JP5855914B2 - Hydraulic forming method - Google Patents

Hydraulic forming method Download PDF

Info

Publication number
JP5855914B2
JP5855914B2 JP2011249234A JP2011249234A JP5855914B2 JP 5855914 B2 JP5855914 B2 JP 5855914B2 JP 2011249234 A JP2011249234 A JP 2011249234A JP 2011249234 A JP2011249234 A JP 2011249234A JP 5855914 B2 JP5855914 B2 JP 5855914B2
Authority
JP
Japan
Prior art keywords
pipe member
hydraulic pressure
hydraulic
mold
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011249234A
Other languages
Japanese (ja)
Other versions
JP2013103253A (en
Inventor
達志 溝上
達志 溝上
貢 深堀
貢 深堀
直子 斉藤
直子 斉藤
智寛 馬場
智寛 馬場
直之 小林
直之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Hirotec Corp
Original Assignee
Mazda Motor Corp
Hirotec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Hirotec Corp filed Critical Mazda Motor Corp
Priority to JP2011249234A priority Critical patent/JP5855914B2/en
Publication of JP2013103253A publication Critical patent/JP2013103253A/en
Application granted granted Critical
Publication of JP5855914B2 publication Critical patent/JP5855914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、液体が封入された管部材を径方向内側へ押圧して液圧を作用させながら角部を備えた形状に成形する液圧成形方法に関する。 The present invention relates to a hydroformed how the liquid is formed into a shape with a corner while applying a pressing to fluid pressure encapsulated tubular member radially inward.

従来、フロントロアアームやトーションビーム等の閉断面を備えた車両用部材の液圧成形方法の1つとして、例えば、複数の成形型内に管部材をセットし、このセットされた管部材の内部に加工液を封入して液圧を作用させることにより、円形断面の管部材を塑性変形させて角部を備えた車両用部材を成形する液封成形(リキッドシーリング成形)が知られている。   Conventionally, as one of hydraulic forming methods for a vehicle member having a closed cross section such as a front lower arm or a torsion beam, for example, a pipe member is set in a plurality of forming dies, and the inside of the set pipe member is processed. Liquid sealing molding (liquid sealing molding) is known in which a tubular member having a circular cross section is plastically deformed by molding a vehicle member having corners by enclosing a liquid and applying a hydraulic pressure.

特許文献1に記載された液圧成形方法について、図12に基づいて説明する。
図12(a),(b)に示すように、特許文献1の液圧成形装置50は、管部材WOの両端にシール状態で装着され管部材WOの内部に加工液を注入するノズル51と、内部に液圧が与えられた管部材WOを左右両側から挟み込んで径方向内側に押圧する1対の第1成形型52と、これら1対の成形型52の押圧動作に先行して管部材WOを上下方向から挟み込む1対の第2成形型53と、先行して管部材WOを上下方向から押圧している1対の第2成形型53と接触して型開き方向の移動を阻止するストッパ54等を備えている。
The hydraulic forming method described in Patent Document 1 will be described with reference to FIG.
As shown in FIGS. 12 (a) and 12 (b), the hydroforming apparatus 50 of Patent Document 1 includes a nozzle 51 that is attached to both ends of the pipe member WO in a sealed state and injects a working liquid into the pipe member WO. , A pair of first molds 52 that sandwich the pipe member WO to which the hydraulic pressure is applied from both left and right sides and press it radially inward, and a pipe member prior to the pressing operation of the pair of molds 52 The pair of second molding dies 53 sandwiching the WO from above and below and the pair of second molding dies 53 previously pressing the pipe member WO from above and below are brought into contact with each other to prevent movement in the mold opening direction. A stopper 54 and the like are provided.

通常、このような液圧成形方法では、図13に示すような成形時間と管部材内圧との関係になるように管部材内部の液圧が制御され、管部材を所望の製品形状に加工している。
まず、管部材の内部に加工液を封入後、先行して管部材を挟み込む先行成形型が管部材に接触したT1から管部材内圧が急激に上昇し、所定の管部材内圧に達したとき、管部材の内部から加工液を排出し、先行成形型の押圧動作に拘わらず管部材内圧を一定に維持している。尚、先行成形型の挟み込み動作に引き続き後続成形型の挟み込み動作が開始される。後続成形型は、T2において管部材に接触する。T2以降は、先行成形型と後続成形型との挟み込み動作に応じて管部材内圧が一定になるよう加工液の排出が制御される。
先行成形型と後続成形型とが下死点に到達したT3から所定時間経過後のT4まで管部材内圧が一定に維持され、その後、管部材の内部から加工液が排出される。
Normally, in such a hydraulic forming method, the hydraulic pressure inside the pipe member is controlled so that the molding time and the internal pressure of the pipe member are in a relationship as shown in FIG. 13, and the pipe member is processed into a desired product shape. ing.
First, after enclosing the working fluid inside the pipe member, the pipe member internal pressure suddenly rises from T1 when the preceding mold that sandwiches the pipe member in advance contacts the pipe member, and reaches a predetermined pipe member internal pressure. The machining fluid is discharged from the inside of the pipe member, and the internal pressure of the pipe member is kept constant regardless of the pressing operation of the pre-molding die. The succeeding mold clamping operation is started after the preceding mold clamping operation. The subsequent mold contacts the tube member at T2. After T2, the discharge of the machining fluid is controlled so that the internal pressure of the pipe member becomes constant according to the sandwiching operation between the preceding mold and the subsequent mold.
The internal pressure of the pipe member is kept constant from T3 when the preceding mold and the subsequent mold reach the bottom dead center to T4 after a predetermined time has elapsed, and then the machining fluid is discharged from the inside of the pipe member.

液圧成形品では、管部材の金属材料を周方向へ流動させることによりその形状を成形している。それ故、角部を備えた液圧成形品は、角部の変形量が大きいため、角部から角部以外の部位へ流動する金属材料が多くなり、角部の板厚が角部以外の部位の板厚に比べて薄くなるという問題があった。そこで、角部の板厚の減少を抑えて液圧成形品の肉厚の均等化を図る技術が提案されている。   In the hydroformed product, the shape is formed by flowing the metal material of the pipe member in the circumferential direction. Therefore, the hydroformed product with corners has a large amount of deformation at the corners, so the metal material that flows from the corners to parts other than the corners increases, and the plate thickness of the corners is other than the corners. There was a problem that it was thinner than the thickness of the part. In view of this, there has been proposed a technique for equalizing the thickness of the hydroformed product by suppressing the reduction in the thickness of the corner.

特許文献2に記載された液圧成形方法は、成形型が、液圧成形品の角部を成形する複数の固定ダイと、成形空間に向けてスライド可能な複数の可動ダイとに分割され、固定ダイと可動ダイとの分割位置を、角部相当部位であって、分割位置において成形面に対して引いた接線が成形空間内を横切ることがない位置に設定し、型締めした後、成形空間内の管部材に所定の液圧を作用させながら可動ダイを管部材の径方向内側に押し出し作動させている。これにより、角部以外の管部材の金属材料を角部へ積極的に流動させて液圧成形品の角部断面を減少させることなく形成することができる。   In the hydraulic molding method described in Patent Document 2, the molding die is divided into a plurality of fixed dies that mold corners of a hydraulic molded product and a plurality of movable dies that can slide toward the molding space. After dividing the fixed die and movable die into positions corresponding to the corners, where the tangent line drawn with respect to the molding surface does not cross the molding space at the division position, and after clamping the mold, The movable die is pushed and operated radially inward of the pipe member while applying a predetermined hydraulic pressure to the pipe member in the space. Thereby, it can form, without making the metal material of pipe members other than a corner | angular part flow actively to a corner | angular part, and reducing the corner | angular part cross section of a hydraulic-molded article.

特開2004−181477号公報JP 2004-181477 A 特開2000−343141号公報JP 2000-343141 A

特許文献2の液圧成形方法は、液圧成形品の角部の板厚をコントロールすることができ、角部の板厚の減少を抑えて液圧成形品の肉厚の均等化を図ることが可能である。
しかし、この液圧成形方法では、液圧成形品の各角部に夫々対応した固定ダイを複数設ける必要が生じるため、成形装置が複雑化し、生産コストが高くなる虞がある。しかも、角部に夫々対応した固定ダイの増加に伴って、固定ダイと可動ダイとの分割線が増加するため、液圧成形品に転写された分割線の手直しが必要になり、更に生産コストの上昇を招く虞もある。
The hydroforming method of Patent Document 2 can control the thickness of the corners of the hydroformed product and suppress the decrease in the thickness of the corners to equalize the thickness of the hydroformed product. Is possible.
However, in this hydraulic molding method, it is necessary to provide a plurality of fixing dies corresponding to each corner of the hydraulic molded product, which may complicate the molding apparatus and increase the production cost. Moreover, as the number of fixed dies corresponding to the corners increases, the dividing line between the fixed die and the movable die increases, so it is necessary to rework the dividing line transferred to the hydroformed product, and further increase the production cost. May increase.

本発明の目的は、装置の簡単化と生産コストの低減とを図りつつ、液圧成形品の角部の板厚を増加できる液圧成形方法を提供することである。 An object of the present invention is to provide while achieving a reduction in the simplicity and production cost of the apparatus, hydroformed how that can increase the thickness of the corner portions of the hydroformed product a.

請求項1の液圧成形方法は、液体が封入された管部材を径方向内側へ押圧する第1成形型と、前記管部材を前記第1成形型と異なる方向から径方向内側へ押圧する1又は複数の第2成形型とにより前記管部材を押圧して液圧を作用させながら角部を備えた形状に成形する液圧成形方法において、前記第1,第2成形型が前記管部材に接触した後、前記管部材内部の液圧を接触後液圧に保持する液圧保持工程と、前記第1,第2成形型が下死点に到達する前において、前記管部材内部の液圧を前記接触後液圧よりも低く設定された下死点前液圧まで低下させる液圧低下工程と、を有することを特徴としている。   According to a first aspect of the present invention, there is provided a hydraulic molding method comprising: a first molding die that presses a tube member enclosing a liquid radially inward; and a tube member that presses the pipe member radially inward from a direction different from the first molding die. Alternatively, in the hydraulic molding method in which the tube member is pressed by a plurality of second molding dies to form a shape having corners while applying hydraulic pressure, the first and second molding dies are formed on the tube member. After the contact, the hydraulic pressure holding step of holding the hydraulic pressure inside the pipe member at the post-contact hydraulic pressure, and the hydraulic pressure inside the pipe member before the first and second molds reach bottom dead center And a hydraulic pressure lowering step for lowering the pressure to the hydraulic pressure before bottom dead center set lower than the post-contact hydraulic pressure.

この液圧成形方法では、第1,第2成形型が下死点に到達する前において、管部材内部の液圧を接触後液圧よりも低く設定された下死点前液圧まで低下させる液圧低下工程を備えているため、第1,第2成形型が下死点に到達する前の管部材内部の液圧を低下することができ、第1,第2成形型による下死点到達前の押圧動作を、管部材の金属材料を角部以外の部位から角部へ流動させる流動促進動作として利用することができる。   In this hydraulic pressure forming method, before the first and second molds reach the bottom dead center, the hydraulic pressure inside the tube member is reduced to the hydraulic pressure before the bottom dead center set lower than the post-contact hydraulic pressure. Since the hydraulic pressure lowering step is provided, the hydraulic pressure inside the tube member before the first and second molding dies reach the bottom dead center can be lowered, and the bottom dead center by the first and second molding dies. The pressing operation before reaching can be used as a flow promoting operation for causing the metal material of the pipe member to flow from a portion other than the corner to the corner.

請求項2の発明は、請求項1の発明において、前記第1成形型の押圧動作に先行して前記第2成形型が前記管部材を前記径方向内側へ押圧する先行押圧工程を有することを特徴としている。
請求項3の発明は、請求項2の発明において、前記第2成形型が下死点近傍位置のとき、前記第1成形型が前記管部材に接触することを特徴としている。
According to a second aspect of the present invention, in the first aspect of the invention, the second molding die has a preceding pressing step of pressing the pipe member inward in the radial direction prior to the pressing operation of the first molding die. It is a feature.
The invention of claim 3 is characterized in that, in the invention of claim 2, when the second mold is in a position near the bottom dead center, the first mold contacts the pipe member.

請求項4の発明は、請求項1〜3の何れか1項の発明において、前記液圧保持工程において、接触後液圧をP1(MPa)、管部材の板厚をL(mm)、管部材の降伏強度をA(MPa)、管部材外径をD(mm)としたとき、P1≧L×(A/D)×3.25を満たすことを特徴としている。   The invention of claim 4 is the invention of any one of claims 1 to 3, wherein in the hydraulic pressure holding step, the post-contact hydraulic pressure is P1 (MPa), the thickness of the pipe member is L (mm), and the pipe When the yield strength of the member is A (MPa) and the outer diameter of the pipe member is D (mm), P1 ≧ L × (A / D) × 3.25 is satisfied.

請求項5の発明は、請求項1〜4の何れか1項の発明において、前記液圧低下工程において、下死点前液圧をP2(MPa)、管部材の板厚をL(mm)、管部材の引張強度をB(MPa)、管部材外径をD(mm)としたとき、L×B/108≦P2≦L×B/36を満たすことを特徴としている。   The invention of claim 5 is the invention of any one of claims 1 to 4, wherein, in the hydraulic pressure lowering step, the hydraulic pressure before bottom dead center is P2 (MPa), and the plate thickness of the pipe member is L (mm). When the tensile strength of the pipe member is B (MPa) and the outer diameter of the pipe member is D (mm), L × B / 108 ≦ P2 ≦ L × B / 36 is satisfied.

請求項1の発明によれば、第1,第2成形型が下死点に到達する前の管部材内部の液圧を低下できると共に第1,第2成形型による下死点到達前の押圧動作を、管部材の金属材料を角部以外の部位から角部へ流動させる流動促進動作として利用できるため、管部材の角部の板厚の減少を抑えると共に角部専用の成形型の省略及び成形型による分割線の手直し工程の省略が可能になる。それ故、装置の簡単化と生産コストの低減とを図りつつ、液圧成形品の角部の板厚を増加することができる。   According to the first aspect of the present invention, the hydraulic pressure inside the pipe member before the first and second molds reach the bottom dead center can be lowered and the pressure before the bottom dead center is reached by the first and second molds. Since the operation can be used as a flow promoting operation in which the metal material of the pipe member flows from the portion other than the corner to the corner, the reduction in the plate thickness of the corner of the tube member is suppressed and the molding die dedicated to the corner is omitted and It is possible to omit the process of repairing the dividing line by the mold. Therefore, it is possible to increase the thickness of the corner of the hydroformed product while simplifying the apparatus and reducing the production cost.

請求項2の発明によれば、角部へ流動させるための管部材の金属材料を第1成形型による押圧部分に集めることができる。
請求項3の発明によれば、第1成形型による押圧部分に集められた角部へ流動させるための管部材の金属材料を増すことができる。
According to invention of Claim 2, the metal material of the pipe member for making it flow to a corner | angular part can be collected in the press part by a 1st shaping | molding die.
According to invention of Claim 3, the metal material of the pipe member for making it flow to the corner | angular part collected by the press part by a 1st shaping | molding die can be increased.

請求項4の発明によれば、管部材の拡管が可能且つ管部材が破損しない接触後液圧の圧力範囲を得ることができる。
請求項5の発明によれば、液圧成形品の形状を成形できる下死点前液圧の下限値と、型締めしつつ管部材の金属材料を流動可能な下死点前液圧の上限値とを得ることができる。
According to the fourth aspect of the present invention, it is possible to obtain a pressure range of the post-contact hydraulic pressure in which the pipe member can be expanded and the pipe member is not damaged.
According to the invention of claim 5, the lower limit value of the hydraulic pressure before the bottom dead center at which the shape of the hydraulic molded product can be molded, and the upper limit of the hydraulic pressure before the bottom dead center at which the metal material of the pipe member can flow while being clamped. Value.

本発明の実施例に係る液圧成形装置の右側平面図である。It is a right side top view of the hydraulic forming apparatus which concerns on the Example of this invention. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 液圧成形方法に係る工程図であって、(a)は先行押圧工程の初期状態を示し、(b)は先行押圧工程の後期状態を示し、(c)は液圧保持工程の初期状態を示し、(d)液圧保持工程の後期状態を示している。It is process drawing which concerns on a hydraulic forming method, (a) shows the initial state of a preceding press process, (b) shows the late stage state of a preceding press process, (c) shows the initial state of a hydraulic pressure holding process. (D) The latter-stage state of the hydraulic pressure holding process is shown. 実施例に係る液圧成形方法の管部材内圧のタイムチャートである。It is a time chart of the pipe member internal pressure of the hydraulic forming method concerning an example. 第1の検証実験に係る液圧成形品の斜視図である。It is a perspective view of the fluid pressure molded product concerning the 1st verification experiment. 第1の検証実験に係る実験結果である。It is an experimental result which concerns on a 1st verification experiment. 第1の実験結果のグラフである。It is a graph of a 1st experimental result. 第2の検証実験に係る実験結果である。It is an experimental result which concerns on a 2nd verification experiment. 第2の実験結果のグラフである。It is a graph of a 2nd experimental result. 第3の検証実験に係る実験結果である。It is an experimental result which concerns on a 3rd verification experiment. 第3の実験結果のグラフである。It is a graph of a 3rd experimental result. 従来の液圧成形装置であって、(a)は側面図を示し、(b)は縦断面図を示している。It is a conventional hydraulic forming apparatus, (a) shows a side view, (b) shows a longitudinal sectional view. 従来の液圧成形方法に係る管部材内圧のタイムチャートである。It is a time chart of the pipe member internal pressure concerning the conventional hydraulic forming method.

以下、本発明を実施するための形態について実施例に基づいて説明する。尚、本実施例では、閉断面を備えた車両用トーションビームの成形に適用した例を示し、カム型が移動する方向を左右方向、固定型に配置された管部材の軸心方向を前後方向として説明する Hereinafter, modes for carrying out the present invention will be described based on examples. In this embodiment, an example applied to forming a torsion beam for a vehicle having a closed cross section is shown. The direction in which the cam mold moves is the left-right direction, and the axial direction of the tube member arranged in the fixed mold is the front-back direction. Explain .

本発明の実施例1について図1〜図11に基づいて説明する。
図1,図2に示すように、この液圧成形方法に用いられる液圧成形装置1は、床上に固定された下型2と、この下型2に対して上下方向に近接離隔可能な上型3と、断面円形状の金属製管部材Wの軸心に直交した左右側部分の形状を形成する先行成形型としての左右1対のカム型4(第2成形型)と、管部材Wの左右側部分に直交した上下側部分の形状を形成する後続成形型としての固定型5a及び可動型5b(第1成形型)と、管部材Wの前後両端部にシール状態で装着された前後1対のノズル部材6等を備えている。尚、液圧成形装置1は、左右対称の構造であるため、以下、左側部分の説明を省略し、主に、右側部分の説明を行う。
A first embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, a hydraulic forming apparatus 1 used in this hydraulic forming method includes a lower mold 2 fixed on a floor, and an upper part that can be vertically separated from the lower mold 2 in the vertical direction. A die 3, a pair of left and right cam dies 4 (second molding die) as a pre-molding die that forms the shape of the left and right side portions perpendicular to the axis of the metal pipe member W having a circular cross section, and the pipe member W The fixed mold 5a and the movable mold 5b (first mold) as the subsequent molds that form the shape of the upper and lower side parts orthogonal to the left and right side parts of the tube member W A pair of nozzle members 6 and the like are provided. In addition, since the hydraulic forming apparatus 1 has a left-right symmetric structure, the description of the left side portion will be omitted and the description of the right side portion will be mainly given below.

下型2は、管部材Wを位置決め載置すると共に成形部を備えた固定型5aと、この固定型5aを挟んで左右両側に配置され夫々に成形部を備えた左右1対のカム型4と、これら左右1対のカム型4の夫々が装着され下型2の上部を左右方向にスライド自在に形成された左右1対のスライド部材7等により構成されている。右側スライド部材7の右端部には、右側程下方に移行する傾斜部が形成されている。   The lower mold 2 is positioned and mounted on the tube member W, and has a fixed mold 5a provided with a molded part, and a pair of left and right cam molds 4 provided on both the left and right sides with the fixed mold 5a interposed therebetween. Each of the left and right paired cam molds 4 is mounted, and the upper part of the lower mold 2 is configured by a pair of left and right slide members 7 formed to be slidable in the left-right direction. The right end of the right slide member 7 is formed with an inclined portion that moves downward toward the right.

上型3は、上下方向に往復動可能な駆動装置(図示略)に連結されると共に、成形部を備えた可動型5bと、この可動型5bを挟んで左右両側に配置された左右1対のカム部材8等により構成されている。右側カム部材8の左端部には、右側程下方に移行する傾斜部が形成され、右側スライド部材7の傾斜部に対して摺動自在に形成されている。   The upper mold 3 is connected to a drive device (not shown) that can reciprocate in the vertical direction, and a movable mold 5b having a molding portion and a pair of left and right disposed on both the left and right sides of the movable mold 5b. The cam member 8 or the like. At the left end portion of the right cam member 8, an inclined portion that moves downward toward the right side is formed, and is formed to be slidable with respect to the inclined portion of the right slide member 7.

前後1対のノズル部材6は、管部材Wの前後両端部に対して密封状に装着され、少なくとも一方のノズル部材6は、管部材Wの内部に水又は加工油等の加工液を充填すると共に管部材W内部の液圧を調整するために管部材Wの内部から加工液を調整排出可能に構成されている。これにより、加工液を管部材W内部に封入後、上型3が下降動作したとき、左右1対のカム部材8の下降動作に同期して左右1対のスライド部材7が管部材Wに接近移動し、左右1対のカム型4が管部材Wを左右両側から径方向内側へ押圧する。左右1対のカム型4による押圧開始後、可動型5bが管部材Wを上側から径方向内側へ押圧し、左右1対のカム型4と可動型5bとが同時に押圧動作における下死点位置に到達するように設定されている。   The pair of front and rear nozzle members 6 are attached to the front and rear ends of the tube member W in a sealed manner, and at least one nozzle member 6 fills the inside of the tube member W with a processing liquid such as water or processing oil. At the same time, in order to adjust the liquid pressure inside the pipe member W, the machining fluid can be adjusted and discharged from the inside of the pipe member W. As a result, when the upper mold 3 is lowered after the machining liquid is sealed in the tube member W, the pair of left and right slide members 7 approaches the tube member W in synchronization with the downward movement of the pair of left and right cam members 8. The pair of left and right cam molds 4 press the tube member W radially inward from the left and right sides. After the start of pressing by the pair of left and right cam molds 4, the movable mold 5 b presses the tube member W from the upper side in the radial direction, and the pair of left and right cam molds 4 and the movable mold 5 b are simultaneously positioned at the bottom dead center in the pressing operation. Is set to reach.

次に、図3の工程図及び図4の管部材W内圧のタイムチャートに基づき、本液圧成形方法における処理手順について説明する。尚、本液圧成形方法によって成形される液圧成形品は、軸心方向に延びる角部を4箇所備えた断面矩形状の閉断面を有する車両用部材である。また、これらの角部は、固定型5aとカム型4、或いは可動型5bとカム型4との境界(分割)部分で形成されている。   Next, based on the process diagram of FIG. 3 and the time chart of the pipe member W internal pressure of FIG. The hydraulic molded product molded by the present hydraulic molding method is a vehicle member having a closed cross section with a rectangular cross section having four corners extending in the axial direction. These corners are formed at a boundary (divided) portion between the fixed mold 5 a and the cam mold 4 or between the movable mold 5 b and the cam mold 4.

まず、加工開始前の準備工程として、管部材Wを固定型5a上の加工位置に位置決め固定し、管部材Wの両端部に対して前後1対のノズル部材6の装着及び加工液の封入が予め行なわれる。   First, as a preparatory step prior to the start of processing, the tube member W is positioned and fixed at a processing position on the fixed mold 5a, and a pair of front and rear nozzle members 6 are attached to both ends of the tube member W and a processing liquid is enclosed. Performed in advance.

次に、上型3が初期位置から下降し、先行押圧工程を開始する。
図3(a)に示すように、上型3の下降動作に伴い、左右1対のカム型4が左右両側から管部材Wの径方向内側へ向かって移動され、同様に、可動型5bが上側から管部材Wの径方向内側へ向かって移動される。図4に示すように、先行押圧工程の開始時、T1の時点で左右1対のカム型4が可動型5bに先行して管部材Wの左右側部分に接触し、管部材Wの左右側部分の挟み込みを開始する。両カム型4の押圧動作により、管部材Wが径方向内側に塑性変形し、管部材W内部の液圧Pが急激に上昇する。
Next, the upper die 3 is lowered from the initial position, and the preceding pressing process is started.
As shown in FIG. 3A, as the upper mold 3 is lowered, the pair of left and right cam molds 4 are moved from the left and right sides toward the inside in the radial direction of the pipe member W. Similarly, the movable mold 5b is The pipe member W is moved from the upper side toward the radial inner side. As shown in FIG. 4, at the start of the preceding pressing step, at the time T1, a pair of left and right cam dies 4 comes in contact with the left and right side portions of the tube member W in advance of the movable die 5b, and the left and right sides of the tube member W Start pinching the part. By the pressing operation of both cam molds 4, the pipe member W is plastically deformed radially inward, and the hydraulic pressure P inside the pipe member W increases rapidly.

図3(b)に示すように、先行押圧工程の後期には、左右1対のカム型4が管部材Wの左右側部分を更に押圧しているため、管部材Wが断面楕円形状に変形する。管部材W内部の液圧Pの増加に伴い、両カム型4の成形部と管部材Wとの接触面積が成形開始からの経過時間に応じて増加する。図4に示すように、管部材W内部の液圧Pは、管部材Wの拡管が可能で且つ管部材Wが破損しないように設定された接触後液圧P1、例えば、70MPaを保持するように、ノズル部材6を介して排出される加工液が調整されている。   As shown in FIG. 3B, in the latter stage of the preceding pressing step, the pair of left and right cam molds 4 further press the left and right side portions of the tube member W, so that the tube member W is deformed into an elliptical cross section. To do. As the hydraulic pressure P inside the tube member W increases, the contact area between the molded portions of both cam molds 4 and the tube member W increases according to the elapsed time from the start of molding. As shown in FIG. 4, the hydraulic pressure P inside the pipe member W maintains a post-contact hydraulic pressure P1 that is set so that the pipe member W can be expanded and the pipe member W is not damaged, for example, 70 MPa. Further, the processing liquid discharged through the nozzle member 6 is adjusted.

先行押圧工程の終了後、液圧保持工程を行う。
図3(c)に示すように、両カム型4の成形部の略全面と管部材Wの左右側部分とが面接触する位置、所謂左右1対のカム型4が下死点近傍に位置するT2(図4参照)の時点において、可動型5bが上側へ断面円弧状に湾曲した管部材Wの上側部分に接触し、液圧保持工程が開始される。図4に示すように、液圧保持工程では、左右1対のカム型4と可動型5bとの押圧動作に応じて、管部材W内部の液圧Pが前記同様、70MPaを保持するように調整されている。
After the preceding pressing step, a hydraulic pressure holding step is performed.
As shown in FIG. 3C, a position where substantially the entire molding part of both cam molds 4 and the left and right side portions of the tube member W are in surface contact, so-called a pair of left and right cam molds 4 is located near the bottom dead center. At time T2 (see FIG. 4), the movable die 5b comes into contact with the upper portion of the tube member W curved in an arc shape in cross section upward, and the hydraulic pressure holding process is started. As shown in FIG. 4, in the hydraulic pressure holding step, the hydraulic pressure P inside the pipe member W is held at 70 MPa in the same manner as described above according to the pressing operation of the pair of left and right cam molds 4 and the movable mold 5b. It has been adjusted.

図3(d)に示すように、可動型5bが管部材Wの上側部分に接触後、左右1対のカム型4と可動型5bとが管部材Wを径方向内側に押圧し、管部材Wが矩形状に塑性変形される。先行押圧工程のとき、管部材Wの上側湾曲部長さ(面積)が可動型5bの成形部長さ(面積)よりも大きく形成されているため、液圧保持工程では、上側湾曲部長さと成形部長さとの差分相当の長さ(面積)が、液圧成形品の角部を形成するために固定型5aとカム型4、或いは可動型5bとカム型4との境界(分割)部分へ供給されている。   As shown in FIG. 3 (d), after the movable mold 5b contacts the upper portion of the tube member W, the pair of left and right cam molds 4 and the movable mold 5b press the tube member W radially inward, and the tube member W is plastically deformed into a rectangular shape. In the preceding pressing step, the upper curved portion length (area) of the tube member W is formed to be larger than the molded portion length (area) of the movable mold 5b. The length (area) corresponding to the difference is supplied to the boundary (divided) portion between the fixed mold 5a and the cam mold 4 or the movable mold 5b and the cam mold 4 in order to form the corners of the hydroformed product. Yes.

次に、左右1対のカム型4と可動型5bとが下死点位置に到達する前において、液圧低下工程を行う。図4に示すように、左右1対のカム型4と可動型5bとが下死点に到達するT3の直前において、管部材W内部の液圧Pを接触後液圧P1(70MPa)から接触後液圧P1よりも低く設定された下死点前液圧P2まで低下させている。下死点前液圧P2は、液圧成形品の形状を成形できる下限値と型締めしつつ管部材Wの金属材料を流動可能な上限値との間において設定された圧力値、例えば、10MPaに設定されている。
液圧低下工程では、管部材W内部の液圧Pが低下されているため、左右1対のカム型4と可動型5bとの押圧動作によって、管部材W内部の金属材料を角部以外の部位から角部へ流動させることができる。
Next, a hydraulic pressure lowering step is performed before the pair of left and right cam molds 4 and the movable mold 5b reach the bottom dead center position. As shown in FIG. 4, immediately before T3 when the pair of left and right cam molds 4 and the movable mold 5b reach bottom dead center, the hydraulic pressure P inside the pipe member W is contacted from the post-contact hydraulic pressure P1 (70 MPa). The pressure is lowered to the fluid pressure P2 before the bottom dead center which is set lower than the rear fluid pressure P1. The hydraulic pressure P2 before the bottom dead center is a pressure value set between a lower limit value at which the shape of the hydraulic molded product can be molded and an upper limit value at which the metal material of the pipe member W can flow while clamping, for example, 10 MPa. Is set to
In the hydraulic pressure lowering step, since the hydraulic pressure P inside the pipe member W is reduced, the metal material inside the pipe member W is moved to a portion other than the corners by the pressing operation of the pair of left and right cam molds 4 and the movable mold 5b. It can be made to flow from the site to the corner.

液圧低下工程の後、管部材W内部の液圧Pを、下死点前液圧P2に所定時間保持する第2液圧保持工程を行う。この第2液圧保持工程では、成形された液圧成形品の形状を安定化させている。図4に示すように、T4の時点で管部材W内部からノズル部材6を介して加工液を排出した後、上型3を上昇させて左右1対のカム型4と可動型5bとを型開きすることにより本液圧成形処理を終了する。   After the hydraulic pressure lowering step, a second hydraulic pressure holding step for holding the hydraulic pressure P inside the pipe member W at the hydraulic pressure P2 before the bottom dead center for a predetermined time is performed. In the second hydraulic pressure holding step, the shape of the molded hydraulically molded product is stabilized. As shown in FIG. 4, after the machining fluid is discharged from the inside of the tube member W through the nozzle member 6 at time T4, the upper mold 3 is raised to form a pair of left and right cam molds 4 and a movable mold 5b. Opening this hydraulic pressure forming process ends.

次に、3種類の検証実験により実証された本液圧成形方法の効果について、図5〜図11に基づいて説明する。
まず、図5〜図7に基づき、第1の検証実験について説明する。
第1の検証実験では、従来の液圧成形方法において管部材内部の接触後液圧P1に相当する液圧を異ならせて成形した断面矩形状の液圧成形品(比較例Y1〜Y3)と、本実施例の液圧成形方法により成形した断面矩形状の液圧成形品との角部の板厚を比較している。
Next, the effect of this hydroforming method demonstrated by three types of verification experiments will be described with reference to FIGS.
First, the first verification experiment will be described with reference to FIGS.
In the first verification experiment, a hydraulically molded product having a rectangular cross section (Comparative Examples Y1 to Y3) formed by varying the hydraulic pressure corresponding to the post-contact hydraulic pressure P1 inside the pipe member in the conventional hydraulic molding method. The plate thickness of the corners is compared with that of a hydraulically molded product having a rectangular cross section formed by the hydraulic molding method of this example.

第1の検証実験の実験条件を説明する。
図5に示すように、材料:SUS429(ステンレス鋼板をシーム溶接により形成した鋼管)、材料強度:540MPa、板厚:2mmの管部材を、本実施例の液圧成形方法と液圧低下工程を有していない従来の液圧成形方法によって、同一形状の液圧成形品を夫々成形し、各液圧成形品の角部X1〜X4の板厚を比較した。尚、成型機の型締力は400tである。
The experimental conditions for the first verification experiment will be described.
As shown in FIG. 5, the material: SUS429 (steel pipe formed by seam welding of a stainless steel plate), material strength: 540 MPa, plate thickness: 2 mm, the hydraulic forming method and the hydraulic pressure lowering step of the present example. By using a conventional hydroforming method that does not have, the hydroformed products having the same shape were molded, and the plate thicknesses of the corners X1 to X4 of the hydroformed products were compared. The mold clamping force of the molding machine is 400 t.

比較例Y1〜Y3は、本実施例と同様の液圧成形装置1が使用され、本実施例と同様に、左右1対のカム型4が管部材を押圧した後に、可動型5bによる管部材の押圧が開始され、1対のカム型と可動型とが下死点に到達した以降も管部材内圧の保持は加工液の排出時点まで継続される(図4参照)。比較例Y1〜Y3において液圧保持期間の液圧は、夫々、40MPa,50MPa,70MPaに設定されている。尚、本実施例の液圧成形方法は、前述したように、左右1対のカム型と可動型が下死点に到達する直前において、管部材内部の接触後液圧P1(70MPa)から下死点前液圧P2(10MPa)まで低下させる仕様である。   In Comparative Examples Y1 to Y3, the same hydraulic molding apparatus 1 as in this example is used. Similarly to this example, after a pair of left and right cam molds 4 press the pipe member, the pipe member is formed by the movable die 5b. Even after the pair of cam molds and the movable mold reach the bottom dead center, the internal pressure of the pipe member is maintained until the machining liquid is discharged (see FIG. 4). In Comparative Examples Y1 to Y3, the hydraulic pressure during the hydraulic pressure holding period is set to 40 MPa, 50 MPa, and 70 MPa, respectively. Note that, as described above, the hydraulic forming method of the present embodiment is less than the post-contact hydraulic pressure P1 (70 MPa) inside the pipe member immediately before the pair of left and right cam molds and the movable mold reach the bottom dead center. It is a specification to reduce to the fluid pressure P2 before dead center (10 MPa).

図6,図7に示すように、比較例Y1〜Y3の角部X1〜X4の板厚では、全ての角部が管部材の元の板厚2mmを超えるものは存在しなかった。しかし、本実施例の液圧成形方法による液圧成形品は、全ての角部X1〜4が管部材の元の板厚2mmを超えた板厚に成形され、特に、可動型側の角部X1,4の板厚は元の板厚よりも10%以上厚さが増加している。   As shown in FIGS. 6 and 7, in the plate thicknesses of the corner portions X1 to X4 of the comparative examples Y1 to Y3, none of the corner portions exceeded the original plate thickness of 2 mm of the tube member. However, in the hydroformed product by the hydroforming method of the present embodiment, all the corners X1 to X4 are molded to a plate thickness exceeding the original plate thickness of 2 mm of the pipe member. The thicknesses of X1 and 4 are increased by 10% or more than the original thickness.

図8,図9に基づき、第2の実験結果について説明する。
第2の実験は、接触後液圧P1と管部材の周長増加率との相関関係を検出し、接触後液圧P1と管部材の成形性との関連性を判定している。この第2の実験の実験条件は、外径65mm、初期周長204.2mmの管部材を本実施例の液圧成形方法によって成形するに当たり、接触後液圧P1を0〜70MPaまで10MPa毎に異ならせて成形している。
The second experimental result will be described with reference to FIGS.
In the second experiment, the correlation between the post-contact hydraulic pressure P1 and the peripheral length increase rate of the pipe member is detected, and the relationship between the post-contact hydraulic pressure P1 and the formability of the pipe member is determined. The experimental condition of this second experiment is that when forming a pipe member having an outer diameter of 65 mm and an initial peripheral length of 204.2 mm by the hydraulic molding method of this embodiment, the post-contact hydraulic pressure P1 is set to 0 to 70 MPa every 10 MPa. Molded differently.

一般に、液圧成形方法による成形性を確保するためには、少なくとも、2%程度の周長増加率が必要とされる。それ故、図9に示すように、液圧保持工程において、接触後液圧をP1(MPa)、管部材の板厚をL(mm)、管部材の降伏強度をA(MPa)、管部材外径をD(mm)としたとき、次式(1)に示す関係式を満たすことにより、管部材の拡管が可能で且つ管部材が破損しない接触後液圧P1の下限値を得ることができ、最適な接触後液圧P1の圧力範囲を設定できる。
P1≧L×(A/D)×3.25 …(1)
Generally, in order to ensure the moldability by the hydraulic molding method, at least a circumference increase rate of about 2% is required. Therefore, as shown in FIG. 9, in the hydraulic pressure holding step, the post-contact hydraulic pressure is P1 (MPa), the tube member thickness is L (mm), the tube member yield strength is A (MPa), and the tube member. When the outer diameter is D (mm), by satisfying the relational expression shown in the following equation (1), it is possible to obtain the lower limit value of the post-contact hydraulic pressure P1 at which the pipe member can be expanded and the pipe member is not damaged. And the optimum pressure range of the post-contact hydraulic pressure P1 can be set.
P1 ≧ L × (A / D) × 3.25 (1)

図10,図11に基づき、第3の実験について説明する。
第3の実験は、下死点前液圧P2と管部材の角部板厚との相関関係を検出し、下死点前液圧P2と角部板厚の増加傾向との関連性を判定している。この第3の実験の実験条件は、第1の実験における本実施例の液圧成形方法と同様の条件とされ、成形に当たり、下死点前液圧P2を0〜70MPaまで10MPa毎に異ならせている。
A third experiment will be described based on FIGS.
The third experiment detects the correlation between the fluid pressure P2 before the bottom dead center and the corner plate thickness of the pipe member, and determines the relationship between the fluid pressure P2 before the bottom dead center and the increasing tendency of the corner plate thickness. doing. The experimental conditions of the third experiment are the same as the hydraulic molding method of the present example in the first experiment. In molding, the hydraulic pressure P2 before bottom dead center is varied from 0 to 70 MPa every 10 MPa. ing.

図11に示すように、下死点前液圧P2が10MPa未満では、液圧成形品に形状崩れが発生し、下死点前液圧P2が30MPa超では、角部の板厚増加が不十分であった。
それ故、液圧低下工程において、下死点前液圧をP2(MPa)、管部材の板厚をL(mm)、管部材の引張強度をB(MPa)、管部材外径をD(mm)としたとき、次式(2)に示す関係式を満たすことで、液圧成形品の形状を成形できる下死点前液圧P2の下限値と、型締めしつつ管部材の金属材料を流動可能な下死点前液圧P2の上限値とを得ることができる。
L×B/108≦P2≦L×B/36 …(2)
尚、より好ましい下死点前液圧P2の範囲は、次式(3)で表すことができる。
L×B/108≦P2≦L×B/54 …(3)
As shown in FIG. 11, when the hydraulic pressure P2 before the bottom dead center is less than 10 MPa, the shape of the hydroformed product is deformed, and when the hydraulic pressure P2 before the bottom dead center exceeds 30 MPa, the increase in the thickness of the corners is insignificant. It was enough.
Therefore, in the hydraulic pressure lowering step, the hydraulic pressure before bottom dead center is P2 (MPa), the plate thickness of the pipe member is L (mm), the tensile strength of the pipe member is B (MPa), and the outer diameter of the pipe member is D ( mm)), the lower limit value of the hydraulic pressure P2 before bottom dead center at which the shape of the hydraulic pressure molded product can be formed by satisfying the relational expression shown in the following formula (2), and the metal material of the pipe member while clamping the mold Can be obtained as the upper limit value of the hydraulic pressure P2 before the bottom dead center.
L × B / 108 ≦ P2 ≦ L × B / 36 (2)
A more preferable range of the hydraulic pressure P2 before the bottom dead center can be expressed by the following formula (3).
L × B / 108 ≦ P2 ≦ L × B / 54 (3)

次に、実施例1に係る液圧成形方法の作用・効果について説明する。
この液圧成形方法では、左右1対のカム型4と可動型5bが下死点に到達する前において、管部材W内部の液圧Pを接触後液圧P1よりも低く設定された下死点前液圧P2まで低下させる液圧低下工程を備えているため、左右1対のカム型4と可動型5bが下死点に到達する前の管部材W内部の液圧Pを低下することができ、左右1対のカム型4と可動型5bによる下死点到達前の押圧動作を、管部材Wの金属材料を角部以外の部位から角部へ流動させる流動促進動作として利用することができる。それ故、管部材Wの角部の板厚の減少を抑えると共に角部専用の成形型の省略及び成形型による分割線の手直し工程の省略が可能になり、装置の簡単化と生産コストの低減とを図りつつ、液圧成形品の角部の板厚を増加することができる。
Next, operations and effects of the hydraulic forming method according to the first embodiment will be described.
In this hydraulic pressure forming method, the bottom dead center in which the hydraulic pressure P in the pipe member W is set lower than the post-contact hydraulic pressure P1 before the pair of left and right cam molds 4 and the movable mold 5b reach the bottom dead center. Since a hydraulic pressure lowering step for reducing the hydraulic pressure to the pre-point hydraulic pressure P2 is provided, the hydraulic pressure P inside the pipe member W before the pair of left and right cam molds 4 and the movable mold 5b reach the bottom dead center is reduced. The pressing operation before reaching the bottom dead center by the pair of left and right cam molds 4 and the movable mold 5b can be used as a flow promoting operation for causing the metal material of the pipe member W to flow from a portion other than the corner portion to the corner portion. Can do. Therefore, it is possible to suppress the reduction of the thickness of the corner portion of the pipe member W, omit the molding die dedicated to the corner portion, and omit the process of correcting the dividing line by the molding die, thereby simplifying the apparatus and reducing the production cost. The thickness of the corners of the hydroformed product can be increased.

可動型5bの押圧動作に先行して左右1対のカム型4が管部材Wを径方向内側へ押圧する先行押圧工程を有しているため、角部へ流動させるための管部材Wの金属材料を可動型5bの成形部に対向する押圧部分に集めることができる。
左右1対のカム型4が下死点近傍位置のとき、可動型5bが管部材Wに接触するため、可動型5bによる押圧部分に集められた角部へ流動させるための管部材の金属材料を増すことができる。
Prior to the pressing operation of the movable mold 5b, the pair of left and right cam molds 4 has a preceding pressing process of pressing the tube member W radially inward, so that the metal of the tube member W for flowing to the corner portion The material can be collected in the pressing portion facing the molding portion of the movable mold 5b.
When the pair of left and right cam molds 4 are in the vicinity of the bottom dead center, the movable mold 5b comes into contact with the tube member W, so that the metal material of the tube member for flowing to the corners collected at the pressed portion by the movable mold 5b. Can be increased.

液圧保持工程において、接触後液圧をP1(MPa)、管部材の板厚をL(mm)、管部材の降伏強度をA(MPa)、管部材外径をD(mm)としたとき、P1≧L×(A/D)×3.25を満たすため、管部材Wの拡管が可能な接触後液圧P1の圧力範囲を得ることができる。   In the hydraulic pressure holding step, when the post-contact hydraulic pressure is P1 (MPa), the thickness of the pipe member is L (mm), the yield strength of the pipe member is A (MPa), and the outer diameter of the pipe member is D (mm) In order to satisfy P1 ≧ L × (A / D) × 3.25, a pressure range of the post-contact hydraulic pressure P1 in which the tube member W can be expanded can be obtained.

液圧低下工程において、下死点前液圧をP2(MPa)、管部材の板厚をL(mm)、管部材の引張強度をB(MPa)、管部材外径をD(mm)としたとき、L×B/108≦P2≦L×B/36を満たすため、液圧成形品の形状を成形できる下死点前液圧P2の下限値と、型締めしつつ管部材の金属材料を流動可能な下死点前液圧P2の上限値とを得ることができる。   In the hydraulic pressure lowering step, the hydraulic pressure before bottom dead center is P2 (MPa), the plate thickness of the pipe member is L (mm), the tensile strength of the pipe member is B (MPa), and the outer diameter of the pipe member is D (mm). In order to satisfy L × B / 108 ≦ P2 ≦ L × B / 36, the lower limit value of the fluid pressure P2 before bottom dead center at which the shape of the hydroformed product can be formed, and the metal material of the pipe member while clamping the mold Can be obtained as the upper limit value of the hydraulic pressure P2 before the bottom dead center.

液圧成形品が請求項1に記載の液圧成形方法によって成形されているため、また、この液圧成形品が車両用部材であるため、装置の簡単化と生産コストの低減とを図りつつ、角部の板厚を増加した車両用部材を得ることができる。   Since the hydraulic molded product is molded by the hydraulic molding method according to claim 1 and the hydraulic molded product is a vehicle member, the apparatus is simplified and the production cost is reduced. Thus, a vehicle member having an increased plate thickness at the corners can be obtained.

次に、前記実施例を部分的に変更した変形例について説明する。
1〕前記実施例においては、車両用トーションビームの成形方法に適用した例を説明したが、フロントロアアーム、リヤクロスメンバ、排気管、フロントピラーレインフォースメント及びルーフサイドレール等、閉断面を備えた部材であれば何れの部材であっても良く、車両以外の部材に適用しても良い。
Next, a modification in which the above embodiment is partially changed will be described.
1] In the above-described embodiment, an example in which the present invention is applied to a method for forming a torsion beam for a vehicle has been described. However, a member having a closed cross section, such as a front lower arm, a rear cross member, an exhaust pipe, a front pillar reinforcement, and a roof side rail. As long as it is any member, it may be applied to a member other than the vehicle.

2〕前記実施例においては、左右方向に移動する1対のカム型(第2成形型)と上下方向に移動する可動型(第1成形型)の例を説明したが、成形方向は2方向に限られず、3方向以上の成形方向で成形するために3つ以上の成形型を用いて複雑な液圧成形品を成形することも可能である。この場合、最後の成形型が管部材に接触した後で且つ全ての成形型が下死点に到達する前に液圧低下工程を行う。 2] In the above embodiment, an example of a pair of cam molds (second molding mold) that moves in the left-right direction and a movable mold (first molding mold) that moves in the vertical direction has been described. However, it is also possible to form a complex hydroformed product using three or more molds in order to mold in three or more molding directions. In this case, the hydraulic pressure reduction step is performed after the last mold comes into contact with the pipe member and before all the molds reach the bottom dead center.

3〕また、本発明では、下死点到達時の固定型と可動型との位置を制御することで、剪断中心が図心から所定量偏心した液圧成形品の形状を成形することが可能である。偏心を行うことで、ロール剛性が変化するため、車種に応じて偏心量を制御することで、操安性の向上が期待できる。偏心させる場合の設備構成としては、例えば、下辺を固定型として上辺と左辺と右辺を可動型とする組合せ、下辺と左辺を固定型として上辺と右辺を可動型とする組合せ、全辺を可動型とする組合せにすることも可能であり、液圧成形品を偏心させるには下辺と左辺を固定型として上辺と右辺を可動型とする組合せが有効である。 3] Further, in the present invention, by controlling the positions of the fixed mold and the movable mold when the bottom dead center is reached, it is possible to mold the shape of the hydraulic molded product in which the shear center is eccentric by a predetermined amount from the centroid. is there. By performing the eccentricity, the roll rigidity changes. Therefore, the controllability can be improved by controlling the amount of eccentricity according to the vehicle type. As the equipment configuration when decentering, for example, the lower side is a fixed type and the upper side, the left side and the right side are movable types, the lower side and the left side are fixed types, the upper side and the right side are movable types, and the entire side is movable type In order to decenter the hydroformed product, a combination in which the lower side and the left side are fixed types and the upper side and the right side are movable types is effective.

具体的な偏芯方法としては、下死点到達時の各型の停止位置により形成される液圧成形品の断面形状の中心軸と初期位置における管部材の図心とが異なるように各型が動作するように設定することで、液圧成形品を偏心させることができる。また、単一図心の管部材を予め予備曲げ加工した後、液圧成形加工を一部施すことで、容易に偏心させることができる。
4〕液圧成形品に短辺と長辺とが存在する場合、長辺を成形する型が固定型(又は先行成形型)になるように設定し、短辺を後続成形型としての可動型により成形することで、一層板厚を厚くすることができる。
As a specific eccentric method, each mold is formed so that the central axis of the cross-sectional shape of the hydroformed product formed by the stop position of each mold when reaching bottom dead center and the centroid of the pipe member at the initial position are different. By setting so as to operate, the hydroformed product can be decentered. Further, after preliminarily bending the single centroid tube member, it can be easily decentered by applying a part of the hydroforming process.
4] When the short side and the long side are present in the hydroformed product, the mold for forming the long side is set to be a fixed mold (or a pre-molding mold), and the short side is a movable mold as a subsequent mold. It is possible to increase the thickness of the sheet further by molding.

5〕前記実施例においては、液圧成形品の角部が略直角形状の例を説明したが、上辺(下辺)と側辺とが緩やかな湾曲状に連なる成形品形状であっても良い。この場合、湾曲部に型割り位置が設定されても、後続成形型の下死点前において液圧が低下されるため、型割り部分のエッジにより管部材が損傷することを防止することができる。
6〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態も包含するものである。
5) In the above-described embodiment, an example in which the corner portion of the hydraulic-molded product has a substantially right-angle shape has been described. However, the shape of the molded product may be such that the upper side (lower side) and the side side are connected in a gently curved shape. In this case, even if the mold split position is set in the curved portion, the hydraulic pressure is lowered before the bottom dead center of the succeeding mold, so that the pipe member can be prevented from being damaged by the edge of the mold split portion. .
6) In addition, those skilled in the art can implement the present invention in various forms added with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. is there.

本発明は、液体が封入された管部材を径方向内側へ押圧して液圧を作用させながら角部を備えた形状に成形する液圧成形方法において、第1,第2成形型が下死点に到達する前に管部材内部の液圧を低下させることにより、装置の簡単化と生産コストの低減とを図りつつ、液圧成形品の角部の板厚を増加することができる。 The present invention Oite the hydroformed how the liquid is formed into a shape with a corner while applying a pressing to fluid pressure encapsulated tubular member radially inward, first, second mold By reducing the hydraulic pressure inside the pipe member before reaching the bottom dead center, it is possible to increase the thickness of the corners of the hydraulic molded product while simplifying the device and reducing the production cost. it can.

1 液圧成形装置
4 カム型
5a 固定型
5b 可動型
P 液圧
P1 接触後液圧
P2 下死点前液圧
W 管部材
DESCRIPTION OF SYMBOLS 1 Hydraulic forming apparatus 4 Cam type | mold 5a Fixed mold | type 5b Movable type P Hydraulic pressure P1 Hydraulic pressure P2 after contact Hydraulic pressure W before bottom dead center W Pipe member

Claims (5)

液体が封入された管部材を径方向内側へ押圧する第1成形型と、前記管部材を前記第1成形型と異なる方向から径方向内側へ押圧する1又は複数の第2成形型とにより前記管部材を押圧して液圧を作用させながら角部を備えた形状に成形する液圧成形方法において、
前記第1,第2成形型が前記管部材に接触した後、前記管部材内部の液圧を接触後液圧に保持する液圧保持工程と、
前記第1,第2成形型が下死点に到達する前において、前記管部材内部の液圧を前記接触後液圧よりも低く設定された下死点前液圧まで低下させる液圧低下工程と、
を有することを特徴とする液圧成形方法。
The first mold for pressing the tube member in which the liquid is sealed radially inward, and the one or more second molds for pressing the tube member radially inward from a direction different from the first mold. In the hydraulic forming method of forming a shape with corners while pressing the pipe member and applying hydraulic pressure,
After the first and second molds are in contact with the pipe member, a hydraulic pressure holding step for holding the hydraulic pressure inside the pipe member at the post-contact hydraulic pressure;
Before the first and second molds reach the bottom dead center, the fluid pressure lowering step of reducing the fluid pressure inside the pipe member to the fluid pressure before the bottom dead center set lower than the fluid pressure after the contact. When,
A hydraulic forming method characterized by comprising:
前記第1成形型の押圧動作に先行して前記第2成形型が前記管部材を前記径方向内側へ押圧する先行押圧工程を有することを特徴とする請求項1に記載の液圧成形方法。   The hydraulic molding method according to claim 1, further comprising a preceding pressing step in which the second molding die presses the pipe member inward in the radial direction prior to the pressing operation of the first molding die. 前記第2成形型が下死点近傍位置のとき、前記第1成形型が前記管部材に接触することを特徴とする請求項2に記載の液圧成形方法。   3. The hydraulic molding method according to claim 2, wherein when the second mold is in a position near the bottom dead center, the first mold comes into contact with the pipe member. 前記液圧保持工程において、接触後液圧をP1(MPa)、管部材の板厚をL(mm)、管部材の降伏強度をA(MPa)、管部材外径をD(mm)としたとき、
P1≧L×(A/D)×3.25
を満たすことを特徴とする請求項1〜3の何れか1項に記載の液圧成形方法。
In the hydraulic pressure holding step, the post-contact hydraulic pressure was P1 (MPa), the pipe member plate thickness was L (mm), the pipe member yield strength was A (MPa), and the pipe member outer diameter was D (mm). When
P1 ≧ L × (A / D) × 3.25
The hydraulic forming method according to any one of claims 1 to 3, wherein:
前記液圧低下工程において、下死点前液圧をP2(MPa)、管部材の板厚をL(mm)、管部材の引張強度をB(MPa)、管部材外径をD(mm)としたとき、
L×B/108≦P2≦L×B/36
を満たすことを特徴とする請求項1〜4の何れか1項に記載の液圧成形方法。
In the fluid pressure lowering step, the fluid pressure before bottom dead center is P2 (MPa), the plate member thickness is L (mm), the tube member tensile strength is B (MPa), and the tube member outer diameter is D (mm). When
L × B / 108 ≦ P2 ≦ L × B / 36
The hydraulic forming method according to any one of claims 1 to 4, wherein:
JP2011249234A 2011-11-15 2011-11-15 Hydraulic forming method Active JP5855914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249234A JP5855914B2 (en) 2011-11-15 2011-11-15 Hydraulic forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249234A JP5855914B2 (en) 2011-11-15 2011-11-15 Hydraulic forming method

Publications (2)

Publication Number Publication Date
JP2013103253A JP2013103253A (en) 2013-05-30
JP5855914B2 true JP5855914B2 (en) 2016-02-09

Family

ID=48623223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249234A Active JP5855914B2 (en) 2011-11-15 2011-11-15 Hydraulic forming method

Country Status (1)

Country Link
JP (1) JP5855914B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424607B1 (en) 2016-03-01 2020-11-18 Sumitomo Heavy Industries, Ltd. Molding device and molding method
JP6789569B2 (en) * 2016-10-14 2020-11-25 株式会社ワイテック Molding equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206505B2 (en) * 1997-08-06 2001-09-10 住友金属工業株式会社 Hydraulic bulge processing method and hydraulic bulge processing apparatus for metal tube
JP4086216B2 (en) * 1999-03-02 2008-05-14 株式会社エフテック Hydroforming method of pipe material
JP2004181477A (en) * 2002-12-02 2004-07-02 Nissan Motor Co Ltd Hydraulic forming device
JP2005238254A (en) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd Aluminum extruded material for hydroforming, and hydroforming method for the same
JP2006255750A (en) * 2005-03-16 2006-09-28 Nissan Motor Co Ltd Metallic structure member and its manufacturing method
JP2012040604A (en) * 2010-08-23 2012-03-01 Katayama Kogyo Co Ltd Method for manufacturing square pipe-like molded product

Also Published As

Publication number Publication date
JP2013103253A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
KR101472645B1 (en) Method for press-forming l-shaped components
US11135633B2 (en) Method and apparatus for producing pressed component
JP6146483B2 (en) Press molding apparatus, method for manufacturing a press molded article using the molding apparatus, and press molded article
KR101702795B1 (en) Production method for centre-pillar reinforcement
EP2977120B1 (en) Production method for press-molded member and press molding device
JP6638806B2 (en) Method of manufacturing panel-shaped molded product
JP5835768B2 (en) Manufacturing method of frame parts
WO2011024246A1 (en) Press forming method
KR20150103214A (en) Press component and method and device for manufacturing same
EP3086890B1 (en) Manufacturing device and manufacturing method of a vehicle body component
WO2016075937A1 (en) Manufacturing method and manufacturing device for press-molded article
JP2011045905A5 (en)
US7802458B2 (en) Process for fabricating large-surface metal plate into a shaped part, such as an outer skin panel of a vehicle body
JP5855914B2 (en) Hydraulic forming method
JP6586895B2 (en) Press device and method for manufacturing press-formed product
JP5749708B2 (en) Manufacturing method of wheel rim for vehicle
JP2008264838A (en) Pressing die and pressing method
JP4906849B2 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
JP6202019B2 (en) Press forming method
JP2004255445A (en) Hydroforming method and its metal die
JP6009266B2 (en) Manufacturing method of wheel rim for vehicle
JP6485423B2 (en) Manufacturing method of press-molded products
JP7475213B2 (en) Metal sheet press forming method
JP2011245525A (en) Method for press forming of metal plate
JP2009142824A (en) Method of expanding and forming steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5855914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250