JP5853265B2 - Lubrication target part diagnosis method - Google Patents

Lubrication target part diagnosis method Download PDF

Info

Publication number
JP5853265B2
JP5853265B2 JP2011175358A JP2011175358A JP5853265B2 JP 5853265 B2 JP5853265 B2 JP 5853265B2 JP 2011175358 A JP2011175358 A JP 2011175358A JP 2011175358 A JP2011175358 A JP 2011175358A JP 5853265 B2 JP5853265 B2 JP 5853265B2
Authority
JP
Japan
Prior art keywords
wear
resin
lubrication
predetermined
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011175358A
Other languages
Japanese (ja)
Other versions
JP2013036942A (en
Inventor
川畑 雅彦
雅彦 川畑
佐々木 義憲
義憲 佐々木
義一郎 林
義一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2011175358A priority Critical patent/JP5853265B2/en
Publication of JP2013036942A publication Critical patent/JP2013036942A/en
Application granted granted Critical
Publication of JP5853265B2 publication Critical patent/JP5853265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

本発明は、潤滑対象部診断方法に関し、さらに詳しくは、樹脂摺動材を備える潤滑対象部を高精度に診断することができる潤滑対象部診断方法に関する。   The present invention relates to a lubrication target part diagnosis method, and more particularly to a lubrication target part diagnosis method capable of diagnosing a lubrication target part including a resin sliding material with high accuracy.

従来より、水車発電機等で用いられるすべり軸受けでは、起動・停止時の低速時にすべり面に形成される油膜厚さが薄くなりやすく、流体潤滑と固体接触が混在している混合潤滑や一部で金属接触が発生する境界潤滑などが発生することで軸受け表面が粗大化して焼き付きや焼損等の損傷につながることがある。そこで、ホワイトメタル等の金属製すべり軸受けに比べて耐摩耗性及び摺動性に優れた樹脂製すべり軸受けの導入がすすんでいる。   Conventionally, in sliding bearings used in water turbine generators, etc., the oil film formed on the sliding surface tends to be thin at low speeds when starting and stopping, and mixed lubrication and partly mixed fluid lubrication and solid contact In this case, boundary lubrication or the like where metal contact occurs may cause the bearing surface to become coarse and cause damage such as seizure or burnout. Therefore, introduction of resin-made sliding bearings, which are superior in wear resistance and slidability as compared with metallic sliding bearings such as white metal, has been promoted.

ここで、従来の金属製すべり軸受けの診断方法として、摩擦・摩耗で発生する金属摩耗粒子等を検査することで潤滑状態を診断する方法が知られている(例えば、特許文献1及び2参照)。上記特許文献1には、フェログラフィにより潤滑状態を診断する方法が開示されている。また、上記特許文献2には、油中金属元素濃度分析により潤滑状態を診断する方法が開示されている。これら特許文献1及び2の技術によると、すべり軸受けの定期点検周期やオーバーホール実施周期などの最適化を図ることができる。しかしながら、これら特許文献1及び2の技術は、金属粒子を検査対象としているため、上述の樹脂製すべり軸受けに適用することができない。   Here, as a conventional method for diagnosing a metal sliding bearing, there is known a method for diagnosing a lubrication state by inspecting metal wear particles and the like generated by friction and wear (see, for example, Patent Documents 1 and 2). . Patent Document 1 discloses a method for diagnosing a lubrication state by ferrography. Patent Document 2 discloses a method for diagnosing a lubrication state by analyzing the concentration of metal elements in oil. According to these techniques of Patent Documents 1 and 2, it is possible to optimize the periodic inspection cycle and overhaul execution cycle of the slide bearing. However, since the technique of these patent documents 1 and 2 makes the inspection object a metal particle, it cannot apply to the above-mentioned resin sliding bearing.

特開2004−20444号公報JP 2004-20444 A 特開2003−344293号公報JP 2003-344293 A

本発明は、上記現状に鑑みてなされたものであり、樹脂摺動材を備える潤滑対象部を高精度に診断することができる潤滑対象部診断方法を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a lubrication target portion diagnosis method capable of diagnosing a lubrication target portion including a resin sliding material with high accuracy.

本発明者らは、摩耗粒子の大きさ及び種類と樹脂摺動材を備える潤滑対象部の潤滑状態との間に特有の相関関係があることを知見して、本発明を完成するに到った。
上記問題を解決するために、請求項1に記載の発明は、補強繊維を含む樹脂摺動材を備える潤滑対象部診断方法であって、潤滑流体中に含まれる摩耗粒子の大きさ及び種類に基づいて前記潤滑対象部を診断する第1診断処理工程を備え、前記第1診断処理工程は、潤滑流体中に、前記補強繊維からなる棒状の繊維摩耗粒子が含まれ、且つ、最大長さが所定の数値範囲の上限値を超える終期的樹脂摩耗粒子が含まれている場合に、前記潤滑対象部の潤滑状態が異常であると判定し、潤滑流体中に、前記繊維摩耗粒子及び前記終期的樹脂摩耗粒子が含まれておらず、且つ、最大長さが前記所定の数値範囲内である中期的樹脂摩耗粒子が含まれている場合に、前記潤滑対象部の潤滑状態が要注意であると判定し、潤滑流体中に、前記繊維摩耗粒子、前記終期的樹脂摩耗粒子及び前記中期的樹脂摩耗粒子が含まれておらず、且つ、最大長さが前記所定の数値範囲の下限値未満である初期的樹脂摩耗粒子が含まれている場合に、前記潤滑対象部の潤滑状態が正常であると判定することを要旨とする。
請求項2に記載の発明は、請求項1記載において、前記樹脂摺動材の摩耗深さ及び摩耗速度に基づいて前記潤滑対象部を診断する第2診断処理工程を備え、前記第2診断処理工程は、熱分解クロマトグラフィにより分析される潤滑流体中の樹脂成分濃度に基づいて、前記樹脂摺動材の摩耗深さ(Dp)、及び該摩耗深さの時間経過に伴う変化率を示す摩耗速度(Wsp)を算出する工程を備え、前記摩耗深さ(Dp)が所定の第1基準値(C1)を超えた場合に、前記潤滑対象部の潤滑状態が異常であると判定し、前記摩耗速度(Wsp)が所定の第2基準値(C2)を超え、且つ、前記摩耗深さ(Dp)が前記所定の第1基準値より小さな所定の第3基準値(C3)以下である場合に、前記潤滑対象部の潤滑状態が要注意であると判定し、前記摩耗深さ(Dp)が前記所定の第1基準値(C1)以下であるか、又は前記摩耗速度(Wsp)が前記所定の第2基準値(C2)以下である場合に、前記潤滑対象部の潤滑状態が正常であると判定することを要旨とする。
請求項3に記載の発明は、請求項2記載において、前記摩耗速度(Wsp)が前記所定の第2基準値(C2)を超え、且つ、前記摩耗深さ(Dp)が前記所定の第3基準値(C3)を超えた場合に、前記樹脂摺動材が使用限界を超えていると判定することを要旨とする。
The present inventors have found that there is a specific correlation between the size and type of wear particles and the lubrication state of the lubrication target portion provided with the resin sliding material, and have completed the present invention. It was.
In order to solve the above-mentioned problem, the invention according to claim 1 is a method for diagnosing a lubrication target part including a resin sliding material including a reinforcing fiber, and the size and type of wear particles contained in the lubricating fluid. A first diagnostic processing step of diagnosing the lubrication target portion based on the first diagnostic processing step, wherein the lubricating fluid contains rod-like fiber wear particles made of the reinforcing fibers and has a maximum length. When the final resin wear particles exceeding the upper limit of the predetermined numerical range are included, it is determined that the lubrication state of the lubrication target portion is abnormal, and the fiber wear particles and the final wear particles are contained in the lubricating fluid. When the resin wear particles are not included, and the medium length resin wear particles whose maximum length is within the predetermined numerical range are included, the lubrication state of the lubrication target portion is a caution. Determining, in the lubricating fluid, said fiber wear particles, When the final resin wear particles and the medium-term resin wear particles are not included, and the initial resin wear particles whose maximum length is less than the lower limit of the predetermined numerical range are included, The gist is to determine that the lubrication state of the lubrication target portion is normal.
The invention according to claim 2 includes a second diagnosis processing step of diagnosing the lubrication target portion based on the wear depth and wear speed of the resin sliding material according to claim 1, and the second diagnosis processing. The process is based on the resin component concentration in the lubricating fluid analyzed by pyrolysis chromatography, and the wear depth (Dp) of the resin sliding material and the wear rate indicating the rate of change of the wear depth over time. (Wsp) is calculated, and when the wear depth (Dp) exceeds a predetermined first reference value (C1), it is determined that the lubrication state of the lubrication target portion is abnormal, and the wear is performed. When the speed (Wsp) exceeds a predetermined second reference value (C2) and the wear depth (Dp) is equal to or less than a predetermined third reference value (C3) smaller than the predetermined first reference value. , It is determined that the lubrication state of the lubrication target part needs attention, When the wear depth (Dp) is not more than the predetermined first reference value (C1) or the wear speed (Wsp) is not more than the predetermined second reference value (C2), the lubrication target The gist is to determine that the lubrication state of the part is normal.
According to a third aspect of the present invention, in the second aspect, the wear rate (Wsp) exceeds the predetermined second reference value (C2), and the wear depth (Dp) is the predetermined third value. The gist is that when the reference value (C3) is exceeded, it is determined that the resin sliding material exceeds the use limit.

本発明の潤滑対象部診断方法によると、潤滑流体中に繊維摩耗粒子及び終期的樹脂摩耗粒子が含まれている場合に、潤滑対象部の潤滑状態が異常であると判定され、潤滑流体中に、繊維摩耗粒子及び終期的樹脂摩耗粒子が含まれておらず、且つ、中期的樹脂摩耗粒子が含まれている場合に、潤滑対象部の潤滑状態が要注意であると判定され、潤滑流体中に、繊維摩耗粒子、終期的樹脂摩耗粒子及び中期的樹脂摩耗粒子が含まれておらず、且つ、初期的樹脂摩耗粒子が含まれている場合に、潤滑対象部の潤滑状態が正常であると判定される。このように、摩耗粒子の大きさ及び種類に基づいて潤滑対象部を診断するようにしたので、樹脂摺動材を備える潤滑対象部を高精度に診断することができる。
また、熱分解クロマトグラフィにより分析される潤滑流体中の樹脂成分濃度に基づいて、前記樹脂摺動材の摩耗深さ(Dp)、及び該摩耗深さの時間経過に伴う変化率を示す摩耗速度(Wsp)を算出する工程を備え、前記摩耗深さ(Dp)が所定の第1基準値(C1)を超えた場合に、前記潤滑対象部の潤滑状態が異常であると判定し、前記摩耗速度(Wsp)が所定の第2基準値(C2)を超え、且つ、前記摩耗深さ(Dp)が前記所定の第1基準値より小さな所定の第3基準値(C3)以下である場合に、前記潤滑対象部の潤滑状態が要注意であると判定し、前記摩耗深さ(Dp)が前記所定の第1基準値(C1)以下であるか、又は前記摩耗速度(Wsp)が前記所定の第2基準値(C2)以下である場合に、前記潤滑対象部の潤滑状態が正常であると判定する場合は、摩耗粒子の大きさ及び種類に加えて、樹脂摺動材の摩耗深さ(Dp)及び摩耗速度(Wsp)に基づいて潤滑対象部が診断されるので、潤滑対象部を更に高精度に診断できる。
さらに、前記摩耗速度(Wsp)が前記所定の第2基準値(C2)を超え、且つ、前記摩耗深さ(Dp)が前記所定の第3基準値(C3)を超えた場合に、前記樹脂摺動材が使用限界を超えていると判定する場合は、潤滑対象部を更に高精度に診断できる。
According to the lubrication target part diagnosis method of the present invention, when the lubricating fluid contains fiber wear particles and final resin wear particles, it is determined that the lubrication state of the lubrication target part is abnormal, and the lubricating fluid contains When the fiber wear particles and the final resin wear particles are not included, and the medium-term resin wear particles are included, it is determined that the lubrication state of the lubrication target portion needs attention, and in the lubricating fluid If the fiber wear particles, the final resin wear particles and the medium resin wear particles are not included, and the initial resin wear particles are included, the lubrication state of the lubrication target part is normal. Determined. As described above, since the lubrication target portion is diagnosed based on the size and type of the wear particles, the lubrication target portion including the resin sliding material can be diagnosed with high accuracy.
Further, based on the resin component concentration in the lubricating fluid analyzed by pyrolysis chromatography, the wear depth (Dp) of the resin sliding material and the wear rate indicating the rate of change of the wear depth over time ( Wsp), and when the wear depth (Dp) exceeds a predetermined first reference value (C1), it is determined that the lubrication state of the lubrication target portion is abnormal, and the wear rate (Wsp) exceeds a predetermined second reference value (C2) and the wear depth (Dp) is equal to or smaller than a predetermined third reference value (C3) smaller than the predetermined first reference value. It is determined that the lubrication state of the lubrication target part needs attention, and the wear depth (Dp) is equal to or less than the predetermined first reference value (C1), or the wear rate (Wsp) is the predetermined value. When the second reference value (C2) or less, When determining that the state is normal, the lubrication target part is diagnosed based on the wear depth (Dp) and wear speed (Wsp) of the resin sliding material in addition to the size and type of the wear particles. The lubrication target part can be diagnosed with higher accuracy.
Further, when the wear rate (Wsp) exceeds the predetermined second reference value (C2) and the wear depth (Dp) exceeds the predetermined third reference value (C3), the resin When it is determined that the sliding material exceeds the use limit, the lubrication target portion can be diagnosed with higher accuracy.

本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
実施例に係るすべり軸受部の第1診断処理を示すフローチャート図である。 実施例に係るすべり軸受部の第2診断処理を示すフローチャート図である。 実施例に係るすべり軸受(PEEK材)の摩耗粒子を顕微赤外分光装置(顕微FT−IR)で観察した結果の画像処理図である。 実施例に係るすべり軸受(PTFE材)の摩耗粒子を顕微赤外分光装置(顕微FT−IR)で観察した結果の画像処理図である。 実施例に係るすべり軸受(PEEK材)の摩耗粒子を走査型電子顕微鏡(SEM)で観察した結果の画像処理図であり、(a)は初期的摩耗粒子を示し、(b)(c)は中期的摩耗粒子を示す。 実施例に係るすべり軸受(PEEK材)の摩耗粒子を走査型電子顕微鏡(SEM)で観察した結果の画像処理図であり、(a)〜(c)は終期的摩耗粒子を示す。 実施例に係るすべり軸受(PTFE材)の摩耗粒子を走査型電子顕微鏡(SEM)で観察した結果の画像処理図であり、(a)は初期的摩耗粒子を示し、(b)(c)は中期的摩耗粒子を示す。 実施例に係るすべり軸受(PTFE材)の摩耗粒子を走査型電子顕微鏡(SEM)で観察した結果の画像処理図であり、(a)〜(c)は終期的摩耗粒子を示す。
The present invention will be further described in the following detailed description with reference to the drawings referred to, with reference to non-limiting examples of exemplary embodiments according to the present invention. Similar parts are shown throughout the several figures.
It is a flowchart figure which shows the 1st diagnostic process of the sliding bearing part which concerns on an Example. It is a flowchart figure which shows the 2nd diagnostic process of the sliding bearing part which concerns on an Example. It is an image processing figure of the result of having observed the wear particle | grains of the slide bearing (PEEK material) which concerns on an Example with a micro infrared spectroscopy apparatus (micro FT-IR). It is an image processing figure of the result of having observed the abrasion particle of the slide bearing (PTFE material) which concerns on an Example with a micro infrared spectroscopy apparatus (micro FT-IR). It is an image processing figure of the result of having observed the wear particle of the slide bearing (PEEK material) which concerns on an Example with a scanning electron microscope (SEM), (a) shows initial wear particle, (b) (c) Shows medium-term wear particles. It is an image processing figure of the result of having observed the wear particle of the plain bearing (PEEK material) which concerns on an Example with a scanning electron microscope (SEM), (a)-(c) shows a terminal wear particle. It is an image processing figure of the result of having observed the wear particle of the slide bearing (PTFE material) which concerns on an Example with a scanning electron microscope (SEM), (a) shows an initial wear particle, (b) (c). Shows medium-term wear particles. It is an image processing figure of the result of having observed the wear particle of the slide bearing (PTFE material) which concerns on an Example with a scanning electron microscope (SEM), (a)-(c) shows a terminal wear particle.

ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。   The items shown here are exemplary and illustrative of the embodiments of the present invention, and are the most effective and easy-to-understand explanations of the principles and conceptual features of the present invention. It is stated for the purpose of providing what seems to be. In this respect, it is not intended to illustrate the structural details of the present invention beyond what is necessary for a fundamental understanding of the present invention. It will be clear to those skilled in the art how it is actually implemented.

1.潤滑対象部診断方法
本実施形態1.に係る潤滑対象部診断方法は、補強繊維を含む樹脂摺動材を備える潤滑対象部診断方法であって、潤滑流体中に、補強繊維からなる棒状の繊維摩耗粒子が含まれ、且つ、最大長さが所定の数値範囲の上限値を超える終期的樹脂摩耗粒子が含まれている場合に、潤滑対象部の潤滑状態が異常であると判定し、潤滑流体中に、繊維摩耗粒子及び終期的樹脂摩耗粒子が含まれておらず、且つ、最大長さが所定の数値範囲内である中期的樹脂摩耗粒子が含まれている場合に、潤滑対象部の潤滑状態が要注意であると判定し、潤滑流体中に、繊維摩耗粒子、終期的樹脂摩耗粒子及び中期的樹脂摩耗粒子が含まれておらず、且つ、最大長さが所定の数値範囲の下限値未満である初期的樹脂摩耗粒子が含まれている場合に、潤滑対象部の潤滑状態が正常であると判定することを特徴とする(例えば、図2等参照)。なお、上記「含まれておらず」とは、対象となる摩耗粒子が全く含まれていない状態の他に、対象となる摩耗粒子が全摩耗粒子の個数の3%(特に1%)未満である状態も含むものとする。
1. Lubrication target part diagnosis method Embodiment 1 The lubrication target part diagnosis method according to the present invention is a lubrication target part diagnosis method comprising a resin sliding material including reinforcing fibers, and the lubricating fluid contains rod-like fiber wear particles made of reinforcing fibers and has a maximum length. When the final resin wear particles exceeding the upper limit of the predetermined numerical range are included, it is determined that the lubrication state of the lubrication target part is abnormal, and the fiber wear particles and the final resin are contained in the lubricating fluid. When the wear particles are not included, and the medium length resin wear particles whose maximum length is within a predetermined numerical range are included, it is determined that the lubrication state of the lubrication target portion needs attention, Lubricating fluid does not contain fiber wear particles, final resin wear particles, and medium-term resin wear particles, and includes initial resin wear particles whose maximum length is less than the lower limit of the predetermined numerical range. The lubrication condition of the lubrication target part is normal. Determining characterized by (for example, see 2, etc. Figure). The term “not included” means that the target wear particles are less than 3% (particularly 1%) of the total number of wear particles, in addition to the state where the target wear particles are not included at all. Some states are also included.

上記樹脂摺動材としては、例えば、PEEK(ポリエーテルエーテルケトン)、PTFE(ポリテトラフルオロエチレン)、POM(ポリアセタール)、PF(フェノール)、PI(ポリイミド)、PAI(ポリアミドイミド)等の基材に補強繊維を含有してなるものを挙げることができる。特に、大型回転機の軸受等で使用される樹脂摺動材としては、PEEK又はPTFEに補強繊維(例えば、炭素繊維、ガラス繊維等)を含有してなり、機械的強度、摺動特性及び耐摩耗性等の改善を図ったものであることが好ましい。   Examples of the resin sliding material include substrates such as PEEK (polyetheretherketone), PTFE (polytetrafluoroethylene), POM (polyacetal), PF (phenol), PI (polyimide), PAI (polyamideimide), and the like. And those containing reinforcing fibers. In particular, as a resin sliding material used for a bearing of a large rotating machine, PEEK or PTFE contains a reinforcing fiber (for example, carbon fiber, glass fiber, etc.), and has mechanical strength, sliding characteristics and resistance. It is preferable to improve the wear and the like.

上記所定の数値範囲は、例えば、その下限値が5〜50μm(特に7〜30μm)であり、その上限値が20〜100μm(特に30〜80μm)であることができる。特に、上記樹脂摺動材がPEEK樹脂からなる場合、上記所定の数値範囲は、例えば、その下限値が10〜30μm(特に15〜25μm)であり、その上限値が40〜80μm(特に50〜70μm)であることができる。また、上記樹脂摺動材がPTFE樹脂からなる場合、上記所定の数値範囲は、例えば、その下限値が5〜20μm(特に7〜15μm)であり、その上限値が20〜60μm(特に30〜50μm)であることができる。また、上記繊維摩耗粒子の最大長さは、例えば、10〜60μm(更に15〜55μm、特に20〜50μm)であることができる。例えば、上記樹脂摺動材が補強繊維としてカーボンファイバを含むPEEK樹脂からなる場合、上記繊維摩耗粒子(カーボンファイバ)の最大長さは、10〜30μm(更に15〜25μm、特に17〜23μm)であることができる。また、例えば、上記樹脂摺動材が補強繊維としてガラスファイバを含むPTFE樹脂からなる場合、上記繊維摩耗粒子(ガラスファイバ)の最大長さは、10〜60μm(更に15〜55μm、特に20〜50μm)であることができる。   For example, the predetermined numerical range may have a lower limit of 5 to 50 μm (particularly 7 to 30 μm) and an upper limit of 20 to 100 μm (particularly 30 to 80 μm). In particular, when the resin sliding material is made of PEEK resin, the predetermined numerical range is, for example, a lower limit of 10 to 30 μm (particularly 15 to 25 μm) and an upper limit of 40 to 80 μm (particularly 50 to 50 μm). 70 μm). When the resin sliding material is made of PTFE resin, the predetermined numerical range is, for example, a lower limit of 5 to 20 μm (especially 7 to 15 μm) and an upper limit of 20 to 60 μm (particularly 30 to 30 μm). 50 μm). Moreover, the maximum length of the said fiber abrasion particle can be 10-60 micrometers (further 15-55 micrometers, especially 20-50 micrometers), for example. For example, when the resin sliding material is made of PEEK resin containing carbon fibers as reinforcing fibers, the maximum length of the fiber wear particles (carbon fibers) is 10 to 30 μm (further 15 to 25 μm, particularly 17 to 23 μm). Can be. For example, when the resin sliding material is made of PTFE resin containing glass fibers as reinforcing fibers, the maximum length of the fiber wear particles (glass fibers) is 10 to 60 μm (further 15 to 55 μm, particularly 20 to 50 μm). ).

本実施形態1.に係る潤滑対象部診断方法としては、例えば、熱分解クロマトグラフィにより分析される潤滑流体中の樹脂成分濃度に基づいて、樹脂摺動材の摩耗深さ(Dp)、及び摩耗深さの時間経過に伴う変化率を示す摩耗速度(Wsp)を算出する工程(ステップ1〜3)を備え、摩耗深さ(Dp)が所定の第1基準値(C1)を超えた場合に、潤滑対象部の潤滑状態が異常であると判定し、摩耗速度(Wsp)が所定の第2基準値(C2)を超え、且つ、摩耗深さ(Dp)が所定の第1基準値より小さな所定の第3基準値(C3)以下である場合に、潤滑対象部の潤滑状態が要注意であると判定し、摩耗深さ(Dp)が所定の第1基準値(C1)以下であるか、又は摩耗速度(Wsp)が所定の第2基準値(C2)以下である場合に、潤滑対象部の潤滑状態が正常であると判定する形態(例えば、図1等参照)を挙げることができる。   Embodiment 1 As a method for diagnosing the lubrication target part, for example, based on the resin component concentration in the lubricating fluid analyzed by pyrolysis chromatography, the wear depth (Dp) of the resin sliding material and the time course of the wear depth are determined. A step (steps 1 to 3) for calculating a wear rate (Wsp) indicating a rate of change accompanying the lubrication, and when the wear depth (Dp) exceeds a predetermined first reference value (C1), It is determined that the state is abnormal, the wear rate (Wsp) exceeds a predetermined second reference value (C2), and the wear depth (Dp) is a predetermined third reference value smaller than the predetermined first reference value. (C3) If it is less than or equal to, it is determined that the lubrication state of the lubrication target portion needs attention, and the wear depth (Dp) is less than or equal to a predetermined first reference value (C1) or the wear rate (Wsp ) Is less than or equal to a predetermined second reference value (C2), Embodiment determined slip condition is normal (e.g., see FIG. 1 and the like) can be mentioned.

上述の形態では、例えば、上記摩耗速度(Wsp)が所定の第2基準値(C2)を超え、且つ、摩耗深さ(Dp)が所定の第3基準値(C3)を超えた場合に、樹脂摺動材が使用限界を超えていると判定することができる(例えば、図1等参照)。   In the above-described embodiment, for example, when the wear rate (Wsp) exceeds a predetermined second reference value (C2) and the wear depth (Dp) exceeds a predetermined third reference value (C3), It can be determined that the resin sliding material exceeds the use limit (see, for example, FIG. 1).

本実施形態1.に係る潤滑対象部診断方法としては、例えば、顕微赤外分光装置(顕微FT−IR)を用いて摩耗粒子の成分を同定するとともに摩耗粒子を観察する工程(ステップS11)と、走査型電子顕微鏡又は透過型電子顕微鏡を用いて摩耗粒子を観察する工程(ステップS14)と、を備える形態(例えば、図2等参照)を挙げることができる。これにより、摩耗粒子を正確に観察でき、潤滑対象部の診断精度が更に高められる。   Embodiment 1 As a method for diagnosing a lubrication target portion according to the present invention, for example, a component of wear particles is identified using a micro infrared spectrometer (micro FT-IR) and the wear particles are observed (step S11), and a scanning electron microscope is used. Or the form (for example, refer FIG. 2 etc.) provided with the process (step S14) of observing an abrasion particle using a transmission electron microscope can be mentioned. As a result, the wear particles can be observed accurately, and the diagnostic accuracy of the lubrication target portion is further enhanced.

以下、図面を用いて実施例により本発明を具体的に説明する。なお、本実施例では、本発明に係る「潤滑対象部」としてすべり軸受部を例示する。   Hereinafter, the present invention will be specifically described with reference to the drawings. In the present embodiment, a plain bearing portion is illustrated as the “lubrication target portion” according to the present invention.

(1)すべり軸受部診断方法
本実施例におけるすべり軸受部診断方法は、PEEK製のすべり軸受(本発明に係る「樹脂摺動材」として例示する)又はPTFE製のすべり軸受(本発明に係る「樹脂摺動材」として例示する)を備えるすべり軸受部の診断方法である。この診断方法は、以下に述べる摩耗深さ及び摩耗速度による第1診断処理(図1参照)と、摩耗粒子の大きさ及び種類による第2診断処理(図2参照)と、を備えている。
(1) Sliding bearing portion diagnosis method The sliding bearing portion diagnosis method in this embodiment is a PEEK sliding bearing (exemplified as a “resin sliding material” according to the present invention) or a PTFE sliding bearing (according to the present invention). This is a method for diagnosing a sliding bearing portion provided as an example of “resin sliding material”. This diagnosis method includes a first diagnosis process (see FIG. 1) based on the wear depth and wear speed described below (see FIG. 1) and a second diagnosis process (see FIG. 2) based on the size and type of wear particles.

上記第1診断処理は、図1に示すように、熱分解クロマトグラフィにより潤滑オイル(本発明に係る「潤滑流体」として例示する。)中の樹脂成分濃度を分析する工程(ステップS1)と、分析された樹脂成分濃度に基づいてすべり軸受の摩耗深さDpを算出する工程(ステップS2)と、この摩耗深さDpに基づいて摩耗速度Wspを算出する工程(ステップS3)と、を備えている。上記摩耗深さDpは、以下に示す数式(1)により算出され、摩耗速度Wspは、以下に示す数式(2)により算出される。   As shown in FIG. 1, the first diagnostic process includes a step (step S1) of analyzing a resin component concentration in lubricating oil (exemplified as “lubricating fluid” according to the present invention) by pyrolysis chromatography, and analysis. A step of calculating the wear depth Dp of the plain bearing based on the resin component concentration (step S2), and a step of calculating the wear speed Wsp based on the wear depth Dp (step S3). . The wear depth Dp is calculated by the following formula (1), and the wear speed Wsp is calculated by the following formula (2).

なお、上記すべり軸受(PEEK)では、試料油100ml中のPEEKの摩耗粒子を0.8μm銀製フィルタにより分離抽出し、フィルタ上に捕捉した摩耗粒子をフィルタごと加熱分解装置に投入し、ガスクロマトグラフィでフェノール濃度を測定する。また、上記すべり軸受(PTFE)では、試料油100ml中のPTFEの摩耗粒子を0.8μmメンブランフィルタにより分離抽出し、フィルタ上に捕捉した摩耗粒子をフィルタごと加熱分解装置に投入し、イオンクロマトグラフィでフッ素濃度を測定する。   In the above-mentioned plain bearing (PEEK), PEEK wear particles in 100 ml of sample oil are separated and extracted by a 0.8 μm silver filter, and the wear particles trapped on the filter are put together with the filter into a thermal decomposition apparatus. Measure the phenol concentration. Moreover, in the above-mentioned slide bearing (PTFE), PTFE wear particles in 100 ml of sample oil are separated and extracted by a 0.8 μm membrane filter, and the wear particles trapped on the filter are put into a thermal decomposition apparatus together with the filter. Measure the fluorine concentration.

また、上記第1診断処理は、摩耗深さDpと所定の第1基準値C1とを比較する第1比較工程(ステップS4)と、摩耗速度Wspと所定の第2基準値C2とを比較する第2比較工程(ステップS7)と、この第2比較工程の比較結果に応じて摩耗深さDpと所定の第3基準値C3(第3基準値C3<第1基準値C1)とを比較する第3比較工程(ステップS8)と、を備えている。上記第1基準値C1は、すべり軸受の使用限界を迎える摩耗深さを示す適当な値とされている。また、第2基準値C2は、すべり軸受部の運転時間として残りどのくらい使用すると使用限界となるかを示す適当な値とされている。さらに、第3基準値C3は、すべり軸受部の摩耗が進行しつつある領域の摩耗深さを示す適当な値とされている。   In the first diagnosis process, the first comparison step (step S4) for comparing the wear depth Dp with a predetermined first reference value C1, and the wear speed Wsp with a predetermined second reference value C2. The wear depth Dp and a predetermined third reference value C3 (third reference value C3 <first reference value C1) are compared with the second comparison step (step S7) and the comparison result of the second comparison step. A third comparison step (step S8). The first reference value C1 is an appropriate value indicating the wear depth that reaches the limit of use of the slide bearing. Further, the second reference value C2 is an appropriate value indicating how much the remaining remaining operating time of the sliding bearing portion is used. Further, the third reference value C3 is an appropriate value indicating the wear depth in the region where the wear of the sliding bearing portion is proceeding.

そして、第1比較工程において摩耗深さDpが所定の第1基準値C1未満の場合(ステップS4でNo判定)には、すべり軸受部の潤滑状態が健全(即ち、正常)であると判定する(ステップS5)。一方、第1比較工程において摩耗深さDpが所定の第1基準値C1を超えた場合(ステップS4でYes判定)には、すべり軸受部の潤滑状態が異常である(即ち、すべり軸受部の点検実施が必要である)と判定する(ステップS6)。   In the first comparison step, when the wear depth Dp is less than the predetermined first reference value C1 (No determination in step S4), it is determined that the lubrication state of the sliding bearing portion is healthy (that is, normal). (Step S5). On the other hand, when the wear depth Dp exceeds the predetermined first reference value C1 in the first comparison step (Yes in step S4), the lubrication state of the slide bearing portion is abnormal (that is, the slide bearing portion It is determined that inspection is necessary) (step S6).

また、第2比較工程において摩耗速度Wspが所定の第2基準値C2未満の場合(ステップS7でNo判定)には、すべり軸受部の潤滑状態が健全(即ち、正常)であると判定する(ステップS5)。一方、第2比較工程において摩耗速度Wspが所定の第2基準値C2を超え(ステップS7でYes判定)且つ第3比較工程において摩耗深さDpが所定の第3基準値C3未満の場合(ステップS8でNo判定)には、すべり軸受部の潤滑状態が要注意である(即ち、すべり軸受部の診断周期の短縮が必要である)と判定する(ステップS9)。さらに、第2比較工程において摩耗速度Wspが所定の第2基準値C2を超え(ステップS7でYes判定)且つ第3比較工程において摩耗深さDpが所定の第3基準値C3を超えた場合(ステップS8でYes判定)には、すべり軸受部が使用限界を超えていると判定する(ステップS10)。   Further, when the wear speed Wsp is less than the predetermined second reference value C2 in the second comparison step (No determination in step S7), it is determined that the lubrication state of the sliding bearing portion is healthy (that is, normal) ( Step S5). On the other hand, when the wear speed Wsp exceeds the predetermined second reference value C2 in the second comparison process (Yes in step S7) and the wear depth Dp is less than the predetermined third reference value C3 in the third comparison process (step If the lubrication state of the sliding bearing portion needs attention (that is, it is necessary to shorten the diagnostic cycle of the sliding bearing portion) (No in S8) (step S9). Furthermore, when the wear speed Wsp exceeds the predetermined second reference value C2 in the second comparison step (Yes in step S7) and the wear depth Dp exceeds the predetermined third reference value C3 in the third comparison step ( In step S8 (Yes determination), it is determined that the sliding bearing portion exceeds the use limit (step S10).

上記第2診断処理は、図2に示すように、顕微赤外分光装置(顕微FT−IR)を用いて潤滑オイル中の摩耗粒子の成分を同定するとともに摩耗粒子を観察する第1観察工程(ステップS11)と、その観察結果に基づいて中期的摩耗粒子の有無を判定する工程(ステップS12)と、走査型電子顕微鏡(SEM)を用いて潤滑オイル中の摩耗粒子を観察する第2観察工程(ステップS14)と、その観察結果に基づいて終期的摩耗粒子の有無を判定する工程(ステップS15)と、を備えている。   As shown in FIG. 2, the second diagnostic process includes a first observation step of identifying the components of the wear particles in the lubricating oil and observing the wear particles using a micro infrared spectrometer (micro FT-IR) ( Step S11), a step of determining the presence or absence of medium-term wear particles based on the observation results (Step S12), and a second observation step of observing the wear particles in the lubricating oil using a scanning electron microscope (SEM) (Step S14) and a step of determining the presence or absence of final wear particles based on the observation result (step S15).

なお、上記第1観察工程では、試料油中の摩耗粒子をフィルタにより分離抽出し、フィルタをそのまま顕微赤外分光装置にセットし、フィルタ上の摩耗粒子を1個ずつ分析する。ここで、上記すべり軸受(PEEK)では、上記第1観察工程において、図3に示すように、樹脂成分が同定されるとともに、摩耗粒子が観察される。一方、上記すべり軸受(PTFE)では、上記第1観察工程において、図4に示すように、樹脂成分が同定されるとともに、摩耗粒子が観察される。   In the first observation step, wear particles in the sample oil are separated and extracted by a filter, the filter is set as it is in a micro infrared spectrometer, and the wear particles on the filter are analyzed one by one. Here, in the sliding bearing (PEEK), in the first observation step, as shown in FIG. 3, the resin component is identified and the wear particles are observed. On the other hand, in the slide bearing (PTFE), in the first observation step, as shown in FIG. 4, the resin component is identified and the wear particles are observed.

上記すべり軸受(PEEK)では、初期的摩耗粒子として、図5(a)に示すように、最大長さが20μm未満のフレーク状であり、非常に薄い樹脂摩耗粒子が観察される。また、中期的摩耗粒子として、図5(b)(c)に示すように、最大長さが20〜60μmのフレーク状の樹脂摩耗粒子が観測される。さらに、終期的摩耗粒子として、図6(a)(b)に示すように、すべり軸受に含まれる最大長さが20μm前後のカーボンファイバー(補強繊維)からなる棒状の繊維摩耗粒子が観察されたり、図6(c)に示すように、最大長さが60μmを超える大型サイズの樹脂摩耗粒子が観察されたりする。   In the slide bearing (PEEK), as shown in FIG. 5A, initial wear particles are flakes having a maximum length of less than 20 μm, and very thin resin wear particles are observed. Further, as medium-term wear particles, flaky resin wear particles having a maximum length of 20 to 60 μm are observed as shown in FIGS. Furthermore, as shown in FIGS. 6A and 6B, rod-like fiber wear particles made of carbon fibers (reinforcing fibers) having a maximum length of about 20 μm included in the slide bearing are observed as final wear particles. As shown in FIG. 6C, large-sized resin wear particles having a maximum length exceeding 60 μm are observed.

一方、上記すべり軸受(PTFE)では、初期的摩耗粒子として、図7(a)に示すように、最大長さが10μm未満のフレーク状の樹脂摩耗粒子が観察される。また、中期的摩耗粒子として、図7(b)(c)に示すように、最大長さが10〜40μmの若干厚みのある樹脂摩耗粒子が観測される。さらに、終期的摩耗粒子として、図8(a)(b)に示すように、すべり軸受に含まれる最大長さが20〜40μm前後のガラスファイバー(補強繊維)からなる棒状の繊維摩耗粒子が観察されたり、図8(c)に示すように、最大長さが40μmを超える大型サイズの樹脂摩耗粒子が観察されたりする。   On the other hand, in the slide bearing (PTFE), flaky resin wear particles having a maximum length of less than 10 μm are observed as initial wear particles as shown in FIG. Further, as the medium-term wear particles, as shown in FIGS. 7B and 7C, resin wear particles having a maximum thickness of 10 to 40 μm and a slight thickness are observed. Further, as the final wear particles, rod-like fiber wear particles made of glass fibers (reinforcing fibers) having a maximum length of about 20 to 40 μm included in the slide bearing are observed as shown in FIGS. 8 (a) and 8 (b). Or, as shown in FIG. 8C, large-sized resin wear particles having a maximum length exceeding 40 μm are observed.

そして、第2診断処理において、図2に示すように、中期的摩耗粒子の存在が確認されない場合(ステップS12でNo判定)、即ち初期的摩耗粒子のみの存在が確認された場合には、すべり軸受部の潤滑状態が健全(即ち、正常)であると判定する(ステップS13)。一方、中期的摩耗粒子の存在が確認され(ステップS12でYes判定)且つ終期的摩耗粒子の存在が確認されない場合(ステップS15でNo判定)には、すべり軸受部の潤滑状態が要注意である(即ち、すべり軸受部の診断周期の短縮が必要である)と判定する(ステップS16)。さらに、中期的摩耗粒子の存在が確認され(ステップS12でYes判定)且つ終期的摩耗粒子の存在が確認された場合(ステップS15でYes判定)には、すべり軸受部の潤滑状態が異常である(即ち、すべり軸受部の点検実施が必要である)と判定する(ステップS17)。   Then, in the second diagnosis process, as shown in FIG. 2, when the presence of medium-term wear particles is not confirmed (No determination in step S12), that is, when the existence of only the initial wear particles is confirmed, slipping occurs. It determines with the lubrication state of a bearing part being healthy (namely, normal) (step S13). On the other hand, if the presence of medium-term wear particles is confirmed (Yes in step S12) and the presence of final wear particles is not confirmed (No determination in step S15), the lubrication state of the sliding bearing portion is a concern. (In other words, it is necessary to shorten the diagnostic cycle of the sliding bearing portion) (step S16). Furthermore, when the presence of medium-term wear particles is confirmed (Yes in step S12) and the presence of final wear particles is confirmed (Yes in step S15), the lubrication state of the sliding bearing portion is abnormal. (In other words, it is necessary to check the sliding bearing portion) (step S17).

なお、上記第1及び第2診断処理で異なる診断結果となった場合には、一方の診断結果(例えば、悪い方の診断結果)を選択してもよいし、両診断結果に基づいて新たな診断結果をくだすようにしてもよい。   When different diagnosis results are obtained in the first and second diagnosis processes, one diagnosis result (for example, the worse diagnosis result) may be selected, or a new one may be selected based on both diagnosis results. You may make it give a diagnostic result.

(2)実施例の効果
以上より、本実施例のすべり軸受部診断方法によると、潤滑オイル中に繊維摩耗粒子及び終期的樹脂摩耗粒子が含まれている場合に、すべり軸受部の潤滑状態が異常であると判定され、潤滑オイル中に、繊維摩耗粒子及び終期的樹脂摩耗粒子が含まれておらず、且つ、中期的樹脂摩耗粒子が含まれている場合に、すべり軸受部の潤滑状態が要注意であると判定され、潤滑流体中に、繊維摩耗粒子、終期的樹脂摩耗粒子及び中期的樹脂摩耗粒子が含まれておらず、且つ、初期的樹脂摩耗粒子が含まれている場合に、すべり軸受部の潤滑状態が正常であると判定される。このように、摩耗粒子の大きさ及び種類に基づいてすべり軸受部を診断するようにしたので、PEEK又はPTFE製の樹脂摺動材を備えるすべり軸受部を高精度に診断することができる。
(2) Effect of Example As described above, according to the slide bearing part diagnosis method of this example, when the lubricating oil contains fiber wear particles and final resin wear particles, the lubrication state of the slide bearing part is When the lubricating oil does not contain fiber wear particles and final resin wear particles and does not contain medium-term resin wear particles, the lubrication state of the sliding bearing portion is determined to be abnormal. When it is determined that it is important to note that the lubricant fluid does not contain fiber wear particles, final resin wear particles, and medium resin wear particles, and initial resin wear particles. It is determined that the lubrication state of the sliding bearing portion is normal. Thus, since the slide bearing portion is diagnosed based on the size and type of the wear particles, the slide bearing portion including the resin sliding material made of PEEK or PTFE can be diagnosed with high accuracy.

また、本実施例では、熱分解クロマトグラフィにより分析される潤滑オイル中の樹脂成分濃度に基づいて、樹脂摺動材の摩耗深さDp、及び摩耗深さの時間経過に伴う変化率を示す摩耗速度Wspを算出する工程を備えるので、摩耗深さDpが所定の第1基準値C1を超えた場合に、すべり軸受部の潤滑状態が異常であると判定され、摩耗速度Wspが所定の第2基準値C2を超え、且つ、摩耗深さDpが所定の第3基準値C3以下である場合に、すべり軸受部の潤滑状態が要注意であると判定され、摩耗深さDpが所定の第1基準値C1以下であるか、又は摩耗速度Wspが所定の第2基準値C2以下である場合に、すべり軸受部の潤滑状態が正常であると判定される。これにより、摩耗粒子の大きさ及び種類に加えて、樹脂摺動材の摩耗深さ及び摩耗速度に基づいてすべり軸受部が診断されるので、すべり軸受部を更に高精度に診断できる。   Further, in this example, the wear rate indicating the wear depth Dp of the resin sliding material and the rate of change with time of the wear depth based on the resin component concentration in the lubricating oil analyzed by pyrolysis chromatography. Since the step of calculating Wsp is provided, when the wear depth Dp exceeds the predetermined first reference value C1, it is determined that the lubrication state of the sliding bearing portion is abnormal, and the wear speed Wsp is determined to be the predetermined second reference. When the value C2 is exceeded and the wear depth Dp is equal to or less than a predetermined third reference value C3, it is determined that the lubrication state of the slide bearing portion is a caution, and the wear depth Dp is a predetermined first reference. When the value is equal to or less than the value C1 or the wear rate Wsp is equal to or less than the predetermined second reference value C2, it is determined that the lubrication state of the plain bearing portion is normal. Thereby, since the slide bearing portion is diagnosed based on the wear depth and wear speed of the resin sliding material in addition to the size and type of the wear particles, the slide bearing portion can be diagnosed with higher accuracy.

さらに、本実施例では、摩耗速度Wspが所定の第2基準値C2を超え、且つ、摩耗深さDpが所定の第3基準値C3を超えた場合に、樹脂摺動材が使用限界を超えていると判定するので、すべり軸受部を更に高精度に診断できる。   Furthermore, in this embodiment, when the wear speed Wsp exceeds the predetermined second reference value C2 and the wear depth Dp exceeds the predetermined third reference value C3, the resin sliding material exceeds the use limit. Therefore, the slide bearing can be diagnosed with higher accuracy.

尚、本発明においては、上記実施例に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。すなわち、上記実施例では、潤滑対象部としてすべり軸受部を例示したが、これに限定されず、例えば、転がり軸受部、ギヤ部、変圧器における接点切換機構の摺動部等としてもよい。また、上記実施例では、樹脂摺動材としてPEEK又はPTFE製の摺動材を例示したが、これに限定されず、例えば、その他の摺動性に優れた樹脂からなる摺動材としてもよい。さらに、上記実施例では、潤滑流体として潤滑オイルを例示したが、これに限定されず、例えば、グリースやエア等としてもよい。   In the present invention, the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention depending on the purpose and application. That is, in the above-described embodiment, the sliding bearing portion is exemplified as the lubrication target portion. However, the present invention is not limited to this, and may be, for example, a rolling bearing portion, a gear portion, or a sliding portion of a contact switching mechanism in a transformer. Moreover, in the said Example, although the sliding material made from PEEK or PTFE was illustrated as a resin sliding material, it is not limited to this, For example, it is good also as a sliding material which consists of resin excellent in other slidability. . Furthermore, in the said Example, although lubricating oil was illustrated as a lubricating fluid, it is not limited to this, For example, it is good also as grease, air, etc.

前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述および図示において使用された文言は、限定的な文言ではなく説明的および例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲または精神から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料および実施例を参照したが、本発明をここにおける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。   The foregoing examples are for illustrative purposes only and are not to be construed as limiting the invention. Although the invention has been described with reference to exemplary embodiments, it is to be understood that the language used in the description and illustration of the invention is illustrative and exemplary rather than limiting. As detailed herein, changes may be made in its form within the scope of the appended claims without departing from the scope or spirit of the invention. Although specific structures, materials and examples have been referred to in the detailed description of the invention herein, it is not intended to limit the invention to the disclosure herein, but rather, the invention is claimed. It covers all functionally equivalent structures, methods and uses within the scope.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形または変更が可能である。   The present invention is not limited to the embodiments described in detail above, and various modifications or changes can be made within the scope of the claims of the present invention.

樹脂摺動材を備える潤滑対象部を診断する技術として広く利用される。   It is widely used as a technique for diagnosing a lubrication target portion provided with a resin sliding material.

S1;樹脂成分濃度の分析工程、S2;摩耗深さの算出工程、S3;摩耗速度の算出工程、S4;第1比較工程、S7;第2比較工程、S8;第3比較工程、S11,S14;摩耗粒子の観察工程。   S1; resin component concentration analysis step, S2; wear depth calculation step, S3; wear rate calculation step, S4; first comparison step, S7; second comparison step, S8; third comparison step, S11, S14 An observation process of wear particles.

Claims (3)

補強繊維を含む樹脂摺動材を備える潤滑対象部診断方法であって、
潤滑流体中に含まれる摩耗粒子の大きさ及び種類に基づいて前記潤滑対象部を診断する第1診断処理工程を備え、
前記第1診断処理工程は、
潤滑流体中に、前記補強繊維からなる棒状の繊維摩耗粒子が含まれ、且つ、最大長さが所定の数値範囲の上限値を超える終期的樹脂摩耗粒子が含まれている場合に、前記潤滑対象部の潤滑状態が異常であると判定し、
潤滑流体中に、前記繊維摩耗粒子及び前記終期的樹脂摩耗粒子が含まれておらず、且つ、最大長さが前記所定の数値範囲内である中期的樹脂摩耗粒子が含まれている場合に、前記潤滑対象部の潤滑状態が要注意であると判定し、
潤滑流体中に、前記繊維摩耗粒子、前記終期的樹脂摩耗粒子及び前記中期的樹脂摩耗粒子が含まれておらず、且つ、最大長さが前記所定の数値範囲の下限値未満である初期的樹脂摩耗粒子が含まれている場合に、前記潤滑対象部の潤滑状態が正常であると判定することを特徴とする潤滑対象部診断方法。
A lubrication target part diagnosis method comprising a resin sliding material containing reinforcing fibers,
A first diagnostic processing step of diagnosing the lubrication target portion based on the size and type of wear particles contained in the lubricating fluid;
The first diagnostic processing step includes
When the lubricating fluid contains rod-like fiber wear particles composed of the reinforcing fibers and the final resin wear particles whose maximum length exceeds the upper limit of a predetermined numerical range, the lubrication target It is determined that the lubrication state of the part is abnormal,
When the fiber wear particles and the final resin wear particles are not included in the lubricating fluid, and the medium length resin wear particles having a maximum length within the predetermined numerical range are included, It is determined that the lubrication state of the lubrication target portion needs attention,
An initial resin that does not contain the fiber wear particles, the final resin wear particles, and the medium-term resin wear particles in a lubricating fluid, and has a maximum length that is less than the lower limit of the predetermined numerical range. A method for diagnosing a lubrication target part, comprising determining that the lubrication state of the lubrication target part is normal when wear particles are included.
前記樹脂摺動材の摩耗深さ及び摩耗速度に基づいて前記潤滑対象部を診断する第2診断処理工程を備え、
前記第2診断処理工程は、
熱分解クロマトグラフィにより分析される潤滑流体中の樹脂成分濃度に基づいて、前記樹脂摺動材の摩耗深さ(Dp)、及び該摩耗深さの時間経過に伴う変化率を示す摩耗速度(Wsp)を算出する工程を備え、
前記摩耗深さ(Dp)が所定の第1基準値(C1)を超えた場合に、前記潤滑対象部の潤滑状態が異常であると判定し、
前記摩耗速度(Wsp)が所定の第2基準値(C2)を超え、且つ、前記摩耗深さ(Dp)が前記所定の第1基準値より小さな所定の第3基準値(C3)以下である場合に、前記潤滑対象部の潤滑状態が要注意であると判定し、
前記摩耗深さ(Dp)が前記所定の第1基準値(C1)以下であるか、又は前記摩耗速度(Wsp)が前記所定の第2基準値(C2)以下である場合に、前記潤滑対象部の潤滑状態が正常であると判定する請求項1記載の潤滑対象部診断方法。
A second diagnostic processing step of diagnosing the lubrication target portion based on the wear depth and wear speed of the resin sliding material;
The second diagnostic processing step includes
Based on the concentration of the resin component in the lubricating fluid analyzed by pyrolysis chromatography, the wear depth (Dp) of the resin sliding material and the wear rate (Wsp) indicating the rate of change of the wear depth over time Comprising the step of calculating
When the wear depth (Dp) exceeds a predetermined first reference value (C1), it is determined that the lubrication state of the lubrication target portion is abnormal,
The wear rate (Wsp) exceeds a predetermined second reference value (C2), and the wear depth (Dp) is equal to or less than a predetermined third reference value (C3) smaller than the predetermined first reference value. In this case, it is determined that the lubrication state of the lubrication target portion is a caution,
When the wear depth (Dp) is less than or equal to the predetermined first reference value (C1) or the wear rate (Wsp) is less than or equal to the predetermined second reference value (C2), the lubrication target The lubrication target part diagnosis method according to claim 1, wherein the lubrication state of the part is determined to be normal.
前記摩耗速度(Wsp)が前記所定の第2基準値(C2)を超え、且つ、前記摩耗深さ(Dp)が前記所定の第3基準値(C3)を超えた場合に、前記樹脂摺動材が使用限界を超えていると判定する請求項2記載の潤滑対象部診断方法。   When the wear rate (Wsp) exceeds the predetermined second reference value (C2) and the wear depth (Dp) exceeds the predetermined third reference value (C3), the resin sliding The lubrication target part diagnosis method according to claim 2, wherein the material is determined to exceed a use limit.
JP2011175358A 2011-08-10 2011-08-10 Lubrication target part diagnosis method Active JP5853265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175358A JP5853265B2 (en) 2011-08-10 2011-08-10 Lubrication target part diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175358A JP5853265B2 (en) 2011-08-10 2011-08-10 Lubrication target part diagnosis method

Publications (2)

Publication Number Publication Date
JP2013036942A JP2013036942A (en) 2013-02-21
JP5853265B2 true JP5853265B2 (en) 2016-02-09

Family

ID=47886672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175358A Active JP5853265B2 (en) 2011-08-10 2011-08-10 Lubrication target part diagnosis method

Country Status (1)

Country Link
JP (1) JP5853265B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117109906B (en) * 2023-10-24 2024-01-30 卡松科技股份有限公司 Oil online equipment fault analysis method and system based on visualization

Also Published As

Publication number Publication date
JP2013036942A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
Maru et al. Study of solid contamination in ball bearings through vibration and wear analyses
Hamilton et al. Detailed state of the art review for the different online/inline oil analysis techniques in context of wind turbine gearboxes
Al-Samarai et al. The influence of roughness on the wear and friction coefficient under dry and lubricated sliding
Blanco et al. Antifriction and antiwear properties of an ionic liquid with fluorine-containing anion used as lubricant additive
Gurumoorthy et al. Failure investigation of a taper roller bearing: A case study
Evans et al. Traction of lubricated rolling contacts between thin-film coatings and steel
Korzekwa et al. Wear mechanism of Al2O3/WS2 with PEEK/BG plastic
Muniyappa et al. Detection and diagnosis of gear tooth wear through metallurgical and oil analysis
Čačko et al. Impact of lubrication interval to operating status of bearing
CN111075841B (en) Sliding member and bearing device using the same
Harsha et al. Effect of temperature on galling behavior of SS 316, 316 L and 416 under self-mated condition
JP5853265B2 (en) Lubrication target part diagnosis method
Thapliyal et al. Investigation of Rheological Parameters of Lubricants and Contact Fatigue Behavior of Steel in the Presence of Cu Nano‐Particles
Wäsche et al. Analysis of nanoscale wear particles from lubricated steel–steel contacts
JP5076719B2 (en) Predicting remaining life of rolling bearings
Yang et al. Effect of lubricant additives on the WDLC coating structure when tested in boundary lubrication regime
Shabbir et al. Analysis of the tribological interaction of a polytetrafluoroethylene-lined radial lip oil seal, shaft and lubricant sample
Ukonsaari Wear and friction of synthetic esters in a boundary lubricated journal bearing
Sukumaran Vision assisted tribography of rolling-sliding contact of polymer-steel pairs
Riddar et al. Friction, wear and surface damage mechanisms of pneumatic clutch actuators
Maru et al. Influence of oil contamination on vibration and wear in ball and roller bearings
Fatima et al. Study on the wet clutch friction interfaces for humid lubrication condition
Morales-Espejel et al. Rolling Bearing Damage from Particle Contamination–Diagnosis via Inspection
Krasmik et al. Characterising the friction and wear behaviour of lubricated metal‐metal pairings with an optical online particle detection system
Johansson et al. Investigations into the occurrence of pitting in lubricated rolling four‐ball tests

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5853265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250