JP5853847B2 - Measuring method and apparatus for particle beam distribution - Google Patents

Measuring method and apparatus for particle beam distribution Download PDF

Info

Publication number
JP5853847B2
JP5853847B2 JP2012101797A JP2012101797A JP5853847B2 JP 5853847 B2 JP5853847 B2 JP 5853847B2 JP 2012101797 A JP2012101797 A JP 2012101797A JP 2012101797 A JP2012101797 A JP 2012101797A JP 5853847 B2 JP5853847 B2 JP 5853847B2
Authority
JP
Japan
Prior art keywords
particle beam
metal plate
beam irradiation
distribution
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012101797A
Other languages
Japanese (ja)
Other versions
JP2013228333A (en
Inventor
土居 真
真 土居
服部 巧
巧 服部
松本 徹
徹 松本
伸 萬城
伸 萬城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012101797A priority Critical patent/JP5853847B2/en
Publication of JP2013228333A publication Critical patent/JP2013228333A/en
Application granted granted Critical
Publication of JP5853847B2 publication Critical patent/JP5853847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、粒子線分布の測定方法及び装置に係り、特に、電子線照射装置の電子銃から発生する電子線の分布を測定する際に用いるのに好適な、粒子線分布の測定方法及び装置に関する。   The present invention relates to a particle beam distribution measuring method and apparatus, and more particularly to a particle beam distribution measuring method and apparatus suitable for measuring the distribution of an electron beam generated from an electron gun of an electron beam irradiation apparatus. About.

電子線照射装置においては、電子線照射領域で電子線強度が空間的に揺らぐと被照射物の照射量が局所的にばらつく。したがって、電子線照射量の空間分布を、高精度で測定することが望ましい。そこで特許文献1には、電子線照射装置の照射窓の外部に、照射窓の短辺に沿う棒状のコレクタ電極(電流測定素子)を設け、該コレクタ電極を照射窓の長辺方向に平行移動させて、該コレクタ電極に流れる電流から電子線の分布を測定することが記載されている。   In the electron beam irradiation apparatus, when the electron beam intensity fluctuates spatially in the electron beam irradiation region, the irradiation amount of the irradiated object varies locally. Therefore, it is desirable to measure the spatial distribution of the electron beam dose with high accuracy. Therefore, in Patent Document 1, a rod-like collector electrode (current measuring element) is provided outside the irradiation window of the electron beam irradiation apparatus along the short side of the irradiation window, and the collector electrode is translated in the long side direction of the irradiation window. The distribution of the electron beam is measured from the current flowing through the collector electrode.

また、特許文献2には、電子線照射窓の直下に電流測定素子を二次元的に多数配列して、各電流測定素子に流れる電流を測定することにより、照射領域での電子線電流の空間分布を測定することが記載されている。   Further, in Patent Document 2, a plurality of current measuring elements are two-dimensionally arranged immediately below an electron beam irradiation window, and the current flowing through each current measuring element is measured. It is described to measure the distribution.

特開平11−248893号公報Japanese Patent Laid-Open No. 11-248893 特開2001−221897号公報JP 2001-221897 A

しかしながら、特許文献1に記載されたような走査測定では、測定に時間がかかる、また、特許文献1に記載された走査測定、特許文献2に記載された配列測定共、電流測定素子の大きさ(サイズ)の分解能しか得られないため、分解能が悪い。特許文献2に記載された多数配列は、小素子を細かく多数配置すると分解能が上がるが、測定が複雑で、非常に高価な装置、システムとなる。   However, in the scanning measurement described in Patent Document 1, it takes time to perform the measurement. In addition, the scanning measurement described in Patent Document 1 and the array measurement described in Patent Document 2 are the same in size of the current measuring element. Since only (size) resolution can be obtained, the resolution is poor. In the multi-array described in Patent Document 2, the resolution increases when a large number of small elements are arranged finely, but the measurement is complicated and a very expensive apparatus or system is obtained.

一方、図1に示す参考例の如く、カソードである電子銃(以降カソード電子銃と称する)10から放出される電子12を、アノードである透明導電性ガラス(以降アノードガラスと称する)16の導電性を有する表面の真空側に塗布した蛍光体14に衝突させて、アノードガラス16の裏側(図では下側)から蛍光分布を測定することが考えられる。   On the other hand, as in the reference example shown in FIG. 1, electrons 12 emitted from a cathode electron gun (hereinafter referred to as a cathode electron gun) 10 are transferred to a transparent conductive glass (hereinafter referred to as anode glass) 16 as an anode. It is conceivable to measure the fluorescence distribution from the back side (the lower side in the figure) of the anode glass 16 by colliding with the phosphor 14 applied on the vacuum side of the surface having the property.

しかしながら、蛍光体14が真空側に塗布されているため、蛍光体14からガスが放出されて真空度が低下すると、放電が発生し、カソードが急激に劣化する。また、高電圧・高電流下では、アノードガラス16が損傷し、真空が破壊されるため、測定困難である等の問題点を有していた。したがって、この方法では、最大電圧が20〜30kV、パルスや走査を含めた平均電流密度が10μA/cm2程度であり、アノードガラス16への最大入熱が0.2〜0.3W/cm2レベルまでしか適用することができない。 However, since the phosphor 14 is applied to the vacuum side, when gas is released from the phosphor 14 and the degree of vacuum decreases, discharge occurs and the cathode deteriorates rapidly. Further, under high voltage and high current, the anode glass 16 is damaged and the vacuum is broken, so that there are problems such as difficulty in measurement. Therefore, in this method, the maximum voltage is 20 to 30 kV, the average current density including pulses and scanning is about 10 μA / cm 2 , and the maximum heat input to the anode glass 16 is 0.2 to 0.3 W / cm 2. It can only be applied up to the level.

本発明は、前記従来の問題点を解消するべくされたもので、電流測定素子を用いることなく、高電圧、高出力の粒子線の簡便かつ高精度な分布測定を可能とすることを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and it is an object to enable easy and highly accurate distribution measurement of a high-voltage, high-power particle beam without using a current measuring element. To do.

本発明は、粒子線照射装置から照射された粒子線の分布の測定方法であって、前記粒子線照射装置の粒子線照射部の真空と大気の境界または透過窓の大気側に、前記粒子線照射部から大気中に照射された全ての粒子線を受ける金属板とシンチレータとカメラ順次配置し、前記金属板に粒子線を全て衝突させてX線を発生させ、前記金属板で発生したX線を、前記シンチレータで光に変換し、該シンチレータから発生する光を前記カメラでとらえるようにして前記課題を解決したものである。 The present invention relates to a method for measuring the distribution of particle beams irradiated from a particle beam irradiation apparatus, wherein the particle beam is applied to a boundary between a vacuum and an atmosphere of a particle beam irradiation unit of the particle beam irradiation apparatus or an atmosphere side of a transmission window. sequentially arranged a metal plate and a scintillator and a camera for receiving all of the particle beam emitted to the atmosphere from the irradiation unit, all colliding a particle beam to said metal plate to generate X-rays, generated in the metal plate X line, was converted into light by the scintillator is the light generated from the scintillator as capture by the camera that has solved the above problems.

本発明は、また、粒子線照射装置から照射された粒子線の分布の測定装置であって、前記粒子線照射装置の粒子線照射部の真空と大気の境界または透過窓の大気側に、前記粒子線照射部から大気中に照射された全ての粒子線を受ける金属板と、全ての粒子線の衝突により該金属板で発生したX線を光に変換するためのシンチレータと、該シンチレータから発生する光をとらえるカメラと、を順次備えたことを特徴とする粒子線分布の測定装置を提供するものである。 The present invention is also a device for measuring the distribution of particle beams irradiated from a particle beam irradiation device, wherein the particle beam irradiation unit of the particle beam irradiation device has a vacuum-atmosphere boundary or a transmission window on the atmosphere side . a metal plate subjected to any particle beam emitted to the atmosphere from the particle beam irradiation section, and the scintillators to convert the X-rays generated in the metal plate on the light by the collision of all of the particle beam, from said scintillator It is an object of the present invention to provide a particle beam distribution measuring apparatus comprising a camera that captures generated light in sequence .

ここで、前記金属板を冷却する手段を更に備えることができる。   Here, a means for cooling the metal plate may be further provided.

本発明によれば、粒子線を小さな電流測定素子で受けるのではなく、一枚の大きな金属板で全ての粒子線を受ける。また、粒子線によって生じる電流を測定するのではなく、発生したX線を大気側に配置したシンチレータを用いてカメラで瞬時に測定する。これにより、照射分布全体を、大気側で、高速且つ高分解能で一瞬で測定でき、安価である。   According to the present invention, the particle beam is not received by a small current measuring element, but is received by a single large metal plate. In addition, the current generated by the particle beam is not measured, but the generated X-ray is instantaneously measured by a camera using a scintillator arranged on the atmosphere side. As a result, the entire irradiation distribution can be measured instantaneously at high speed and with high resolution on the atmosphere side, and is inexpensive.

アノードガラスに塗布した蛍光体により電子線分布を測定する参考例の構成を示す断面図Sectional drawing which shows the structure of the reference example which measures an electron beam distribution with the fluorescent substance apply | coated to anode glass 本発明に係る粒子線分布測定の実施形態を示す断面図Sectional drawing which shows embodiment of particle beam distribution measurement which concerns on this invention 同じくX線が発生している状態を示す断面図Cross-sectional view showing a state where X-rays are also generated 粒子線分布測定装置の実施例の構成を示す断面図及び平面図Sectional drawing and top view which show the structure of the Example of a particle beam distribution measuring apparatus. 同じく電子銃の構成を示す図The figure which similarly shows the constitution of the electron gun 測定結果の例を示す図Figure showing an example of measurement results

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態においては、図2に示す如く、カソード電子銃10で発生した電子12を、真空と大気の境界または透過窓18の大気側に配置した金属板20で受ける。この金属板20の電子衝突部と反対側には、X線が入射すると蛍光を発生するシンチレータ22を配置し、このシンチレータ22から発生した光を高感度カメラあるいは通常のCCDカメラ24でとらえる。図において、25は、CCDカメラ24のカメラフードである。   In the present embodiment, as shown in FIG. 2, the electrons 12 generated by the cathode electron gun 10 are received by a metal plate 20 disposed on the boundary between the vacuum and the atmosphere or on the atmosphere side of the transmission window 18. A scintillator 22 that generates fluorescence when X-rays enter is disposed on the opposite side of the metal plate 20 from the electron collision portion, and the light generated from the scintillator 22 is captured by a high-sensitivity camera or a normal CCD camera 24. In the figure, reference numeral 25 denotes a camera hood of the CCD camera 24.

前記金属板20で制動あるいは特性X線21が発生する様子を図3に示す。この金属板20の材質としては、例えばSUS304ステンレス板、銅、ニッケル系合金や、X線量を増やすために真空側にタングステンを蒸着したものなどを用いることができる。金属板20の厚さとしては、電子線の加速エネルギーやエネルギー密度によりX線の発散性や金属板の冷却性を考慮して最適化されるが、加速エネルギー20〜200keVの範囲において0.1〜5.0mm程度が好ましい。X線は発散性を持つため板厚が薄いほど高分解能の蛍光測定が可能であるが、電子線の加熱冷却が難しくなる。一方、板厚が厚いほど冷却性が良くなるが分解能が悪くなる。適用される電流密度によって最適な板厚を選定する必要がある。また、電子線のエネルギーが高いほどX線は収束し分解能が高くなるが、加熱や高X線量となることを考慮すると板厚を厚くする必要がある。漏洩X線の管理や安全性の観点から、板厚を厚くし大気側X線量を少なくしたほうが良い。   FIG. 3 shows a state in which braking or characteristic X-rays 21 are generated in the metal plate 20. As the material of the metal plate 20, for example, a SUS304 stainless steel plate, copper, a nickel-based alloy, or a material obtained by evaporating tungsten on the vacuum side in order to increase the X-ray dose can be used. The thickness of the metal plate 20 is optimized in consideration of the X-ray divergence and the cooling property of the metal plate depending on the acceleration energy and energy density of the electron beam, but is 0.1 in the range of acceleration energy of 20 to 200 keV. About -5.0 mm is preferable. X-rays are divergent, so that the thinner the plate thickness, the higher the resolution of fluorescence measurement possible, but the more difficult it is to heat and cool the electron beam. On the other hand, the thicker the plate, the better the cooling performance but the lower the resolution. It is necessary to select the optimum plate thickness according to the applied current density. Further, the higher the energy of the electron beam, the more the X-ray converges and the resolution becomes higher, but it is necessary to increase the plate thickness in consideration of heating and a high X-ray dose. From the viewpoint of leakage X-ray management and safety, it is better to increase the plate thickness and reduce the atmospheric X-ray dose.

前記シンチレータ22としては、例えば医療用や工業用で製品化されている一般的なシンチレータ、X線用蛍光体、医療X線増感紙などを用いることができる。高価ではあるがエネルギー密度の高い場合にはセラミックタイプのシンチレータを用いたほうが良い。   As the scintillator 22, for example, a general scintillator commercialized for medical use or industrial use, an X-ray phosphor, a medical X-ray intensifying screen, or the like can be used. If it is expensive but the energy density is high, it is better to use a ceramic type scintillator.

前記CCDカメラ24としては、例えば一般的なモノクロカメラを用いることができるが、天体観測等に用いられる冷却型高感度CCDカメラやデジタル処理を行い易いカメラが好ましい。   As the CCD camera 24, for example, a general monochrome camera can be used, but a cooled high-sensitivity CCD camera used for astronomical observation or the like or a camera that can easily perform digital processing is preferable.

本発明に係る電子線分布測定装置の実施例の構成を図4(a)(断面図)、(b)(平面図)に示す。図において、26は取付フランジ、28は、X線が外部に漏れるのを防ぐための鉛ガラス、30は冷却用配管、31は撮影するためのカメラ用暗箱である。   The configuration of an embodiment of the electron beam distribution measuring apparatus according to the present invention is shown in FIGS. 4 (a) (sectional view) and (b) (plan view). In the figure, 26 is a mounting flange, 28 is a lead glass for preventing X-rays from leaking to the outside, 30 is a cooling pipe, and 31 is a camera dark box for photographing.

本実施形態においては、カソード電子銃が、図5に例示するような、例えばCNT(カーボンナノチューブ)でなる37個のカソード電子銃10をハニカム状に配置した電子銃ユニット10aを7個配置したものとなっており、これに合わせて、金属板20も、各電子銃ユニット10a毎のカソード電子銃10の集合に対応する部分と、各電子銃ユニット10aの間に冷却水を流す通路20aの部分とを有している。図において、10bは電子銃ホルダである。   In the present embodiment, the cathode electron gun has seven electron gun units 10a in which 37 cathode electron guns 10 made of, for example, CNT (carbon nanotube) are arranged in a honeycomb shape as illustrated in FIG. Accordingly, the metal plate 20 also has a portion corresponding to the set of cathode electron guns 10 for each electron gun unit 10a and a portion of the passage 20a through which cooling water flows between the electron gun units 10a. And have. In the figure, 10b is an electron gun holder.

このようにして冷却水通路20aを設けることにより、金属板20を負荷に応じて冷却することができる。   By providing the cooling water passage 20a in this way, the metal plate 20 can be cooled according to the load.

実施例の測定結果を図6(a)、(b)に示す。図6(a)および(b)は、加速電圧40kV、出力電流3.5mA(出力140W)の電子線測定結果である。X線を発生させるための金属板20として、0.5mm厚さのSUS304ステンレス板を用い、シンチレータ22として、デジタルX線撮影装置に用いられる三菱化学製X線用蛍光体DRZ−HIGH(蛍光体:酸硫化ガドリニウム)を使用した。図6(a)は金属板20とシンチレータ22の距離を10mmとした場合の結果であり、ピンボケの画像となっている。これは40kVの加速電圧では電子線エネルギーが低く、約30〜45度の角度でX線が発散しているためである。図6(b)は金属板20とシンチレータ22の距離を約1mmとした場合の結果であり、37×7=259個の各電子銃ユニット10からの電子線分布が的確に測定できている。図6(b)の測定画像データをデジタル処理化して二次元強度分布にした結果が図6(c)であり、出力分布を明確に比較できることがわかる。   The measurement result of an Example is shown to Fig.6 (a), (b). FIGS. 6A and 6B show electron beam measurement results with an acceleration voltage of 40 kV and an output current of 3.5 mA (output 140 W). As the metal plate 20 for generating X-rays, a 0.5 mm thick SUS304 stainless steel plate is used, and as the scintillator 22, X-ray phosphor DRZ-HIGH (phosphor for use in a digital X-ray imaging apparatus) : Gadolinium oxysulfide). FIG. 6A shows the result when the distance between the metal plate 20 and the scintillator 22 is 10 mm, and is a defocused image. This is because the electron beam energy is low at an acceleration voltage of 40 kV, and X-rays diverge at an angle of about 30 to 45 degrees. FIG. 6B shows the result when the distance between the metal plate 20 and the scintillator 22 is about 1 mm, and the electron beam distribution from each of the 37 × 7 = 259 electron gun units 10 can be accurately measured. The result of converting the measured image data of FIG. 6B into a two-dimensional intensity distribution by digital processing is FIG. 6C, and it can be seen that the output distributions can be clearly compared.

なお、前記実施形態においては、本発明が電子線分布の測定に適用されていたが、本発明の適用対象はこれに限定されず、イオンビームを含む荷電粒子線等の粒子線一般の測定が可能である。また、透過窓を有さない粒子線照射装置の場合にも適用することが可能である。   In the above embodiment, the present invention is applied to the measurement of electron beam distribution. However, the application target of the present invention is not limited to this, and general particle beam measurement such as charged particle beams including ion beams can be performed. Is possible. The present invention can also be applied to a particle beam irradiation apparatus that does not have a transmission window.

10…カソード電子銃
10a…電子銃ユニット
10b…電子銃ホルダ
12…電子
14…蛍光体
16…透明導電性ガラス(アノードガラス)
18…透過窓
20…金属板
20a…冷却水通路
21…X線
22…シンチレータ
24…CCDカメラ
25…カメラフード
26…取付フランジ
28…鉛ガラス
30…冷却用配管
31…カメラ用暗箱
DESCRIPTION OF SYMBOLS 10 ... Cathode electron gun 10a ... Electron gun unit 10b ... Electron gun holder 12 ... Electron 14 ... Phosphor 16 ... Transparent conductive glass (anode glass)
DESCRIPTION OF SYMBOLS 18 ... Transmission window 20 ... Metal plate 20a ... Cooling water passage 21 ... X-ray 22 ... Scintillator 24 ... CCD camera 25 ... Camera hood 26 ... Mounting flange 28 ... Lead glass 30 ... Cooling piping 31 ... Dark box for camera

Claims (3)

粒子線照射装置から照射された粒子線の分布の測定方法であって、
前記粒子線照射装置の粒子線照射部の真空と大気の境界または透過窓の大気側に、前記粒子線照射部から大気中に照射された全ての粒子線を受ける金属板とシンチレータとカメラ順次配置し、
前記金属板に粒子線を全て衝突させてX線を発生させ、
前記金属板で発生したX線を、前記シンチレータで光に変換し、
該シンチレータから発生する光を前記カメラでとらえることを特徴とする粒子線分布の測定方法。
A method for measuring the distribution of particle beams irradiated from a particle beam irradiation apparatus,
A metal plate , a scintillator, and a camera that sequentially receive all the particle beams irradiated from the particle beam irradiation unit to the atmosphere on the boundary between the vacuum and the atmosphere of the particle beam irradiation unit of the particle beam irradiation apparatus or the atmosphere side of the transmission window. Place and
X-rays are generated by colliding all the particle beams with the metal plate ,
The X-rays generated in the metal plate, is converted into light by the scintillator,
Measurement method of particle beam distribution, characterized in that capture light generated from the scintillator by the camera.
粒子線照射装置から照射された粒子線の分布の測定装置であって、
前記粒子線照射装置の粒子線照射部の真空と大気の境界または透過窓の大気側に
前記粒子線照射部から大気中に照射された全ての粒子線を受ける金属板と、
全ての粒子線の衝突により該金属板で発生したX線を光に変換するためのシンチレータと、
該シンチレータから発生する光をとらえるカメラと、
順次備えたことを特徴とする粒子線分布の測定装置。
A device for measuring the distribution of particle beams irradiated from a particle beam irradiation device,
On the boundary between the vacuum and the atmosphere of the particle beam irradiation unit of the particle beam irradiation apparatus or the atmosphere side of the transmission window ,
A metal plate that receives all the particle beams irradiated into the atmosphere from the particle beam irradiation unit ;
And scintillators for converting the optical X-rays generated in the metal plate by the impact of all of the particle beam,
A camera that captures light generated from the scintillator;
Is a particle beam distribution measuring device.
前記金属板を冷却する手段をさらに備えたことを特徴とする請求項2に記載の粒子線分布の測定装置。   3. The particle beam distribution measuring apparatus according to claim 2, further comprising means for cooling the metal plate.
JP2012101797A 2012-04-26 2012-04-26 Measuring method and apparatus for particle beam distribution Active JP5853847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101797A JP5853847B2 (en) 2012-04-26 2012-04-26 Measuring method and apparatus for particle beam distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101797A JP5853847B2 (en) 2012-04-26 2012-04-26 Measuring method and apparatus for particle beam distribution

Publications (2)

Publication Number Publication Date
JP2013228333A JP2013228333A (en) 2013-11-07
JP5853847B2 true JP5853847B2 (en) 2016-02-09

Family

ID=49676092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101797A Active JP5853847B2 (en) 2012-04-26 2012-04-26 Measuring method and apparatus for particle beam distribution

Country Status (1)

Country Link
JP (1) JP5853847B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605147B (en) * 2013-11-22 2016-02-03 中国航空工业集团公司北京航空制造工程研究所 Based on assay method and the system of the multi-dimensional electronic beam energy density of edge integration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345153A (en) * 1980-07-30 1982-08-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low intensity X-ray and gamma-ray spectrometer
JP2728986B2 (en) * 1991-06-05 1998-03-18 三菱電機株式会社 Radiation monitor
JPH05100040A (en) * 1991-10-04 1993-04-23 Mitsubishi Electric Corp Beam scraper device
JP5116014B2 (en) * 2007-06-21 2013-01-09 株式会社リガク Small-angle wide-angle X-ray measurement system

Also Published As

Publication number Publication date
JP2013228333A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
EP1995757B1 (en) Multi x-ray generator and multi-radiography system
US9786465B2 (en) Apparatuses and methods for generating distributed x-rays
US8488737B2 (en) Medical X-ray imaging system
US20120027173A1 (en) Structured electron emitter for coded source imaging with an x-ray tube
US9431206B2 (en) X-ray generation tube, X-ray generation device including the X-ray generation tube, and X-ray imaging system
JP2015180859A (en) photon counting CT apparatus
CN104000616A (en) Multiradiation generation apparatus and radiation imaging system
TWI399780B (en) X-ray source comprising a field emission cathode
Neculaes et al. Multisource inverse‐geometry CT. Part II. X‐ray source design and prototype
JP6104526B2 (en) X-ray tube and X-ray CT apparatus
US8629606B2 (en) Liquid anode radiation source
KR20140013403A (en) X-ray photograph apparatus and the method for photographing thereof
JP5486762B2 (en) Method and system for a multifocal X-ray system
Frutschy et al. High power distributed x-ray source
US8295434B2 (en) X-ray imaging method and x-ray imaging system
EP3906856A1 (en) X-ray imaging system
JP5853847B2 (en) Measuring method and apparatus for particle beam distribution
JP4693358B2 (en) X-ray inspection system and method of operating the same
JP2006255089A (en) X-ray computer tomography apparatus
Frutschy et al. X-ray multisource for medical imaging
JP2003151795A (en) Surface focus x-ray tube and homogeneous x-ray equipment using poly-capillary
JP6168770B2 (en) Radiation generation unit and radiography system
Maddox et al. Devloping High Energy Radiography for HED Experiments on NIF and Omega-EP
Zhao AN INVESTIGATION OF THE BEAM MONITOR FOR THE CLUSTER KLYSTRON.
CN109671605A (en) Fixed anode type X-ray tube

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151123

R150 Certificate of patent or registration of utility model

Ref document number: 5853847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350