JP5855470B2 - Laser bonding method - Google Patents

Laser bonding method Download PDF

Info

Publication number
JP5855470B2
JP5855470B2 JP2012006999A JP2012006999A JP5855470B2 JP 5855470 B2 JP5855470 B2 JP 5855470B2 JP 2012006999 A JP2012006999 A JP 2012006999A JP 2012006999 A JP2012006999 A JP 2012006999A JP 5855470 B2 JP5855470 B2 JP 5855470B2
Authority
JP
Japan
Prior art keywords
metal member
based metal
laser
preceding beam
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012006999A
Other languages
Japanese (ja)
Other versions
JP2013146737A (en
Inventor
鈴木 孝典
孝典 鈴木
脇坂 泰成
泰成 脇坂
啓示 大塚
啓示 大塚
徳二 奥村
徳二 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012006999A priority Critical patent/JP5855470B2/en
Publication of JP2013146737A publication Critical patent/JP2013146737A/en
Application granted granted Critical
Publication of JP5855470B2 publication Critical patent/JP5855470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱源としてレーザビームを用いて複数の金属部材をろう材により接合するレーザ接合方法に係り、特にレーザビームの照射手法の改良に関する。   The present invention relates to a laser joining method in which a plurality of metal members are joined with a brazing material using a laser beam as a heat source, and more particularly to an improvement in a laser beam irradiation method.

各種継手等の金属部材の接合構造は、たとえば異種金属部材の接合により製造されている。異種金属部材の接合では、金属部材の間に介在させたろう材をレーザビーム照射で加熱することにより、ブレージング(ろう付)を行っている。これにより、異種金属部材の間に接合部を形成することにより、金属部材の接合構造を製造している。この場合、異種金属部材として、たとえばFe系材料からなるFe系金属部材およびAl系材料からなるAl系金属部材を用いる場合、ろう材として、たとえばZn系ろう材が用いられている。   The joint structure of metal members such as various joints is manufactured, for example, by joining dissimilar metal members. In joining different kinds of metal members, brazing is performed by heating a brazing material interposed between the metal members by laser beam irradiation. Thereby, the joining structure of a metal member is manufactured by forming a joined part between different metal members. In this case, when using, for example, an Fe-based metal member made of an Fe-based material and an Al-based metal member made of an Al-based material as the dissimilar metal member, for example, a Zn-based brazing material is used.

このような金属部材の接合方法では、たとえば異種金属部材同士の境界部にワイヤ状のZn系ろう材を送出しながら、その先端部にレーザビームを照射する。このようなレーザビーム照射による加熱を異種金属部材同士の境界部の延在方向に沿って行っている。   In such a metal member joining method, for example, a wire-shaped Zn-based brazing material is delivered to a boundary portion between different metal members, and a laser beam is irradiated to the tip portion thereof. Heating by such laser beam irradiation is performed along the extending direction of the boundary portion between different metal members.

金属部材の良好な接合構造を得るために、各種レーザ照射手法が提案されている。たとえば特許文献1では、一対のレーザビームの照射スポットを進行方向の前後に位置させ、それら照射スポットを進行方向に沿って移動させる。Fe系金属部材として合金化溶融亜鉛めっき鋼板を用い、Al系金属部材としてAl系板材を用いている。   Various laser irradiation techniques have been proposed in order to obtain a good joining structure of metal members. For example, in Patent Document 1, the irradiation spots of a pair of laser beams are positioned before and after the traveling direction, and these irradiation spots are moved along the traveling direction. An alloyed hot-dip galvanized steel sheet is used as the Fe-based metal member, and an Al-based plate material is used as the Al-based metal member.

特許文献1の技術では、前側レーザビームの照射により、合金化溶融亜鉛めっき鋼板側被接合部のめっき層を除去し、後側レーザビームの照射により、ろう材であるワイヤを溶融して、前側レーザビームの照射でめっき層が除去された部分にワイヤを溶融・凝固させている。この場合、前側レーザビームの照射スポットは、合金化溶融亜鉛めっき鋼板(Fe系金属部材)に位置している。   In the technique of Patent Document 1, the plating layer of the alloyed hot dip galvanized steel sheet side is removed by irradiation with the front laser beam, and the wire as the brazing material is melted by irradiation with the rear laser beam. The wire is melted and solidified in the portion where the plating layer is removed by laser beam irradiation. In this case, the irradiation spot of the front laser beam is located on the galvannealed steel sheet (Fe-based metal member).

特開2007−75872号公報JP 2007-75872 A

ところで、Fe系金属部材とAl系金属部材とを接合する場合、Al系材料は、Fe系材料よりも、レーザビーム反射率および熱伝導率が高い。このため、Al系金属部材に入熱し難く、かつ熱拡散し易いから、Fe系金属部材側被接合部とAl系金属部材側被接合部とでは、冷却速度が異なる。その結果、溶融ろう材のFe系金属部材側とAl系金属部材側とで収縮速度が異なるため、たとえば接合部であるビード表面の凹凸差が大きくなり、接合部に外観不良が生じる虞がある。   By the way, when joining an Fe-type metal member and an Al-type metal member, an Al-type material has a higher laser beam reflectance and thermal conductivity than an Fe-type material. For this reason, since it is difficult to input heat into the Al-based metal member and heat diffusion is easy, the cooling rate is different between the Fe-based metal member-side bonded portion and the Al-based metal member-side bonded portion. As a result, since the shrinkage speed differs between the Fe-based metal member side and the Al-based metal member side of the molten brazing material, for example, the unevenness difference of the bead surface that is a joint portion becomes large, and there is a possibility that an appearance defect may occur at the joint portion. .

したがって、本発明は、接合部の外観不良の発生を抑制することができるレーザ接合方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a laser bonding method capable of suppressing the occurrence of a defective appearance at a bonding portion.

本発明のレーザ接合方法は、熱源としてのレーザビームを移動させることにより、複数の金属部材をろう材により接合するレーザ接合方法であって、金属部材として、Fe系材料からなるFe系金属部材とAl系材料からなるAl系金属部材を用い、レーザビームとして、進行方向前側に位置する先行ビームと、進行方向後側に位置する後行ビームとを用い、先行ビームを少なくともAl系金属部材に照射して予熱を行い、後行ビームをろう材に照射してろう材を溶融させ、先行ビームは、Al系金属部材への単位面積当たりの入熱量がFe系金属部材への単位面積当たりの入熱量よりも大きくなるように照射することを特徴としている。なお、下記被接合部とは、Fe系金属部材とAl系金属部材との接合予定部のことを表し、接合部とは、接合後の接合予定部のことを表している。   The laser joining method of the present invention is a laser joining method in which a plurality of metal members are joined by a brazing material by moving a laser beam as a heat source, and an Fe-based metal member made of an Fe-based material is used as the metal member. Using an Al-based metal member made of an Al-based material and using a preceding beam positioned on the front side in the traveling direction and a trailing beam positioned on the rear side in the traveling direction as a laser beam, irradiate at least the Al-based metal member with the preceding beam. Then, the brazing material is irradiated with a subsequent beam to melt the brazing material, and the amount of heat input per unit area to the Al-based metal member is input to the Fe-based metal member per unit area. It is characterized by irradiating so as to be larger than the amount of heat. In addition, the below-mentioned to-be-joined part represents the joining plan part of a Fe-type metal member and an Al-type metal member, and a joining part represents the joining plan part after joining.

本発明のレーザ接合方法では、後行ビームをろう材に照射してろう材を溶融させ、後行ビームよりも先行ビームを進行方向前側に位置させ、先行ビーム照射による予熱を行う。ここで、Al系金属部材は、入熱し難くてかつ熱拡散し易いため、予熱において、たとえばAl系金属部材とFe系金属部材とを同等の熱量で同時に加熱した場合、Al系金属部材は、Fe系金属部材よりも冷却速度が速いため、従来技術と同様な上記不具合が生じる。   In the laser joining method of the present invention, the brazing material is irradiated with the subsequent beam to melt the brazing material, the preceding beam is positioned in front of the following direction with respect to the subsequent beam, and preheating is performed by the preceding beam irradiation. Here, since the Al-based metal member is difficult to input heat and easily diffuses, when preheating, for example, when an Al-based metal member and an Fe-based metal member are simultaneously heated with an equivalent amount of heat, the Al-based metal member is Since the cooling rate is faster than that of the Fe-based metal member, the above-mentioned problem similar to that of the prior art occurs.

しかしながら、本発明のレーザ接合方法では、予熱において、先行ビームを少なくともAl系金属部材に照射しており、この場合、先行ビームの照射は、入熱し難くてかつ熱拡散し易いAl系金属部材への単位面積当たりの入熱量をFe系金属部材への単位面積当たりの入熱量よりも大きくなるように設定している。これにより、Al系金属部材の冷却速度を遅くすることができるから、Al系金属部材の熱履歴をFe系金属部材のものに近づけることができる。その結果、Al系金属部材の収縮速度をFe系金属部材のものに近づけることができるから、たとえば接合部であるビード表面の凹凸差が小さくなって滑らかになる。このように接合部の外観不良の発生を抑制することができる。   However, in the laser joining method of the present invention, at least the Al-based metal member is irradiated with the preceding beam in the preheating. In this case, the irradiation with the preceding beam is performed on the Al-based metal member that is difficult to input heat and easily diffuses heat. The amount of heat input per unit area is set to be larger than the amount of heat input per unit area to the Fe-based metal member. Thereby, since the cooling rate of the Al-based metal member can be slowed, the thermal history of the Al-based metal member can be brought close to that of the Fe-based metal member. As a result, the shrinkage rate of the Al-based metal member can be made close to that of the Fe-based metal member, and for example, the unevenness difference of the bead surface that is a joint portion becomes small and smooth. In this way, it is possible to suppress the appearance defect of the joint portion.

本発明のレーザ接合方法は、種々の構成を用いることができる。たとえば先行ビームを第1先行ビームおよび第2先行ビームから構成し、第1先行ビームをAl系金属部材に選択的に照射し、第2先行ビームをFe系金属部材に選択的に照射する態様を用いることができる。この態様では、Al系金属部材およびFe系金属部材への入熱量の制御を容易に行うことができる結果、接合部の外観不良の発生を効果的に抑制することができる。   Various configurations can be used for the laser bonding method of the present invention. For example, the preceding beam is composed of a first preceding beam and a second preceding beam, the first preceding beam is selectively irradiated to the Al-based metal member, and the second preceding beam is selectively irradiated to the Fe-based metal member. Can be used. In this aspect, the amount of heat input to the Al-based metal member and the Fe-based metal member can be easily controlled. As a result, it is possible to effectively suppress the appearance defect of the joint portion.

本発明のレーザ接合方法によれば、接合部の外観不良の発生を抑制することができる。   According to the laser bonding method of the present invention, it is possible to suppress the appearance defect of the bonded portion.

本発明に係る一実施形態のレーザ接合方法により金属部材の接合構造体を製造する状態の概略構成を表す斜視図である。It is a perspective view showing the schematic structure of the state which manufactures the joining structure of a metal member with the laser joining method of one embodiment concerning the present invention. 図1に示す各レーザビームの照射スポット中心を表す概略上面図である。It is a schematic top view showing the irradiation spot center of each laser beam shown in FIG. (A),(B)は、本発明に係るレーザ接合方法により得られた金属部材の接合構造体の一例を表す断面構成図である。(A), (B) is a cross-sectional block diagram showing an example of the joining structure of the metal member obtained by the laser joining method concerning this invention. 実施形態のレーザ接合方法の実施例により得られたFe系金属部材およびAl系金属部材の温度履歴データを表すグラフである。It is a graph showing the temperature log | history data of the Fe type metal member and Al type metal member which were obtained by the Example of the laser joining method of embodiment. レーザ接合方法の比較例により得られたFe系金属部材およびAl系金属部材の温度履歴データを表すグラフである。It is a graph showing the temperature history data of the Fe-type metal member and Al-type metal member which were obtained by the comparative example of the laser joining method. 本発明に係る一実施形態のレーザ接合方法により金属部材の接合構造体の変形例を製造する状態の概略構成を表し、(A)は斜視図、(B)は側面図である。The schematic structure of the state which manufactures the modification of the joining structure of a metal member with the laser joining method of one Embodiment concerning this invention is represented, (A) is a perspective view, (B) is a side view. 本発明に係る一実施形態のレーザ接合方法により得られた金属部材の接合構造体の変形例を表す断面構成図である。It is a section lineblock diagram showing the modification of the joining structure of the metal member obtained by the laser joining method of one embodiment concerning the present invention.

以下、本発明の一実施形態について図面を参照して説明する。図1は、本発明に係る一実施形態のレーザ接合方法により金属部材の接合構造体を製造する状態の概略構成を表す斜視図である。図2は、図1に示す各レーザビームの照射スポット中心を表し、金属部材の被接合部の拡大概略上面図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view illustrating a schematic configuration in a state in which a metal member bonded structure is manufactured by a laser bonding method according to an embodiment of the present invention. FIG. 2 is an enlarged schematic top view of the bonded portion of the metal member, showing the irradiation spot center of each laser beam shown in FIG.

レーザ接合方法は、たとえばフレア継手を製造する配置を用いている。金属部材として、たとえばFe系材料からなるFe系金属部材1およびAl系材料からなるAl系金属部材2を用いている。Fe系金属部材1およびAl系金属部材2は、たとえば湾曲部11,12を有している。Fe系金属部材1およびAl系金属部材2の配置では、たとえば湾曲部11,12どうしが対向し、それら湾曲部11,12により開先形状13を形成している。この場合、たとえばFe系金属部材1とAl系金属部材2との対向部に段差を設けている。   The laser joining method uses, for example, an arrangement for producing a flare joint. As the metal member, for example, an Fe-based metal member 1 made of an Fe-based material and an Al-based metal member 2 made of an Al-based material are used. The Fe-based metal member 1 and the Al-based metal member 2 have curved portions 11 and 12, for example. In the arrangement of the Fe-based metal member 1 and the Al-based metal member 2, for example, the curved portions 11 and 12 face each other, and a groove shape 13 is formed by the curved portions 11 and 12. In this case, for example, a step is provided at the facing portion between the Fe-based metal member 1 and the Al-based metal member 2.

レーザ接合方法では、熱源としてレーザビームを用いることにより、Fe系金属部材1とAl系金属部材2をZn系ろう材3により接合する。Zn系ろう材3は、たとえばワイヤ状をなし、ワイヤガイド(図示略)を通じて開先形状13の中心部に送出される。Zn系ろう材3は、Sn系ろう材よりも十分な接合強度が得られるから、好適である。Zn系ろう材3は、添加元素としてAlやSiを含有していてもよいし、含有していなくてもよい。添加元素としてSiを用いる場合、Siを0.25〜2.5重量%含有し、残部がZnおよび不可避不純物からなることが好適である。   In the laser joining method, the Fe-based metal member 1 and the Al-based metal member 2 are joined by the Zn-based brazing material 3 by using a laser beam as a heat source. The Zn-based brazing material 3 has, for example, a wire shape, and is sent to the center of the groove shape 13 through a wire guide (not shown). The Zn-based brazing material 3 is preferable because sufficient bonding strength can be obtained compared to the Sn-based brazing material. The Zn-based brazing material 3 may or may not contain Al or Si as an additive element. When Si is used as the additive element, it is preferable that Si is contained in an amount of 0.25 to 2.5% by weight and the balance is made of Zn and inevitable impurities.

レーザビームは、進行方向Fの前側に位置する先行ビーム110と、進行方向Fの後側に位置する後行ビーム120から構成される。先行ビーム110は、少なくともAl系金属部材2に照射して予熱を行うためのレーザビームである。後行ビーム120は、Zn系ろう材3に照射してZn系ろう材3を溶融させるためのレーザビームである。後行ビーム120は、たとえばZn系ろう材3の先端部に照射される。   The laser beam is composed of a preceding beam 110 positioned on the front side in the traveling direction F and a trailing beam 120 positioned on the rear side in the traveling direction F. The preceding beam 110 is a laser beam for performing preheating by irradiating at least the Al-based metal member 2. The trailing beam 120 is a laser beam for irradiating the Zn-based brazing material 3 to melt the Zn-based brazing material 3. The trailing beam 120 is irradiated, for example, on the tip of the Zn-based brazing material 3.

先行ビーム110の照射では、Al系金属部材2への単位面積当たりの入熱量をFe系金属部材1への単位面積当たりの入熱量よりも大きくなるように設定する。この場合、先行ビーム110は、Al用先行ビーム111(第1先行ビーム)およびFe用先行ビーム112(第2先行ビーム)から構成されることが好適である。なお、単位面積当たりの入熱量は、エネルギー密度(mW/cm)である。 In the irradiation with the preceding beam 110, the heat input amount per unit area to the Al-based metal member 2 is set to be larger than the heat input amount per unit area to the Fe-based metal member 1. In this case, the preceding beam 110 is preferably composed of an Al preceding beam 111 (first preceding beam) and an Fe preceding beam 112 (second preceding beam). The amount of heat input per unit area is energy density (mW / cm 2 ).

Al用先行ビーム111は、Al系金属部材2に選択的に照射するためのレーザビームである。この場合、たとえば図2に示すように、Al用先行ビーム111の照射スポットの中心P1は、Al系金属部材2の被接合部上に位置している。Fe用先行ビーム112は、Fe系金属部材1に選択的に照射するレーザビームである。Fe用先行ビーム112の照射スポットの中心P2は、Fe系金属部材1の被接合部上に位置している。   The Al preceding beam 111 is a laser beam for selectively irradiating the Al metal member 2. In this case, for example, as shown in FIG. 2, the center P 1 of the irradiation spot of the Al preceding beam 111 is located on the bonded portion of the Al-based metal member 2. The Fe preceding beam 112 is a laser beam that selectively irradiates the Fe-based metal member 1. The center P2 of the irradiation spot of the Fe preceding beam 112 is located on the bonded portion of the Fe-based metal member 1.

Al用先行ビーム111の照射スポットの中心P1は、たとえばFe用先行ビーム112の照射スポットの中心P2よりも進行方向Fの前側に位置している。なお、図2の符号Qは、後行ビーム120の照射スポットの中心を示している。各ビームは、ハーフミラー等を用いて1つのレーザ光源から分岐させて得てもよいし、各ビームに対応してレーザ光源を設けてもよい。各部材への単位面積当たりの入熱量は、各ビームのエネルギー密度(=ビームのエネルギー/照射スポット面積)や照射スポットの中心位置等を変更することにより調整することができる。   For example, the center P1 of the irradiation spot of the Al preceding beam 111 is located in front of the traveling direction F with respect to the center P2 of the irradiation spot of the Fe preceding beam 112. 2 indicates the center of the irradiation spot of the subsequent beam 120. Each beam may be obtained by branching from one laser light source using a half mirror or the like, or a laser light source may be provided corresponding to each beam. The amount of heat input per unit area to each member can be adjusted by changing the energy density of each beam (= beam energy / irradiation spot area), the center position of the irradiation spot, and the like.

本実施形態では、レーザビームを進行方向Fに移動させることにより、Fe系金属部材1とAl系金属部材2をZn系ろう材3により接合する。後行ビーム120については、たとえば特開2010−137277で本出願人が提案している手法を用いることが好適である。具体的には、後行ビーム120の照射により、Zn系ろう材3を蒸発させるとともに、Fe系金属部材1とAl系金属部材2で形成した開先形状13の表面で後行ビーム120を多重反射させる。   In this embodiment, the Fe-based metal member 1 and the Al-based metal member 2 are joined by the Zn-based brazing material 3 by moving the laser beam in the traveling direction F. For the trailing beam 120, it is preferable to use, for example, the method proposed by the present applicant in Japanese Patent Application Laid-Open No. 2010-137277. Specifically, the Zn-based brazing material 3 is evaporated by irradiation with the subsequent beam 120, and the subsequent beam 120 is multiplexed on the surface of the groove shape 13 formed by the Fe-based metal member 1 and the Al-based metal member 2. Reflect.

このような後行ビーム120の照射による加熱を開先形状13の延在方向に沿って進行方向Fに行うことにより、図3(A),(B)に示すように、Fe系金属部材1とAl系金属部材2との接合構造体10を製造することができる。接合構造体10は、Fe系金属部材1とAl系金属部材2とを備え、Fe系金属部材1とAl系金属部材2の間には、Zn系材料からなる接合部4が形成されている。   By performing the heating by irradiation of the subsequent beam 120 in the traveling direction F along the extending direction of the groove shape 13, as shown in FIGS. 3 (A) and 3 (B), the Fe-based metal member 1 is used. And the Al-based metal member 2 can be manufactured. The joint structure 10 includes an Fe-based metal member 1 and an Al-based metal member 2, and a joint 4 made of a Zn-based material is formed between the Fe-based metal member 1 and the Al-based metal member 2. .

Zn系ろう材3への添加元素としてSiを用いない場合、図3(A)に示すように、Fe系金属部材1と接合部4との境界部には、均一な層状の金属間化合物層5が形成されている。Zn系ろう材3への添加元素としてSiを用いる場合、図3(B)に示すように、従来の接合構造体と異なり、Fe系金属部材1と接合部4との境界部には、金属間化合物層(反応層)が存在しない。この場合、接合部4では、Si粒がマトリックス中に散在し、その粒径が小さい方が好適である。具体的には、Siの粒径は、Znの有する機械的伸びを阻害しないサイズ(たとえば10μm以下)が好適である。   When Si is not used as an additive element to the Zn-based brazing material 3, a uniform layered intermetallic compound layer is formed at the boundary between the Fe-based metal member 1 and the joint 4 as shown in FIG. 5 is formed. When Si is used as an additive element to the Zn-based brazing material 3, as shown in FIG. 3 (B), unlike the conventional bonded structure, a metal is formed at the boundary between the Fe-based metal member 1 and the bonded portion 4. There is no intercalation compound layer (reaction layer). In this case, it is preferable that Si particles are scattered in the matrix at the joint 4 and the particle size is smaller. Specifically, the Si particle size is preferably a size that does not inhibit the mechanical elongation of Zn (for example, 10 μm or less).

なお、後行ビーム120の多重反射は、Fe系金属部材1とAl系金属部材2で形成した開先形状13の表面で行う代わりに、Fe系金属部材1とAl系金属部材2の被溶接部を溶融して形成したキーホール内で行うようにしてもよい。この場合、後行ビーム120の照射による加熱では、Fe系金属部材1およびAl系金属部材2の被接合部をFe系材料の融点以上の温度に設定することが好適である。   The multiple reflection of the trailing beam 120 is not performed on the surface of the groove shape 13 formed by the Fe-based metal member 1 and the Al-based metal member 2, but the welding of the Fe-based metal member 1 and the Al-based metal member 2 is performed. You may make it carry out in the keyhole formed by fuse | melting a part. In this case, in the heating by irradiation of the trailing beam 120, it is preferable to set the bonded portions of the Fe-based metal member 1 and the Al-based metal member 2 to a temperature equal to or higher than the melting point of the Fe-based material.

ここで本実施形態では、後行ビーム120よりも先行ビーム110を進行方向Fの前側に位置させ、先行ビーム110を少なくともAl系金属部材2に照射して予熱を行っている。この場合、先行ビーム110の照射では、入熱し難くてかつ熱拡散し易いAl系金属部材2への単位面積当たりの入熱量をFe系金属部材1への単位面積当たりの入熱量よりも大きくなるように設定しているから、Al系金属部材の冷却速度を遅くすることができる。   Here, in this embodiment, the preceding beam 110 is positioned in front of the traveling direction F with respect to the trailing beam 120, and at least the Al-based metal member 2 is irradiated with the preceding beam 110 to perform preheating. In this case, with the irradiation of the preceding beam 110, the heat input per unit area to the Al-based metal member 2 that is difficult to input heat and easily diffuses is larger than the heat input per unit area to the Fe-based metal member 1. Thus, the cooling rate of the Al-based metal member can be slowed.

これについて実施例および比較例を用いて具体的に説明する。実施例および比較例では、図1に示す配置形態と同様にFe系金属部材およびAl系金属部材を配置し、それら金属部材の湾曲部により開先形状を形成し、Zn系ろう材としてワイヤを用いた。この場合、添加元素としてSiを添加させた。これにより、図1に示す構成を有するフレア継手形状の金属部材の接合構造体を製造した。   This will be specifically described with reference to examples and comparative examples. In the example and the comparative example, the Fe-based metal member and the Al-based metal member are disposed in the same manner as in the arrangement form shown in FIG. 1, the groove shape is formed by the curved portion of the metal member, and the wire is used as the Zn-based brazing material. Using. In this case, Si was added as an additive element. Thereby, the joining structure body of the metal member of the flare joint shape which has the structure shown in FIG. 1 was manufactured.

実施例および比較例では、ワイヤの挿入角度は、(Rx(X方向挿入角度),Ry(Y方向挿入角度))を(25°,25°)に設定した。Fe系金属部材として鋼板(板厚1.0mm)、Al系金属部材としてAl合金板(板厚1.2mm)を用いた。レーザとしてYAGレーザ(波長λ1064nm)を用い、そのレーザビーム(総出力1.3kW)を先行ビームおよび後行ビームとして分岐させた。   In the examples and comparative examples, the wire insertion angles (Rx (X direction insertion angle), Ry (Y direction insertion angle)) were set to (25 °, 25 °). A steel plate (plate thickness: 1.0 mm) was used as the Fe-based metal member, and an Al alloy plate (plate thickness: 1.2 mm) was used as the Al-based metal member. A YAG laser (wavelength λ 1064 nm) was used as the laser, and the laser beam (total output 1.3 kW) was branched as a preceding beam and a following beam.

実施例では、先行ビームをAl用先行ビームおよびFe用先行ビームに分岐し、各ビームのエネルギー比率(Al用先行ビーム:Fe用先行ビーム:後行ビーム)を2:2:6に設定した。   In the example, the preceding beam was branched into an Al preceding beam and an Fe preceding beam, and the energy ratio of each beam (Al preceding beam: Fe preceding beam: following beam) was set to 2: 2: 6.

Al用先行ビームについて、ワイヤに対する相対的位置(x,y)を(1.0mm,−0.5mm)、照射角度(Rx(X方向照射角度),Ry(Y方向照射角度))を(0°,50°)、集光径φを1.8mmに設定した。Fe用先行ビームについて、ワイヤに対する相対的位置(x,y)を(0.5mm,1.0mm)、照射角度(Rx(X方向照射角度),Ry(Y方向照射角度))を(25°,50°)、集光径φを3.0mmに設定した。後行ビームについて、ワイヤに対する相対的位置(x,y)を(−0.5mm,0mm)、照射角度(Rx(X方向照射角度),Ry(Y方向照射角度))を(25°,0°)、集光径φを3.0mmに設定した。   For the Al preceding beam, the relative position (x, y) with respect to the wire (1.0 mm, −0.5 mm) and the irradiation angle (Rx (X direction irradiation angle), Ry (Y direction irradiation angle)) are (0). °, 50 °), and the condensing diameter φ was set to 1.8 mm. For the preceding beam for Fe, the relative position (x, y) to the wire (0.5 mm, 1.0 mm) and the irradiation angle (Rx (X direction irradiation angle), Ry (Y direction irradiation angle)) are (25 °). , 50 °), and the condensing diameter φ was set to 3.0 mm. For the subsequent beam, the relative position (x, y) with respect to the wire (−0.5 mm, 0 mm) and the irradiation angle (Rx (X direction irradiation angle), Ry (Y direction irradiation angle)) are (25 °, 0). °), the condensing diameter φ was set to 3.0 mm.

比較例では、実施例と異なる点は、先行ビームを分岐しないこと(すなわち、先行ビームをFe用先行ビームとしてのみ用いること)であって、それ以外は、実施例と同様な条件に設定した。この場合、各ビームのエネルギー比率(Fe用先行ビーム:後行ビーム)を4:6に設定した。   In the comparative example, the difference from the example is that the preceding beam is not branched (that is, the preceding beam is used only as the preceding beam for Fe), and the other conditions are set to the same conditions as in the example. In this case, the energy ratio (preceding beam for Fe: trailing beam) of each beam was set to 4: 6.

実施例および比較例の実験結果を図4,5に示す。図4は、実施形態に係るレーザ接合方法の実施例により得られたFe系金属部材およびAl系金属部材の温度履歴データを表すグラフである。図5は、レーザ接合方法の比較例により得られたFe系金属部材およびAl系金属部材の温度履歴データを表すグラフである。Fe系金属部材およびAl系金属部材の温度は、Fe系金属部材およびAl系金属部材の裏面(接合部が形成されていない面)における接合部下端部に対応する位置で測定した。   The experimental results of Examples and Comparative Examples are shown in FIGS. FIG. 4 is a graph showing temperature history data of the Fe-based metal member and the Al-based metal member obtained by the example of the laser bonding method according to the embodiment. FIG. 5 is a graph showing temperature history data of the Fe-based metal member and the Al-based metal member obtained by the comparative example of the laser bonding method. The temperature of the Fe-based metal member and the Al-based metal member was measured at a position corresponding to the lower end of the joint portion on the back surface (the surface where the joint portion was not formed) of the Fe-based metal member and the Al-based metal member.

比較例では、先行ビームとして、照射スポット中心がFe系金属部材の被接合部に位置するFe用先行ビームのみを用い、Fe系金属部材側の被接合部を集中的に予熱した。このように入熱し難くてかつ熱拡散し易いAl系金属部材への単位面積当たりの入熱量をFe系金属部材への単位面積当たりの入熱量よりも小さくなるように設定したから、図5中の枠Hで囲まれる部分から判るように、Al系金属部材の冷却速度が速く、Fe系金属部材の冷却速度と大きく異なった。また、得られた接合構造体の接合部であるビードを調べた結果、最大凹凸差0.2mm程度の大きな凹凸が観察された。   In the comparative example, only the preceding beam for Fe in which the center of the irradiation spot is located at the bonded portion of the Fe-based metal member was used as the preceding beam, and the bonded portion on the Fe-based metal member side was preheated intensively. Since the heat input per unit area to the Al-based metal member which is difficult to input heat and easily diffuses in this way is set to be smaller than the heat input per unit area to the Fe-based metal member, in FIG. As can be seen from the portion surrounded by the frame H, the cooling rate of the Al-based metal member was high, which was significantly different from the cooling rate of the Fe-based metal member. Moreover, as a result of examining the bead which is a junction part of the obtained joining structure, the big unevenness | corrugation with the largest unevenness | corrugation difference of about 0.2 mm was observed.

これに対して実施例では、先行ビームとして、照射スポット中心がAl系金属部材側の被接合部に位置するAl用先行ビーム、および、照射スポット中心がFe系金属部材側の被接合部に位置するFe用先行ビームを用いるとともに、Al用先行ビームの集光径を小さく設定した。これによりAl系金属部材側の被接合部を集中的に予熱した。   On the other hand, in the embodiment, as the preceding beam, the irradiation spot center is positioned at the bonded portion on the Al-based metal member side, and the irradiation spot center is positioned on the bonded portion on the Fe-based metal member side. In addition to using the preceding beam for Fe, the condensing diameter of the preceding beam for Al was set small. As a result, the bonded portion on the Al metal member side was preheated intensively.

このように入熱し難くてかつ熱拡散し易いAl系金属部材への単位面積当たりの入熱量をFe系金属部材への単位面積当たりの入熱量よりも大きくなるように設定したから、図4,5中の枠Hで囲まれる部分から判るように、実施例のAl系金属部材の冷却速度は、比較例のAl系金属部材の冷却速度よりも遅くなり、Fe系金属部材の冷却速度と略同等となった。また、得られた接合構造体の接合部であるビードを調べた結果、最大凹凸差0.06mm程度の極めて小さな凹凸が観察された。このように実施例では、Al系金属部材の熱履歴をFe系金属部材のものと略同等にすることができるとともに、接合部の外観不良の抑制を図ることができることを確認した。なお、実施例および比較例のAl系金属部材の温度履歴では、図4,5から判るようにピーク温度が略同等であるが、これはAl系金属部材側の被接合部近傍において温度が飽和していたためである。   Since the heat input amount per unit area to the Al-based metal member which is difficult to input heat and easily diffuses in this way is set to be larger than the heat input amount per unit area to the Fe-based metal member, FIG. 5, the cooling rate of the Al-based metal member of the example is slower than the cooling rate of the Al-based metal member of the comparative example, which is substantially equal to the cooling rate of the Fe-based metal member. It became equivalent. Moreover, as a result of examining the bead which is a junction part of the obtained joining structure, the very small unevenness | corrugation with the largest unevenness | corrugation difference of about 0.06 mm was observed. As described above, in the examples, it was confirmed that the thermal history of the Al-based metal member can be made substantially equal to that of the Fe-based metal member, and the appearance defect of the joint portion can be suppressed. In the temperature history of the Al-based metal members of the example and the comparative example, as can be seen from FIGS. 4 and 5, the peak temperatures are substantially the same, but this is saturated in the vicinity of the bonded portion on the Al-based metal member side. It was because I was doing.

以上のように本実施形態では、先行ビーム110の照射では、入熱し難くてかつ熱拡散し易いAl系金属部材2への単位面積当たりの入熱量をFe系金属部材1への単位面積当たりの入熱量よりも大きくなるように設定しているから、Al系金属部材2の被接合部の冷却速度を遅くすることができる。これにより、Al系金属部材2の被接合部の熱履歴をFe系金属部材1の被接合部のものに近づけることができるから、Al系金属部材2の被接合部の収縮速度をFe系金属部材1の被接合部のものに近づけることができる。したがって、接合部4であるビード表面の凹凸差が小さくなって滑らかになるから、接合部4の外観不良の発生を抑制することができる。たとえば接合構造体10に塗装を施した場合、接合部4の塗装を良好に行うことができる。   As described above, in the present embodiment, the amount of heat input per unit area to the Al-based metal member 2 that is difficult to input heat and easily diffuses by irradiation of the preceding beam 110 is calculated per unit area to the Fe-based metal member 1. Since it is set to be larger than the heat input, the cooling rate of the bonded portion of the Al-based metal member 2 can be reduced. Thereby, since the thermal history of the bonded portion of the Al-based metal member 2 can be made closer to that of the bonded portion of the Fe-based metal member 1, the shrinkage rate of the bonded portion of the Al-based metal member 2 is reduced to the Fe-based metal. It can be brought close to that of the bonded portion of the member 1. Therefore, since the unevenness difference of the bead surface which is the junction part 4 becomes small and becomes smooth, generation | occurrence | production of the external appearance defect of the junction part 4 can be suppressed. For example, when the bonding structure 10 is coated, the bonding portion 4 can be well coated.

特に、先行ビーム110による金属部材への予熱後、後行ビーム120を、キーホール内あるいは開先形状13の表面で多重反射させることにより、その全表面を略均一に加熱することができる結果、たとえば特開2010−137277で本出願人が提案している手法と同様、Fe系金属部材1と接合部4との境界部の接合強度を向上させることができる等の効果を得ることができる。また、先行ビーム110をFe系金属部材1の被接合部に照射することにより、その被接合部のめっき部を除去することができる。   In particular, after preheating the metal member with the leading beam 110, the subsequent beam 120 can be heated substantially uniformly by multiply reflecting the back beam 120 on the surface of the keyhole or groove shape 13, For example, similar to the technique proposed by the present applicant in Japanese Patent Application Laid-Open No. 2010-137277, it is possible to obtain an effect that the joint strength at the boundary between the Fe-based metal member 1 and the joint 4 can be improved. Further, by irradiating the bonded portion of the Fe-based metal member 1 with the preceding beam 110, the plated portion of the bonded portion can be removed.

上記実施形態を用いて本発明を説明したが、本発明は上記実施形態に限定されるものではなく、種々の変形が可能である。たとえば上記実施形態では、本発明が適用可能な継手としてフレア継手を用いたが、これに限定されるものではなく、種々の継手に適用することができる。たとえば図6,7に示す重ね隅肉継手に本発明を適用することができる。   Although the present invention has been described using the above embodiment, the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above-described embodiment, the flare joint is used as a joint to which the present invention is applicable. However, the present invention is not limited to this and can be applied to various joints. For example, the present invention can be applied to the lap fillet joint shown in FIGS.

上記態様では、Fe系金属部材1およびAl系金属部材2は板状をなし、Fe系金属部材1の表面の一部が露出するようにFe系金属部材1上にAl系金属部材2に配置している。Fe系金属部材1とAl系金属部材2との境界部は、Fe系金属部材1の表面露出部上のAl系金属部材2の端部に沿って形成される。レーザビームとして、上記実施形態と同様、図6(A),(B)に示すように先行ビーム110および後行ビーム120を用いる。Zn系ろう材3は、ワイヤガイド201を通じて上記境界部の中心部に送出される。そのようなレーザビームを進行方向Fに移動させることにより、Fe系金属部材1とAl系金属部材2をZn系ろう材3により接合する。これにより、たとえば図7に示す接合構造体10Aが得られる。   In the above aspect, the Fe-based metal member 1 and the Al-based metal member 2 are plate-shaped, and are disposed on the Al-based metal member 2 on the Fe-based metal member 1 so that a part of the surface of the Fe-based metal member 1 is exposed. doing. The boundary between the Fe-based metal member 1 and the Al-based metal member 2 is formed along the end of the Al-based metal member 2 on the exposed surface of the Fe-based metal member 1. As in the case of the above embodiment, as the laser beam, a leading beam 110 and a trailing beam 120 are used as shown in FIGS. The Zn-based brazing material 3 is delivered to the center of the boundary portion through the wire guide 201. By moving such a laser beam in the traveling direction F, the Fe-based metal member 1 and the Al-based metal member 2 are joined by the Zn-based brazing material 3. Thereby, for example, a bonded structure 10A shown in FIG. 7 is obtained.

継手の種類によってFe系金属部材1とAl系金属部材2との境界部の形態が異なるため、ビームの反射率が異なる。重ね隅肉継手を用いる場合、そのようなビームの反射率を考慮すると、Al用先行ビーム111の照射スポット中心を、図2に示すフレア継手の場合と比較して、Al系金属部材2側(すなわち、Y方向のマイナス側)にシフトさせることが好適である。これにより、フレア継手の場合と同等の効果を得ることができる。本発明は、上記継手のほかに、レーザビームが照射可能なFe系金属部材1とAl系金属部材2との境界部に適用することができ、この場合、上記のように境界部の形態によってビームの反射率が異なるから、それに対応するために、各ビームのエネルギー密度 (=エネルギー/照射スポット面積)や照射スポットの中心位置等を変更する。   Since the form of the boundary between the Fe-based metal member 1 and the Al-based metal member 2 differs depending on the type of joint, the reflectance of the beam varies. In the case of using the lap fillet joint, considering the reflectivity of such a beam, the irradiation spot center of the Al preceding beam 111 is compared with the case of the flare joint shown in FIG. That is, it is preferable to shift to the negative side in the Y direction. Thereby, the effect equivalent to the case of a flare joint can be acquired. The present invention can be applied to the boundary portion between the Fe-based metal member 1 and the Al-based metal member 2 that can be irradiated with a laser beam, in addition to the joint described above. In this case, depending on the form of the boundary portion as described above. Since the reflectivity of the beam is different, the energy density (= energy / irradiation spot area) of each beam, the center position of the irradiation spot, etc. are changed in order to cope with it.

また、上記実施形態では、先行ビーム110をAl用先行ビーム111およびFe用先行ビーム112の2つのビームから構成したが、1つのビームから構成してもよい。この場合、たとえばビームの照射スポットの中心位置やビームの走査形態を適宜設定することにより、Al系金属部材2への単位面積当たりの入熱量がFe系金属部材1への単位面積当たりの入熱量よりも大きくなるように設定する。   In the above embodiment, the preceding beam 110 is composed of two beams, the Al preceding beam 111 and the Fe preceding beam 112. However, the preceding beam 110 may be composed of one beam. In this case, for example, by appropriately setting the center position of the beam irradiation spot and the beam scanning form, the heat input amount per unit area to the Al-based metal member 2 is changed to the heat input amount per unit area to the Fe-based metal member 1. Set to be larger than

たとえばビームの照射スポットの中心位置をAl系金属部材2側に位置させた状態でビームを進行方向Fに移動させる態様を用いることができる。また、たとえばビームの照射スポットの中心がFe系金属部材1側とAl系金属部材2側上に交互に位置するようにビームを進行方向Fに移動させ、その軌跡が波形状をなす態様を用いることができる。このようなビーム走査では、Al系金属部材2での照射面積がFe系金属部材1での照射面積よりも大きくなるように設定することができる。   For example, a mode in which the beam is moved in the traveling direction F in a state where the center position of the beam irradiation spot is located on the Al-based metal member 2 side can be used. Further, for example, the beam is moved in the traveling direction F so that the center of the irradiation spot of the beam is alternately positioned on the Fe-based metal member 1 side and the Al-based metal member 2 side, and the trajectory forms a wave shape. be able to. In such beam scanning, the irradiation area on the Al-based metal member 2 can be set to be larger than the irradiation area on the Fe-based metal member 1.

1…Fe系金属部材、2…Al系金属部材、3…Zn系ろう材、4…接合部、5…金属間化合物層、10,10A…接合構造体、11,12…湾曲部、13…開先形状、110…先行ビーム、111…Al用先行ビーム(第1先行ビーム)、112…Fe用先行ビーム(第2先行ビーム)、120…後行ビーム、F…進行方向、P1,P2,Q…照射スポットの中心   DESCRIPTION OF SYMBOLS 1 ... Fe type | system | group metal member, 2 ... Al type | system | group metal member, 3 ... Zn type | system | group brazing material, 4 ... Junction part, 5 ... Intermetallic compound layer 10,10A ... Junction structure, 11,12 ... Bending part, 13 ... Groove shape, 110 ... preceding beam, 111 ... preceding beam for Al (first preceding beam), 112 ... preceding beam for Fe (second preceding beam), 120 ... following beam, F ... traveling direction, P1, P2, Q ... Center of irradiation spot

Claims (2)

熱源としてのレーザビームを移動させることにより、複数の金属部材をろう材により接合するレーザ接合方法において、
前記金属部材として、Fe系材料からなるFe系金属部材とAl系材料からなるAl系金属部材を用い、
前記レーザビームとして、進行方向前側に位置する先行ビームと、進行方向後側に位置する後行ビームとを用い、
前記先行ビームを少なくとも前記Al系金属部材に照射して予熱を行い、前記後行ビームを前記ろう材に照射して前記ろう材を溶融させ、
前記先行ビームは、Al系金属部材への単位面積当たりの入熱量がFe系金属部材への単位面積当たりの入熱量よりも大きくなるように照射することを特徴とするレーザ接合方法。
In a laser joining method for joining a plurality of metal members with a brazing material by moving a laser beam as a heat source,
As the metal member, an Fe-based metal member made of Fe-based material and an Al-based metal member made of Al-based material,
As the laser beam, using a preceding beam located on the front side in the traveling direction and a trailing beam located on the rear side in the traveling direction,
Preheating by irradiating at least the Al-based metal member with the preceding beam, irradiating the brazing material with the subsequent beam to melt the brazing material,
The laser beam joining method according to claim 1, wherein the preceding beam is irradiated so that a heat input amount per unit area to the Al-based metal member is larger than a heat input amount per unit area to the Fe-based metal member.
前記先行ビームを第1先行ビームおよび第2先行ビームから構成し、前記第1先行ビームを前記Al系金属部材に選択的に照射し、前記第2先行ビームを前記Fe系金属部材に選択的に照射することを特徴とする請求項1に記載のレーザ接合方法。   The preceding beam is composed of a first preceding beam and a second preceding beam, the first preceding beam is selectively applied to the Al-based metal member, and the second preceding beam is selectively applied to the Fe-based metal member. The laser bonding method according to claim 1, wherein irradiation is performed.
JP2012006999A 2012-01-17 2012-01-17 Laser bonding method Active JP5855470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006999A JP5855470B2 (en) 2012-01-17 2012-01-17 Laser bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006999A JP5855470B2 (en) 2012-01-17 2012-01-17 Laser bonding method

Publications (2)

Publication Number Publication Date
JP2013146737A JP2013146737A (en) 2013-08-01
JP5855470B2 true JP5855470B2 (en) 2016-02-09

Family

ID=49044813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006999A Active JP5855470B2 (en) 2012-01-17 2012-01-17 Laser bonding method

Country Status (1)

Country Link
JP (1) JP5855470B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095828B1 (en) * 2021-03-03 2022-07-05 Jfeスチール株式会社 Laser brazing joining method
WO2022185989A1 (en) * 2021-03-03 2022-09-09 Jfeスチール株式会社 Laser brazing joining method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052602A1 (en) * 2014-10-03 2016-04-07 本田技研工業株式会社 Vehicle roof structure and method for manufacturing vehicle roof structure
DE102015207279A1 (en) * 2015-04-22 2016-10-27 Ipg Laser Gmbh Joining device and joining method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148571A (en) * 1993-11-26 1995-06-13 Toyota Motor Corp Method for brazing iron material and aluminum material
JP2005279744A (en) * 2004-03-30 2005-10-13 Nissan Motor Co Ltd Butt welding method of different kind of material using high energy beam
US20060261045A1 (en) * 2005-05-18 2006-11-23 Pei-Chung Wang Multi-heat source laser brazing system and method
JP2007075872A (en) * 2005-09-16 2007-03-29 Nissan Motor Co Ltd Laser brazing welding process
EP1920864B1 (en) * 2006-11-13 2022-07-13 Volvo Car Corporation Method for laser brazing with twinspot
JP5124434B2 (en) * 2008-12-15 2013-01-23 本田技研工業株式会社 Method for joining metal members
JP5378812B2 (en) * 2008-04-21 2013-12-25 本田技研工業株式会社 Method and structure for joining metal members
JP5494158B2 (en) * 2010-04-12 2014-05-14 新日鐵住金株式会社 Laser arc brazing method
JP5424005B2 (en) * 2012-10-04 2014-02-26 日産自動車株式会社 Dissimilar metal joining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095828B1 (en) * 2021-03-03 2022-07-05 Jfeスチール株式会社 Laser brazing joining method
WO2022185989A1 (en) * 2021-03-03 2022-09-09 Jfeスチール株式会社 Laser brazing joining method

Also Published As

Publication number Publication date
JP2013146737A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
Yang et al. Laser techniques for dissimilar joining of aluminum alloys to steels: A critical review
CA2946844C (en) Method and device for preparing aluminium-coated steel sheets intended for being welded and then hardened under a press; corresponding welded blank
CN106413963B (en) The manufacturing method of metal bonded body
JP5531623B2 (en) Laser lap welding method of galvanized steel sheet
JP5855470B2 (en) Laser bonding method
CN112620856A (en) Pretreatment method before dissimilar metal material welding, dissimilar metal material welding product and welding method thereof
JP5494158B2 (en) Laser arc brazing method
JP2007136489A (en) Method for welding different materials
KR20120031857A (en) Junction method of each other different quality of material
JP5424005B2 (en) Dissimilar metal joining method
JP2009045628A (en) Laser welding method for steel plate
WO2022185989A1 (en) Laser brazing joining method
JP2006159240A (en) High energy-density beam-welded product, high energy-density beam-welding method, welding method, and welding supporting device
JP7095828B1 (en) Laser brazing joining method
JP5207156B2 (en) Dissimilar materials joining equipment
JP5266969B2 (en) Laser brazing method
JP6357566B2 (en) Method for manufacturing aluminum structural member
JP2006198678A (en) Different kind of metal joining method
JP2008264820A (en) Structure and method for joining different kind metals
US20230234166A1 (en) Joined member and method of manufacturing joined member
WO2023167045A1 (en) Sheet material, bonded body, method for bonding sheet material, and method for manufacturing sheet material
Ito et al. Factors influencing mechanical properties of dissimilar steel/aluminum-alloy flare-V groove joints made by high-speed hot-wire laser brazing technology
JP7111691B2 (en) METAL COMPOSITE AND METHOD FOR MANUFACTURING METAL COMPOSITE
JP2002137077A (en) Method of joining aluminum material to iron material
JP2007229739A (en) Laser brazing method of high-strength steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151209

R150 Certificate of patent or registration of utility model

Ref document number: 5855470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250