のハードコート層形成用組成物中の不飽和二重結合を有する化合物の含有量は、十分な重合率を与えて硬度などを付与するため、ハードコート層形成用組成物中の全固形分に対して、60〜99質量%が好ましく、70〜99質量%がより好ましく、80〜99質量%が特に好ましい。 The content of the compound having an unsaturated double bond in the composition for forming a hard coat layer of the present invention provides a sufficient polymerization rate and imparts hardness and the like, so that the total solid in the composition for forming a hard coat layer 60-99 mass% is preferable with respect to a minute, 70-99 mass% is more preferable, and 80-99 mass% is especially preferable.
[透光性粒子]
本発明の光学フィルムは1%以上の内部ヘイズを有することが必要であり、ハードコート層にハードコート層バインダーと屈折率差を有する光散乱性の微粒子を含有させることによって、内部ヘイズを付与することが好ましい。
本発明のハードコート層は前記のように1層でも複数層でも構わないが、ハードコート層に光散乱性の微粒子を含有させて内部ヘイズを付与する場合、光散乱性の微粒子を含有したハードコート層表面が不要な凹凸を発現することがある。前記のように本発明はハードコート層積層側の表面が実質平坦であることが好ましく、この場合はハードコート層を2層構成とし、支持体に近い側のハードコート層にのみ光散乱性の微粒子を含有させるのも好ましい態様である。
[Translucent particles]
The optical film of the present invention needs to have an internal haze of 1% or more, and the internal haze is imparted by incorporating light-scattering fine particles having a refractive index difference with the hard coat layer binder in the hard coat layer. It is preferable.
As described above, the hard coat layer of the present invention may be a single layer or a plurality of layers. However, when the hard coat layer contains light scattering fine particles to impart internal haze, the hard coat layer contains light scattering fine particles. The surface of the coat layer may develop unnecessary irregularities. As described above, in the present invention, it is preferable that the surface of the hard coat layer lamination side is substantially flat. In this case, the hard coat layer has a two-layer structure, and only the hard coat layer on the side close to the support is light scattering. It is also a preferred embodiment to contain fine particles.
ハードコート層に用いることができる透光性粒子としては、ポリメチルメタクリレート粒子(屈折率1.49)、架橋ポリ(アクリル−スチレン)共重合体粒子(屈折率1.54)、メラミン樹脂粒子(屈折率1.57)、ポリカーボネート粒子(屈折率1.57)、ポリスチレン粒子(屈折率1.60)、架橋ポリスチレン粒子(屈折率1.61)、ポリ塩化ビニル粒子(屈折率1.60)、ベンゾグアナミン−メラミンホルムアルデヒド粒子(屈折率1.68)、シリカ粒子(屈折率1.46)、アルミナ粒子(屈折率1.63)、ジルコニア粒子、チタニア粒子、又は中空や細孔を有する粒子等が挙げられる。 Translucent particles that can be used in the hard coat layer include polymethyl methacrylate particles (refractive index 1.49), crosslinked poly (acryl-styrene) copolymer particles (refractive index 1.54), melamine resin particles ( Refractive index 1.57), polycarbonate particles (refractive index 1.57), polystyrene particles (refractive index 1.60), cross-linked polystyrene particles (refractive index 1.61), polyvinyl chloride particles (refractive index 1.60), Examples include benzoguanamine-melamine formaldehyde particles (refractive index 1.68), silica particles (refractive index 1.46), alumina particles (refractive index 1.63), zirconia particles, titania particles, or particles having hollow or pores. It is done.
なかでも架橋ポリ((メタ)アクリレート)粒子、架橋ポリ(アクリル−スチレン)粒子が好ましく用いられ、これらの粒子の中から選ばれた各透光性粒子の屈折率にあわせてバインダーの屈折率を調整することにより、本発明の光学フィルムのハードコート層に好適な表面凹凸、表面ヘイズ、内部ヘイズ、全ヘイズを達成することができる。 Of these, crosslinked poly ((meth) acrylate) particles and crosslinked poly (acryl-styrene) particles are preferably used, and the refractive index of the binder is adjusted according to the refractive index of each light-transmitting particle selected from these particles. By adjusting, surface irregularities, surface haze, internal haze, and total haze suitable for the hard coat layer of the optical film of the present invention can be achieved.
バインダー(透光性樹脂)の屈折率は、1.45〜1.70であることが好ましく、より好ましくは1.48〜1.65である。
また、透光性粒子と、ハードコート層のバインダーとの屈折率の差(「透光性粒子の屈折率」−「該透光性粒子を除くハードコート層の屈折率」)は、絶対値として、好ましくは0.05未満であり、より好ましくは0.001〜0.030、更に好ましくは0.001〜0.020である。ハードコート層中の透光性粒子とバインダーとの屈折率の差を0.05未満にすると、透光性粒子による光の屈折角度が小さくなり、散乱光が広角まで広がらず、光学異方性層の透過光の偏光を解消するなどの悪化作用が無く好ましい。
The refractive index of the binder (translucent resin) is preferably 1.45 to 1.70, more preferably 1.48 to 1.65.
Further, the difference in refractive index between the translucent particles and the binder of the hard coat layer (“refractive index of the translucent particles” − “refractive index of the hard coat layer excluding the translucent particles”) is an absolute value. As for it, Preferably it is less than 0.05, More preferably, it is 0.001-0.030, More preferably, it is 0.001-0.020. When the difference in refractive index between the light-transmitting particles and the binder in the hard coat layer is less than 0.05, the light refraction angle by the light-transmitting particles decreases, the scattered light does not spread to a wide angle, and the optical anisotropy There is no adverse effect such as depolarization of the transmitted light of the layer, which is preferable.
上記の粒子とバインダーの屈折率差を実現するためには、透光性粒子の屈折率を調節しても、バインダーの屈折率を調節してもよい。
好ましい第1の態様としては、3官能以上の(メタ)アクリレートモノマーを主成分としたバインダー(硬化後の屈折率が1.50〜1.53)とアクリル含率50〜100質量パーセントである架橋ポリ(メタ)アクリレート/スチレン重合体からなる透光性粒子を組み合わせて用いることが好ましい。低屈折率であるアクリル成分と高屈折率であるスチレン成分の組成比を調節することで、透光性粒子とバインダーとの屈折率差を0.05未満にすることが容易である。アクリル成分とスチレン成分の比率は質量比で50/50〜100/0が好ましく、更に好ましくは60/40〜100/0であり、最も好ましくは65/35〜90/10である。架橋ポリ(メタ)アクリレート/スチレン重合体からなる透光性粒子の屈折率としては、1.49〜1.55が好ましく、更に好ましくは1.50〜1.54であり、最も好ましくは1.51〜1.53である。
好ましい第2の態様としては、3官能以上の(メタ)アクリレートモノマーを主成分としたバインダーに対して、1〜100nmの平均粒子サイズの無機微粒子を併用することで、モノマーと無機微粒子からなるバインダーの屈折率を調節し、既存の透光性粒子との屈折率差を調節するものである。無機粒子としては、珪素、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも一つの金属の酸化物、具体例としては、SiO2、ZrO2、TiO2、Al2O3、In2O3、ZnO、SnO2、Sb2O3、ITO等が挙げられる。好ましくは、SiO2、ZrO2、Al2O3などが挙げられる。これら無機粒子は、モノマーの総量に対して1〜90質量%の範囲で混合して用いることができ、好ましくは5〜65質量%である。
ここで、該透光性粒子を除くハードコート層の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。前記透光性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に透光性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定される。
In order to realize the difference in refractive index between the particles and the binder, the refractive index of the light-transmitting particles may be adjusted, or the refractive index of the binder may be adjusted.
As a preferable first embodiment, a binder having a tri- or higher functional (meth) acrylate monomer as a main component (a refractive index after curing is 1.50 to 1.53) and an acrylic content of 50 to 100 mass percent is used. It is preferable to use a combination of translucent particles made of poly (meth) acrylate / styrene polymer. By adjusting the composition ratio of the acrylic component having a low refractive index and the styrene component having a high refractive index, it is easy to make the difference in refractive index between the translucent particles and the binder less than 0.05. The ratio of the acrylic component to the styrene component is preferably 50/50 to 100/0, more preferably 60/40 to 100/0, and most preferably 65/35 to 90/10 in terms of mass ratio. The refractive index of the light-transmitting particles comprising the crosslinked poly (meth) acrylate / styrene polymer is preferably 1.49 to 1.55, more preferably 1.50 to 1.54, and most preferably 1. 51 to 1.53.
As a preferred second embodiment, a binder composed of a monomer and inorganic fine particles is obtained by using inorganic fine particles having an average particle size of 1 to 100 nm in combination with a binder mainly composed of a tri- or higher functional (meth) acrylate monomer. The refractive index difference is adjusted to adjust the refractive index difference from the existing light-transmitting particles. The inorganic particles include oxides of at least one metal selected from silicon, zirconium, titanium, aluminum, indium, zinc, tin, and antimony. Specific examples include SiO 2 , ZrO 2 , TiO 2 , and Al 2 O. 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO and the like. Preferably, such SiO 2, ZrO 2, Al 2 O 3 and the like. These inorganic particles can be used by mixing in the range of 1 to 90% by mass with respect to the total amount of monomers, and preferably 5 to 65% by mass.
Here, the refractive index of the hard coat layer excluding the translucent particles can be quantitatively evaluated by directly measuring with an Abbe refractometer or by measuring a spectral reflection spectrum or a spectral ellipsometry. The refractive index of the translucent particles is measured by measuring the turbidity by dispersing an equal amount of the translucent particles in the solvent in which the refractive index is changed by changing the mixing ratio of two types of solvents having different refractive indexes. It is measured by measuring the refractive index of the solvent when the turbidity is minimized with an Abbe refractometer.
透光性粒子の平均粒径は、1.0〜12μmが好ましく、より好ましくは3.0〜12μm、更に好ましくは4.0〜10.0μm、最も好ましくは4.5〜8μmである。屈折率差及び粒子サイズを上記範囲に設定することで、光の散乱角度分布が広角にまで広がらず、ディスプレイの文字ボケ、コントラスト低下を引き起こしにくい。添加する層の膜厚を厚くする必要がなく、カールやコスト上昇といった問題が生じにくい点で、12μm以下が好ましい。更に上記範囲内にすることは、塗工時の塗布量を抑えられ、乾燥が速く、乾燥ムラ等の面状欠陥を生じにくい点でも好ましい。 The average particle diameter of the translucent particles is preferably 1.0 to 12 μm, more preferably 3.0 to 12 μm, still more preferably 4.0 to 10.0 μm, and most preferably 4.5 to 8 μm. By setting the refractive index difference and the particle size within the above ranges, the light scattering angle distribution does not spread to a wide angle, and it is difficult to cause blurring of characters on the display and a decrease in contrast. It is not necessary to increase the thickness of the layer to be added, and 12 μm or less is preferable because it is difficult to cause problems such as curling and cost increase. Furthermore, it is preferable that the amount falls within the above range from the viewpoint that the coating amount during coating can be suppressed, drying is quick, and surface defects such as drying unevenness are unlikely to occur.
透光性粒子の平均粒径の測定方法は、粒子の平均粒径を測る測定方法であれば、任意の測定方法が適用できるが、好ましくは透過型電子顕微鏡(倍率50万〜200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって平均粒子径とできる。 The measuring method of the average particle diameter of the translucent particles can be any measuring method as long as it is a measuring method for measuring the average particle diameter of the particles, but preferably a transmission electron microscope (magnification of 500,000 to 2,000,000 times) The particles are observed by observing 100 particles, and the average value can be obtained as the average particle diameter.
透光性粒子の形状は特に限定されないが、真球状粒子の他に、異形粒子(例えば、非真球状粒子)といった形状の異なる透光性粒子を併用して用いてもよい。特に非真球状粒子の短軸をハードコート層の法線方向にそろえると、真球粒子に比べ、粒子径が小さなものが使用できるようになる。 The shape of the translucent particles is not particularly limited, but in addition to the spherical particles, translucent particles having different shapes such as irregularly shaped particles (for example, non-spherical particles) may be used in combination. In particular, when the minor axes of non-spherical particles are aligned in the normal direction of the hard coat layer, particles having a smaller particle diameter than the true spherical particles can be used.
前記透光性粒子は、ハードコート層全固形分中に0.1〜40質量%含有されるように配合されることが好ましい。より好ましくは1〜30質量%、更に好ましくは1〜20質量%、である。透光性粒子の配合比を上記範囲にすることで内部ヘイズを好ましい範囲に制御することができる。 The translucent particles are preferably blended so as to be contained in an amount of 0.1 to 40% by mass in the total solid content of the hard coat layer. More preferably, it is 1-30 mass%, More preferably, it is 1-20 mass%. The internal haze can be controlled within a preferable range by adjusting the blending ratio of the translucent particles within the above range.
また、透光性粒子の塗布量は、好ましくは10〜2500mg/m2、より好ましくは30〜2000mg/m2、更に好ましくは100〜1500mg/m2である。 Moreover, the application amount of translucent particles is preferably 10 to 2500 mg / m 2 , more preferably 30 to 2000 mg / m 2 , and still more preferably 100 to 1500 mg / m 2 .
<透光性粒子調製、分級法>
透光性粒子の製造法は、懸濁重合法、乳化重合法、ソープフリー乳化重合法、分散重合法、シード重合法等を挙げることができ、いずれの方法で製造されてもよい。これらの製造法は、例えば「高分子合成の実験法」(大津隆行、木下雅悦共著、化学同人社)130頁及び146頁から147頁の記載、「合成高分子」1巻、p.246〜290、同3巻、p.1〜108等に記載の方法、及び特許第2543503号明細書、同第3508304号明細書、同第2746275号明細書、同第3521560号明細書、同第3580320号明細書、特開平10−1561号公報、特開平7−2908号公報、特開平5−297506号公報、特開2002−145919号公報等に記載の方法を参考にすることができる。
<Translucent particle preparation, classification method>
Examples of the method for producing the translucent particles include a suspension polymerization method, an emulsion polymerization method, a soap-free emulsion polymerization method, a dispersion polymerization method, a seed polymerization method, and the like, and any method may be used. These production methods are described in, for example, “Experimental Methods for Polymer Synthesis” (Takayuki Otsu and Masaaki Kinoshita, Chemical Dojinsha), pages 130 and 146 to 147, “Synthetic Polymers”, Vol. 246-290, 3rd volume, p. 1 to 108, etc., and Japanese Patent Nos. 2543503, 3508304, 2746275, 3521560, 3580320, and Japanese Patent Laid-Open No. 10-1561. Reference can be made to methods described in JP-A No. 7-2908, JP-A No. 5-297506, JP-A No. 2002-145919, and the like.
透光性粒子の粒度分布はヘイズ値と拡散性の制御、塗布面状の均質性から単分散性粒子が好ましい。粒子径の均一さを表すCV値は15%以下が好ましく、より好ましくは13%以下、更に好ましくは10%以下である。更に平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、更に好ましくは0.01%以下である。このような粒度分布を持つ粒子は、調製又は合成反応後に、分級することも有力な手段であり、分級の回数を上げることやその程度を強くすることで、望ましい分布の粒子を得ることができる。
分級には風力分級法、遠心分級法、沈降分級法、濾過分級法、静電分級法等の方法を用いることが好ましい。
The particle size distribution of the translucent particles is preferably monodisperse particles in terms of haze value and diffusibility control, and uniformity of the coated surface. The CV value representing the uniformity of the particle diameter is preferably 15% or less, more preferably 13% or less, and still more preferably 10% or less. Further, when a particle having a particle size of 20% or more than the average particle size is defined as a coarse particle, the proportion of the coarse particle is preferably 1% or less of the total number of particles, more preferably 0.1% or less. Yes, more preferably 0.01% or less. Particles having such a particle size distribution are also effective means of classification after preparation or synthesis reaction, and particles having a desired distribution can be obtained by increasing the number of classifications or increasing the degree of classification. .
It is preferable to use a method such as an air classification method, a centrifugal classification method, a sedimentation classification method, a filtration classification method, or an electrostatic classification method for classification.
[光重合開始剤]
次に、ハードコート層形成用組成物に含有させることができる光重合開始剤について説明する。
光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009−098658号公報の段落[0133]〜[0151]に記載されており、本発明においても同様に好適に用いることができる。
[Photopolymerization initiator]
Next, the photopolymerization initiator that can be contained in the composition for forming a hard coat layer will be described.
As photopolymerization initiators, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, Examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins. Specific examples, preferred embodiments, commercially available products, and the like of the photopolymerization initiator are described in paragraphs [0133] to [0151] of JP-A-2009-098658, and can be suitably used in the present invention as well. it can.
「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65〜148にも種々の例が記載されており本発明に有用である。 “Latest UV Curing Technology” {Technical Information Association, Inc.} (1991), p. 159, and “UV Curing System” written by Kiyomi Kato (published by the General Technology Center in 1989), p. Various examples are also described in 65-148 and are useful in the present invention.
市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製の「イルガキュア651」、「イルガキュア184」、「イルガキュア819」、「イルガキュア907」、「イルガキュア1870」(CGI−403/Irg184=7/3混合開始剤)、「イルガキュア500」、「イルガキュア369」、「イルガキュア1173」、「イルガキュア2959」、「イルガキュア4265」、「イルガキュア4263」、「イルガキュア127」、“OXE01”等;日本化薬(株)製の「カヤキュアーDETX−S」、「カヤキュアーBP−100」、「カヤキュアーBDMK」、「カヤキュアーCTX」、「カヤキュアーBMS」、「カヤキュアー2−EAQ」、「カヤキュアーABQ」、「カヤキュアーCPTX」、「カヤキュアーEPD」、「カヤキュアーITX」、「カヤキュアーQTX」、「カヤキュアーBTC」、「カヤキュアーMCA」など;サートマー社製の“Esacure(KIP100F,KB1,EB3,BP,X33,KTO46,KT37,KIP150,TZT)”等、及びそれらの組み合わせが好ましい例として挙げられる。 Commercially available photocleavable photoradical polymerization initiators include “Irgacure 651”, “Irgacure 184”, “Irgacure 819”, “Irgacure 907”, “Irgacure 1870” (CGI) manufactured by Ciba Specialty Chemicals Co., Ltd. -403 / Irg184 = 7/3 mixing initiator), "Irgacure 500", "Irgacure 369", "Irgacure 1173", "Irgacure 2959", "Irgacure 4265", "Irgacure 4263", "Irgacure 127", "OXE01 “Kaya Cure DETX-S”, “Kaya Cure BP-100”, “Kaya Cure BDK”, “Kaya Cure CTX”, “Kaya Cure BMS”, “Kaya Cure 2-EAQ”, “Kaya Cure ABQ” manufactured by Nippon Kayaku Co., Ltd. ”,“ Kayaki Ar CPTX, Kaya Cure EPD, Kaya Cure ITX, Kaya Cure QTX, Kaya Cure BTC, Kaya Cure MCA, etc .; “Esacure (KIP100F, KB1, EB3, BP, X33, KTO46, KT37) manufactured by Sartomer , KIP150, TZT) ", etc., and combinations thereof are preferred examples.
本発明のハードコート層形成用組成物中の光重合開始剤の含有量は、ハードコート層形成用組成物に含まれる重合可能な化合物を重合させるのに十分多く、かつ開始点が増えすぎないよう十分少ない量に設定するという理由から、ハードコート層形成用組成物中の全固形分に対して、0.5〜8質量%が好ましく、1〜5質量%がより好ましい。 The content of the photopolymerization initiator in the composition for forming a hard coat layer of the present invention is large enough to polymerize the polymerizable compound contained in the composition for forming a hard coat layer, and the starting point does not increase too much. For the reason that it is set to a sufficiently small amount, 0.5 to 8% by mass is preferable and 1 to 5% by mass is more preferable with respect to the total solid content in the composition for forming a hard coat layer.
[溶剤]
本発明のハードコート層形成用組成物は、溶剤を含有することができる。溶剤としては、モノマーの溶解性、透光性粒子の分散性、塗工時の乾燥性等を考慮し、各種溶剤を用いることができる。係る有機溶剤としては、例えばジブチルエーテル、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4−ジオキサン、1,3−ジオキソラン、1,3,5−トリオキサン、テトラヒドロフラン、アニソール、フェネトール、炭酸ジメチル、炭酸メチルエチル、炭酸ジエチル、アセトン、メチルエチルケトン(MEK)、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、蟻酸エチル、蟻酸プロピル、蟻酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−プチロラクトン、2−メトキシ酢酸メチル、2−エトキシ酢酸メチル、2−エトキシ酢酸エチル、2−エトキシプロピオン酸エチル、2−メトキシエタノール、2−プロポキシエタノール、2−ブトキシエタノール、1,2−ジアセトキシアセトン、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、アセト酢酸エチル等メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブチルアルコール、シクロヘキシルアルコール、酢酸イソブチル、メチルイソブチルケトン(MIBK)、2−オクタノン、2−ペンタノン、2−ヘキサノン、エチレングリコールエチルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールブチルエーテル、プロピレングリコールメチルエーテル、エチルカルビトール、ブチルカルビトール、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ベンゼン、トルエン、キシレン等が挙げられ、1種単独であるいは2種以上を組み合わせて用いることができる。
[solvent]
The composition for forming a hard coat layer of the present invention can contain a solvent. Various solvents can be used as the solvent in consideration of the solubility of the monomer, the dispersibility of the light-transmitting particles, the drying property at the time of coating, and the like. Examples of such organic solvents include dibutyl ether, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, anisole, phenetole, dimethyl carbonate, carbonic acid. Methyl ethyl, diethyl carbonate, acetone, methyl ethyl ketone (MEK), diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, propyl acetate, Methyl propionate, ethyl propionate, γ-ptyrolactone, methyl 2-methoxyacetate, methyl 2-ethoxyacetate, ethyl 2-ethoxyacetate, ethyl 2-ethoxypropionate, 2-metho Siethanol, 2-propoxyethanol, 2-butoxyethanol, 1,2-diacetoxyacetone, acetylacetone, diacetone alcohol, methyl acetoacetate, methyl acetoacetate and other methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, cyclohexyl Alcohol, isobutyl acetate, methyl isobutyl ketone (MIBK), 2-octanone, 2-pentanone, 2-hexanone, ethylene glycol ethyl ether, ethylene glycol isopropyl ether, ethylene glycol butyl ether, propylene glycol methyl ether, ethyl carbitol, butyl carbitol , Hexane, heptane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane, benzene, tolu Examples thereof include ene and xylene, and these can be used alone or in combination of two or more.
本発明のハードコート層形成用組成物の固形分の濃度は20〜80質量%の範囲となるように溶媒を用いるのが好ましく、より好ましくは30〜75質量%であり、更に好ましくは40〜70質量%である。 It is preferable to use a solvent so that the solid content of the composition for forming a hard coat layer of the present invention is in the range of 20 to 80% by mass, more preferably 30 to 75% by mass, and still more preferably 40 to 40% by mass. 70% by mass.
[光学フィルムの層構成]
本発明の光学フィルムは、透明支持体の一方の面上にハードコート層を有し、もう一方の面上に光学異方性層を有するが、更に目的に応じて、必要な機能層を単独又は複数層設けてもよい。例えば、反射防止層(低屈折率層、中屈折率層、高屈折率層など屈折率を調整した層)、帯電防止層、紫外線吸収層などを設けることができる。ハードコート層が、帯電防止性、紫外線吸収性を有していてもよい。
[Layer structure of optical film]
The optical film of the present invention has a hard coat layer on one side of the transparent support and an optically anisotropic layer on the other side, but additionally a necessary functional layer alone depending on the purpose. Alternatively, a plurality of layers may be provided. For example, an antireflection layer (a layer having a refractive index adjusted, such as a low refractive index layer, a medium refractive index layer, or a high refractive index layer), an antistatic layer, an ultraviolet absorption layer, or the like can be provided. The hard coat layer may have antistatic properties and ultraviolet absorption properties.
本発明の光学フィルムのより具体的な層構成の例を下記に示す。
光学異方性層/配向膜/透明支持体/ハードコート層
光学異方性層/配向膜/透明支持体/ハードコート層/オーバーコート層
光学異方性層/配向膜/透明支持体/ハードコート層/低屈折率層
光学異方性層/配向膜/透明支持体/ハードコート層/高屈折率層/低屈折率層
光学異方性層/配向膜/透明支持体/ハードコート層/中屈折率層/高屈折率層/低屈折率層
光学異方性層/配向膜/透明支持体/ハードコート層/中屈折率層/高屈折率層/低屈折率層/防汚層
上記構成のなかでも、ハードコート層側の最表層には、低屈折率層が設けられていることが好ましい。低屈折率層を設けることで、黒しまり感が更に向上する。
The example of the more concrete layer structure of the optical film of this invention is shown below.
Optical anisotropic layer / alignment film / transparent support / hard coat layer Optical anisotropic layer / alignment film / transparent support / hard coat layer / overcoat layer Optical anisotropic layer / alignment film / transparent support / hard Coat layer / low refractive index layer optical anisotropic layer / alignment film / transparent support / hard coat layer / high refractive index layer / low refractive index layer optical anisotropic layer / alignment film / transparent support / hard coat layer / Medium refractive index layer / high refractive index layer / low refractive index layer Optically anisotropic layer / alignment film / transparent support / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index layer / antifouling layer Among the configurations, a low refractive index layer is preferably provided on the outermost layer on the hard coat layer side. Providing a low refractive index layer further improves the feeling of blackening.
[低屈折率層の材料]
以下に低屈折率層の材料について説明する。
[Material for low refractive index layer]
The material for the low refractive index layer will be described below.
[無機微粒子]
低屈折率化、耐擦傷性改良の観点から、低屈折率層に無機微粒子を用いることが好ましい。該無機微粒子は、平均粒子サイズが5〜120nmであれば特に制限はないが、低屈折率化の観点からは、無機の低屈折率粒子が好ましい。
[Inorganic fine particles]
From the viewpoint of lowering the refractive index and improving the scratch resistance, it is preferable to use inorganic fine particles in the low refractive index layer. The inorganic fine particles are not particularly limited as long as the average particle size is 5 to 120 nm, but inorganic low refractive index particles are preferable from the viewpoint of lowering the refractive index.
無機微粒子としては、低屈折率であることからフッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点でシリカ微粒子が好ましい。これら無機粒子のサイズ(1次粒径)は、5〜120nmが好ましく、より好ましくは10〜100nm、20〜100nm、最も好ましくは30〜90nmである。 Examples of the inorganic fine particles include magnesium fluoride and silica fine particles because of their low refractive index. In particular, silica fine particles are preferable in terms of refractive index, dispersion stability, and cost. The size (primary particle size) of these inorganic particles is preferably 5 to 120 nm, more preferably 10 to 100 nm, 20 to 100 nm, and most preferably 30 to 90 nm.
無機微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。また、後述の中空シリカ微粒子を用いた場合は粒径が小さすぎると、空孔部の割合が減り屈折率の充分な低下が見込めない。無機微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であってもよい。 If the particle size of the inorganic fine particles is too small, the effect of improving the scratch resistance is reduced. If the particle size is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance are deteriorated. Further, when hollow silica fine particles described later are used, if the particle size is too small, the ratio of the pores is reduced and a sufficient decrease in the refractive index cannot be expected. The inorganic fine particles may be either crystalline or amorphous, and may be monodispersed particles or aggregated particles as long as a predetermined particle size is satisfied. The shape is most preferably a spherical diameter, but may be indefinite.
無機微粒子の塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、充分な低屈折率化が見込めなかったり、耐擦傷性の改良効果が減ったりし、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。 The coating amount of the inorganic fine particles is preferably 1mg / m 2 ~100mg / m 2 , more preferably 5mg / m 2 ~80mg / m 2 , more preferably from 10mg / m 2 ~60mg / m 2 . If the amount is too small, a sufficiently low refractive index cannot be expected or the effect of improving the scratch resistance is reduced. If the amount is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance and integration such as black tightening Reflectivity deteriorates.
(多孔質又は中空の微粒子)
低屈折率化を図るには、多孔質又は中空構造の微粒子を使用することが好ましい。特に中空構造のシリカ粒子を用いることが好ましい。これら粒子の空隙率は、好ましくは10〜80%、更に好ましくは20〜60%、最も好ましくは30〜60%である。中空微粒子の空隙率を上述の範囲にすることが、低屈折率化と粒子の耐久性維持の観点で好ましい。
(Porous or hollow fine particles)
In order to reduce the refractive index, it is preferable to use fine particles having a porous or hollow structure. It is particularly preferable to use hollow structure silica particles. The porosity of these particles is preferably 10 to 80%, more preferably 20 to 60%, and most preferably 30 to 60%. It is preferable that the void ratio of the hollow fine particles be in the above range from the viewpoint of lowering the refractive index and maintaining the durability of the particles.
多孔質又は中空粒子がシリカの場合には、微粒子の屈折率は、1.10〜1.40が好ましく、更に好ましくは1.15〜1.35、最も好ましくは1.15〜1.30である。ここでの屈折率は粒子全体として屈折率を表し、シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。 When the porous or hollow particles are silica, the refractive index of the fine particles is preferably 1.10 to 1.40, more preferably 1.15 to 1.35, and most preferably 1.15 to 1.30. is there. The refractive index here represents the refractive index of the entire particle, and does not represent the refractive index of only the outer shell silica forming the silica particles.
また、中空シリカは粒子平均粒子サイズの異なるものを2種以上併用して用いることができる。ここで、中空シリカの平均粒径は電子顕微鏡写真から求めることができる。 Further, two or more kinds of hollow silica having different particle average particle sizes can be used in combination. Here, the average particle diameter of the hollow silica can be determined from an electron micrograph.
本発明において中空シリカの比表面積は、20〜300m2/gが好ましく、更に好ましくは30〜120m2/g、最も好ましくは40〜90m2/gである。表面積は窒素を用いBET法で求めることができる。 The specific surface area of the hollow silica in the present invention is preferably from 20 to 300 m 2 / g, more preferably 30~120m 2 / g, most preferably 40~90m 2 / g. The surface area can be determined by the BET method using nitrogen.
本発明においては、中空シリカと併用して空孔のないシリカ粒子を用いることができる。空孔のないシリカの好ましい粒子サイズは、30nm以上150nm以下、更に好ましくは35nm以上100nm以下、最も好ましくは40nm以上80nm以下である。 In the present invention, silica particles having no pores can be used in combination with hollow silica. The preferred particle size of silica without voids is 30 nm to 150 nm, more preferably 35 nm to 100 nm, and most preferably 40 nm to 80 nm.
[無機微粒子の表面処理方法]
また、本発明においては無機微粒子は常法によりシランカップリング剤等により表面処理して用いることができる。
特に、低屈折率層形成用バインダーへの分散性を改良するために、無機微粒子の表面はオルガノシラン化合物の加水分解物及び/又はその部分縮合物により処理がされているのが好ましく、処理の際に、酸触媒及び金属キレート化合物のいずれか、あるいは両者が使用されることが更に好ましい。
無機微粒子の表面の処理方法については、特開2008−242314号公報の段落番号[0046]〜[0076]に記載されており、該文献に記載されたオルガノシラン化合物、シロキサン化合物、表面処理の溶媒、表面処理の触媒、金属キレート化合物などは本発明においても好適に用いることができる。
[Inorganic fine particle surface treatment method]
Further, in the present invention, inorganic fine particles can be used after being surface-treated with a silane coupling agent or the like by a conventional method.
In particular, in order to improve dispersibility in the binder for forming a low refractive index layer, the surface of the inorganic fine particles is preferably treated with a hydrolyzate of an organosilane compound and / or a partial condensate thereof. In this case, it is more preferable to use either an acid catalyst or a metal chelate compound or both.
The method for treating the surface of the inorganic fine particles is described in paragraphs [0046] to [0076] of JP-A-2008-242314, and the organosilane compound, the siloxane compound, and the solvent for the surface treatment described in the document. Surface treatment catalysts, metal chelate compounds, and the like can also be suitably used in the present invention.
低屈折率層には、(b2)重合性不飽和基を有する含フッ素又は非含フッ素モノマーを用いることができる。非含フッ素モノマーについては、ハードコート層で使用できるとして説明した不飽和二重結合を有する化合物も用いることが好ましい。含フッ素のモノマーとしては、下記一般式(1)で表され、フッ素を35質量%以上含有し、全ての架橋間分子量の計算値が500よりも小さい含フッ素多官能モノマー(d)を用いることが好ましい。
一般式(1): Rf2{−(L) m−Y} n
(一般式(1)中、Rf2は少なくとも炭素原子及びフッ素原子を含むn価の基を表し、nは3以上の整数を表す。Lは単結合又は二価の連結基を表し、mは0又は1を表す。Yは重合性不飽和基を表す。)
Rf2は酸素原子及び水素原子の少なくともいずれかを含んでも良い。また、Rf2は鎖状(直鎖又は分岐)又は環状である。
For the low refractive index layer, (b2) a fluorine-containing or non-fluorine-containing monomer having a polymerizable unsaturated group can be used. As the non-fluorinated monomer, it is preferable to use a compound having an unsaturated double bond described as being usable in the hard coat layer. As the fluorine-containing monomer, a fluorine-containing polyfunctional monomer (d) represented by the following general formula (1), containing 35% by mass or more of fluorine and having a calculated value of all cross-linking molecular weights smaller than 500 is used. Is preferred.
General formula (1): Rf2 {-(L) mY} n
(In General Formula (1), Rf2 represents an n-valent group containing at least a carbon atom and a fluorine atom, n represents an integer of 3 or more, L represents a single bond or a divalent linking group, and m represents 0. Or represents 1. Y represents a polymerizable unsaturated group.)
Rf2 may contain at least one of an oxygen atom and a hydrogen atom. Rf2 is linear (straight or branched) or cyclic.
Yは、不飽和結合を形成する2つの炭素原子を含む基であることが好ましく、ラジカル重合性の基であることがより好ましく、(メタ)アクリロイル基、アリル基、α−フルオロアクリロイル基、及び−C(O)OCH=CH2から選ばれるものが特に好ましい。これらの中でも、重合性の観点から、より好ましいのは、ラジカル重合性を有する(メタ)アクリロイル基、アリル基、α−フルオロアクリロイル基、及びC(O)OCH=CH2である。 Y is preferably a group containing two carbon atoms forming an unsaturated bond, more preferably a radical polymerizable group, a (meth) acryloyl group, an allyl group, an α-fluoroacryloyl group, and Those selected from —C (O) OCH═CH 2 are particularly preferred. Among these, from the viewpoint of polymerizability, (meth) acryloyl group, allyl group, α-fluoroacryloyl group, and C (O) OCH═CH 2 having radical polymerizability are more preferable.
Lは二価の連結基を表し、詳しくは、炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、−O−、−S−、−N(R)−、炭素数1〜10のアルキレン基と−O−、−S−又はN(R)−を組み合わせて得られる基、炭素数6〜10のアリーレン基と−O−、−S−又はN(R)−を組み合わせて得られる基を表す。Rは水素原子又は炭素数1〜5のアルキル基を表す。Lがアルキレン基又はアリーレン基を表す場合、Lで表されるアルキレン基及びアリーレン基はハロゲン原子で置換されていることが好ましく、フッ素原子で置換されていることが好ましい。
一般式(1)で表される化合物の具体例は、特開2010−152311号公報[0121]〜[0163]段落に記載されている。
L represents a divalent linking group, specifically, an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, -O-, -S-, -N (R)-, 1 to carbon atoms. A group obtained by combining 10 alkylene group and —O—, —S— or N (R) —, a combination of an arylene group having 6 to 10 carbon atoms and —O—, —S— or N (R) —. Represents the resulting group. R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. When L represents an alkylene group or an arylene group, the alkylene group and the arylene group represented by L are preferably substituted with a halogen atom, and preferably substituted with a fluorine atom.
Specific examples of the compound represented by the general formula (1) are described in paragraphs [0121] to [0163] of JP 2010-152111 A.
(ハードコート層の塗布方法)
本発明の光学フィルムに係るハードコート層は以下の方法で形成することができる。
まずハードコート層形成用組成物が調製される。次に、該組成物をディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等により透明支持体上に塗布し、加熱・乾燥する。マイクログラビアコート法、ワイヤーバーコート法、ダイコート法(米国特許2681294号明細書、特開2006−122889号公報参照)がより好ましく、ダイコート法が特に好ましい。
本発明の光学フィルムは、透明支持体の片面に液晶性化合物を含有する光学異方性層が塗布され、別の面にハードコート層が塗布されている光学フィルムであり、両層を塗設する順番は特に限定されるものではない。
(Method of applying hard coat layer)
The hard coat layer according to the optical film of the present invention can be formed by the following method.
First, a composition for forming a hard coat layer is prepared. Next, the composition is applied onto a transparent support by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, die coating, or the like, and heated and dried. A micro gravure coating method, a wire bar coating method, and a die coating method (see US Pat. No. 2,681,294 and JP-A-2006-122889) are more preferable, and a die coating method is particularly preferable.
The optical film of the present invention is an optical film in which an optically anisotropic layer containing a liquid crystalline compound is applied to one side of a transparent support and a hard coat layer is applied to another side. The order to do is not specifically limited.
ハードコート層は、透明支持体上に塗布した後、溶剤を乾燥するために加熱されたゾーンにウェブで搬送される。その際の乾燥ゾーンの温度は25℃〜140℃が好ましく、乾燥ゾーンの前半は比較的低温であり、後半は比較的高温であることが好ましい。但し、各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。例えば、紫外線硬化樹脂と併用される市販の光ラジカル発生剤のなかには120℃の温風中で数分以内にその数10%前後が揮発してしまうものもあり、また、単官能、2官能のアクリレートモノマー等は100℃の温風中で揮発が進行するものもある。そのような場合には、前記のようにハードコート層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。 After the hard coat layer is coated on the transparent support, it is conveyed by a web to a heated zone to dry the solvent. In this case, the temperature of the drying zone is preferably 25 ° C. to 140 ° C., the first half of the drying zone is relatively low temperature, and the second half is preferably relatively high temperature. However, it is preferably below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize. For example, some of the commercially available photo radical generators used in combination with ultraviolet curable resins volatilize around several tens of percent within a few minutes in warm air at 120 ° C. Some acrylate monomers and the like undergo volatilization in warm air at 100 ° C. In such a case, as described above, the temperature is preferably equal to or lower than the temperature at which components other than the solvent contained in the hard coat layer coating composition start to volatilize.
また、ハードコート層の塗布組成物を基材フィルム上に塗布した後の乾燥風は、前記塗布組成物の固形分濃度が1〜50%の間は塗膜表面の風速が0.1〜2m/秒の範囲にあることが、乾燥ムラを防止するために好ましい。
また、ハードコート層の塗布組成物を基材フィルム上に塗布した後、乾燥ゾーン内で基材フィルムの塗布面とは反対の面に接触する搬送ロールと基材フィルムとの温度差が0℃〜20℃以内とすると、搬送ロール上での伝熱ムラによる乾燥ムラが防止でき、好ましい。
Moreover, the drying wind after apply | coating the coating composition of a hard-coat layer on a base film has a wind speed of the coating-film surface of 0.1-2 m while the solid content concentration of the said coating composition is 1-50%. / Second is preferable in order to prevent unevenness in drying.
In addition, after the coating composition of the hard coat layer is coated on the base film, the temperature difference between the transport roll and the base film contacting the surface opposite to the coating surface of the base film in the drying zone is 0 ° C. When the temperature is within -20 ° C, drying unevenness due to heat transfer unevenness on the transport roll can be prevented, which is preferable.
溶剤の乾燥ゾーンの後に、ウェブで電離放射線照射によりハードコート層を硬化させるゾーンを通過させ、塗膜を硬化する。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm2〜1000mJ/cm2の照射量の紫外線を照射して塗膜を硬化するのが好ましい。その際、ウェブの幅方向の照射量分布は中央の最大照射量に対して両端まで含めて50〜100%の分布が好ましく、80〜100%の分布がより好ましい。更に表面硬化を促進する為に窒素ガス等をパージして酸素濃度を低下する必要がある際には、酸素濃度0.01%〜5%が好ましく、幅方向の分布は酸素濃度で2%以下が好ましい。紫外線照射の場合、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。また、硬化反応を促進するために、硬化時に温度を高めることもでき、25〜100℃が好ましく、更に好ましくは30〜80℃、最も好ましくは40〜70℃である。 After the solvent drying zone, the web is passed through a zone where the hard coat layer is cured by irradiation with ionizing radiation, and the coating film is cured. For example, if the coating film is ultraviolet-curable, preferably to cure the coating by an irradiation amount of 10mJ / cm 2 ~1000mJ / cm 2 by an ultraviolet lamp. At that time, the irradiation distribution in the width direction of the web is preferably 50 to 100%, more preferably 80 to 100%, including both ends with respect to the central maximum irradiation. Further, when it is necessary to purge nitrogen gas or the like to lower the oxygen concentration in order to promote surface hardening, the oxygen concentration is preferably 0.01% to 5%, and the distribution in the width direction is 2% or less in terms of oxygen concentration. Is preferred. In the case of ultraviolet irradiation, ultraviolet rays emitted from light such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. can be used. Moreover, in order to accelerate | stimulate hardening reaction, temperature can also be raised at the time of hardening, 25-100 degreeC is preferable, More preferably, it is 30-80 degreeC, Most preferably, it is 40-70 degreeC.
このようにして本発明のハードコート層が塗布・乾燥・硬化できる。また必要に応じてその他の機能層を設けることもできる。ハードコート層に加えてその他の機能層を積層する場合には、複数の層を同時に塗布してもよいし、逐次塗布してもよい。それらの層の製造方法は、ハードコート層の製造方法に準じて行うことができる。 In this way, the hard coat layer of the present invention can be applied, dried and cured. Further, other functional layers can be provided as necessary. When other functional layers are laminated in addition to the hard coat layer, a plurality of layers may be applied simultaneously or sequentially. The manufacturing method of these layers can be performed according to the manufacturing method of a hard-coat layer.
[偏光板]
本発明の偏光板は、偏光膜と該偏光膜の両面を保護する2枚の保護フィルムを有する偏光板であって、該保護フィルムの少なくとも一方が本発明の光学フィルムであることが好ましい。
本発明の偏光板は、少なくとも1つの保護膜と偏光膜とを有する偏光板であって、前記少なくとも1つの保護膜が前記本発明の光学フィルムであり、前記光学フィルムの光学異方性層側と前記偏光膜とが貼合された偏光板であることがより好ましい。ここで、光学異方性層と偏光膜との貼合は、直接又は接着剤層や粘着剤層を介して貼り合わされることが好ましく、例えば透明支持体などの他の部材を間に介さないことが好ましい。他の部材を介さないことで、偏光板の薄型化に貢献でき、かつ干渉ムラが生じにくいため好ましい。
偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造することができる。
[Polarizer]
The polarizing plate of the present invention is a polarizing plate having a polarizing film and two protective films for protecting both surfaces of the polarizing film, and at least one of the protective films is preferably the optical film of the present invention.
The polarizing plate of the present invention is a polarizing plate having at least one protective film and a polarizing film, wherein the at least one protective film is the optical film of the present invention, and the optical anisotropic layer side of the optical film. And a polarizing plate in which the polarizing film is bonded. Here, it is preferable that the optically anisotropic layer and the polarizing film are bonded directly or via an adhesive layer or an adhesive layer. For example, other members such as a transparent support are not interposed therebetween. It is preferable. By not interposing other members, it is possible to contribute to the thinning of the polarizing plate, and interference unevenness hardly occurs, which is preferable.
Examples of the polarizing film include an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film. The iodine-based polarizing film and the dye-based polarizing film can be generally produced using a polyvinyl alcohol film.
光学フィルムの光学異方性層側が接着剤又は他の基材を介して偏光膜に接着しており、偏光膜のもう一方の側にも保護フィルムを有する構成が好ましく、更に好ましくは、光学フィルムの光学異方性層が接着剤を介して直接偏光膜に接着している構成である。光学異方性層と偏光膜の間の接着性を改良するために、光学異方性層の表面は表面処理(例、グロー放電処理、コロナ放電処理、プラズマ処理、紫外線(UV)処理、火炎処理、鹸化処理、溶剤洗浄)を実施することが好ましい。また、光学異方性層の上に、接着層(下塗り層)を設けてもよい。
また、偏光板を構成するもう一方の保護フィルムの偏光膜と反対側の面には粘着剤層を有していても良い。
It is preferable that the optical anisotropic layer side of the optical film is bonded to the polarizing film via an adhesive or other base material, and the protective film is also provided on the other side of the polarizing film, more preferably the optical film. The optically anisotropic layer is directly bonded to the polarizing film through an adhesive. In order to improve the adhesion between the optically anisotropic layer and the polarizing film, the surface of the optically anisotropic layer is subjected to surface treatment (eg, glow discharge treatment, corona discharge treatment, plasma treatment, ultraviolet (UV) treatment, flame (Treatment, saponification treatment, solvent washing) is preferably carried out. Further, an adhesive layer (undercoat layer) may be provided on the optically anisotropic layer.
Moreover, you may have an adhesive layer in the surface on the opposite side to the polarizing film of the other protective film which comprises a polarizing plate.
本発明の光学フィルムを偏光板用保護フィルムとして用いることにより、λ/4膜などに期待される光学性能に加え、物理強度、防汚性、耐久性に優れた偏光板が作製できる。
本発明の光学フィルムは、液晶表示装置用表面フィルムとして好適に用いられる。
By using the optical film of the present invention as a protective film for a polarizing plate, a polarizing plate excellent in physical strength, antifouling property and durability can be produced in addition to the optical performance expected for a λ / 4 film.
The optical film of the present invention is suitably used as a surface film for liquid crystal display devices.
また、本発明の偏光板は、光学補償機能を有することもできる。その場合、偏光膜の一方の面に本発明の光学フィルムを保護フィルムとして用い、別の面に光学補償フィルムを保護フィルムとして用いることが好ましい。 Moreover, the polarizing plate of the present invention can also have an optical compensation function. In that case, it is preferable to use the optical film of the present invention as a protective film on one surface of the polarizing film and the optical compensation film as a protective film on the other surface.
[画像表示装置]
本発明の光学フィルム及び偏光板は、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置に好適に用いられる。特に液晶表示装置に用いることが好ましく、立体画像表示装置(3D表示装置)に適している。中でも時分割2眼立体視の透過型液晶表示装置に用いられることが特に好ましい。
[Image display device]
The optical film and polarizing plate of the present invention are suitably used for image display devices such as liquid crystal display devices (LCD), plasma display panels (PDP), electroluminescence displays (ELD), and cathode ray tube display devices (CRT). In particular, it is preferably used for a liquid crystal display device and is suitable for a stereoscopic image display device (3D display device). Among them, it is particularly preferable to use for a time-division binocular stereoscopic transmission type liquid crystal display device.
一般的に、液晶表示装置は、液晶セル及びその両側に配置された2枚の偏光板を有し、液晶セルは、2枚の電極基板の間に液晶を担持している。
本発明の液晶表示装置の好ましい態様は、視認側から、前記本発明における光学フィルムと、偏光膜と、液晶セルとをこの順に有する液晶表示装置であって、前記光学フィルムが、ハードコート層が視認側に、光学異方性層が偏光膜側になるように配置された液晶表示装置である。
液晶セルは、TNモード、VAモード、OCBモード、IPSモード又はECBモードであることが好ましい。
In general, a liquid crystal display device has a liquid crystal cell and two polarizing plates arranged on both sides thereof, and the liquid crystal cell carries a liquid crystal between two electrode substrates.
A preferred embodiment of the liquid crystal display device of the present invention is a liquid crystal display device having the optical film, the polarizing film, and the liquid crystal cell in this order from the viewing side, wherein the optical film has a hard coat layer. In the liquid crystal display device, the optically anisotropic layer is disposed on the viewing side so that the optically anisotropic layer is on the polarizing film side.
The liquid crystal cell is preferably in TN mode, VA mode, OCB mode, IPS mode or ECB mode.
以下に実施例と比較例を挙げて本発明の特徴を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。 The features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below. Unless otherwise specified, “part” and “%” are based on mass.
<透明支持体(セルロースアセテートフィルムT1)の作製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、固形分濃度22質量%のセルロースアセテート溶液(ドープA)を調製した。
[セルロースアセテート溶液(ドープA)の組成]
アセチル置換度2.86のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
紫外線吸収剤(チヌビン328 チバ・ジャパン製) 0.9質量部
紫外線吸収剤(チヌビン326 チバ・ジャパン製) 0.2質量部
メチレンクロライド(第1溶媒) 336質量部
メタノール(第2溶媒) 29質量部
1−ブタノール(第3溶媒) 11質量部
<Preparation of transparent support (cellulose acetate film T1)>
The following composition was put into a mixing tank, stirred while heating to dissolve each component, and a cellulose acetate solution (dope A) having a solid content concentration of 22% by mass was prepared.
[Composition of Cellulose Acetate Solution (Dope A)]
Cellulose acetate with an acetyl substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Ultraviolet absorber (manufactured by Tinuvin 328 Ciba Japan) 0.9 Part by weight Ultraviolet absorber (manufactured by Tinuvin 326 Ciba Japan) 0.2 part by weight Methylene chloride (first solvent) 336 parts by weight Methanol (second solvent) 29 parts by weight 1-butanol (third solvent) 11 parts by weight
上記ドープAに平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)をセルロースアセテート100質量部に対して0.02質量部添加したマット剤入りドープBを調製した。ドープBはドープAと同じ溶剤組成で固形分濃度が19質量%になるように調節した。 A dope B containing a matting agent was prepared by adding 0.02 parts by mass of silica particles (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 16 nm to 100 parts by mass of cellulose acetate. The dope B was adjusted so that the solid content concentration was 19% by mass with the same solvent composition as the dope A.
ドープAを主流とし、マット剤入りドープBを最下層及び最上層になるようにして、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムをはがし140℃の乾燥風で10分乾燥し、残留溶剤量が0.3質量%のセルロースアセテートフィルムT1を作製した。マット剤入りの最下層及び最上層はそれぞれ厚みが3μmに、主流は厚みが74μmになるように流量を調節した。 The dope A was mainstream, and the dope B with matting agent was the lowermost layer and the uppermost layer, and was cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, and the film is peeled off from the band and dried with 140 ° C. drying air for 10 minutes. % Cellulose acetate film T1 was produced. The flow rate was adjusted so that the lowermost layer and the uppermost layer containing the matting agent each had a thickness of 3 μm, and the mainstream had a thickness of 74 μm.
得られた長尺状のセルロースアセテートフィルムT1の幅は2300mmであり、厚さは80μmであった。また、波長550nmにおける面内レターデーション(Re)は3nm、厚さ方向のレターデーション(Rth)は45nmであった。また、380nmの透過率は3.8%で、450〜650nmの平均透過率は92%だった。
レターデーションの測定は本明細書に記載の方法で行った。
透過率は、分光光度計で測定した。
The obtained long cellulose acetate film T1 had a width of 2300 mm and a thickness of 80 μm. The in-plane retardation (Re) at a wavelength of 550 nm was 3 nm, and the retardation in the thickness direction (Rth) was 45 nm. The transmittance at 380 nm was 3.8%, and the average transmittance at 450 to 650 nm was 92%.
The measurement of retardation was performed by the method described in this specification.
The transmittance was measured with a spectrophotometer.
<透明支持体(セルロースアセテートフィルムT2)の作製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、固形分濃度22質量%のセルロースアセテート溶液(ドープC)を調製した。
[セルロースアセテート溶液(ドープC)の組成]
アセチル置換度2.86のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
紫外線吸収剤(チヌビン328 チバ・ジャパン製) 0.45質量部
紫外線吸収剤(チヌビン326 チバ・ジャパン製) 0.10質量部
メチレンクロライド(第1溶媒) 336質量部
メタノール(第2溶媒) 29質量部
1−ブタノール(第3溶媒) 11質量部
<Preparation of transparent support (cellulose acetate film T2)>
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution (dope C) having a solid content concentration of 22% by mass.
[Composition of cellulose acetate solution (Dope C)]
Cellulose acetate with an acetyl substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Ultraviolet absorber (Tinuvin 328 manufactured by Ciba Japan) 0.45 Part by mass Ultraviolet absorber (manufactured by Tinuvin 326 Ciba Japan) 0.10 parts by mass Methylene chloride (first solvent) 336 parts by mass Methanol (second solvent) 29 parts by mass 1-butanol (third solvent) 11 parts by mass
上記ドープCに平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)をセルロースアセテート100質量部に対して0.02質量部添加したマット剤入りドープDを調製した。ドープDはドープCと同じ溶剤組成で固形分濃度が19質量%になるように調節した。 A dope D containing a matting agent was prepared by adding 0.02 parts by mass of silica particles (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 16 nm to 100 parts by mass of cellulose acetate. The dope D was adjusted so that the solid content concentration was 19% by mass with the same solvent composition as the dope C.
ドープCを主流とし、マット剤入りドープDを最下層及び最上層になるようにして、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムをはがし140℃の乾燥風で10分乾燥し、残留溶剤量が0.3質量%のセルロースアセテートフィルムT2を作製した。マット剤入りの最下層及び最上層はそれぞれ厚みが3μmに、主流は厚みが74μmになるように流量を調節した。 The dope C was mainstream, the matting agent-containing dope D was the lowermost layer and the uppermost layer, and cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, the film is peeled off from the band and dried with 140 ° C. drying air for 10 minutes, and the residual solvent amount is 0.3 mass. % Cellulose acetate film T2 was produced. The flow rate was adjusted so that the lowermost layer and the uppermost layer containing the matting agent each had a thickness of 3 μm, and the mainstream had a thickness of 74 μm.
得られた長尺状のセルロースアセテートフィルムT2の幅は2300mmであり、厚さは80μmであった。また、波長550nmにおける面内レターデーション(Re)は3nm、厚さ方向のレターデーション(Rth)は45nmであった。また、380nmの透過率は19.5%で、450〜650nmの平均透過率は92%だった。 The obtained long cellulose acetate film T2 had a width of 2300 mm and a thickness of 80 μm. The in-plane retardation (Re) at a wavelength of 550 nm was 3 nm, and the retardation in the thickness direction (Rth) was 45 nm. The transmittance at 380 nm was 19.5%, and the average transmittance at 450 to 650 nm was 92%.
<透明支持体(セルロースアセテートフィルムT3)の作製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、固形分濃度22質量%のセルロースアセテート溶液(ドープE)を調製した。
[セルロースアセテート溶液(ドープE)の組成]
アセチル置換度2.86のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
紫外線吸収剤(チヌビン328 チバ・ジャパン製) 0.20質量部
紫外線吸収剤(チヌビン326 チバ・ジャパン製) 0.05質量部
メチレンクロライド(第1溶媒) 336質量部
メタノール(第2溶媒) 29質量部
1−ブタノール(第3溶媒) 11質量部
<Preparation of transparent support (cellulose acetate film T3)>
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution (dope E) having a solid content concentration of 22% by mass.
[Composition of cellulose acetate solution (Dope E)]
Cellulose acetate with an acetyl substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight UV absorber (Tinubin 328 manufactured by Ciba Japan) 0.20 Part by mass Ultraviolet absorber (manufactured by Tinuvin 326 Ciba Japan) 0.05 part by mass Methylene chloride (first solvent) 336 parts by mass Methanol (second solvent) 29 parts by mass 1-butanol (third solvent)
上記ドープEに平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)をセルロースアセテート100質量部に対して0.02質量部添加したマット剤入りドープFを調製した。ドープEと同じ溶剤組成で固形分濃度が19質量%になるように調節した。 A dope F containing a matting agent was prepared by adding 0.02 parts by mass of silica particles (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 16 nm to 100 parts by mass of cellulose acetate. The solid composition concentration was adjusted to 19% by mass with the same solvent composition as dope E.
ドープEを主流とし、マット剤入りドープFを最下層及び最上層になるようにして、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムをはがし140℃の乾燥風で10分乾燥し、残留溶剤量が0.3質量%のセルロースアセテートフィルムT3を作製した。マット剤入りの最下層及び最上層はそれぞれ厚みが3μmに、主流は厚みが74μmになるように流量を調節した。 The dope E was used as the main stream, and the dope F containing the matting agent was formed in the lowermost layer and the uppermost layer, and was cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, the film is peeled off from the band and dried with 140 ° C. drying air for 10 minutes, and the residual solvent amount is 0.3 mass. % Cellulose acetate film T3 was produced. The flow rate was adjusted so that the lowermost layer and the uppermost layer containing the matting agent each had a thickness of 3 μm, and the mainstream had a thickness of 74 μm.
得られた長尺状のセルロースアセテートフィルムT3の幅は2300mmであり、厚さは80μmであった。また、波長550nmにおける面内レターデーション(Re)は3nm、厚さ方向のレターデーション(Rth)は45nmであった。また、380nmの透過率は49.0%で、450〜650nmの平均透過率は92%だった。 The obtained long cellulose acetate film T3 had a width of 2300 mm and a thickness of 80 μm. The in-plane retardation (Re) at a wavelength of 550 nm was 3 nm, and the retardation in the thickness direction (Rth) was 45 nm. The transmittance at 380 nm was 49.0%, and the average transmittance at 450 to 650 nm was 92%.
<透明支持体(セルロースアセテートフィルムT4)の作製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、固形分濃度22質量%のセルロースアセテート溶液(ドープG)を調製した。
[セルロースアセテート溶液(ドープG)の組成]
アセチル置換度2.86のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
紫外線吸収剤(チヌビン328 チバ・ジャパン製) 0.18質量部
紫外線吸収剤(チヌビン326 チバ・ジャパン製) 0.04質量部
メチレンクロライド(第1溶媒) 336質量部
メタノール(第2溶媒) 29質量部
1−ブタノール(第3溶媒) 11質量部
<Preparation of transparent support (cellulose acetate film T4)>
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution (dope G) having a solid content concentration of 22% by mass.
[Composition of cellulose acetate solution (Dope G)]
Cellulose acetate with an acetyl substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Ultraviolet absorber (Tinubin 328 manufactured by Ciba Japan) 0.18 Part by mass UV absorber (manufactured by Tinuvin 326 Ciba Japan) 0.04 parts by mass Methylene chloride (first solvent) 336 parts by mass Methanol (second solvent) 29 parts by mass 1-butanol (third solvent) 11 parts by mass
上記ドープGに平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)をセルロースアセテート100質量部に対して0.02質量部添加したマット剤入りドープHを調製した。ドープGと同じ溶剤組成で固形分濃度が19質量%になるように調節した。 A dope H containing a matting agent was prepared by adding 0.02 parts by mass of silica particles (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 16 nm to 100 parts by mass of cellulose acetate. The solid composition concentration was adjusted to 19% by mass with the same solvent composition as the dope G.
ドープGを主流とし、マット剤入りドープHを最下層及び最上層になるようにして、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムをはがし140℃の乾燥風で10分乾燥し、残留溶剤量が0.3質量%のセルロースアセテートフィルムT4を作製した。マット剤入りの最下層及び最上層はそれぞれ厚みが3μmに、主流は厚みが74μmになるように流量を調節した。 The dope G was mainstream, the dope H containing the matting agent was the lowermost layer and the uppermost layer, and cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, the film is peeled off from the band and dried with 140 ° C. drying air for 10 minutes, and the residual solvent amount is 0.3 mass. % Cellulose acetate film T4 was produced. The flow rate was adjusted so that the lowermost layer and the uppermost layer containing the matting agent each had a thickness of 3 μm, and the mainstream had a thickness of 74 μm.
得られた長尺状のセルロースアセテートフィルムT4の幅は2300mmであり、厚さは80μmであった。また、波長550nmにおける面内レターデーション(Re)は3nm、厚さ方向のレターデーション(Rth)は45nmであった。また、380nmの透過率は52.0%で、450〜650nmの平均透過率は92%だった。 The obtained long cellulose acetate film T4 had a width of 2300 mm and a thickness of 80 μm. The in-plane retardation (Re) at a wavelength of 550 nm was 3 nm, and the retardation in the thickness direction (Rth) was 45 nm. The transmittance at 380 nm was 52.0%, and the average transmittance at 450 to 650 nm was 92%.
<透明支持体(セルロースアセテートフィルムT5)の作製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、固形分濃度22質量%のセルロースアセテート溶液(ドープI)を調製した。
[セルロースアセテート溶液(ドープI)の組成]
アセチル置換度2.86のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 336質量部
メタノール(第2溶媒) 29質量部
1−ブタノール(第3溶媒) 11質量部
<Preparation of transparent support (cellulose acetate film T5)>
The following composition was put into a mixing tank, stirred while heating to dissolve each component, and a cellulose acetate solution (dope I) having a solid content concentration of 22% by mass was prepared.
[Composition of cellulose acetate solution (Dope I)]
Cellulose acetate having an acetyl substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Methylene chloride (first solvent) 336 parts by weight Methanol (second Solvent) 29 parts by mass 1-butanol (third solvent) 11 parts by mass
上記ドープIに平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)をセルロースアセテート100質量部に対して0.02質量部添加したマット剤入りドープJを調製した。ドープIと同じ溶剤組成で固形分濃度が19質量%になるように調節した。 A dope J containing a matting agent was prepared by adding 0.02 parts by mass of silica particles (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 16 nm to 100 parts by mass of cellulose acetate. It adjusted so that solid content concentration might be 19 mass% by the same solvent composition as dope I.
ドープIを主流とし、マット剤入りドープJを最下層及び最上層になるようにして、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムをはがし140℃の乾燥風で10分乾燥し、残留溶剤量が0.3質量%のセルロースアセテートフィルムT5を作製した。マット剤入りの最下層及び最上層は厚みがそれぞれ3μmに、主流は厚みが74μmになるように流量を調節した。 The dope I was mainstream, the dope J with matting agent was the lowermost layer and the uppermost layer, and was cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, the film is peeled off from the band and dried with 140 ° C. drying air for 10 minutes, and the residual solvent amount is 0.3 mass. % Cellulose acetate film T5 was produced. The flow rate was adjusted so that the lowermost layer and the uppermost layer containing the matting agent each had a thickness of 3 μm, and the mainstream had a thickness of 74 μm.
得られた長尺状のセルロースアセテートフィルムT5の幅は2300mmであり、厚さは80μmであった。また、波長550nmにおける面内レターデーション(Re)は3nm、厚さ方向のレターデーション(Rth)は45nmであった。また、380nmの透過率は90%で、450〜650nmの平均透過率は92%だった。 The obtained long cellulose acetate film T5 had a width of 2300 mm and a thickness of 80 μm. The in-plane retardation (Re) at a wavelength of 550 nm was 3 nm, and the retardation in the thickness direction (Rth) was 45 nm. The transmittance at 380 nm was 90%, and the average transmittance at 450 to 650 nm was 92%.
<透明支持体(セルロースアセテートフィルムT6)の作製>
ドープIを主流とし、マット剤入りドープJを最下層及び最上層になるようにして、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムをはがし140℃の乾燥風で10分乾燥し、残留溶剤量が0.3質量%のセルロースアセテートフィルムT6を作製した。マット剤入りの最下層及び最上層はそれぞれ厚みが3μmに、主流は厚みが34μmになるように流量を調節した。
<Preparation of transparent support (cellulose acetate film T6)>
The dope I was mainstream, the dope J with matting agent was the lowermost layer and the uppermost layer, and was cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, the film is peeled off from the band and dried with 140 ° C. drying air for 10 minutes, and the residual solvent amount is 0.3 mass. % Cellulose acetate film T6 was produced. The flow rate was adjusted so that the lowermost layer and the uppermost layer containing the matting agent each had a thickness of 3 μm, and the main flow had a thickness of 34 μm.
得られた長尺状のセルロースアセテートフィルムT6の幅は2300mmであり、厚さは40μmであった。また、波長550nmにおける面内レターデーション(Re)は3nm、厚さ方向のレターデーション(Rth)は20nmであった。また、380nmの透過率は90%で、450〜650nmの平均透過率は92%だった。 The obtained long cellulose acetate film T6 had a width of 2300 mm and a thickness of 40 μm. The in-plane retardation (Re) at a wavelength of 550 nm was 3 nm, and the retardation in the thickness direction (Rth) was 20 nm. The transmittance at 380 nm was 90%, and the average transmittance at 450 to 650 nm was 92%.
<透明支持体(セルロースアセテートフィルムT7)の作製>
(セルロースアセテート溶液Kの調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Kを調製した。
[セルロースアセテート溶液Kの組成]
アセチル置換度2.94のセルロースアセテート 100質量部
メチレンクロライド(第1溶媒) 402質量部
メタノール(第2溶媒) 60質量部
<Preparation of transparent support (cellulose acetate film T7)>
(Preparation of cellulose acetate solution K)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acetate solution K.
[Composition of cellulose acetate solution K]
Cellulose acetate with an acetyl substitution degree of 2.94 100 parts by weight Methylene chloride (first solvent) 402 parts by weight Methanol (second solvent) 60 parts by weight
(マット剤溶液の調製)
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、更に30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
[マット剤溶液組成]
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液K 10.3質量部
(Preparation of matting agent solution)
20 parts by mass of silica particles having an average particle diameter of 16 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) and 80 parts by mass of methanol were mixed well for 30 minutes to obtain a silica particle dispersion. This dispersion was put into a disperser together with the following composition, and further stirred for 30 minutes or more to dissolve each component to prepare a matting agent solution.
[Matting agent solution composition]
Silica particle dispersion with an average particle size of 16 nm 10.0 parts by weight Methylene chloride (first solvent) 76.3 parts by weight Methanol (second solvent) 3.4 parts by weight Cellulose acetate solution K 10.3 parts by weight
(添加剤溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液を調製した。
[添加剤溶液組成]
下記の光学的異方性低下剤 49.3質量部
下記の波長分散調整剤 4.9質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液K 12.8質量部
(Preparation of additive solution)
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare an additive solution.
[Additive solution composition]
The following optical anisotropy reducing agent 49.3 parts by mass The following wavelength dispersion adjusting agent 4.9 parts by mass Methylene chloride (first solvent) 58.4 parts by mass Methanol (second solvent) 8.7 parts by mass Cellulose acetate Solution K 12.8 parts by mass
(セルロースアセテートフィルムの作製)
上記セルロースアセテート溶液Kを94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学的異方性を低下する化合物及び波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12質量%、1.2質量%であった。残留溶剤量30質量%でフィルムをバンドから剥離し、140℃で40分間乾燥させ、幅2300mm、厚さ80μmの長尺状のセルロースアセテートフィルムT7を製造した。得られたフィルムの面内レターデーション(Re)は1nm(遅相軸はフィルム長手方向と垂直な方向)、厚さ方向のレターデーション(Rth)は−1nmであった。また、380nmの透過率は90%で、450〜650nmの平均透過率は92%だった。
(Production of cellulose acetate film)
94.6 parts by mass of the cellulose acetate solution K, 1.3 parts by mass of the matting agent solution, and 4.1 parts by mass of the additive solution were mixed after filtration, and cast using a band casting machine. The mass ratio of the compound for reducing optical anisotropy and the wavelength dispersion adjusting agent to cellulose acetate in the above composition was 12% by mass and 1.2% by mass, respectively. The film was peeled from the band with a residual solvent amount of 30% by mass and dried at 140 ° C. for 40 minutes to produce a long cellulose acetate film T7 having a width of 2300 mm and a thickness of 80 μm. The in-plane retardation (Re) of the obtained film was 1 nm (the slow axis was a direction perpendicular to the longitudinal direction of the film), and the retardation (Rth) in the thickness direction was −1 nm. The transmittance at 380 nm was 90%, and the average transmittance at 450 to 650 nm was 92%.
<光学基材F1の作成>
《液晶性化合物を含む光学異方性層の形成》
(アルカリ鹸化処理)
セルロースアセテートフィルムT1を、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアセテートフィルムを作製した。
<Creation of optical substrate F1>
<< Formation of optically anisotropic layer containing liquid crystalline compound >>
(Alkaline saponification treatment)
The cellulose acetate film T1 is passed through a dielectric heating roll having a temperature of 60 ° C., and the film surface temperature is raised to 40 ° C., and then an alkaline solution having the following composition is applied to the band surface of the film using a bar coater The coating was carried out for 10 seconds under a steam far-infrared heater manufactured by Noritake Co., Ltd., which was applied at an amount of 14 ml / m 2 and heated to 110 ° C. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater. Next, washing with a fountain coater and draining with an air knife were repeated three times, and then transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare an alkali saponified cellulose acetate film.
[アルカリ溶液組成]
水酸化カリウム 4.7質量部
水 15.8質量部
イソプロパノール 63.7質量部
界面活性剤 SF−1:C14H29O(CH2CH2O)20H
1.0質量部
プロピレングリコール 14.8質量部
[Alkaline solution composition]
Potassium hydroxide 4.7 parts by weight Water 15.8 parts by weight Isopropanol 63.7 parts by weight Surfactant SF-1: C 14 H 29 O (CH 2 CH 2 O) 20 H
1.0 part by mass Propylene glycol 14.8 parts by mass
(配向膜の形成)
上記のように鹸化処理した長尺状のセルロースアセテートフィルムに、下記の組成の配向膜塗布液をワイヤーバーで連続的に塗布した。60℃の温風で60秒、更に100℃の温風で120秒乾燥した。配向膜の厚みは0.7μmだった。
[配向膜塗布液の組成]
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
光重合開始剤(イルガキュアー2959、チバ・スペシャルティ・ケミカルズ(株)製) 0.3質量部
(Formation of alignment film)
An alignment film coating solution having the following composition was continuously applied to the long cellulose acetate film saponified as described above with a wire bar. Drying was performed with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds. The thickness of the alignment film was 0.7 μm.
[Composition of alignment film coating solution]
Modified polyvinyl alcohol 10 parts by weight Water 371 parts by weight Methanol 119 parts by weight Glutaraldehyde 0.5 parts by weight Photopolymerization initiator (Irgacure 2959, manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.3 parts by weight
(ディスコティック液晶性化合物を含む光学異方性層の形成)
上記作製した配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向に対して、ラビングローラーの回転軸は反時計回りに45°の方向とした。
(Formation of optically anisotropic layer containing discotic liquid crystalline compound)
The alignment film thus prepared was continuously rubbed. At this time, the longitudinal direction of the long film and the conveyance direction were parallel, and the rotation axis of the rubbing roller was set to a direction of 45 ° counterclockwise with respect to the film longitudinal direction.
下記の組成のディスコティック液晶性化合物を含む塗布液を上記作製した配向膜上に#3.6のワイヤーバーで連続的に塗布した。フィルムの搬送速度(V)は36m/minとした。塗布液の溶媒の乾燥及びディスコティック液晶性化合物の配向熟成のために、120℃の温風で90秒間加熱した。続いて、80℃にてUV照射を行い、液晶性化合物の配向を固定化し厚さ1.6μmの光学異方性層を形成し、光学基材F1を得た。
作製した光学基材F1は、550nmにおけるReが125nmあった。支持体の長さ方向に対して、遅相軸は時計回りに45°の方向であった。ディスコティック液晶性分子の円盤面のフィルム面に対する平均傾斜角は90°であり、ディスコティック液晶がフィルム面に対して垂直に配向していることを確認した。光学異方性側表面の算術平均粗さRa(JIS B 0601:1998)は0.01〜0.04μmの範囲にあり、平滑性の高いものであった。
A coating solution containing a discotic liquid crystalline compound having the following composition was continuously applied to the prepared alignment film with a # 3.6 wire bar. The conveyance speed (V) of the film was 36 m / min. In order to dry the solvent of the coating solution and to mature the alignment of the discotic liquid crystal compound, the coating liquid was heated with warm air at 120 ° C. for 90 seconds. Subsequently, UV irradiation was performed at 80 ° C. to fix the orientation of the liquid crystalline compound and form an optically anisotropic layer having a thickness of 1.6 μm, thereby obtaining an optical substrate F1.
The produced optical substrate F1 had an Re at 550 nm of 125 nm. The slow axis was 45 ° clockwise with respect to the length direction of the support. The average inclination angle of the disc surface of the discotic liquid crystalline molecules with respect to the film surface was 90 °, and it was confirmed that the discotic liquid crystal was aligned perpendicular to the film surface. The arithmetic average roughness Ra (JIS B 0601: 1998) of the optically anisotropic side surface was in the range of 0.01 to 0.04 μm and had high smoothness.
[光学異方性層塗布液の組成]
下記のディスコティック液晶性化合物 91質量部
下記アクリレートモノマー 5質量部
光重合開始剤(イルガキュアー907、チバ・スペシャルティ・ケミカルズ(株)製)
3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1質量部
下記のピリジニウム塩 0.5質量部
下記のフッ素系ポリマー(FP1) 0.2質量部
下記のフッ素系ポリマー(FP3) 0.1質量部
メチルエチルケトン 189質量部
[Composition of optically anisotropic layer coating solution]
91 parts by weight of the following discotic liquid crystalline compound 5 parts by weight of the following acrylate monomer Photopolymerization initiator (Irgacure 907, manufactured by Ciba Specialty Chemicals)
3 parts by mass Sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass The following pyridinium salt 0.5 part by mass The following fluoropolymer (FP1) 0.2 part by mass The following fluoropolymer (FP3) ) 0.1 parts by mass Methyl ethyl ketone 189 parts by mass
アクリレートモノマー:
エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)
Acrylate monomer:
Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.)
<光学基材F2〜F5の作成>
光学基材F1に対し、セルロースアセテートフィルムをT2〜T5に変更した以外は光学基材F1の製造方法と同様にして光学基材F2〜F5を作製した。作製した光学基材F2〜F5はいずれも、550nmにおけるReが125nmであった。光学異方性側表面の算術平均粗さRa(JIS B 0601:1998)は0.01〜0.04μmの範囲にあり、平滑性の高いものであった。
<Creation of optical base materials F2 to F5>
Optical substrates F2 to F5 were produced in the same manner as the optical substrate F1 except that the cellulose acetate film was changed to T2 to T5 with respect to the optical substrate F1. The optical substrates F2 to F5 thus produced all had a Re at 550 nm of 125 nm. The arithmetic average roughness Ra (JIS B 0601: 1998) of the optically anisotropic side surface was in the range of 0.01 to 0.04 μm and had high smoothness.
<光学基材F6の作成>
光学基材F1に対し、セルロースアセテートフィルムをT6に変更した以外は光学基材F1の製造方法と同様にして光学基材F6を作製した。作製した光学基材F6は、550nmにおけるReが125nmであった。光学異方性側表面の算術平均粗さRa(JIS
B 0601:1998)は0.01〜0.04μmの範囲にあり、平滑性の高いものであった。
<Creation of optical substrate F6>
An optical substrate F6 was produced in the same manner as the optical substrate F1 except that the cellulose acetate film was changed to T6 with respect to the optical substrate F1. The manufactured optical substrate F6 had Re at 550 nm of 125 nm. Arithmetic mean roughness Ra of optically anisotropic surface (JIS)
B 0601: 1998) was in the range of 0.01 to 0.04 μm and had high smoothness.
<光学基材F7の作成>
光学基材F1に対し、セルロースアセテートフィルムをT7に変更した以外は光学基材F1の製造方法と同様にして光学基材F7を作製した。作製した光学基材F7は、550nmにおけるReが125nmであった。光学異方性側表面の算術平均粗さRa(JIS
B 0601:1998)は0.01〜0.04μmの範囲にあり、平滑性の高いものであった。
<Creation of optical substrate F7>
An optical substrate F7 was produced in the same manner as the optical substrate F1 except that the cellulose acetate film was changed to T7 with respect to the optical substrate F1. The produced optical substrate F7 had Re at 550 nm of 125 nm. Arithmetic mean roughness Ra of optically anisotropic surface (JIS)
B 0601: 1998) was in the range of 0.01 to 0.04 μm and had high smoothness.
<光学基材F8〜F15の作成>
光学基材F1に対し、Reの値が表1に示す値になるように光学異方性層の厚みを変更した以外は光学基材F1の製造方法と同様にして光学基材F8〜F15を作製した。光学異方性側表面の算術平均粗さRa(JIS B 0601:1998)は全て0.01〜0.04μmの範囲にあり、平滑性の高いものであった。
<Creation of optical base materials F8 to F15>
The optical base materials F8 to F15 are manufactured in the same manner as the manufacturing method of the optical base material F1 except that the thickness of the optical anisotropic layer is changed so that the Re value becomes the value shown in Table 1 with respect to the optical base material F1. Produced. The arithmetic average roughness Ra (JIS B 0601: 1998) on the optically anisotropic side surface was all in the range of 0.01 to 0.04 μm and had high smoothness.
<光学基材F16の作成>
光学基材F1で使用した光学異方性層形成前の基材(配向膜を形成したもの)の配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向に対して、ラビングローラーの回転軸は反時計回りに45°の方向とした。
配向膜上に特開2004−272202号公報の[0117]に記載の第1光学異方性用塗布液(棒状液晶性化合物を含む)を用い、550nmにおけるReが125nmになるように塗布量を調整し、紫外線硬化し光学異方性層を形成し、光学基材F16を得た。
<Creation of optical substrate F16>
The rubbing treatment was continuously performed on the alignment film of the substrate (the one in which the alignment film was formed) before forming the optically anisotropic layer used in the optical substrate F1. At this time, the longitudinal direction of the long film and the conveyance direction were parallel, and the rotation axis of the rubbing roller was set to a direction of 45 ° counterclockwise with respect to the film longitudinal direction.
Using the first optical anisotropy coating liquid (including a rod-like liquid crystalline compound) described in [0117] of JP-A-2004-272202 on the alignment film, the coating amount is adjusted so that Re at 550 nm is 125 nm. After adjusting and ultraviolet curing, an optically anisotropic layer was formed to obtain an optical substrate F16.
作製した光学基材F16は、550nmにおけるReが125nmあった。支持体の長手方向に対して、遅相軸は時計回りに45°の方向であった。棒状液晶性分子のフィルム面に対する平均傾斜角は0°であり、棒状液晶性化合物がフィルム面に対して水平に配向していることを確認した。光学異方性側表面の算術平均粗さRa(JIS B 0601:1998)は0.01〜0.04μmの範囲にあり、平滑性の高いものであった。 The manufactured optical substrate F16 had Re at 550 nm of 125 nm. The slow axis was 45 ° clockwise relative to the longitudinal direction of the support. The average inclination angle of the rod-like liquid crystalline molecules with respect to the film surface was 0 °, and it was confirmed that the rod-like liquid crystalline compound was aligned horizontally with respect to the film surface. The arithmetic average roughness Ra (JIS B 0601: 1998) of the optically anisotropic side surface was in the range of 0.01 to 0.04 μm and had high smoothness.
<光学基材F17の作成>
光学基材F16に対し、セルロースアシレートフィルムをT7に変更した以外は光学基材F16の製造方法と同様に光学基材F17を得た。
支持体の長手方向に対して、遅相軸は時計回りに45°の方向であった。棒状液晶性分子のフィルム面に対する平均傾斜角は0°であり、棒状液晶がフィルム面に対して水平に配向していることを確認した。550nmにおけるReが125nmあった。光学異方性側表面の算術平均粗さRa(JIS B 0601:1998)は0.01〜0.04μmの範囲にあり、平滑性の高いものであった。
<Creation of optical substrate F17>
An optical base material F17 was obtained in the same manner as the manufacturing method of the optical base material F16 except that the cellulose acylate film was changed to T7 with respect to the optical base material F16.
The slow axis was 45 ° clockwise relative to the longitudinal direction of the support. The average inclination angle of the rod-like liquid crystal molecules with respect to the film surface was 0 °, and it was confirmed that the rod-like liquid crystal was aligned horizontally with respect to the film surface. Re at 550 nm was 125 nm. The arithmetic average roughness Ra (JIS B 0601: 1998) of the optically anisotropic side surface was in the range of 0.01 to 0.04 μm and had high smoothness.
<光学基材F18の作成>
光学基材F16に対し、ラビングローラーの回転軸は時計回りに45°の方向に変更した以外は光学基材F16の製造方法と同様に光学基材F18を得た。
<Creation of optical substrate F18>
The optical base material F18 was obtained in the same manner as the manufacturing method of the optical base material F16 except that the rotation axis of the rubbing roller was changed to the 45 ° direction clockwise with respect to the optical base material F16.
作製した光学基材F18は、550nmにおけるReが125nmあった。支持体の長手方向に対して、遅相軸は反時計回りに45°の方向であった。棒状液晶性分子のフィルム面に対する平均傾斜角は0°であり、棒状液晶がフィルム面に対して水平に配向していることを確認した。光学異方性側表面の算術平均粗さRa(JIS B 0601:1998)は0.01〜0.04μmの範囲にあり、平滑性の高いものであった。 The produced optical substrate F18 had Re at 550 nm of 125 nm. The slow axis was 45 ° counterclockwise with respect to the longitudinal direction of the support. The average inclination angle of the rod-like liquid crystal molecules with respect to the film surface was 0 °, and it was confirmed that the rod-like liquid crystal was aligned horizontally with respect to the film surface. The arithmetic average roughness Ra (JIS B 0601: 1998) of the optically anisotropic side surface was in the range of 0.01 to 0.04 μm and had high smoothness.
〔ハードコート層の積層〕
下記に示す各層形成用塗布液を調製した。
(ハードコート層用塗布液HC−1の調製)
PET−30(100%) 53.7g
ビスコート360(100%) 32.2g
イルガキュア127(100%) 3.2g
8μm架橋アクリル粒子(30%分散液) 33.6g
CABポリマー(20%溶液) 7.0g
SP−13(5%溶液) 2.3g
MIBK 36.8g
MEK 26.1g
[Lamination of hard coat layer]
A coating solution for forming each layer shown below was prepared.
(Preparation of hard coat layer coating solution HC-1)
PET-30 (100%) 53.7g
Biscote 360 (100%) 32.2g
Irgacure 127 (100%) 3.2 g
8 μm crosslinked acrylic particles (30% dispersion) 33.6 g
CAB polymer (20% solution) 7.0 g
SP-13 (5% solution) 2.3 g
MIBK 36.8g
MEK 26.1g
(ハードコート層用塗布液HC−10の調製)
PET−30(100%) 60.0g
ビスコート360(100%) 36.0g
イルガキュア127(100%) 3.2g
CABポリマー(20%溶液) 7.0g
SP−13(5%溶液) 2.3g
MIBK 60.0g
MEK 26.0g
(Preparation of hard coat layer coating solution HC-10)
PET-30 (100%) 60.0g
Viscoat 360 (100%) 36.0 g
Irgacure 127 (100%) 3.2 g
CAB polymer (20% solution) 7.0 g
SP-13 (5% solution) 2.3 g
MIBK 60.0g
MEK 26.0g
上記ハードコート層用塗布液を孔径30μmのポリプロピレン製フィルターでろ過して塗布液を調製した。上記塗布液において硬化後のマトリックスの屈折率は1.525であった。 The hard coat layer coating solution was filtered through a polypropylene filter having a pore size of 30 μm to prepare a coating solution. The refractive index of the matrix after curing in the coating solution was 1.525.
使用した材料を以下に示す。
・8μm架橋アクリル粒子 屈折率1.495(30%MIBK分散液)
・PET−30:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[日本化薬(株)製]
・ビスコート360:エチレンオキサイド変性トリメチロールプロパントリアクリレート[大阪有機化学(株)製]
・CABポリマー:セルロースアセテートブチレート(20%溶液)[イーストマン・ケミカル(株)製531・1のMIBK溶液]
・イルガキュア127:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・レベリング剤
(SP-13):下記フッ素ポリマーの5%MEK溶液
The materials used are shown below.
・ 8μm crosslinked acrylic particles Refractive index 1.495 (30% MIBK dispersion)
PET-30: A mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate [manufactured by Nippon Kayaku Co., Ltd.]
-Biscoat 360: ethylene oxide-modified trimethylolpropane triacrylate [manufactured by Osaka Organic Chemical Co., Ltd.]
CAB polymer: Cellulose acetate butyrate (20% solution) [MIBK solution of 53.1 / 1 manufactured by Eastman Chemical Co., Ltd.]
・ Irgacure 127: Polymerization initiator [Ciba Specialty Chemicals Co., Ltd.]
Leveling agent (SP-13): 5% MEK solution of the following fluoropolymer
(低屈折率層用塗布液Ln−1の調製)
各成分を下記のように混合し、MEK/MMPG−Acの90/10混合物(質量比)に溶解して固形分5質量%の低屈折率層塗布液を調製した。
(Preparation of coating solution Ln-1 for low refractive index layer)
Each component was mixed as follows and dissolved in a 90/10 mixture (mass ratio) of MEK / MMPG-Ac to prepare a low refractive index layer coating solution having a solid content of 5% by mass.
(Ln−1の組成)
下記のパーフルオロオレフィン共重合体(P−1) 15質量部
DPHA 7質量部
RMS−033 5質量部
下記の含フッ素モノマー(M−1) 20質量部
中空シリカ粒子(固形分として) 50質量部
イルガキュア127 3質量部
(Composition of Ln-1)
The following perfluoroolefin copolymer (P-1) 15 parts by mass DPHA 7 parts by mass RMS-033 5 parts by mass The following fluorine-containing monomer (M-1) 20 parts by mass Hollow silica particles (as solid content) 50 parts by mass Irgacure 127 3 parts by mass
使用した化合物を以下に示す。 The compounds used are shown below.
・DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物、日本化薬(株)製
・RMS−033:シリコーン系多官能アクリレート(Gelest製、Mwt=28000)
・イルガキュア127:光重合開始剤、チバ・スペシャルティ・ケミカルズ(株)製
・中空シリカ:中空シリカ粒子分散液(平均粒子サイズ45nm、屈折率1.25、表面をアクリロイル基を有するシランカップリング剤で表面処理、MEK分散液濃度20%)
・MEK:メチルエチルケトン
・MMPG−Ac:プロピレングリコールモノメチルエーテルアセテート
DPHA: Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd. RMS-033: Silicone polyfunctional acrylate (manufactured by Gelest, Mwt = 28000)
Irgacure 127: Photopolymerization initiator, manufactured by Ciba Specialty Chemicals Co., Ltd. Hollow silica: Hollow silica particle dispersion (average particle size 45 nm, refractive index 1.25, surface with silane coupling agent having acryloyl group) Surface treatment, MEK dispersion concentration 20%)
MEK: methyl ethyl ketone MMPG-Ac: propylene glycol monomethyl ether acetate
上記低屈折率層用塗布液は孔径1μmのポリプロピレン製フィルターでろ過して塗布液を調製した。上記低屈折率層用塗布液Ln−1を塗布硬化してなる低屈折率層の硬化後の屈折率は1.36であった。 The coating solution for the low refractive index layer was filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution. The refractive index after curing of the low refractive index layer obtained by coating and curing the coating liquid Ln-1 for low refractive index layer was 1.36.
[光学フィルム試料の作製]
(光学フィルム試料107の作製)
上記で作製した光学基材F1をロール形態から巻き出して光学異方性層が塗設されていない側の支持体表面に、ハードコート層用塗布液HC−1を使用し、特開2006−122889号公報実施例1記載のスロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、更に窒素パージ下酸素濃度約0.1%で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量100mJ/cm2の紫外線を照射して塗布層を硬化させ巻き取った。ハードコート層の膜厚は10μmになるよう塗布量を調整した。
更に上記で作成したハードコートフィルムをロール形態から巻き出してハードコート層が塗設されている側に、ハードコート層用塗布液HC−10を使用し、特開2006−122889号公報実施例1記載のスロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、更に窒素パージ下酸素濃度約0.1%で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量100mJ/cm2の紫外線を照射して塗布層を硬化させ巻き取った。ハードコート層用塗布液HC−10によるハードコート層の膜厚は4μm(ハードコート全体の膜厚が14μm)になるように塗布量を調整した後に、ハードコート層の上に、低屈折率層用塗布液Ln−1を塗布し、光学フィルム試料107を作成した。低屈折率層の乾燥条件は60℃、60秒とし、紫外線硬化条件は酸素濃度が0.1体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度600mW/cm2、照射量300mJ/cm2の照射量とした。低屈折率層の屈折率は1.36、膜厚は95nmであった。
[Preparation of optical film sample]
(Preparation of optical film sample 107)
The hard base layer coating liquid HC-1 is used on the surface of the support on the side where the optical base material F1 produced above is unwound from the roll form and the optically anisotropic layer is not coated. In the die coating method using the slot die described in Example 1 of US Pat. No. 122889, the coating speed was 30 m / min, the coating was dried at 60 ° C. for 150 seconds, and further 160 W with an oxygen concentration of about 0.1% under a nitrogen purge. Using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.), the coating layer was cured and wound by irradiating with ultraviolet rays having an illuminance of 400 mW / cm 2 and an irradiation amount of 100 mJ / cm 2 . The coating amount was adjusted so that the thickness of the hard coat layer was 10 μm.
Further, the hard coat film prepared above was unwound from the roll form and the hard coat layer coating liquid HC-10 was used on the side where the hard coat layer was coated. Example 1 of JP-A-2006-122889 The die-coating method using the slot die described above was applied at a conveyance speed of 30 m / min, dried at 60 ° C. for 150 seconds, and further air-cooled metal halide lamp with an oxygen concentration of about 0.1% and 160 W / cm under a nitrogen purge. (Igraphics Co., Ltd.) was used to irradiate ultraviolet rays with an illuminance of 400 mW / cm 2 and an irradiation amount of 100 mJ / cm 2 to cure and wind up the coating layer. After adjusting the coating amount so that the thickness of the hard coat layer by the hard coat layer coating solution HC-10 is 4 μm (the total thickness of the hard coat is 14 μm), the low refractive index layer is formed on the hard coat layer. The coating liquid Ln-1 was applied to prepare an optical film sample 107. The low refractive index layer was dried at 60 ° C. for 60 seconds, and the ultraviolet curing condition was 240 W / cm air-cooled metal halide lamp (eye graphics) while purging with nitrogen so that the atmosphere had an oxygen concentration of 0.1% by volume or less. The irradiance was 600 mW / cm 2 and the irradiation amount was 300 mJ / cm 2 . The low refractive index layer had a refractive index of 1.36 and a film thickness of 95 nm.
(光学フィルム試料101〜106、108〜112の作製)
上記で作製した光学フィルム試料107に対し内部ヘイズが表2に示す値になるようにハードコート塗布液中の粒子量を調整した以外は、光学フィルム試料107と同様にして光学フィルム試料101〜106、108〜112を作成した。
なお、塗布液中の粒子量の調整は、ハードコート塗布液HC−1の固形分濃度を一定に保ったまま、PET−30とビスコート360の添加量比を一定にし、8μm架橋アクリル粒子(固形分)に置き換えることで行った。
(Preparation of optical film samples 101-106, 108-112)
The optical film samples 101 to 106 were the same as the optical film sample 107 except that the amount of particles in the hard coat coating solution was adjusted so that the internal haze was a value shown in Table 2 with respect to the optical film sample 107 produced above. 108-112.
In addition, adjustment of the particle amount in the coating liquid is performed by keeping the solid content concentration of the hard coat coating liquid HC-1 constant, while keeping the addition ratio of PET-30 and biscoat 360 constant, and by adding 8 μm crosslinked acrylic particles (solid It was done by replacing with min).
(光学フィルム試料113の作製)
上記で作製した光学フィルム試料107に対しハードコート層用塗布液HC−1をハードコート層用塗布液HC−10に変更した以外は光学フィルム試料107と同様にして光学フィルム試料113を作成した。
(Preparation of optical film sample 113)
An optical film sample 113 was produced in the same manner as the optical film sample 107 except that the hard coat layer coating solution HC-1 was changed to the hard coat layer coating solution HC-10 for the optical film sample 107 produced above.
(光学フィルム試料114〜117の作製)
上記で作製した光学フィルム試料107に対しハードコート層用塗布液HC−1を光学フィルム試料105で用いたハードコート層用塗布液に変更し、かつハードコート層用塗布液HC−10から形成されるハードコート層の膜厚を調整することで、表面Hzがそれぞれ、表2に示した値になるようにした以外は光学フィルム試料107と同様にして光学フィルム試料114〜117を作成した。
(Preparation of optical film samples 114 to 117)
For the optical film sample 107 produced above, the hard coat layer coating solution HC-1 is changed to the hard coat layer coating solution used in the optical film sample 105, and is formed from the hard coat layer coating solution HC-10. Optical film samples 114 to 117 were prepared in the same manner as the optical film sample 107 except that the surface Hz was adjusted to the value shown in Table 2 by adjusting the film thickness of the hard coat layer.
(光学フィルム試料118〜120の作製)
上記で作製した光学フィルム試料102、104、107に対しハードコート層用塗布液HC−10を塗布した後の照射量を100mJ/cm2から300mJ/cm2に変更し、低屈折率層を積層しない点を変更した以外は光学フィルム試料102、104、107と同様にして光学フィルム試料118〜120を作成した。
(Preparation of optical film samples 118-120)
The irradiation amount after applying a coating solution for hard coat layer HC-10 to an optical film sample 102,104,107 prepared above was changed from 100 mJ / cm 2 to 300 mJ / cm 2, laminating a low refractive index layer Optical film samples 118 to 120 were prepared in the same manner as the optical film samples 102, 104, and 107 except that the points were not changed.
(光学フィルム試料121の作製)
上記で作製した光学フィルム試料107に対しハードコート層も低屈折率層も積層しないもの、すなわち、光学基材F1を光学フィルム試料121とした。
(Preparation of optical film sample 121)
An optical film sample 121 was prepared by stacking neither the hard coat layer nor the low refractive index layer on the optical film sample 107 produced above, that is, the optical substrate F1.
(光学フィルム試料122の作製の作製)
上記で作製した光学フィルム試料105に対し光学基材F1をセルロースアセテートフィルムT1に変更した以外は光学フィルム試料105と同様にして光学フィルム試料122を作成した。この構成では光学異方性層が積層されていなかった。
(Production of optical film sample 122)
An optical film sample 122 was produced in the same manner as the optical film sample 105 except that the optical substrate F1 was changed to the cellulose acetate film T1 with respect to the optical film sample 105 produced above. In this configuration, the optically anisotropic layer was not laminated.
(光学フィルム試料123〜138の作製)
上記で作製した光学フィルム試料105に対し光学基材F1を光学基材F2〜F17に変更した以外は光学フィルム試料105と同様にして光学フィルム試料123〜138を作成した。
(Preparation of optical film samples 123-138)
Optical film samples 123 to 138 were prepared in the same manner as the optical film sample 105 except that the optical base material F1 was changed to the optical base materials F2 to F17 with respect to the optical film sample 105 manufactured above.
(光学フィルム試料139の作製)
上記で作製した光学フィルム試料138と光学フィルム試料122を粘着剤で貼合し、光学フィルム試料139を作成した。貼合面は光学フィルム試料138の光学異方性層と光学フィルム試料122のハードコート層を積層していない面である。
(Preparation of optical film sample 139)
The optical film sample 138 and the optical film sample 122 produced above were bonded with an adhesive to produce an optical film sample 139. The bonding surface is a surface where the optically anisotropic layer of the optical film sample 138 and the hard coat layer of the optical film sample 122 are not laminated.
以下の方法により光学フィルム、又は透明支持体の諸特性の測定を行った。
(光学フィルム又は透明支持体の特性の測定)
(1)光学フィルムの表面形状
光学フィルムの光学異方性層が形成されていないハードコート層側の表面のRa(粗さ曲線の算術平均粗さ)をJIS B 0601:1998に準拠して測定した。
Various characteristics of the optical film or the transparent support were measured by the following methods.
(Measurement of characteristics of optical film or transparent support)
(1) Surface shape of optical film Ra (arithmetic mean roughness of roughness curve) of the surface on the hard coat layer side where the optically anisotropic layer of the optical film is not formed is measured according to JIS B 0601: 1998 did.
(2)ヘイズ(Hz)
以下の測定により、得られた光学フィルムの全ヘイズ(H)、内部ヘイズ(Hi)、表面ヘイズ(Hs)を測定した。
1.JIS−K7136に準じて得られたフィルムのヘイズ値(H)を測定する。この値を全ヘイズとする。
2.得られたフィルムのハードコート層側の表面及び裏面にシリコーンオイルを数滴添加し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)を2枚用いて裏表より挟んで、完全に2枚のガラス板と得られたフィルムを光学的に密着し、表面ヘイズを除去した状態でヘイズを測定し、別途測定したガラス板2枚の間にシリコーンオイルのみを挟みこんで測定したヘイズを引いた値をフィルムの内部ヘイズ(Hi)として算出した。
3.上記1で測定した全ヘイズ(H)から上記2で算出した内部ヘイズ(Hi)を引いた値をフィルムの表面ヘイズ(Hs)として算出した。
(2) Haze (Hz)
The total haze (H), internal haze (Hi), and surface haze (Hs) of the obtained optical film were measured by the following measurements.
1. The haze value (H) of the film obtained according to JIS-K7136 is measured. This value is the total haze.
2. Add a few drops of silicone oil to the front and back surfaces of the hard coat layer side of the resulting film, and sandwich it from the front and back using two 1 mm thick glass plates (micro slide glass product number S9111, made by MATSUNAMI). Two glass plates and the obtained film were optically adhered, and the haze was measured with the surface haze removed, and the haze was measured by sandwiching only silicone oil between two separately measured glass plates. The value obtained by subtracting was calculated as the internal haze (Hi) of the film.
3. The value obtained by subtracting the internal haze (Hi) calculated in 2 above from the total haze (H) measured in 1 above was calculated as the surface haze (Hs) of the film.
(3)平均反射率(積分球反射率)
光学フィルムの裏面、すなわちハードコート層が塗設されていない側の表面をサンドペーパーで粗面化した後に黒色インクで処理し、裏面反射をなくした状態で、表面側を、分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、分光反射率を測定した。結果には450〜650nmの積分球反射率の算術平均値を用いた。
(3) Average reflectance (integral sphere reflectance)
The back side of the optical film, that is, the surface on which the hard coat layer is not coated, is roughened with sandpaper and then treated with black ink to eliminate the back side reflection, and the front side is then a spectrophotometer (Japan) Spectral reflectance was measured in a wavelength region of 380 to 780 nm using a spectrophotometer. The arithmetic average value of the integrating sphere reflectance of 450 to 650 nm was used for the result.
(4)鉛筆硬度
耐傷性の指標としてJIS K 5400に記載の鉛筆硬度評価を行った。光学フィルムを温度25℃、湿度60%RHで2時間調湿した後、ハードコート層側の表面に、JIS
S 6006に規定する2H〜5Hの試験用鉛筆を用いて、4.9Nの荷重にて、鉛筆で引っ掻き試験を5回繰り返し、温度25℃、湿度60%RHの条件で24時間放置した後に、以下の基準で評価し、OKとなる最も高い硬度を評価値とした。
鉛筆硬度が2Hに満たないものは問題があるレベルである。
OK:5回の評価において傷が2つ以下
NG:5回の評価において傷が3つ以上
(4) Pencil hardness Pencil hardness evaluation described in JIS K 5400 was performed as an index of scratch resistance. After conditioning the optical film for 2 hours at a temperature of 25 ° C. and a humidity of 60% RH,
Using a 2H-5H test pencil specified in S6006, the scratch test was repeated five times with a pencil at a load of 4.9 N, and left for 24 hours at a temperature of 25 ° C. and a humidity of 60% RH. Evaluation was made according to the following criteria, and the highest hardness that gave OK was taken as the evaluation value.
If the pencil hardness is less than 2H, there is a problem level.
OK: 2 or less scratches in 5 evaluations NG: 3 or more scratches in 5 evaluations
(5)380nmの透過率
透明支持体を25℃60%RHで2時間以上放置した後、透過率を分光光度計“U−3210”{(株)日立製作所}を用いて380nmの透過率を測定した。
(5) Transmittance at 380 nm After leaving the transparent support at 25 ° C. and 60% RH for 2 hours or more, the transmittance was measured at a transmittance of 380 nm using a spectrophotometer “U-3210” {Hitachi, Ltd.). It was measured.
[偏光板及び画像表示装置の作製]
上記作製した光学フィルムは、画像表示装置での評価をおこなうため、以下の偏光板加工を行い画像表示装置での評価を行った。
上記で作製した光学フィルムの光学異方性層の表面をMEKで洗浄した。洗浄後のフィルム表面をアルカリ鹸化処理した。1.5規定の水酸化ナトリウム水溶液に55℃で2分間浸漬し、室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、更に100℃の温風で乾燥した。
続いて、厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して厚さ20μmの偏光膜を得た。ポリビニルアルコール(クラレ製PVA−117H)3%水溶液を接着剤として、前記のアルカリ鹸化処理した各フィルムと、同様のアルカリ鹸化処理したVA用位相差フィルム(富士フイルム社製 550nmにおけるRe/Rth = 50/125)を用意し、これらの鹸化した面が偏光膜側となるようにして偏光膜を間に挟んで貼り合わせ、光学フィルムとVA用位相差フィルムが偏光膜の保護フィルムとなっている偏光板101〜139を作製した。このとき光学フィルムの遅相軸と偏光子の吸収軸のなす角度が45度になるようにした。
[Production of Polarizing Plate and Image Display Device]
In order to evaluate the produced optical film with an image display device, the following polarizing plate processing was performed and the evaluation with an image display device was performed.
The surface of the optically anisotropic layer of the optical film produced above was washed with MEK. The film surface after washing was subjected to alkali saponification treatment. It was immersed in a 1.5 N aqueous sodium hydroxide solution at 55 ° C. for 2 minutes, washed in a water bath at room temperature, and neutralized with 0.1 N sulfuric acid at 30 ° C. Again, it was washed in a water bath at room temperature and further dried with hot air at 100 ° C.
Subsequently, a roll-shaped polyvinyl alcohol film having a thickness of 80 μm was continuously stretched 5 times in an iodine aqueous solution and dried to obtain a polarizing film having a thickness of 20 μm. Each film subjected to the alkali saponification treatment using a 3% aqueous solution of polyvinyl alcohol (Kuraray PVA-117H) as an adhesive, and the same alkali saponification-treated retardation film for VA (Re / Rth = 550 nm at 550 nm, manufactured by Fuji Film Co., Ltd.) / 125) is prepared, and the saponified surface is bonded to the polarizing film side so that the polarizing film is sandwiched therebetween, and the optical film and the retardation film for VA serve as a polarizing film protective film. Plates 101-139 were prepared. At this time, the angle formed by the slow axis of the optical film and the absorption axis of the polarizer was set to 45 degrees.
(実装)
TV:SAMSUNG社製UN46C7000(3D−TV)の視認側の偏光板をはがし、上記作製した偏光板のVA用位相差フィルムとLCセルを粘着剤を介して貼合し、立体表示装置を作製した。偏光板139を貼合した表示装置を含め、全ての表示装置において、光学フィルムの光学異方性層の遅相軸の向きは一致していた。
LCシャッターメガネ:SAMSUNG社製 SSG−2100AB(LCシャッターメガネ)の目と反対側(パネル側)の偏光板をはがし、そこに上記作製した光学フィルム試料113の光学異方性層側を粘着剤を介して貼合し、LCシャッターメガネを作製した。ここでメガネに貼合した光学フィルムの遅相軸は、TVに貼合した偏光板に含まれる光学フィルムの遅相軸と直交するようにした。
(Implementation)
TV: The polarizing plate on the viewing side of UN46C7000 (3D-TV) manufactured by SAMSUNG was peeled off, and the VA retardation film of the prepared polarizing plate and the LC cell were bonded via an adhesive to produce a stereoscopic display device. . In all display devices including the display device to which the polarizing plate 139 was bonded, the direction of the slow axis of the optically anisotropic layer of the optical film was the same.
LC shutter glasses: The polarizing plate on the side opposite to the eyes (panel side) of SSG-2100AB (LC shutter glasses) manufactured by SAMSUNG is peeled off, and the optical anisotropic layer side of the optical film sample 113 prepared above is removed with an adhesive. LC shutter glasses were produced. Here, the slow axis of the optical film bonded to the glasses was set to be orthogonal to the slow axis of the optical film included in the polarizing plate bonded to the TV.
(表示装置の評価)
蛍光灯のある部屋で、パネル面の照度がおよそ200luxとなる環境下で、上記作製したLCシャッターメガネをかけ、3D映像を鑑賞した。
画像の評価は、3D画像の正面から見た時の立体感及び正面と斜めから見た時のクロストークを以下の基準で官能評価した。
(Evaluation of display device)
In a room with a fluorescent lamp, under the environment where the illuminance on the panel surface was about 200 lux, the above-prepared LC shutter glasses were put on and a 3D image was viewed.
The evaluation of the image was carried out by sensory evaluation of the three-dimensional effect when viewed from the front of the 3D image and the crosstalk when viewed from the front and diagonally according to the following criteria.
[立体感]
正面から観察し、立体感が見られるものを○、立体感が見られないものを×とした。
[クロストーク]
正面と斜め45°方向から見た時のクロストーク(二重像)を観察し、以下の4段階評価を行った。
◎:クロストークが全く見えない
○:よく観るとクロストークはあるが気にならない。
△:クロストークが僅かに見える。(ここまでが許容レベル)
×:クロストークがはっきり見える。(問題があるレベル)
[Three-dimensional effect]
Observed from the front, ◯ indicates that the stereoscopic effect is seen, and x indicates that the stereoscopic effect is not observed.
[Crosstalk]
The crosstalk (double image) when viewed from the front and an oblique 45 ° direction was observed, and the following four-level evaluation was performed.
◎: Crosstalk is not visible at all ○: If you look closely, there is crosstalk, but I do not care.
Δ: Crosstalk is slightly visible. (This is the acceptable level.)
X: Crosstalk is clearly visible. (Problem level)
上記の各項目での評価結果を表1及び2に示す。 Tables 1 and 2 show the evaluation results for the above items.
<耐光性評価>
(株)スガ試験機社製スーパーキセノンウェザーメーターSX75で、ブラックパネル温度60℃、相対湿度50%の環境下、300〜400nmの紫外線強度が150W/m2の条件で100時間光を照射した後のフィルム着色と正面レターデーション(Re)を測定した。照射光には300nm以上の紫外光と可視光が含まれていた。
<Light resistance evaluation>
After irradiating light for 100 hours under the condition of 300-400 nm UV intensity of 150 W / m 2 in a black panel temperature of 60 ° C. and a relative humidity of 50% with Super Xenon Weather Meter SX75 manufactured by Suga Test Instruments Co., Ltd. The film coloration and front retardation (Re) were measured. Irradiation light contained ultraviolet light and visible light of 300 nm or more.
(3)黒しまり感
視認側表面にフィルムを貼った偏光板を配置した液晶表示装置について黒しまり感を官能評価した。
上記で作成した表示装置を並列に並べて同時に相対比較する方法で行い、明室下で真正面から電源off時の黒味をそれぞれのフィルムで比較し、以下の基準で評価した。黒味の強いほど画面のしまり感も強いという基準で表した。
(3) Blackening feeling A sensory evaluation was performed on the feeling of blackening on a liquid crystal display device in which a polarizing plate having a film attached to the surface on the viewing side was disposed.
The display devices created above were arranged in parallel and compared at the same time, and the blackness when the power was turned off from the front in the bright room was compared for each film and evaluated according to the following criteria. It was expressed by the standard that the stronger the blackness, the stronger the tightness of the screen.
◎:黒味が強く、画面が非常に強くしまって見える。
○:黒味が強く、画面が強くしまって見える。
△:黒いがグレー味があって、画面のしまり感が弱い。(ここまでが許容レベル)
×:かなりグレー味が強く、画面のしまり感(問題があるレベル)
A: Strong blackness and the screen looks very strong.
○: Black color is strong and the screen appears to be strong.
Δ: Black but gray, and the screen is not tight. (This is the acceptable level.)
X: Strong gray color, tightness on screen (problem level)
(干渉斑の評価)
干渉斑は以下の方法により4段階評価した。
干渉斑の評価;上記の表示装置の正面50cm手前から三波長蛍光灯(ナショナルパルック蛍光灯FL20SS・EX−D/18)でサンプルを照らし、干渉斑を観察し、下記の基準により評価した。
◎ :干渉むらが全く見えない
○ :干渉むらがほとんど見えない
○△:干渉むらが弱く見えるところがある。
△ :干渉むらが全体に弱く見える(ここまでが許容レベル)
× :干渉むらが全体に強く見える(問題があるレベル)
(Evaluation of interference spots)
Interference spots were evaluated in four stages by the following method.
Evaluation of interference spots: A sample was illuminated with a three-wavelength fluorescent lamp (National Paroch fluorescent lamp FL20SS · EX-D / 18) from 50 cm before the display device, and the interference spots were observed and evaluated according to the following criteria.
◎: Interference unevenness is not visible at all ○: Interference unevenness is hardly visible ○ △: Interference unevenness appears to be weak.
Δ: Interference unevenness appears to be weak overall (tolerable level so far)
X: Interference unevenness appears strong overall (problem level)
表1及び2に示す結果から以下のことが明らかである。
1.支持体の一方の面に光学異方性層を有し、もう一方の面上にハードコート層を有し、光学フィルムの550nmにおける面内レターデーションが80〜200nmであり、波長550nmにおける厚さ方向のレターデーションが−70〜70nmであるものは立体表示装置に適しており、表面硬度が硬く、明室下での黒しまりも良好で、干渉むらが見えない。
2.光学異方性層を有する光学フィルム上にハードコートフィルムを粘着剤で貼合したものは厚みが厚く、干渉むらが非常に目立つ。(試料No.139に対し、試料No.138等)
3.本発明の光学異方性層は円盤状液晶性化合物や棒状液晶性化合物から形成することができる。
4.円盤状液晶化合物で光学異方性層を形成したものは、棒状液晶化合物から光学異方性層を形成したものに対し、斜め方向のクロストークが見えず、視認性に優れていた。(試料No.137,138に対し、試料No.105等)
5.ハードコート層のRaを0〜0.08μmで1〜20%の内部ヘイズを導入すると更に干渉むらが目立ち難くしながら、黒しまりを良好に維持することができる。
6.ハードコート層上に低屈折率層を積層すると反射率を低下することができ、干渉むらが目立たなく、更に黒しまりを良好にすることができる。(試料No.120に対して107等)
7.波長380nmの透過率が50%以下の紫外線吸収性の透明支持体を用いることで、耐光性試験後の正面レターデーション変化を大幅に抑制することができる。(試料No.105と123〜126の比較)
From the results shown in Tables 1 and 2, the following is clear.
1. It has an optically anisotropic layer on one surface of the support, a hard coat layer on the other surface, an in-plane retardation of the optical film at 550 nm of 80 to 200 nm, and a thickness at a wavelength of 550 nm. Those having a directional retardation of -70 to 70 nm are suitable for a three-dimensional display device, have a high surface hardness, good blackening under a bright room, and no interference unevenness.
2. What stuck the hard coat film with the adhesive on the optical film which has an optically anisotropic layer is thick, and interference nonuniformity is very conspicuous. (For sample No. 139, sample No. 138, etc.)
3. The optically anisotropic layer of the present invention can be formed from a discotic liquid crystalline compound or a rod-shaped liquid crystalline compound.
4). The disc-shaped liquid crystal compound in which the optically anisotropic layer was formed had excellent visibility because no crosstalk was observed in the oblique direction compared to the rod-shaped liquid crystal compound in which the optically anisotropic layer was formed. (For sample Nos. 137 and 138, sample No. 105, etc.)
5. When Ra of the hard coat layer is 0 to 0.08 μm and 1 to 20% of internal haze is introduced, interference unevenness is less noticeable and blackening can be maintained well.
6). When a low refractive index layer is laminated on the hard coat layer, the reflectance can be reduced, interference unevenness is not noticeable, and blackening can be further improved. (107 etc. for sample No. 120)
7). By using an ultraviolet-absorbing transparent support having a transmittance of 380 nm or less at a wavelength of 380 nm, the change in front retardation after the light resistance test can be significantly suppressed. (Comparison between sample No. 105 and 123-126)
Claims (10)
前記光学フィルムが、
透明支持体の一方の面上に光学異方性層を有し、もう一方の面上にハードコート層を有する光学フィルムであって、
前記光学フィルムが前記透明支持体と前記光学異方性層の間に配向膜を有し、
前記光学フィルムの550nmにおける面内レターデーションが80〜200nmであり、波長550nmにおける厚さ方向のレターデーションが−70〜70nmであり、
前記光学フィルムの波長550nmにおける面内レターデーションRe(550)と厚さ方向のレターデーションRth(550)から算出されるNz(=Rth(550)/Re(550)+0.5)が−0.50〜1.50であり、
前記光学フィルムが、ハードコート層が視認側に、光学異方性層が偏光膜側になるように配置された液晶表示装置。 From the viewing side, a stereoscopic image display device having an optical film, a polarizing film, and a liquid crystal cell in this order,
The optical film is
An optical film having an optically anisotropic layer on one surface of a transparent support and a hard coat layer on the other surface,
The optical film has an alignment film between the transparent support and the optically anisotropic layer,
In-plane retardation at 550 nm of the optical film is 80 to 200 nm, retardation in the thickness direction at a wavelength of 550 nm is −70 to 70 nm,
Nz (= Rth (550) / Re (550) +0.5) calculated from the in-plane retardation Re (550) at a wavelength of 550 nm of the optical film and the retardation Rth (550) in the thickness direction is −0. 50 to 1.50,
A liquid crystal display device in which the optical film is disposed such that the hard coat layer is on the viewing side and the optical anisotropic layer is on the polarizing film side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014116353A JP5857091B2 (en) | 2014-06-05 | 2014-06-05 | Stereoscopic image display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014116353A JP5857091B2 (en) | 2014-06-05 | 2014-06-05 | Stereoscopic image display device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010276432A Division JP5559670B2 (en) | 2010-12-10 | 2010-12-10 | Time-division binocular stereoscopic transmission type liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014167659A JP2014167659A (en) | 2014-09-11 |
JP5857091B2 true JP5857091B2 (en) | 2016-02-10 |
Family
ID=51617331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014116353A Active JP5857091B2 (en) | 2014-06-05 | 2014-06-05 | Stereoscopic image display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5857091B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160122562A1 (en) * | 2014-10-29 | 2016-05-05 | C3Nano Inc. | Stable transparent conductive elements based on sparse metal conductive layers |
US11773275B2 (en) | 2016-10-14 | 2023-10-03 | C3 Nano, Inc. | Stabilized sparse metal conductive films and solutions for delivery of stabilizing compounds |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007108732A (en) * | 2005-09-16 | 2007-04-26 | Fujifilm Corp | Polarizing plate and liquid crystal display device |
JP2008003580A (en) * | 2006-05-23 | 2008-01-10 | Fujifilm Corp | Protective film for polarizing plate and polarizing plate and liquid crystal display device |
JP2008268357A (en) * | 2007-04-17 | 2008-11-06 | Fujifilm Corp | Reflection preventing film |
JP2009103900A (en) * | 2007-10-23 | 2009-05-14 | Nitto Denko Corp | Laminated optical film, liquid crystal panel, and liquid crystal display |
JP2009181016A (en) * | 2008-01-31 | 2009-08-13 | Toshiba Mobile Display Co Ltd | Liquid crystal display device |
JP2010085759A (en) * | 2008-09-30 | 2010-04-15 | Fujifilm Corp | Antiglare film, antireflective film, polarizing plate and image display device |
JP2010243705A (en) * | 2009-04-03 | 2010-10-28 | Hitachi Ltd | Stereoscopic display |
-
2014
- 2014-06-05 JP JP2014116353A patent/JP5857091B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014167659A (en) | 2014-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5703187B2 (en) | Optical film, polarizing plate, and image display device | |
JP5871615B2 (en) | 3D display device | |
JP5380029B2 (en) | Liquid crystal display | |
US7502088B2 (en) | Liquid crystal display device having an antiglare layer | |
JP5169215B2 (en) | Protective film for polarizing plate | |
JP6097619B2 (en) | Optical film, polarizing plate, and image display device using the same | |
JP5841794B2 (en) | Liquid crystal display | |
JP5759859B2 (en) | Manufacturing method of optical film, optical film manufactured by the manufacturing method, polarizing plate having the same, and image display device | |
JP5559670B2 (en) | Time-division binocular stereoscopic transmission type liquid crystal display device | |
JP4915114B2 (en) | Protective film for display screen, polarizing plate using the same, and display device | |
JP4682886B2 (en) | Polarizing plate for liquid crystal display and liquid crystal display device | |
JP2006106715A (en) | Anti-reflection film, polarizing plate and liquid crystal display device | |
JP2007233215A (en) | Polarizing plate | |
JP2007233114A (en) | Polarizing plate and liquid crystal display | |
WO2005111124A1 (en) | Optical cellulose acylate film, polarizing plate and liquid crystal display device | |
JP2008255340A (en) | Cellulose acylate film, polarizing plate, and liquid crystal displaying device using the same | |
JP2007041514A (en) | Liquid crystal display device | |
JP2007083228A (en) | Production method of film having coated layer, film having coated layer, optical film, antireflection film, polarizing plate and liquid crystal display | |
JP4682897B2 (en) | Polarizing plate for liquid crystal display and liquid crystal display device | |
JP5604325B2 (en) | Surface film for image display device, polarizing plate, and image display device | |
JP5857091B2 (en) | Stereoscopic image display device | |
JP5211087B2 (en) | Cellulose acylate film, polarizing plate using the same, and image display device using them | |
JP2005134863A (en) | Optical compensation sheet, polarizing plate and liquid crystal display | |
JP2007086601A (en) | Liquid crystal display | |
JP2007041334A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150604 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5857091 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |