JP5854071B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP5854071B2
JP5854071B2 JP2014055517A JP2014055517A JP5854071B2 JP 5854071 B2 JP5854071 B2 JP 5854071B2 JP 2014055517 A JP2014055517 A JP 2014055517A JP 2014055517 A JP2014055517 A JP 2014055517A JP 5854071 B2 JP5854071 B2 JP 5854071B2
Authority
JP
Japan
Prior art keywords
mass
point
less
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014055517A
Other languages
Japanese (ja)
Other versions
JP2014208378A (en
Inventor
堤 康一
康一 堤
村井 剛
剛 村井
鍋島 誠司
誠司 鍋島
光彦 前野
光彦 前野
幸祐 西原
幸祐 西原
三木 祐司
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014055517A priority Critical patent/JP5854071B2/en
Publication of JP2014208378A publication Critical patent/JP2014208378A/en
Application granted granted Critical
Publication of JP5854071B2 publication Critical patent/JP5854071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Description

本発明は、鋼の連続鋳造方法、特に表面割れの発生を抑制した連続鋳造方法に関するものである。   The present invention relates to a continuous casting method of steel, and more particularly to a continuous casting method in which occurrence of surface cracks is suppressed.

鋼の強度を確保するために、C、V、NbおよびNiなどが添加されている。これらの成分を含有する鋼は、連続鋳造によって製造されることが一般的であるが、連続鋳造後の鋳片に表面割れが発生する場合がある。この表面割れは、その後の圧延工程において拡大して製品での欠陥となるため、圧延前にグラインダー等による手入れ処理を余儀なくされ、工数が増大するばかりでなく、表面割れが大きく手入れ処理によっても除去が難しい場合には鋳片を廃棄処分にする等、歩留まり低下の一因となっていた。   In order to secure the strength of the steel, C, V, Nb, Ni and the like are added. Steel containing these components is generally produced by continuous casting, but surface cracks may occur in the slab after continuous casting. Since this surface crack expands in the subsequent rolling process and becomes a defect in the product, it is forced to be treated with a grinder before rolling, which not only increases the man-hours, but also the surface crack is large and is removed by the care process. When this is difficult, the slab was disposed of, which contributed to a decrease in yield.

かような表面割れのひとつとして、旧オーステナイト(γ)粒界に沿った粒界割れがある。これは、連続鋳造の曲げ矯正点で矯正時の応力により、脆い旧γ粒界が開口するものと考えられている。従来の対応策としては、曲げ矯正点通過温度を高温脆化域である850〜600℃から外すことが行われている。一般的には、鋳片の冷却を緩やかにして850℃以上の高温側に外している。   One such surface crack is a grain boundary crack along the prior austenite (γ) grain boundary. This is thought to be due to the opening of brittle old γ grain boundaries due to stress during straightening at the bending straightening point of continuous casting. As a conventional countermeasure, the bending correction point passing temperature is removed from the high temperature embrittlement region of 850 to 600 ° C. In general, the slab is slowly cooled down to the high temperature side of 850 ° C. or higher.

例えば、特許文献1には、鋳型出口から矯正帯までの間にて鋼片表面を550℃以下まで冷却し、その後、850℃以上に復熱させて矯正を行うことが記載されている。
また、特許文献2には、鋳片の表面温度をAr変態点より低い温度に冷却する際に、50〜500秒間保持し、その時間に応じた最低到達温度を満足させた後に、Ar変態点を超える温度に復熱させ、その後に矯正を行う方法が記載されている。いずれの技術も、規定の温度以下まで冷却してフェライトを生成させ、その後、復熱して再度オーステナイト化することにより、オーステナイト粒を微細化するものである。
For example, Patent Document 1 describes that the surface of a steel slab is cooled to 550 ° C. or lower between the mold outlet and the straightening zone, and then reheated to 850 ° C. or higher to perform correction.
Further, in Patent Document 2, when the surface temperature of the slab is cooled to a temperature lower than the Ar 3 transformation point, it is maintained for 50 to 500 seconds, and after satisfying the minimum temperature corresponding to the time, the Ar 3 A method is described in which reheating to a temperature above the transformation point and subsequent correction is performed. In any technique, the austenite grains are refined by cooling to a predetermined temperature or lower to generate ferrite, and then reheating and re-forming austenite.

さらに、特許文献3には、鋳片表面温度をAr1点以下に冷却し、Ac点温度+100℃以上の加熱を2回以上繰り返すことにより、オーステナイト粒径を微細化し、炭窒化物等の粒界析出を抑制し、粒界へのフィルム上フェライトの析出を防止することが記載されている。
特許文献4および5には、熱間で幅圧下を行う際に発生する割れを防止するために、連続鋳造機内のスラブの表面から10mm以内の温度をAr点−100℃以下とする冷却と、1000℃以上1250℃以下に昇温させる冷却・復熱を2回以上繰り返した後、冷却することなく熱間で幅圧延する手法が記載されている。
Further, in Patent Document 3, the slab surface temperature is cooled to Ar 1 point or less, and heating at Ac 3 point temperature + 100 ° C. or more is repeated twice or more, thereby refining the austenite grain size, carbonitride, etc. It describes that the grain boundary precipitation is suppressed and the precipitation of ferrite on the film on the grain boundary is prevented.
In Patent Documents 4 and 5, in order to prevent cracks that occur when width reduction is performed hot, cooling within 10 mm from the surface of the slab in the continuous casting machine is performed with Ar 3 points to 100 ° C. or lower. In addition, a method is described in which after the cooling / reheating for raising the temperature to 1000 ° C. or more and 1250 ° C. or less is repeated twice or more, width rolling is performed without cooling.

特許第4445561号公報Japanese Patent No. 4444561 特許第3702807号公報Japanese Patent No. 3702807 特開昭55−14173号公報Japanese Unexamined Patent Publication No. 55-14173 特開平08−309404号公報Japanese Patent Laid-Open No. 08-309404 特開平07−290101号公報JP 07-290101 A

鋼の組織を制御するには、組織に応じた熱履歴を付与する必要があり、当然、鋼の組成が変われば、必要な熱履歴も変わる。しかしながら、特許文献1に記載の方法では、冷却および復熱時の温度が一義的であり、鋼の組成によっては、冷却や復熱が不足、あるいは過剰になる場合があり、割れを抑制できない、あるいはコストアップにつながる等の問題がある。   In order to control the structure of steel, it is necessary to give a thermal history corresponding to the structure. Naturally, if the composition of steel changes, the necessary thermal history also changes. However, in the method described in Patent Document 1, the temperature during cooling and recuperation is unambiguous, and depending on the steel composition, cooling and recuperation may be insufficient or excessive, and cracks cannot be suppressed. Or there is a problem such as an increase in cost.

また、特許文献2に記載の方法では、鋼の組成に応じて温度を制御してはいるが、Ar変態点以下にて50秒以上の時間を保持する必要があり、一般的な鋳造速度下において、前記保持時間内には鋳片がロールやスプレー冷却水が当たらない領域も通るため、その間も鋳片温度をAr変態点以下に保持するには非常に強力な冷却能、即ち、莫大な二次冷却水量が必要となり、それを実現するために大きな設備コストが必要となる。 In the method described in Patent Document 2, the temperature is controlled according to the composition of the steel, but it is necessary to maintain a time of 50 seconds or more below the Ar 3 transformation point. Below, since the slab passes through a region where the roll or spray cooling water does not hit during the holding time, a very strong cooling capacity is required to keep the slab temperature below the Ar 3 transformation point during that period, that is, An enormous amount of secondary cooling water is required, and a large equipment cost is required to realize this.

さらに、特許文献3に記載の方法では、NbまたはV、あるいは両者を含む鋼の組成に応じて鋳片表面温度をAr1点以下に冷却し、Ac点温度+100℃以上の加熱を2回以上繰り返すことが記載されている。しかし、Ar1点以下に冷却するには、莫大な二次冷却水量が必要でコストを要すること、また高速連続鋳造機の場合、上部の曲げ矯正帯に至るまでに急冷および復熱を行う時間を確保できないことがあり、Ar1点以上の冷却でも鋳片の組織制御が可能なプロセスを必要としていた。 Furthermore, in the method described in Patent Document 3, the slab surface temperature is cooled to Ar 1 point or lower according to the composition of steel containing Nb, V, or both, and heating at Ac 3 point temperature + 100 ° C. or higher is performed twice. It is described that the above is repeated. However, cooling to Ar 1 point or less requires a huge amount of secondary cooling water and costs, and in the case of a high-speed continuous casting machine, the time for rapid cooling and recuperation until reaching the upper bending straightening zone Therefore, a process capable of controlling the structure of the slab even with cooling at Ar 1 point or higher was required.

特許文献4および5に記載の方法は、熱間で幅圧下する際に発生する割れを防止することは可能であるが、曲げ矯正後に、連続鋳造機内のスラブの表面から10mm以内の温度をAr点−100℃以下とする冷却と、1000℃以上1250℃以下に昇温させる冷却・復熱を2回以上繰り返すという、基本的には曲げ矯正以降の工程における技術である。従って、曲げ矯正点における割れの問題を解消することは難しい。 Although the methods described in Patent Documents 4 and 5 can prevent cracks that occur when the width is reduced by hot, the temperature within 10 mm from the surface of the slab in the continuous casting machine is adjusted to Ar after bending. This is basically a technique in the process after bending correction, in which cooling at 3 points to −100 ° C. or lower and cooling / reheating to 1000 ° C. or higher and 1250 ° C. or lower are repeated twice or more. Therefore, it is difficult to solve the problem of cracking at the bending correction point.

そこで、本発明は、鋼の連続鋳造において、特に、連続鋳造機の曲げ矯正点付近での表面割れの発生を防止するための低コストの手法について提案することを目的とする。   Therefore, the present invention has an object to propose a low-cost method for preventing the occurrence of surface cracks in the vicinity of a bending straightening point of a continuous casting machine in continuous casting of steel.

さて、鋳片の表面割れの発生を防止するためには、連続鋳造機の曲げ矯正点通過時に鋳片表層の旧γ粒を微細にすることが効果的である。発明者らは、鋳型の直下における鋳片の熱履歴を当該鋼の組織と温度と時間との関係に応じて厳密に規定することによって、上記旧γ粒を微細化でき、表面割れの発生を防止できると考えた。
そこで、ラボ鋼塊に様々な熱履歴を与えた後、鋼の組織を観察した。その際、実際の連鋳機の二次冷却帯におけるスプレー水およびロールを模擬した冷却を行い、鋼塊表面は熱電対を設置して温度を測定し、また鋼塊内部はその表面の温度測定結果を基に伝熱計算によって推定し、熱履歴を確認した。
In order to prevent the occurrence of surface cracks in the slab, it is effective to make the old γ grains on the surface of the slab finer when the continuous casting machine passes the bending correction point. The inventors can refine the old γ grains by strictly defining the thermal history of the slab directly under the mold according to the relationship between the structure of the steel, temperature and time, and the occurrence of surface cracks. I thought it could be prevented.
Therefore, after giving various thermal histories to the lab steel ingot, the steel structure was observed. At that time, cooling is performed by simulating spray water and rolls in the secondary cooling zone of an actual continuous caster, and the temperature of the steel ingot surface is measured by installing a thermocouple. Estimated by heat transfer calculation based on the results, and confirmed the heat history.

その結果、二次冷却帯においてAr点より低くかつAr点より高い温度域まで冷却してAc1点以上の温度に復熱させる、という操作を2回以上繰り返し、その後、Ac点以上の温度まで復熱させることによって、通常の連続鋳造での熱履歴を与えた場合に比べて旧γ粒が平均で小さくなっていることが確認された。 As a result, in the secondary cooling zone, the operation of cooling to a temperature range lower than the Ar 3 point and higher than the Ar 1 point and returning to a temperature higher than the Ac 1 point is repeated twice or more, and then the Ac 3 point or higher It was confirmed that the old γ grains became smaller on average as compared with the case where the heat history in normal continuous casting was given by reheating to the temperature of.

さらに、Ar点より低い温度域まで冷却するに際し、該Ar点より低い温度域における滞留時間を5秒以上とすることによって、旧γ粒径はさらに小さくなるとともに、粒径のバラツキも低減された。これは、複数回にわたるAr点より低い温度域での滞留時間の合計が5秒以上でも同等の効果が得られた。この効果は、鋼塊の表面および内部によらず同等に得られた。 Furthermore, when cooling to a temperature range lower than the Ar 3 point, by setting the residence time in the temperature range lower than the Ar 3 point to 5 seconds or more, the old γ particle size is further reduced and the variation in the particle size is also reduced. It was done. The same effect was obtained even when the total residence time in the temperature range lower than the Ar 3 point was more than 5 seconds. This effect was obtained equally regardless of the surface and inside of the steel ingot.

本発明は、上記の知見に基づいてなされたものであって、その要旨構成は、次のとおりである。
1.溶鋼を鋳型に装入し、該鋳型から直接鋳片を引き抜く連続鋳造方法であって、前記鋳型の直下から曲げ矯正点に至る前において、前記鋳片の2mm深さ位置を、前記溶鋼のAr3点より低くかつAr1点より高い温度域まで冷却してAc1点以上の温度に復熱させることを2回以上繰り返したのち、前記溶鋼のAc3点以上の温度まで復熱させることを特徴とする鋼の連続鋳造方法。
ここで、前記2mm深さ位置とは、鋳片表面から垂直に鋳片内部に向かって2mm入った位置を示す。

The present invention has been made based on the above findings, and the gist of the present invention is as follows.
1. A continuous casting method in which molten steel is charged into a mold and the slab is drawn directly from the mold, and before reaching the bending correction point from directly below the mold, the 2 mm depth position of the slab is set at the Ar of the molten steel. Cooling to a temperature lower than 3 points and higher than the Ar 1 point and reheating to a temperature above the Ac 1 point is repeated twice or more, and then reheated to a temperature above the Ac 3 point of the molten steel. A method for continuous casting of steel.
Here, the 2 mm depth position refers to a position 2 mm vertically from the slab surface toward the inside of the slab.

2.前記溶鋼のAr点より低くかつAr点より高い温度域まで冷却するに際し、該Ar点より低くかつAr点より高い温度域における滞留時間を合計で5秒以上とすることを特徴とする前記1に記載の鋼の連続鋳造方法。 2. Upon cooling to a temperature range lower than and Ar 1 point than Ar 3 point of the molten steel, and characterized in that the residence time in total at least 5 seconds in a temperature range higher than the low and Ar 1 point than the Ar 3 point The continuous casting method for steel as described in 1 above.

3.前記溶鋼は、C:0.05−1.2mass%、Si:1.0mass%以下、Mn:0.4−2.0mass%およびAl:0.015−0.06mass%を含有し、残部Feおよび不可避不純物の成分組成を有することを特徴とする前記1または2に記載の連続鋳造方法。 3. The molten steel contains C: 0.05-1.2 mass%, Si: 1.0 mass% or less, Mn: 0.4-2.0 mass%, and Al: 0.015-0.06 mass%, and has a component composition of the balance Fe and inevitable impurities. 3. The continuous casting method as described in 1 or 2 above.

4.前記溶鋼は、さらに、Mo:0.6mass%以下、Ti:0.030mass%以下、Cr:1.0mass%以下、V:0.3mass%以下、Cu:1.0mass%以下、Nb:0.05mass%以下、Ni:1.0mass%以下およびB:0.004mass%以下の1種または2種以上を含有することを特徴とする前記3に記載の連続鋳造方法。 4). The molten steel further includes Mo: 0.6 mass% or less, Ti: 0.030 mass% or less, Cr: 1.0 mass% or less, V: 0.3 mass% or less, Cu: 1.0 mass% or less, Nb: 0.05 mass% or less, Ni: The continuous casting method as described in 3 above, wherein one or more of 1.0 mass% or less and B: 0.004 mass% or less are contained.

本発明によれば、C、V、NbおよびNiなどの、表面割れが発生しやすい成分を添加した鋼材を連続鋳造する際にも、該鋳片の表面割れの発生を抑止することができる。   According to the present invention, it is possible to suppress the occurrence of surface cracks in the slab even when continuously casting a steel material to which components such as C, V, Nb, and Ni that are liable to cause surface cracks are added.

連続鋳造機を示す図である。It is a figure which shows a continuous casting machine. 模式的な連続冷却変態線図である。It is a typical continuous cooling transformation diagram.

以下、本発明の連続鋳造方法について、図面を参照して、詳しく説明する。
さて、溶鋼は、垂直ベンディング型または、図1に示すような湾曲型の連続鋳造機を用いて連続鋳造されるが、その際、特に曲げ矯正点での矯正時に表面割れを誘発させないために、少なくとも鋳型直下の冷却帯において、以下に示す冷却パターンを経ることが肝要である。
Hereinafter, the continuous casting method of the present invention will be described in detail with reference to the drawings.
Now, the molten steel is continuously cast using a vertical bending type or a curved type continuous casting machine as shown in FIG. 1, and in this case, in order not to induce surface cracks particularly at the time of straightening at a bending straightening point, It is important to go through the following cooling pattern at least in the cooling zone directly under the mold.

なお、図1において、符号1は取鍋2内に装入した溶鋼であり、溶鋼1は取鍋2からタンディッシュ3そして浸漬ノズル4を介して、水冷鋳型5内に供給される。この水冷鋳型5にて冷却された溶鋼1は、凝固殻を作りながら鋳型5の出側へ導かれて鋳型5から引き抜かれ、鋳型5直下の2次冷却帯6にてさらに冷却されて凝固殻の成長を促進され、湾曲を強制されて水平方向に導かれてから、引き抜き矯正帯(曲げ矯正点)7において曲げの矯正がなされて連続鋳造鋳片となる。   In FIG. 1, reference numeral 1 denotes molten steel charged in the ladle 2, and the molten steel 1 is supplied from the ladle 2 through the tundish 3 and the immersion nozzle 4 into the water-cooled mold 5. The molten steel 1 cooled in the water-cooled mold 5 is guided to the exit side of the mold 5 while forming a solidified shell, and is extracted from the mold 5 and further cooled in the secondary cooling zone 6 immediately below the mold 5 to be solidified shell. The growth is promoted, the curve is forced and the film is guided in the horizontal direction, and then the bending is corrected in the drawing correction band (bending correction point) 7 to form a continuous cast slab.

すなわち、前記鋳型の直下において、より具体的には、2次冷却帯の開始点から矯正帯入口までの区間において、鋳片の表層を前記溶鋼のAr点より低くかつAr点より高い温度域まで冷却してAc1点以上の温度に復熱させることを2回以上繰り返したのち、前記溶鋼のAc点以上の温度まで復熱させることが肝要である。かような冷却および復熱を、2次冷却帯の開始点から矯正帯入口までの区間にて、完了する。 That is, immediately below the mold, more specifically, in the section from the start point of the secondary cooling zone to the correction zone inlet, the surface layer of the slab is at a temperature lower than the Ar 3 point and higher than the Ar 1 point of the molten steel. It is important to reheat to a temperature of 3 points or more of the molten steel after repeating the cooling to a temperature of 2 hours and reheating to a temperature of 1 point or more of Ac. Such cooling and recuperation are completed in a section from the start point of the secondary cooling zone to the correction zone entrance.

以下に、本発明に従う冷却パターンについて、詳しく説明する。
まず、鋳型5の直下から水やミストによる冷却を開始する。その冷却期間に、鋳片表層の温度が、溶鋼1のAr点より低くかつAr点より高く(Ar点未満かつAr点超の範囲)なるように、冷却水および/または冷却ミストの供給条件を適宜決定する。次いで、鋳片表層は、Ac1点以上の温度まで鋳片内未凝固溶鋼の熱により復熱させる。その際、復熱速度が速すぎるようであれば、冷却水、冷却ミストやロールによる冷却を行って穏やかに復熱させても構わない。
以上の操作を2回以上繰り返して行う。その後、Ac点以上の温度まで鋳片内未凝固溶鋼の熱により復熱させる。この復熱は、Ac1点をまたぐ前記冷却復熱の直後でも前記冷却復熱から間隔を置いてもよい。Ac点以上の温度までの復熱は、連続鋳造機の曲げ矯正帯、即ち、垂直曲げ型であれば曲げ帯、湾曲型であれば矯正帯、に至るまでに完了する必要がある。
Below, the cooling pattern according to this invention is demonstrated in detail.
First, cooling with water or mist is started immediately below the mold 5. During the cooling period, the cooling water and / or the cooling mist so that the temperature of the slab surface layer is lower than the Ar 3 point of the molten steel 1 and higher than the Ar 1 point (less than Ar 3 point and more than Ar 1 point). The supply conditions are appropriately determined. Next, the slab surface layer is reheated by the heat of the unsolidified molten steel in the slab to a temperature of Ac 1 point or higher. At that time, if the recuperation rate seems to be too fast, cooling with cooling water, a cooling mist or a roll may be performed to recuperate gently.
The above operation is repeated twice or more. Then, it is reheated by the heat of the unsolidified molten steel in the slab to a temperature of Ac 3 or higher. This recuperation may be immediately after the cooling recuperation across the Ac 1 point or at intervals from the cooling recuperation. The recuperation up to a temperature of Ac 3 points or more needs to be completed before reaching the bending straightening zone of the continuous casting machine, that is, the bending belt in the case of the vertical bending type and the straightening zone in the case of the curved type.

なお、曲げ矯正帯の入側温度は、本発明の熱履歴を取っていれば、鋳片表層の組織は微細になっており表面割れは発生しにくいため、特に限定する必要はないが、脆化域である温度域は避けた方がより好ましい。
また、冷却や復熱時の鋳片温度は、予め、冷却、復熱条件を変えた鋳造時に鋳片と共に熱電対を装入し、鋳片表面温度履歴を測定しておき、実際の鋳造時に、必要な温度履歴となる条件を選択すれば良い。
Note that the temperature at the entrance side of the bending straightening zone is not particularly limited since it has a heat history of the present invention, and the structure of the slab surface layer is fine and surface cracks are unlikely to occur. It is more preferable to avoid the temperature range, which is the conversion zone.
In addition, the slab temperature during cooling and recuperation is preliminarily determined by inserting a thermocouple together with the slab when casting under different cooling and reheating conditions, measuring the slab surface temperature history, and during actual casting. A condition that provides a necessary temperature history may be selected.

以上の鋳型の直下から曲げ矯正点に至る前における冷却温度制御について、CCT線図を模式的に示す図2を用いて詳しく説明する。
まず、該CCT線図としては、上記した鋼を用いて1400℃以上の温度から冷却した際のCCT線図を用いた。なぜなら、鋳型直下の2次冷却帯においては、1400℃以上の温度からの冷却になるため、1400℃以上の温度から冷却した際のCCT線図を用いる。
The cooling temperature control before reaching the bending correction point immediately below the mold will be described in detail with reference to FIG. 2 schematically showing a CCT diagram.
First, as the CCT diagram, a CCT diagram when cooled from a temperature of 1400 ° C. or higher using the above steel was used. Because, in the secondary cooling zone directly under the mold, the cooling starts from a temperature of 1400 ° C. or higher, so the CCT diagram when cooling from a temperature of 1400 ° C. or higher is used.

鋳型から引き抜かれた鋳片には、鋳型の直下の2次冷却帯において、表層部に対して冷却を施す。その際、鋳込む溶鋼のAr点より低くかつAr点より高い温度域まで冷却してAc1点以上の温度に復熱させることを2回以上繰り返したのち、前記溶鋼のAc点以上の温度まで復熱させる、前記したCCT線図に示す冷却パターンに従って冷却を行う。 The slab drawn from the mold is cooled on the surface layer portion in the secondary cooling zone immediately below the mold. At that time, after cooling to a temperature range lower than the Ar 3 point of the molten steel to be cast and higher than the Ar 1 point and reheating to a temperature of the Ac 1 point or higher, the molten steel is returned to the Ac 3 point or higher. Cooling is performed according to the cooling pattern shown in the above-mentioned CCT diagram, which is reheated to the above temperature.

まず、Ar点より低くかつAr点より高い温度域まで冷却してAc1点以上の温度に復熱させることを2回以上繰り返すのは、1回目の冷却復熱でできた組織から2回目の冷却で変態が重畳されるため、組織が複雑になり、その後の復熱時に、その組織を起点にオーステナイトが核生成するため、より微細な組織が得られるためである。なお、Ar点以下まで冷却することなく復熱させるのは、Ar点以下に冷却するには、莫大な二次冷却水量が必要でコストを要すること、また高速連続鋳造機の場合、上部の曲げ矯正帯に至るまでに急冷および復熱を行う時間を確保できないためである。 First, cooling to a temperature range lower than the Ar 3 point and higher than the Ar 1 point and reheating it to a temperature higher than the Ac 1 point is repeated twice or more from the structure formed by the first cooling recuperation. This is because since the transformation is superimposed by the second cooling, the structure becomes complicated, and austenite nucleates from the structure at the time of subsequent recuperation, so that a finer structure can be obtained. Reheating without cooling to below 1 point of Ar requires a huge amount of secondary cooling water and cost to cool down to below 1 point of Ar. In the case of a high-speed continuous casting machine, This is because it is not possible to secure time for rapid cooling and recuperation before reaching the bending straightening zone.

ここで、Ar点より低くかつAr点より高い温度域まで冷却するに当たって、Ar点より低くかつAr点より高い温度域に到達しさえすれば所期する効果は得られるが、Ar点より低くかつAr点より高い温度域における滞留時間を合計で5秒以上とすることによって、割れ抑制の効果をさらに高めることができる。すなわち、滞留時間を合計で5秒以上とすると、変態が十分に進行するため、その後、復熱した際にオーステナイト粒がより均一になり延性が増すためである。 Here, when cooled to a temperature range higher than the low and Ar 1 point than Ar 3 point, the effect is obtained that expected as long to reach the temperature range higher than the low and Ar 1 point than Ar 3 point, Ar By making the residence time in the temperature range lower than 3 points and higher than Ar 1 point in total 5 seconds or more, the effect of suppressing cracks can be further enhanced. That is, if the total residence time is 5 seconds or more, the transformation proceeds sufficiently, and then the austenite grains become more uniform and ductility increases when reheated.

さらに、Ar点未満の温度域はAr点−100℃以下とすることが好ましい。なぜなら、変態が100%完了するまでの時間が最短となるためである。 Furthermore, the temperature range of Ar less than 3 points is preferably set to Ar 3 point -100 ° C. or less. This is because the time to complete the transformation is 100%.

次に、Ac1点以上の温度に復熱させる。この復熱を行うことにより、冷却時に生成したフェライト粒界や冷却前からあるオーステナイト粒界から、オーステナイトが核生成し、フェライト、オーステナイトが入り乱れた複雑な組織となる。 Next, reheat to a temperature of Ac 1 point or higher. By performing this recuperation, austenite nucleates from the ferrite grain boundaries generated during cooling or austenite grain boundaries before cooling, and a complex structure is formed in which ferrite and austenite are mixed.

なお、繰り返しは、2回で十分な効果を期待できる上、連鋳機の二次冷却用スプレーの段数を超える回数にするには設備コストが増加するため、それ以下の回数とすることが好ましい。   It should be noted that it is preferable to set the number of repetitions to be less than the number of repetitions because a sufficient effect can be expected with two repetitions and the equipment cost increases to exceed the number of stages of the secondary cooling spray of the continuous casting machine. .

次に、Ac点以上の温度に復熱させる。この復熱を行うことにより、復熱中にフェライト−パーライト変態が起こり、さらに温度が上昇すると、フェライト−パーライトの粒界、ノジュール間から新たなオーステナイトが多数核生成して、Ac点に達したとき微細なオーステナイト単相になる。その後、鋳片は冷却されて、曲げ矯正点を通過するときには微細なオーステナイト組織になって延性があるため、割れにくくなる。 Next, it is reheated to a temperature of Ac 3 point or higher. By this recuperation, ferrite-pearlite transformation occurred during recuperation, and when the temperature rose further, a large number of new austenite nucleated from between the grain boundaries and nodules of ferrite-pearlite and reached Ac 3 point. Sometimes it becomes a fine austenite single phase. Thereafter, the slab is cooled, and when it passes through the bending correction point, it becomes a fine austenite structure and has ductility, so that it becomes difficult to break.

復熱速度については、特に限定する必要はないが、その下限については生産性を阻害しない速度域とすることが好ましい。   Although it is not necessary to specifically limit the recuperation speed, it is preferable to set the lower limit to a speed range that does not inhibit productivity.

なお、鋳型直下の2次冷却帯において、上記の冷却パターンに従う冷却を鋳片に施すには、冷却や復熱時の鋳片温度につき、予め、冷却、復熱条件を変えた鋳造時に鋳片と共に熱電対を装入し、鋳片表面温度履歴を測定しておき、実際に鋳造時に、必要な温度履歴となる条件を選択すれば良い。   In addition, in the secondary cooling zone directly under the mold, in order to perform cooling according to the above cooling pattern to the slab, the slab at the time of casting in which the cooling and reheating conditions were changed in advance for the slab temperature at the time of cooling and reheating. At the same time, a thermocouple is inserted, the slab surface temperature history is measured, and a condition that provides a necessary temperature history during casting is selected.

また、曲げ矯正点での温度は、本発明の熱履歴を取っていれば、鋳片表層の組織は微細になっており表面割れは発生しにくいため、特に限定する必要はないが、脆化域である850℃以下の温度域は避けた方がより好ましい。   In addition, the temperature at the bending straightening point is not particularly limited because the structure of the slab surface layer is fine and surface cracks are unlikely to occur if the thermal history of the present invention is taken. It is more preferable to avoid the temperature range of 850 ° C. or lower, which is a temperature range.

上記したようにCCT線図を用いる場合は、連続鋳造に供する溶鋼に応じたCCT線図を用いることは勿論であり、連続鋳造に供する溶鋼種毎にCCT線図を導入すればよい。   When using a CCT diagram as described above, it is a matter of course that a CCT diagram corresponding to the molten steel to be subjected to continuous casting is used, and a CCT diagram may be introduced for each molten steel type to be subjected to continuous casting.

ここで、溶鋼は、次の成分組成を有することが好ましい。
すなわち、C:0.05−1.2mass%、Si:1.0mass%以下、Mn:0.4−2.0mass%およびAl:0.015−0.06mass%を含有し、さらに必要に応じて、Mo:0.6mass%以下、Ti:0.030mass%以下、Cr:1.0mass%以下、V:0.3mass%以下、Cu:1.0mass%以下、Nb:0.05mass%以下、Ni:1.0mass%以下およびB:0.004mass%以下の1種または2種以上を含有し、残部がFeおよび不可避不純物の成分組成を有することが好ましい。
以下、基本成分から順に、含有量の限定理由について説明する。
Here, the molten steel preferably has the following component composition.
That is, it contains C: 0.05-1.2 mass%, Si: 1.0 mass% or less, Mn: 0.4-2.0 mass% and Al: 0.015-0.06 mass%, and Mo: 0.6 mass% or less, Ti if necessary. : 0.030 mass% or less, Cr: 1.0 mass% or less, V: 0.3 mass% or less, Cu: 1.0 mass% or less, Nb: 0.05 mass% or less, Ni: 1.0 mass% or less, and B: 0.004 mass% or less Or it is preferable that 2 or more types are contained and the remainder has the component composition of Fe and an unavoidable impurity.
Hereinafter, the reasons for limiting the content will be described in order from the basic component.

C:0.05−1.2mass%
Cは、強度を確保する観点から、0.05−1.2mass%の範囲とする。また、この範囲のC量の鋼は、連続鋳造の鋳込み時に割れが発生しやすいため、特に本発明の適用が有効になる。
C: 0.05-1.2 mass%
C is in the range of 0.05 to 1.2 mass% from the viewpoint of securing strength. Moreover, since the steel of C amount in this range is easily cracked during casting of continuous casting, the application of the present invention is particularly effective.

Si:1.0mass%以下(0mass%を含む)
Siは、1.0mass%を超えると、被削性および鍛造性を劣化する、おそれがあるから、1.0mass%以下とする。
Si: 1.0 mass% or less (including 0 mass%)
If Si exceeds 1.0 mass%, machinability and forgeability may be deteriorated, so 1.0 mass% or less is set.

Mn:0.4−2.0mass%
Mnは、強度を増加するため0.4mass%以上は必要であるが、2.0mass%を超えると、被削性および鍛造性を劣化する、おそれがあるから、2.0mass%以下とする。
Mn: 0.4-2.0mass%
Mn is required to be 0.4 mass% or more in order to increase the strength, but if it exceeds 2.0 mass%, the machinability and forgeability may be deteriorated, so the content is made 2.0 mass% or less.

Al:0.015−0.06mass%
Alは、鋼の脱酸剤として作用する他、加熱時のγ粒成長を抑制する効果があるため、0.015mass%以上は必要であるが、0.06mass%を超えると、被削性および疲労強度を劣化する、おそれがあるから、0.06mass%以下とする。
Al: 0.015-0.06 mass%
In addition to acting as a deoxidizer for steel, Al has the effect of suppressing γ grain growth during heating, so 0.015 mass% or more is necessary, but if it exceeds 0.06 mass%, machinability and fatigue strength May be degraded, so 0.06 mass% or less.

さらに、必要に応じて、Mo:0.6mass%以下、Ti:0.030mass%以下、Cr:1.0mass%以下、V:0.3mass%以下、Cu:1.0mass%以下、Nb:0.05mass%以下、Ni:1.0mass%以下およびB:0.004mass%以下の1種または2種以上を含有することが可能である。   Furthermore, as needed, Mo: 0.6 mass% or less, Ti: 0.030 mass% or less, Cr: 1.0 mass% or less, V: 0.3 mass% or less, Cu: 1.0 mass% or less, Nb: 0.05 mass% or less, Ni : 1.0 mass% or less and B: 0.004 mass% or less can be contained.

Mo:0.6mass%以下
Moは、強度を確保する上で有効であるが、0.6mass%を超えて添加すると、被削性を劣化する、おそれがある。
Mo: 0.6 mass% or less
Mo is effective in securing the strength, but if added over 0.6 mass%, the machinability may be deteriorated.

Ti:0.030mass%以下
Tiは、TiNとしてピンニングにより組織の微細化をはかる上で有効であり、好ましく0.005mass%以上で添加するが、0.030mass%を超えて添加すると、耐労強度を劣化する、おそれがある。
Ti: 0.030 mass% or less
Ti is effective for refining the structure by pinning as TiN, and is preferably added at 0.005 mass% or more. However, if it is added in an amount exceeding 0.030 mass%, there is a possibility that the work strength is deteriorated.

Cr:1.0mass%以下
Crは、焼入れ性の向上に有効であるが、1.0mass%を超えて添加すると、耐疲労強度を劣化する、おそれがある。
Cr: 1.0 mass% or less
Cr is effective in improving hardenability, but if added over 1.0 mass%, the fatigue strength may be deteriorated.

V:0.3mass%以下
Vは、炭化物を生成することにより、鋼材の強度を向上するのに有効であるが、0.3mass%を超えて添加すると、粗大な炭窒化物が生成して強度を低下させる、おそれがある。
V: 0.3 mass% or less V is effective in improving the strength of steel by generating carbides, but if added over 0.3 mass%, coarse carbonitrides are generated and the strength decreases. There is a fear.

Cu:1.0mass%以下
Cuは、固溶強化および析出強化による強度上昇に有効であり、かつ焼入れ性の向上に寄与するが、1.0mass%を超えて添加すると、被削性を劣化する、おそれがある。
Cu: 1.0 mass% or less
Cu is effective for increasing the strength by solid solution strengthening and precipitation strengthening, and contributes to the improvement of hardenability, but if added over 1.0 mass%, the machinability may be deteriorated.

Nb:0.05mass%以下
Nbは、析出によりγ粒をピンニングする効果があるが、0.05mass%を超えると効果が飽和するため、経済性の観点から0.05mass%以下とすることが好ましい。
Nb: 0.05 mass% or less
Nb has the effect of pinning the γ grains by precipitation, but if it exceeds 0.05 mass%, the effect is saturated. Therefore, Nb is preferably 0.05 mass% or less from the viewpoint of economy.

Ni:1.0mass%以下
Niは、強度および靭性の確保に有効であるが、1.0mass%を超えると効果が飽和するため、経済性の観点から1.0mass%以下とすることが好ましい。
Ni: 1.0 mass% or less
Ni is effective for securing strength and toughness, but if it exceeds 1.0 mass%, the effect is saturated, and therefore it is preferably 1.0 mass% or less from the viewpoint of economy.

B:0.004mass%以下
Bは、粒界強化により耐疲労特性を向上し、また焼入れ性を高めて強度上昇に寄与する成分であるが、0.04mass%を超えると効果が飽和するため、経済性の観点から0.04mass%以下とすることが好ましい。
B: 0.004 mass% or less B is a component that improves fatigue resistance by strengthening grain boundaries and contributes to increasing strength by increasing hardenability. However, if it exceeds 0.04 mass%, the effect is saturated, so economic efficiency From the viewpoint of the above, it is preferably 0.04 mass% or less.

C:0.12mass%、Si:0.18mass%、Mn:1.22mass%、Al:0.022mass%およびCr:0.03mass%を含有し、残部Feおよび不可避不純物の成分に調整した鋼から試験片を採取し、冷却速度0.2℃/sで冷却した際の膨張曲線からAr点:748℃およびAr点:602℃、さらに加熱時の膨張曲線からAc1点:739℃およびAc点:873℃と読み取った。
上記の結果に基づいて、表1に示す条件にて湾曲連鋳機で鋳造速度1.0m/minの鋳造を行った。この鋳造後の鋳片からサンプルを採取し、鋳片表面から2mm深さまでの位置での組織観察と、割れの有無の調査とを行った。その結果を、表1に併せて示す。
なお、組織観察は、サンプル表面を研磨後、ナイタールで腐食してから顕微鏡にて行った。割れの有無は、スラブ表面の黒皮を除去し、浸透探傷試験(JIS Z2343)にて行った。
C: 0.12 mass%, Si: 0.18 mass%, Mn: 1.22 mass%, Al: 0.022 mass% and Cr: 0.03 mass%, and specimens were collected from the steel adjusted to the balance of Fe and inevitable impurities From the expansion curve when cooled at a cooling rate of 0.2 ° C / s, Ar 3 points: 748 ° C and Ar 1 point: 602 ° C, and from the expansion curve during heating, Ac 1 point: 739 ° C and Ac 3 points: 873 ° C I read it.
Based on the above results, casting was performed at a casting speed of 1.0 m / min with a curved continuous caster under the conditions shown in Table 1. A sample was taken from the cast slab, and the structure was observed at a position from the slab surface to a depth of 2 mm, and the presence or absence of cracks was investigated. The results are also shown in Table 1.
The structure was observed with a microscope after the sample surface was polished and corroded with nital. For the presence or absence of cracks, the black skin on the surface of the slab was removed and the penetration test (JIS Z2343) was performed.

表1において、発明例1〜4は、鋳型直下でAr点より低くかつAr点より高い温度域まで冷却した後、Ac点以上の温度に復熱させることを2回以上行った後、その後、Ac点以上の温度に復熱させた例である。発明例1および3は、鋳片の表面から2mm深さ位置のAr点未満の温度での合計滞留時間が5秒未満であり、発明例2および4のそれは5秒以上である。 In Table 1, Invention Examples 1 to 4 were conducted after cooling to a temperature range lower than the Ar 3 point and higher than the Ar 1 point directly under the mold and then reheating to a temperature of the Ac 1 point or more twice or more. Then, it is an example of reheating to a temperature of Ac 3 points or higher. Inventive Examples 1 and 3 have a total residence time of less than 5 seconds at a temperature less than the Ar 3 point at a depth of 2 mm from the surface of the slab, and those of Inventive Examples 2 and 4 are 5 seconds or longer.

一方、比較例1および2は、冷却および復熱を1回行った例である。比較例3は、冷却および復熱を2回繰り返したが、2mm深さ位置では冷却および復熱が1回であった例である。比較例4は、冷却および復熱を2回行ったが、Ac点未満までの復熱を行った例である。 On the other hand, Comparative Examples 1 and 2 are examples in which cooling and recuperation were performed once. In Comparative Example 3, the cooling and the recuperation were repeated twice, but the cooling and the recuperation were performed once at the 2 mm depth position. In Comparative Example 4, cooling and recuperation were performed twice, but recuperation to less than Ac 3 points was performed.

Figure 0005854071
Figure 0005854071

表1に示すように、本発明に従う発明例は、全て割れは観察されなかったが、比較例では割れが発生していた。すなわち、発明例1および3は、鋳片表面に割れが観察されることはなく、表面から鋳片内部に向かって微細な旧γ粒が観察された。但し、2mm深さ位置では一部に粗大な旧γ粒も観察された。発明例2および4も、鋳片表面に割れが観察されることはなく、組織も表面および2mm深さ位置(表層)のいずれについても微細な旧γ粒が観察された。
一方、比較例では、鋳片表面で割れが観察され、比較例1、2および4では、粗大な旧γ粒が観察され、比較例3では微細な組織も観察されるが、粗大な粒も残存していた。
かように比較例で見られたような、フィルム状フェライトを伴うγ粒界は、発明例において消失し、フェライト粒径が細かくなったことも合わせて考えると、本発明によってオーステナイトは微細化されたものと考えられる。
As shown in Table 1, no cracks were observed in all of the inventive examples according to the present invention, but cracks occurred in the comparative examples. That is, in Invention Examples 1 and 3, no cracks were observed on the surface of the slab, and fine old γ grains were observed from the surface toward the inside of the slab. However, some coarse old γ grains were observed at a depth of 2 mm. In Invention Examples 2 and 4, no cracks were observed on the surface of the slab, and fine old γ grains were observed on both the surface and the 2 mm depth position (surface layer).
On the other hand, in the comparative example, cracks are observed on the surface of the slab. In Comparative Examples 1, 2 and 4, coarse old γ grains are observed, and in Comparative Example 3, a fine structure is also observed. It remained.
Thus, the γ grain boundary with film-like ferrite as seen in the comparative example disappeared in the invention example, and considering that the ferrite grain size became fine, austenite was refined by the present invention. It is thought that.

1 溶鋼
2 取鍋
3 タンディッシュ
4 浸漬ノズル
5 水冷鋳型
6 2次冷却帯
7 引き抜き矯正帯
DESCRIPTION OF SYMBOLS 1 Molten steel 2 Ladle 3 Tundish 4 Immersion nozzle 5 Water cooling mold 6 Secondary cooling zone 7 Drawing correction zone

Claims (4)

溶鋼を鋳型に装入し、該鋳型から直接鋳片を引き抜く連続鋳造方法であって、前記鋳型の直下から曲げ矯正点に至る前において、前記鋳片の2mm深さ位置を、前記溶鋼のAr3点より低くかつAr1点より高い温度域まで冷却してAc1点以上の温度に復熱させることを2回以上繰り返したのち、前記溶鋼のAc3点以上の温度まで復熱させることを特徴とする鋼の連続鋳造方法。 A continuous casting method in which molten steel is charged into a mold and the slab is drawn directly from the mold, and before reaching the bending correction point immediately below the mold, the 2 mm depth position of the slab is set at the Ar of the molten steel. Cooling to a temperature lower than 3 points and higher than the Ar 1 point and reheating to a temperature above the Ac 1 point is repeated twice or more, and then reheated to a temperature above the Ac 3 point of the molten steel. A method for continuous casting of steel. 前記溶鋼のAr3点より低くかつAr1点より高い温度域まで冷却するに際し、該Ar3点より低くかつAr1点より高い温度域における滞留時間を合計で5秒以上とすることを特徴とする請求項1に記載の鋼の連続鋳造方法。 Upon cooling to a temperature range lower than and Ar 1 point than Ar 3 point of the molten steel, and characterized in that the residence time in total at least 5 seconds in a temperature range higher than the low and Ar 1 point than the Ar 3 point The steel continuous casting method according to claim 1. 前記溶鋼は、C:0.05−1.2mass%、Si:1.0mass%以下、Mn:0.4−2.0mass%およびAl:0.015−0.06mass%を含有し、残部Feおよび不可避不純物の成分組成を有することを特徴とする請求項1または2に記載の連続鋳造方法。   The molten steel contains C: 0.05-1.2 mass%, Si: 1.0 mass% or less, Mn: 0.4-2.0 mass%, and Al: 0.015-0.06 mass%, and has a component composition of the balance Fe and inevitable impurities. The continuous casting method according to claim 1, wherein the method is continuous. 前記溶鋼は、さらに、Mo:0.6mass%以下、Ti:0.030mass%以下、Cr:1.0mass%以下、V:0.3mass%以下、Cu:1.0mass%以下、Nb:0.05mass%以下、Ni:1.0mass%以下およびB:0.004mass%以下の1種または2種以上を含有することを特徴とする請求項3に記載の連続鋳造方法。   The molten steel further includes Mo: 0.6 mass% or less, Ti: 0.030 mass% or less, Cr: 1.0 mass% or less, V: 0.3 mass% or less, Cu: 1.0 mass% or less, Nb: 0.05 mass% or less, Ni: The continuous casting method according to claim 3, comprising one or more of 1.0 mass% or less and B: 0.004 mass% or less.
JP2014055517A 2013-03-29 2014-03-18 Steel continuous casting method Active JP5854071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055517A JP5854071B2 (en) 2013-03-29 2014-03-18 Steel continuous casting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013074434 2013-03-29
JP2013074434 2013-03-29
JP2014055517A JP5854071B2 (en) 2013-03-29 2014-03-18 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2014208378A JP2014208378A (en) 2014-11-06
JP5854071B2 true JP5854071B2 (en) 2016-02-09

Family

ID=51902988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055517A Active JP5854071B2 (en) 2013-03-29 2014-03-18 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP5854071B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017014026B1 (en) * 2015-01-15 2021-02-02 Nippon Steel Corporation continuous plate casting method
CN110756756B (en) * 2019-10-10 2021-06-01 山东钢铁股份有限公司 Method for reducing generation rate of cracks on surface of hot-delivery casting blank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112058A (en) * 1986-10-28 1988-05-17 Mitsubishi Heavy Ind Ltd Continuous casting method
JPH08309404A (en) * 1995-05-15 1996-11-26 Nippon Steel Corp Method for preventing surface crack at the time of hot width drawing down rolling of continuously cast slab
JP3702807B2 (en) * 2001-04-11 2005-10-05 住友金属工業株式会社 Continuous casting method
DE102006056683A1 (en) * 2006-01-11 2007-07-12 Sms Demag Ag Continuous casting of metal profiles, first cools cast strip then permits thermal redistribution to re-heat surface before mechanical deformation
JP4923650B2 (en) * 2006-03-20 2012-04-25 Jfeスチール株式会社 Method for preventing surface cracks in continuous cast slabs

Also Published As

Publication number Publication date
JP2014208378A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
CN104662179B (en) Flat hot rolled bar product and its production method
CN106133173B (en) The excellent high strength cold rolled steel plate of property uniform in material and its manufacture method
JP5229823B2 (en) High-strength, high-toughness cast steel and method for producing the same
JP4808828B2 (en) Induction hardening steel and method of manufacturing induction hardening steel parts
EP2711439B1 (en) High carbon thin steel sheet and method for producing same
EP3222742B1 (en) Rolled steel bar or rolled wire material for cold-forged component
CA2967283C (en) Rolled steel bar or rolled wire rod for cold-forged component
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
EP3091097B1 (en) High-carbon hot-rolled steel sheet and method for producing same
EP3091098A1 (en) High-carbon hot-rolled steel sheet and method for producing same
CN113195768B (en) Wire rod capable of omitting softening heat treatment and method for producing same
JP5884479B2 (en) Steel continuous casting method
JP5928413B2 (en) Steel continuous casting method
JP2014043631A (en) Method of manufacturing fine grain steel sheet
JP5854071B2 (en) Steel continuous casting method
JPH0432514A (en) Production of soft wire rod free from surface abnormal phase in as-rolled state
JP2019504202A (en) Ultra-high strength hot-rolled steel sheet excellent in ductility and manufacturing method thereof
JP6509187B2 (en) High strength cold rolled steel sheet excellent in bending workability and manufacturing method thereof
JP6066023B1 (en) Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and hot-rolled steel sheet manufacturing method
JP6455287B2 (en) Manufacturing method of continuous cast slab
JP5920192B2 (en) Steel continuous casting method
JP5821794B2 (en) Hardened steel, its manufacturing method, and hardened steel
JP2015131311A (en) Method of hot-working steel material excellent in surface quality
JP5639494B2 (en) Manufacturing method of ferrite-pearlite type non-tempered forged parts
US20240216967A1 (en) Method for producing steel sheet for cold rolling and method for producing cold-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151123

R150 Certificate of patent or registration of utility model

Ref document number: 5854071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250