JP5851268B2 - Material for organic thin film solar cell element and organic thin film solar cell using the same - Google Patents

Material for organic thin film solar cell element and organic thin film solar cell using the same Download PDF

Info

Publication number
JP5851268B2
JP5851268B2 JP2012029522A JP2012029522A JP5851268B2 JP 5851268 B2 JP5851268 B2 JP 5851268B2 JP 2012029522 A JP2012029522 A JP 2012029522A JP 2012029522 A JP2012029522 A JP 2012029522A JP 5851268 B2 JP5851268 B2 JP 5851268B2
Authority
JP
Japan
Prior art keywords
layer
organic thin
group
solar cell
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012029522A
Other languages
Japanese (ja)
Other versions
JP2013168424A (en
Inventor
文雄 奥田
文雄 奥田
柴田 充
充 柴田
佳美 町田
佳美 町田
竜志 前田
竜志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2012029522A priority Critical patent/JP5851268B2/en
Publication of JP2013168424A publication Critical patent/JP2013168424A/en
Application granted granted Critical
Publication of JP5851268B2 publication Critical patent/JP5851268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、有機薄膜太陽電池素子用材料、及びそれを用いた有機薄膜太陽電池に関する。   The present invention relates to an organic thin film solar cell element material and an organic thin film solar cell using the same.

有機薄膜太陽電池は、光信号を電気信号に変換するフォトダイオードや撮像素子、光エネルギーを電気エネルギーに変換する太陽電池に代表されるように、光入力に対して電気出力を示す装置であり、電気入力に対して光出力を示すエレクトロルミネッセンス(EL)素子とは逆の応答を示す装置である。中でも太陽電池は、化石燃料の枯渇問題や地球温暖化問題を背景に、クリーンエネルギー源として近年大変注目されてきており、研究開発が盛んに行なわれるようになってきた。   An organic thin film solar cell is a device that shows an electrical output with respect to an optical input, as represented by a photodiode or an imaging device that converts an optical signal into an electrical signal, or a solar cell that converts optical energy into electrical energy, It is a device that exhibits a response opposite to that of an electroluminescence (EL) element that exhibits an optical output with respect to an electrical input. In particular, solar cells have attracted a great deal of attention as a clean energy source in recent years against the background of fossil fuel depletion and global warming, and research and development have been actively conducted.

有機薄膜太陽電池は、最初メロシアニン色素等を用いた単層膜で研究が進められてきたが、p層(正孔を輸送する層)/n層(電子を輸送する層)の多層膜にすることで変換効率が向上することが見出されて以降、多層膜が主流になってきている。このとき用いられた材料はp層として銅フタロシアニン(CuPc)、n層としてペリレンイミド類(PTCBI)であった。
その後、p層とn層の間にi層(p材料とn材料の混合層)を挿入して積層を増やすことにより、変換効率が向上することが見出された。しかしこのとき用いられた材料は、依然としてフタロシアニン類とペリレンイミド類であった。またその後、p/i/n層を何層も積層するというスタックセル構成によりさらに変換効率が向上することが見出されたが、このときの材料系はフタロシアニン類とC60フラーレンであった。
Organic thin-film solar cells have been studied with a single-layer film using a merocyanine dye, etc., but a multilayer film of p layer (layer transporting holes) / n layer (layer transporting electrons) is used. Since it has been found that the conversion efficiency is improved, multilayer films have become mainstream. The materials used at this time were copper phthalocyanine (CuPc) for the p layer and peryleneimides (PTCBI) for the n layer.
Subsequently, it has been found that the conversion efficiency is improved by inserting an i layer (a mixed layer of p material and n material) between the p layer and the n layer to increase the number of layers. However, the materials used at this time were still phthalocyanines and peryleneimides. Thereafter, it was found that the conversion efficiency was further improved by a stack cell structure in which a number of p / i / n layers were stacked. The material system at this time was phthalocyanines and C60 fullerene.

高分子を用いた有機薄膜太陽電池では、p材料として導電性高分子を用い、n材料としてC60誘導体を用いてそれらを混合し、熱処理することによりミクロ層分離を誘起してヘテロ界面を増やし、変換効率を向上させるという、所謂バルクヘテロ構造の研究が主に行なわれてきた。ここで用いられてきた材料系はおもに、p材料としてP3HTと呼ばれる可溶性ポリチオフェン誘導体、n材料としてPCBMと呼ばれる可溶性C60誘導体であった。   In an organic thin film solar cell using a polymer, a conductive polymer is used as a p material, a C60 derivative is mixed as an n material, and they are mixed and heat-treated to induce microlayer separation to increase the heterointerface, Research on so-called bulk heterostructures that improve the conversion efficiency has been mainly conducted. The material system used here was mainly a soluble polythiophene derivative called P3HT as the p material and a soluble C60 derivative called PCBM as the n material.

このように、有機薄膜太陽電池では、セル構成及びモルフォロジーの最適化により変換効率の向上がもたらされてきたが、そこで用いられる材料系は初期の頃からあまり進展がなく、依然としてフタロシアニン類、ペリレンイミド類、C60類が用いられてきた。従って、それらに代わる新たな材料系の開発が熱望されていた。   Thus, in organic thin film solar cells, conversion efficiency has been improved by optimizing the cell configuration and morphology, but the material system used there has not made much progress since the early days, and phthalocyanines, peryleneimides still remain. Class C60 has been used. Therefore, development of a new material system to replace them has been eagerly desired.

特許文献1及び2は、有機太陽電池材料としてピロメテン骨格を有する化合物を開示するが、いずれも高い性能は得られていない。特許文献1はピロメテン骨格を有する化合物をn型材料として用いることで、高い開放端電圧(Voc)を示すものの、変換効率の開示が無く、特許文献2が開示する材料は、色素増感太陽電池の色素であり、得られる電池の変換効率も0.02%と十分なものではなかった。   Patent Documents 1 and 2 disclose a compound having a pyromethene skeleton as an organic solar cell material, but none of them has high performance. Patent Document 1 shows a high open-circuit voltage (Voc) by using a compound having a pyromethene skeleton as an n-type material, but there is no disclosure of conversion efficiency, and the material disclosed in Patent Document 2 is a dye-sensitized solar cell. The conversion efficiency of the resulting battery was not sufficient at 0.02%.

特開2008−109097号公報JP 2008-109097 A 特開2010−184880号公報JP 2010-184880 A

本発明の目的は、高効率の光電変換特性が得られる有機薄膜太陽電池素子用材料及びそれを用いた有機薄膜太陽電池を提供することである。   The objective of this invention is providing the organic thin-film solar cell element material from which a highly efficient photoelectric conversion characteristic is obtained, and an organic thin-film solar cell using the same.

本発明によれば、以下の有機薄膜太陽電池素子用材料等が提供される。
1.下記式(1)で表される化合物を含む有機薄膜太陽電池素子用材料。

Figure 0005851268
(式中、R〜Rは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜20のアルキル基、置換若しくは無置換の環形成炭素数6〜20のアリール基、又は置換若しくは無置換の環形成原子数5〜20の複素環基であり、R〜Rのうち隣接するものは、互いに結合して環を形成してもよい。
Xは、それぞれ独立に、ハロゲン原子又はアルコキシ基である。)
2.前記式(1)の2つのXがフッ素原子である1に記載の有機薄膜太陽電池素子用材料。
3.前記式(1)で表される化合物が、下記式(2)で表わされる化合物又は下記式(3)で表わされる化合物である1又は2に記載の有機薄膜太陽電池素子用材料。
Figure 0005851268
4.前記式(1)〜(3)のいずれかで表される化合物が、p層又はi層に用いられる1〜3のいずれかに記載の有機薄膜太陽電池素子用材料。
5.一対の電極間に1以上の有機薄膜層を備える有機薄膜太陽電池であって、前記有機薄膜層の少なくとも一層が、下記式(1)で表される化合物を含む有機薄膜太陽電池。
Figure 0005851268
(式中、R〜Rは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜20のアルキル基、置換若しくは無置換の環形成炭素数6〜20のアリール基、又は置換若しくは無置換の環形成原子数5〜20の複素環基であり、R〜Rのうち隣接するものは、互いに結合して環を形成してもよい。
Xは、それぞれ独立に、ハロゲン原子又はアルコキシ基である。)
6.前記式(1)の2つのXがフッ素原子である5に記載の有機薄膜太陽電池。
7.前記式(1)で表される化合物が、下記式(2)で表わされる化合物又は下記式(3)で表わされる化合物である5又は6に記載の有機薄膜太陽電池。
Figure 0005851268
8.前記1以上の有機薄膜層がp層、i層、n層のいずれかであって、前記p層及び/又は前記i層に、前記式(1)〜(3)のいずれかで表される化合物を含む5〜7のいずれかに記載の有機薄膜太陽電池。
9.前記n層及び/又は前記i層が、フラーレン又はフラーレン誘導体をさらに含む8に記載の有機薄膜太陽電池。
10.5〜9のいずれかに記載の有機薄膜太陽電池を具備する装置。 According to the present invention, the following materials for organic thin film solar cell elements and the like are provided.
1. The material for organic thin-film solar cell elements containing the compound represented by following formula (1).
Figure 0005851268
(In the formula, R 0 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, or a substituted group. Alternatively, it is an unsubstituted heterocyclic group having 5 to 20 ring atoms, and adjacent ones of R 0 to R 4 may be bonded to each other to form a ring.
X is each independently a halogen atom or an alkoxy group. )
2. 2. The material for an organic thin-film solar cell element according to 1, wherein two Xs in the formula (1) are fluorine atoms.
3. The organic thin-film solar cell element material according to 1 or 2, wherein the compound represented by the formula (1) is a compound represented by the following formula (2) or a compound represented by the following formula (3).
Figure 0005851268
4). The organic thin-film solar cell element material according to any one of 1 to 3, wherein the compound represented by any one of the formulas (1) to (3) is used for the p layer or the i layer.
5. An organic thin-film solar battery comprising one or more organic thin-film layers between a pair of electrodes, wherein at least one of the organic thin-film layers contains a compound represented by the following formula (1).
Figure 0005851268
(In the formula, R 0 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, or a substituted group. Alternatively, it is an unsubstituted heterocyclic group having 5 to 20 ring atoms, and adjacent ones of R 0 to R 4 may be bonded to each other to form a ring.
X is each independently a halogen atom or an alkoxy group. )
6). 6. The organic thin-film solar cell according to 5, wherein two Xs in the formula (1) are fluorine atoms.
7). The organic thin film solar cell according to 5 or 6, wherein the compound represented by the formula (1) is a compound represented by the following formula (2) or a compound represented by the following formula (3).
Figure 0005851268
8). The one or more organic thin film layers are any one of a p layer, an i layer, and an n layer, and the p layer and / or the i layer are represented by any one of the formulas (1) to (3). The organic thin-film solar cell in any one of 5-7 containing a compound.
9. 9. The organic thin-film solar cell according to 8, wherein the n layer and / or the i layer further contains fullerene or a fullerene derivative.
The apparatus which comprises the organic thin-film solar cell in any one of 10.5-9.

本発明によれば、高効率の光電変換特性が得られる有機薄膜太陽電池素子用材料及びそれを用いる有機太陽電池が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the organic solar cell using the material for organic thin-film solar cell elements from which a highly efficient photoelectric conversion characteristic is obtained can be provided.

[有機薄膜太陽電池素子用材料]
本発明の有機薄膜太陽電池素子用材料は、下記式(1)で表される化合物を含む。

Figure 0005851268
(式中、R〜Rは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜20のアルキル基、置換若しくは無置換の環形成炭素数6〜20のアリール基、又は置換若しくは無置換の環形成原子数5〜20の複素環基であり、R〜Rのうち隣接するものは、互いに結合して環を形成してもよい。
Xは、それぞれ独立に、ハロゲン原子又はアルコキシ基であり、好ましくは2つのXがフッ素原子である) [Materials for organic thin-film solar cell elements]
The organic thin film solar cell element material of the present invention contains a compound represented by the following formula (1).
Figure 0005851268
(In the formula, R 0 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, or a substituted group. Alternatively, it is an unsubstituted heterocyclic group having 5 to 20 ring atoms, and adjacent ones of R 0 to R 4 may be bonded to each other to form a ring.
X is independently a halogen atom or an alkoxy group, and preferably two Xs are fluorine atoms)

式(1)で表わされる化合物(以下、単に本発明の化合物と言う場合がある)は、ピロメテン骨格を有する化合物であり、特に下記に示す化合物のR及びRを水素原子とすることで、ホウ素上のXとの立体障害が無く、高い分子平面性を有することができる。高い分子平面性を有することで短絡電流(Jsc)が向上し、変換効率を向上することができる。
尚、例えばR及びRが芳香族環基及び/又は複素環基である場合、ホウ素上のXとの立体障害によって、R及びRの芳香族環基及び/又は複素環基は、ピロメテン骨格に対して垂直に配置し、分子平面性が失われてしまう。

Figure 0005851268
(式中、R〜R及びXは式(1)と同様である。) The compound represented by the formula (1) (hereinafter sometimes simply referred to as the compound of the present invention) is a compound having a pyromethene skeleton, and in particular, when R 5 and R 6 of the compound shown below are hydrogen atoms. There is no steric hindrance with X on boron, and it can have high molecular flatness. By having high molecular planarity, the short circuit current (Jsc) can be improved and the conversion efficiency can be improved.
For example, when R 5 and R 6 are an aromatic ring group and / or a heterocyclic group, the aromatic ring group and / or heterocyclic group of R 5 and R 6 is , It is arranged perpendicular to the pyromethene skeleton and the molecular planarity is lost.
Figure 0005851268
(In the formula, R 0 to R 4 and X are the same as in formula (1).)

以下、本発明の化合物の各置換基を説明する。
〜Rの炭素数1〜20のアルキル基としては、好ましくはアルキル部分の炭素数が1〜8であり、アルキル部分は直鎖、分岐鎖又は環状のいずれであってもよく、例えばメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3、7−ジメチルオクチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、1−アダマンチル基、2−アダマンチル基、ノルボルニル基等が挙げられる。これらのうち、原料の入手しやすさ等の観点から、メチル基、エチル基、1−プロピル基、2−プロピル基、tert−ブチル基、ペンチル基、シクロヘキシル基がさらに好ましい。
上記アルキル基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、フェニル基等のアリール基が挙げられ、当該アリール基はメチル基、エチル基、プロピル基等の炭素数1〜5のアルキル基でさらに置換されていてもよい。
置換アルキル基としては、例えばトリフルオロメチル基、トリクロロメチル基、ベンジル基、α、α−ジメチルベンジル基、2−フェニルエチル基、1−フェニルエチル基が挙げられる。
Hereafter, each substituent of the compound of this invention is demonstrated.
As the alkyl group having 1 to 20 carbon atoms of R 0 to R 4, the alkyl moiety preferably has 1 to 8 carbon atoms, and the alkyl moiety may be linear, branched or cyclic, Methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group , 2-ethylhexyl group, 3,7-dimethyloctyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, norbornyl group and the like. Of these, a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group, a tert-butyl group, a pentyl group, and a cyclohexyl group are more preferable from the viewpoint of availability of raw materials.
Examples of the substituent of the alkyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and an aryl group such as a phenyl group, and the aryl group includes a methyl group, an ethyl group, a propyl group and the like. The alkyl group having 1 to 5 carbon atoms may be further substituted.
Examples of the substituted alkyl group include trifluoromethyl group, trichloromethyl group, benzyl group, α, α-dimethylbenzyl group, 2-phenylethyl group, and 1-phenylethyl group.

〜Rの環形成炭素数6〜20のアリール基としては、例えば、フェニル基、2−トリル基、4−トリル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−シアノフェニル基、2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、ターフェニリル基、3、5−ジフェニルフェニル基、3、4−ジフェニルフェニル基、ペンタフェニルフェニル基、4−(2、2−ジフェニルビニル)フェニル基、4−(1、2、2−トリフェニルビニル)フェニル基、フルオレニル基、1−ナフチル基、2−ナフチル基、2−(1、4−ジフェニル)ナフチル基、9−アントリル基、2−アントリル基、2−(1、4−ジフェニル)アントリル基)、2−(9、10−ジフェニル)アントリル基、9−フェナントリル基、1−ピレニル基、クリセニル基、ナフタセニル基、コロニル基等が挙げられる。これらのうち、原料の入手しやすさ等の観点から、フェニル基、4−ビフェニリル基、1−ナフチル基、2−ナフチル基、2−アントリル基、9−フェナントリル基等がさらに好ましい。
上記アリール基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メチル基、エチル基、プロピル基等の炭素数1〜5のアルキル基、メトキシ基、エトキシ基、プロポキシ基等の炭素数1〜5のアルコキシ基、シアノ基、フェニル基等のアリール基、カルバゾール等の複素環、ジフェニルアミノ基等のアリールアミノ基等が挙げられる。
Examples of the aryl group having 6 to 20 ring carbon atoms of R 0 to R 4 include a phenyl group, 2-tolyl group, 4-tolyl group, 4-trifluoromethylphenyl group, 4-methoxyphenyl group, 4- Cyanophenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, terphenylyl group, 3,5-diphenylphenyl group, 3,4-diphenylphenyl group, pentaphenylphenyl group, 4- (2,2- Diphenylvinyl) phenyl group, 4- (1,2,2-triphenylvinyl) phenyl group, fluorenyl group, 1-naphthyl group, 2-naphthyl group, 2- (1,4-diphenyl) naphthyl group, 9-anthryl Group, 2-anthryl group, 2- (1,4-diphenyl) anthryl group), 2- (9,10-diphenyl) anthryl group, 9-phenanthryl. , 1-pyrenyl group, chrysenyl group, naphthacenyl group, coronyl group, and the like. Of these, a phenyl group, a 4-biphenylyl group, a 1-naphthyl group, a 2-naphthyl group, a 2-anthryl group, a 9-phenanthryl group, and the like are more preferable from the viewpoint of availability of raw materials.
Examples of the substituent for the aryl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group and propyl group, methoxy group and ethoxy group. Group, an alkoxy group having 1 to 5 carbon atoms such as a propoxy group, an aryl group such as a cyano group and a phenyl group, a heterocyclic ring such as carbazole, and an arylamino group such as a diphenylamino group.

〜Rの環形成原子数5〜20の複素環基としては、好ましくは複素環の環形成原子数5〜15であり、例えば、フラン、チオフェン、ピロール、イミダゾール、ベンズイミダゾール、ピラゾール、ベンズピラゾール、トリアゾール、オキサジアゾール、ピリジン、ピラジン、トリアジン、キノリン、ベンゾフラン、ジベンゾフラン、ベンゾチオフェン、ジベンゾチオフェン及びカルバゾールから形成される基が挙げられる。これらのうち、原料の入手しやすさ等の観点から、フラン、チオフェン、ビチオフェン、テルチオフェン、ピリジン、カルバゾール等が好ましい。
上記複素環の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子やメチル基、エチル基、プロピル基等の炭素数1〜5のアルキル基、チオフェン基、ジシアノビニル基が挙げられる。
The heterocyclic group having 5 to 20 ring atoms of R 0 to R 4 is preferably a heterocyclic group having 5 to 15 ring atoms, such as furan, thiophene, pyrrole, imidazole, benzimidazole, pyrazole, Examples include groups formed from benzpyrazole, triazole, oxadiazole, pyridine, pyrazine, triazine, quinoline, benzofuran, dibenzofuran, benzothiophene, dibenzothiophene and carbazole. Of these, furan, thiophene, bithiophene, terthiophene, pyridine, carbazole and the like are preferable from the viewpoint of availability of raw materials.
Examples of the substituent of the heterocyclic ring include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group and propyl group, thiophene group and dicyano. A vinyl group is mentioned.

Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子又はアルコキシ基である。Xのアルコキシ基としては、例えば炭素数1〜20のアルキル部分を含むアルコキシ基であり、好ましくはアルキル部分の炭素数が1〜8であり、アルキル部分は直鎖、分岐鎖又は環状のいずれであってもよい。具体的には、アルキル部分がメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3、7−ジメチルオクチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、1−アダマンチル基、2−アダマンチル基、ノルボルニル基、トリフルオロメチル基、2,3−パーフルオロプロピル、トリクロロメチル基、ベンジル基、α、α−ジメチルベンジル基、2−フェニルエチル基、1−フェニルエチル基等であるアルコキシ基が挙げられる。これらのうち、原料の入手しやすさ等の観点から、アルキル部分がメチル基、エチル基、1−プロピル基であるアルコキシ基がさらに好ましい。
アルキル部分は置換されていてもよく、当該置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、フェニル基等のアリール基が挙げられ、当該アリール基はメチル基、エチル基、プロピル基等の炭素数1〜5のアルキル基でさらに置換されていてもよい。
X is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, or an alkoxy group. The alkoxy group for X is, for example, an alkoxy group containing an alkyl moiety having 1 to 20 carbon atoms, preferably the alkyl moiety has 1 to 8 carbon atoms, and the alkyl moiety is linear, branched or cyclic. There may be. Specifically, the alkyl moiety is a methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, Octyl group, decyl group, dodecyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, norbornyl group, trifluoromethyl group, Examples include alkoxy groups such as 2,3-perfluoropropyl, trichloromethyl group, benzyl group, α, α-dimethylbenzyl group, 2-phenylethyl group, 1-phenylethyl group and the like. Among these, an alkoxy group in which the alkyl portion is a methyl group, an ethyl group, or a 1-propyl group is more preferable from the viewpoint of availability of raw materials.
The alkyl moiety may be substituted. Examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and an aryl group such as a phenyl group, and the aryl group is a methyl group. , May be further substituted with an alkyl group having 1 to 5 carbon atoms such as an ethyl group or a propyl group.

尚、本発明において、水素原子には、軽水素、重水素、三重水素が含まれる。例えば、Rが水素原子である場合、軽水素又は重水素、三重水素であってもよい。 In the present invention, the hydrogen atom includes light hydrogen, deuterium, and tritium. For example, when R 0 is a hydrogen atom, it may be light hydrogen, deuterium, or tritium.

本発明の有機薄膜太陽電池素子用化合物の具体例を以下に示す。
尚、式(1)で表わされる化合物は、下記化合物に限定されない。

Figure 0005851268
Figure 0005851268
Figure 0005851268
Figure 0005851268
Figure 0005851268
Specific examples of the compound for organic thin film solar cell element of the present invention are shown below.
In addition, the compound represented by Formula (1) is not limited to the following compound.
Figure 0005851268
Figure 0005851268
Figure 0005851268
Figure 0005851268
Figure 0005851268

上記の具体例のうち、より好ましくは具体例の化合物3である下記式(2)で表わされる化合物又は具体例の化合物10である下記式(3)で表わされる化合物である。

Figure 0005851268
Among the above specific examples, a compound represented by the following formula (2) which is the compound 3 of the specific example or a compound represented by the following formula (3) which is the compound 10 of the specific example is more preferable.
Figure 0005851268

本発明の化合物は、例えばSynthetic.Communucations,29(19),3353(1999)、Inorg.Chem.,42,6629(2003)、J.Org.Chem.,64,7813(1999)、Org.Lett.,13(12),2992(2010)に記載されている方法により合成することができる。例えば、2つのピロール誘導体をアルデヒド誘導体と縮合後、酸化し、ホウ素誘導体と反応させる方法やさらに臭素化して、Pd等の触媒を用いて置換基を導入する方法が挙げられる。   The compounds of the present invention are described, for example, in Synthetic. Communications, 29 (19), 3353 (1999), Inorg. Chem. , 42, 6629 (2003), J. Am. Org. Chem. 64, 7813 (1999), Org. Lett., 13 (12), 2992 (2010). For example, a method in which two pyrrole derivatives are condensed with an aldehyde derivative, oxidized and reacted with a boron derivative, or further brominated and a substituent is introduced using a catalyst such as Pd.

本発明の有機薄膜太陽電池素子用材料は、本発明の化合物を含めばよく、本発明の化合物のみからなってもよい。   The organic thin-film solar cell element material of the present invention may contain the compound of the present invention and may consist only of the compound of the present invention.

本発明の有機薄膜太陽電池材料は、有機薄膜太陽電池の活性層の材料として好適であり、特にp層又はi層(p材料とn材料の混合層)の材料として好適である。
p層の材料(p材料)に求められる特性は、望む波長域での吸収強度が大きく、電荷分離後の電荷を効率的に正極及び負極に運ぶことができる等である。特に正孔の伝導パスを構築するには、化合物同士が接近し易くなるように、高い平面性を有する化合物を用いることが重要である。
本発明の化合物は、上述したように高い平面性を有するので、本発明の有機薄膜太陽電池材料を用いることにより、有機薄膜太陽電池の短絡電流(Jsc)が高くなり、光電変換効率を高めることができる。
The organic thin film solar cell material of the present invention is suitable as a material of an active layer of an organic thin film solar cell, and particularly suitable as a material of a p layer or an i layer (a mixed layer of p material and n material).
The characteristics required for the material of the p layer (p material) are such that the absorption intensity in the desired wavelength region is large and the charge after charge separation can be efficiently transported to the positive electrode and the negative electrode. In particular, in order to construct a hole conduction path, it is important to use a compound having high planarity so that the compounds can easily approach each other.
Since the compound of the present invention has high flatness as described above, the use of the organic thin film solar cell material of the present invention increases the short-circuit current (Jsc) of the organic thin film solar cell and increases the photoelectric conversion efficiency. Can do.

[有機薄膜太陽電池]
本発明の有機薄膜太陽電池のセル構造は、一対の電極の間に上記化合物を含有する層を有する構造であれば特に限定されるものではない。具体的には、安定な絶縁性基板上に下記の構成を有する構造が挙げられる。
(1)下部電極/有機薄膜層/上部電極
(2)下部電極/p層/n層/上部電極
(3)下部電極/p層/i層(又はp材料とn材料の混合層)/n層/上部電極
(4)下部電極/p材料とn材料の混合層/上部電極
上記(2)、(3)の各構成においてp層とn層を置換してもよい。
[Organic thin film solar cells]
The cell structure of the organic thin film solar cell of the present invention is not particularly limited as long as it has a layer containing the above compound between a pair of electrodes. Specifically, a structure having the following configuration on a stable insulating substrate can be given.
(1) Lower electrode / organic thin film layer / upper electrode (2) Lower electrode / p layer / n layer / upper electrode (3) Lower electrode / p layer / i layer (or a mixed layer of p and n materials) / n Layer / upper electrode (4) Lower electrode / mixed layer of p material and n material / upper electrode In the above configurations (2) and (3), the p layer and the n layer may be replaced.

また、必要に応じて、電極と有機層の間にバッファー層を設けてもよい。例えば具体例として、上記構成(1)にバッファー層を設けた場合、下記構成を有する構造が挙げられる。
(5)下部電極/バッファー層/p層/n層/上部電極
(6)下部電極/p層/n層/バッファー層/上部電極
(7)下部電極/バッファー層/p層/n層/バッファー層/上部電極
Moreover, you may provide a buffer layer between an electrode and an organic layer as needed. For example, as a specific example, when a buffer layer is provided in the configuration (1), a structure having the following configuration can be given.
(5) Lower electrode / buffer layer / p layer / n layer / upper electrode (6) Lower electrode / p layer / n layer / buffer layer / upper electrode (7) Lower electrode / buffer layer / p layer / n layer / buffer Layer / Top electrode

本発明の有機薄膜太陽電池素子用材料は、例えば、p層、n層、i層といった活性層の他、バッファー層にも使用できる。
本発明の有機薄膜太陽電池は、電池を構成するいずれかの部材に本発明の有機薄膜太陽電池素子用材料を含有していればよい。また、本発明の有機薄膜太陽電池の部材は、上記有機薄膜太陽電池素子用材料のみから形成されていてもよいし、上記有機薄膜太陽電池素子用材料と他の成分の混合物から形成されていてもよい。本発明の材料を含まない部材や混合材料については、有機薄膜太陽電池で使用される公知の部材や材料を使用することができる。
以下、各構成部材について簡単に説明する。
The organic thin film solar cell element material of the present invention can be used for a buffer layer in addition to an active layer such as a p layer, an n layer, and an i layer.
The organic thin film solar cell of this invention should just contain the organic thin film solar cell element material of this invention in any member which comprises a battery. Moreover, the member of the organic thin film solar cell of the present invention may be formed only from the organic thin film solar cell element material, or may be formed from a mixture of the organic thin film solar cell element material and other components. Also good. About the member and mixed material which do not contain the material of this invention, the well-known member and material used with an organic thin film solar cell can be used.
Hereinafter, each component will be briefly described.

1.下部電極、上部電極
下部電極、上部電極の材料は特に制限はなく、公知の導電性材料を使用できる。例えば、p層と接続する電極としては、錫ドープ酸化インジウム(ITO)や金(Au)、オスミウム(Os)、パラジウム(Pd)等の金属が使用でき、n層と接続する電極としては、銀(Ag)、アルミニウム(Al)、インジウム(In)、カルシウム(Ca)、白金(Pt)、リチウム(Li)等の金属やMg:Ag、Mg:InやAl:Li等の二成分金属系、さらには上記P層と接続する電極例示材料が使用できる。
尚、高効率の光電変換特性を得るためには、例えば有機薄膜太陽電池が太陽電池の場合、太陽電池の少なくとも一方の面は太陽光スペクトルにおいて充分透明にすることが望ましい。透明電極は、公知の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように形成する。受光面の電極の光透過率は10%以上とすることが望ましい。一対の電極構成の好ましい構成では、電極部の一方が仕事関数の大きな金属を含み、他方は仕事関数の小さな金属を含む。
1. Lower electrode, upper electrode The material of the lower electrode and the upper electrode is not particularly limited, and a known conductive material can be used. For example, a metal such as tin-doped indium oxide (ITO), gold (Au), osmium (Os), palladium (Pd) can be used as the electrode connected to the p layer, and silver as the electrode connected to the n layer. Metals such as (Ag), aluminum (Al), indium (In), calcium (Ca), platinum (Pt), lithium (Li) and the like, and binary metal systems such as Mg: Ag, Mg: In and Al: Li, Furthermore, the electrode example material connected with the said P layer can be used.
In order to obtain highly efficient photoelectric conversion characteristics, for example, when the organic thin film solar cell is a solar cell, it is desirable that at least one surface of the solar cell is sufficiently transparent in the solar spectrum. The transparent electrode is formed using a known conductive material so as to ensure predetermined translucency by a method such as vapor deposition or sputtering. The light transmittance of the electrode on the light receiving surface is preferably 10% or more. In a preferred configuration of the pair of electrode configurations, one of the electrode portions includes a metal having a high work function, and the other includes a metal having a low work function.

2.有機薄膜層
有機薄膜層は、p層、p材料とn材料の混合層(i層)又はn層、バッファー層のいずれかである。本発明の材料を有機薄膜層に使用するとき、具体的には、下部電極/本発明の材料の単独層/上部電極や、下部電極/本発明の材料と、後述するn層材料又はp層材料との混合層/上部電極等の構成が挙げられる。
2. Organic thin film layer The organic thin film layer is either a p layer, a mixed layer (i layer) of p material and n material, or an n layer or a buffer layer. When the material of the present invention is used for the organic thin film layer, specifically, the lower electrode / the single layer of the material of the present invention / the upper electrode, the lower electrode / the material of the present invention, and the n layer material or p layer described later. Examples include a mixed layer / material with the material / upper electrode.

3.p層、n層、i層
p層とは正孔を輸送する層であり、n層とは電子を輸送する層であり、本発明の材料をp層に用いるときは、n層は特に限定されないが、電子受容体としての機能を有する化合物が好ましい。例えば有機化合物であれば、C60及びC70のフラーレン、フラーレン誘導体、カーボンナノチューブ、ペリレン誘導体、多環キノン、キナクリドン等、高分子系ではCN−ポリ(フェニレン−ビニレン)、MEH−CN−PPV、−CN基又はCF基含有ポリマー、それらの−CF置換ポリマー、ポリ(フルオレン)誘導体等を挙げることができる。電子の移動度が高い材料が好ましい。さらに、好ましくは、電子親和力が小さい材料が好ましい。このように電子親和力の小さい材料をn層として組み合わせることで充分な開放端電圧を実現することができる。
3. p layer, n layer, i layer The p layer is a layer that transports holes, the n layer is a layer that transports electrons, and the n layer is particularly limited when the material of the present invention is used for the p layer. However, a compound having a function as an electron acceptor is preferable. For example, in the case of organic compounds, C60 and C70 fullerenes, fullerene derivatives, carbon nanotubes, perylene derivatives, polycyclic quinones, quinacridones, and the like, such as CN-poly (phenylene-vinylene), MEH-CN-PPV, and -CN in polymer systems Groups or CF 3 group-containing polymers, their -CF 3 substituted polymers, poly (fluorene) derivatives, and the like. A material having high electron mobility is preferred. Further, a material having a small electron affinity is preferable. Thus, a sufficient open-circuit voltage can be realized by combining materials having a small electron affinity as the n layer.

n層及びi層の材料としては、フラーレン及びフラーレン誘導体が好ましい。
フラーレンC60及びフラーレンC70の構造を以下に示す。また、フラーレン誘導体としては、例えば、以下に示す構造のものが挙げられる。

Figure 0005851268
As materials for the n-layer and i-layer, fullerene and fullerene derivatives are preferable.
The structures of fullerene C60 and fullerene C70 are shown below. Moreover, as a fullerene derivative, the thing of the structure shown below is mentioned, for example.
Figure 0005851268

また、無機化合物であれば、n型特性の無機半導体化合物を挙げることができる。具体的には、n−Si、GaAs、CdS、PbS、CdSe、InP、Nb、WO、Fe等のドーピング半導体及び化合物半導体、また、二酸化チタン(TiO)、一酸化チタン(TiO)、三酸化二チタン(Ti)等の酸化チタン、酸化亜鉛(ZnO)、酸化スズ(SnO)等の導電性酸化物が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いてもよい。好ましくは、酸化チタン、特に好ましくは、二酸化チタンを用いる。 Moreover, if it is an inorganic compound, the inorganic semiconductor compound of an n-type characteristic can be mentioned. Specifically, doping semiconductors and compound semiconductors such as n-Si, GaAs, CdS, PbS, CdSe, InP, Nb 2 O 5 , WO 3 , Fe 2 O 3 , titanium dioxide (TiO 2 ), monoxide Examples include titanium oxide such as titanium (TiO) and dititanium trioxide (Ti 2 O 3 ), and conductive oxides such as zinc oxide (ZnO) and tin oxide (SnO 2 ). You may use combining more than a seed. Preference is given to using titanium oxide, particularly preferably titanium dioxide.

本発明の材料をn層に用いるときは、p層は特に限定されないが、正孔受容体としての機能を有する化合物が好ましい。例えば有機化合物であれば、N,N’−ビス(3−トリル)−N,N’−ジフェニルベンジジン(mTPD)、N,N’−ジナフチル−N,N’−ジフェニルベンジジン(NPD)、4,4’,4’’−トリス(フェニル−3−トリルアミノ)トリフェニルアミン(MTDATA)等に代表されるアミン化合物、フタロシアニン(Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)、チタニルフタロシアニン(TiOPc)等のフタロシアニン類、オクタエチルポルフィリン(OEP)、白金オクタエチルポルフィリン(PtOEP)、亜鉛テトラフェニルポルフィリン(ZnTPP)等に代表されるポルフィリン類、高分子化合物であれば、ポリヘキシルチオフェン(P3HT)、メトキシエチルヘキシロキシフェニレンビニレン(MEHPPV)等の主鎖型共役高分子類、ポリビニルカルバゾール等に代表される側鎖型高分子類等が挙げられる。   When the material of the present invention is used for the n layer, the p layer is not particularly limited, but a compound having a function as a hole acceptor is preferable. For example, in the case of an organic compound, N, N′-bis (3-tolyl) -N, N′-diphenylbenzidine (mTPD), N, N′-dinaphthyl-N, N′-diphenylbenzidine (NPD), 4, Amine compounds represented by 4 ′, 4 ″ -tris (phenyl-3-tolylamino) triphenylamine (MTDATA), etc., phthalocyanine (Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), titanyl phthalocyanine (TiOPc) ), Phthalocyanines such as octaethylporphyrin (OEP), platinum octaethylporphyrin (PtOEP), zinc tetraphenylporphyrin (ZnTPP) and the like, and polymer compounds such as polyhexylthiophene (P3HT), Methoxyethylhexyloxyphe Vinylene (MEHPPV) main chain type conjugated polymers such as side chain type polymers such as represented by polyvinyl carbazole, and the like.

i層は電子供与性材料と電子受容性材料との混合層である。本発明の材料をi層に用いるときは、上記p層化合物もしくはn層化合物と混合してi層を形成してもよい。その場合のp層もしくはn層は、上記例示化合物のいずれも用いることができる。
i層は、電子供与性材料と電子受容性材料を共蒸着することで形成できる。このとき、電子供与性材料の混合割合は1重量%〜99重量%である。
The i layer is a mixed layer of an electron donating material and an electron accepting material. When the material of the present invention is used for the i layer, the i layer may be formed by mixing with the p layer compound or the n layer compound. In this case, any of the above exemplary compounds can be used for the p layer or the n layer.
The i layer can be formed by co-evaporating an electron donating material and an electron accepting material. At this time, the mixing ratio of the electron donating material is 1% by weight to 99% by weight.

4.バッファー層
一般に、有機薄膜太陽電池は総膜厚が薄いことが多く、そのため上部電極と下部電極が短絡し、セル作製の歩留まりが低下することが多い。このような場合には、バッファー層を積層することによってこれを防止することが好ましい。
バッファー層に好ましい化合物としては、膜厚を厚くしても短絡電流が低下しないようにキャリア移動度が充分に高い化合物が好ましい。例えば、低分子化合物であれば下記に示すNTCDAに代表される芳香族環状酸無水物等が挙げられ、高分子化合物であればポリ(3,4−エチレンジオキシ)チオフェン:ポリスチレンスルホネート(PEDOT:PSS)、ポリアニリン:カンファースルホン酸(PANI:CSA)等に代表される公知の導電性高分子等が挙げられる。

Figure 0005851268
(PEDOT:PSSについて、n及びmはそれぞれ繰り返し数である。) 4). Buffer layer In general, organic thin film solar cells often have a thin total film thickness, and therefore, the upper electrode and the lower electrode are short-circuited, and the yield of cell fabrication often decreases. In such a case, it is preferable to prevent this by laminating a buffer layer.
As a preferable compound for the buffer layer, a compound having sufficiently high carrier mobility is preferable so that the short-circuit current does not decrease even when the film thickness is increased. For example, if it is a low molecular compound, the aromatic cyclic acid anhydride represented by NTCDA shown below etc. will be mentioned, and if it is a high molecular compound, poly (3,4-ethylenedioxy) thiophene: polystyrene sulfonate (PEDOT: PSS), polyaniline: camphorsulfonic acid (PANI: CSA), and other known conductive polymers.
Figure 0005851268
(For PEDOT: PSS, n and m are the number of repetitions.)

また、バッファー層には、励起子が電極まで拡散して失活してしまうのを防止する役割を持たせることも可能である。このように励起子阻止層としてバッファー層を挿入することは、高効率化のために有効である。励起子阻止層は正極側、負極側のいずれにも挿入することができ、両方同時に挿入することも可能である。この場合、励起子阻止層として好ましい材料としては、例えば有機EL用途で公知な正孔障壁層用材料又は電子障壁層用材料等が挙げられる。正孔障壁層として好ましい材料は、イオン化ポテンシャルが充分に大きい化合物であり、電子障壁層として好ましい材料は、電子親和力が充分に小さい化合物である。具体的には有機EL用途で公知な材料であるバソクプロイン(BCP)、バソフェナントロリン(BPhen)等が陰極側の正孔障壁層材料として挙げられる。

Figure 0005851268
In addition, the buffer layer may have a role of preventing excitons from diffusing to the electrodes and deactivating. Inserting a buffer layer as an exciton blocking layer in this way is effective for increasing efficiency. The exciton blocking layer can be inserted on either the positive electrode side or the negative electrode side, or both can be inserted simultaneously. In this case, as a preferable material for the exciton blocking layer, for example, a well-known material for a hole barrier layer or a material for an electron barrier layer in organic EL applications can be used. A preferable material for the hole blocking layer is a compound having a sufficiently large ionization potential, and a preferable material for the electron blocking layer is a compound having a sufficiently small electron affinity. Specifically, bathocuproin (BCP), bathophenanthroline (BPhen), and the like, which are well-known materials for organic EL applications, can be used as the cathode-side hole barrier layer material.
Figure 0005851268

さらに、バッファー層には、上記n材料として例示した無機半導体化合物を用いてもよい。また、p型無機半導体化合物としてはCdTe、p−Si、SiC、GaAs、WO等を用いることができる。 Furthermore, you may use the inorganic semiconductor compound illustrated as said n material for a buffer layer. As the p-type inorganic semiconductor compound, CdTe, p-Si, SiC, GaAs, WO 3 or the like can be used.

5.基板
基板は、機械的、熱的強度を有し、透明性を有するものが好ましい。例えば、ガラス基板及び透明性樹脂フィルムがある。透明性樹脂フィルムとしては、ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン−エチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。
5. Substrate The substrate preferably has mechanical and thermal strength and transparency. For example, there are a glass substrate and a transparent resin film. Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone. , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc. It is.

[有機薄膜太陽電池の製造方法]
本発明の有機薄膜太陽電池の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディップコート、キャスティング、ロールコート、フローコーティング、インクジェット等の湿式成膜法を適用することができる。
各層の膜厚は特に限定されないが、適切な膜厚に設定する。一般に有機薄膜の励起子拡散長は短いことが知られているため、膜厚が厚すぎると励起子がヘテロ界面に到達する前に失活してしまうため光電変換効率が低くなる。膜厚が薄すぎるとピンホール等が発生してしまうため、充分なダイオード特性が得られないため、変換効率が低下する。通常の膜厚は1nm〜10μmの範囲が適しているが、5nm〜0.2μmの範囲がさらに好ましい。
[Method of manufacturing organic thin film solar cell]
The formation of each layer of the organic thin film solar cell of the present invention is performed by a dry film formation method such as vacuum deposition, sputtering, plasma, ion plating, or wet film formation such as spin coating, dip coating, casting, roll coating, flow coating, and ink jet. The law can be applied.
The thickness of each layer is not particularly limited, but is set to an appropriate thickness. Since it is generally known that the exciton diffusion length of an organic thin film is short, if the film thickness is too thick, the exciton is deactivated before reaching the heterointerface, resulting in low photoelectric conversion efficiency. If the film thickness is too thin, pinholes and the like are generated, so that sufficient diode characteristics cannot be obtained, resulting in a decrease in conversion efficiency. The normal film thickness is suitably in the range of 1 nm to 10 μm, but more preferably in the range of 5 nm to 0.2 μm.

乾式成膜法の場合、公知の抵抗加熱法が好ましく、混合層の形成には、例えば、複数の蒸発源からの同時蒸着による成膜方法が好ましい。さらに好ましくは、成膜時に基板温度を制御する。
湿式成膜法の場合、各層を形成する材料を、適切な溶媒に溶解又は分散させて発光性有機溶液を調製し、薄膜を形成するが、任意の溶媒を使用できる。例えば、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、テトラクロロエタン、トリクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン等のハロゲン系炭化水素系溶媒や、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒、メタノールやエタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール等のアルコール系溶媒、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘキサン、オクタン、デカン、テトラリン等の炭化水素系溶媒、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル系溶媒等が挙げられる。なかでも、炭化水素系溶媒又はエーテル系溶媒が好ましい。また、これらの溶媒は単独で使用しても複数混合して用いてもよい。尚、使用可能な溶媒は、これらに限定されるものではない。
In the case of the dry film forming method, a known resistance heating method is preferable, and for forming the mixed layer, for example, a film forming method by simultaneous vapor deposition from a plurality of evaporation sources is preferable. More preferably, the substrate temperature is controlled during film formation.
In the case of a wet film forming method, a material for forming each layer is dissolved or dispersed in an appropriate solvent to prepare a light-emitting organic solution to form a thin film, and any solvent can be used. For example, halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrachloroethane, trichloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole, methanol, Alcohol solvents such as ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, hexane, octane, decane, tetralin, Examples include ester solvents such as ethyl acetate, butyl acetate, and amyl acetate. Of these, hydrocarbon solvents or ether solvents are preferable. These solvents may be used alone or in combination. In addition, the solvent which can be used is not limited to these.

本発明においては、有機薄膜太陽電池のいずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用してもよい。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ−N−ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。
また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等が挙げられる。
In the present invention, in any organic thin film layer of the organic thin film solar cell, an appropriate resin or additive may be used for improving the film formability and preventing pinholes in the film. Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.

本発明の有機薄膜太陽電池は時計、携帯電話及びモバイルパソコン等の各種装置、電化製品等の電源又は補助電源として使用できる。充電機能のある二次電池と組み合わせ、暗所においても使用可能とし、適用用途を拡げることも可能である。   The organic thin film solar cell of the present invention can be used as a power source or an auxiliary power source for various devices such as watches, mobile phones and mobile personal computers, and electrical appliances. Combined with a rechargeable battery with a charging function, it can be used in the dark, and the application can be expanded.

[有機薄膜太陽電池素子用化合物の合成]
実施例1
化合物2を下記合成スキームに従って製造した。

Figure 0005851268
[Synthesis of compounds for organic thin film solar cell elements]
Example 1
Compound 2 was prepared according to the following synthetic scheme.
Figure 0005851268

(1)中間体2−Aの合成
500mlフラスコにピロール(250ml)、ベンズアルデヒド(88.6mmol、9.4g)を入れて、室温下で撹拌しながら、トリフルオロ酢酸(1.2ml)を添加した。室温で25分反応させ、水酸化ナトリウム水溶液(250ml)を加えて反応を停止した。
反応混合物を塩化メチレン300mlで抽出して、さらに有機層を水酸化ナトリウム水溶液200mlで洗浄した。有機層を硫酸ナトリウムで乾燥後、エバポレーターを用いて溶媒及び過剰のピロールを除去した。得られた黒色状オイルをシリカゲルカラムクロマトグラフィ(ヘキサン/酢酸エチル=80/20)で2回精製して淡褐色結晶を得た(12.7g、収率65%)。
(1) Synthesis of Intermediate 2-A Pyrrol (250 ml) and benzaldehyde (88.6 mmol, 9.4 g) were placed in a 500 ml flask, and trifluoroacetic acid (1.2 ml) was added while stirring at room temperature. . The reaction was allowed to proceed at room temperature for 25 minutes, and the reaction was stopped by adding an aqueous sodium hydroxide solution (250 ml).
The reaction mixture was extracted with 300 ml of methylene chloride, and the organic layer was further washed with 200 ml of an aqueous sodium hydroxide solution. After drying the organic layer with sodium sulfate, the solvent and excess pyrrole were removed using an evaporator. The resulting black oil was purified twice by silica gel column chromatography (hexane / ethyl acetate = 80/20) to obtain pale brown crystals (12.7 g, yield 65%).

得られた化合物が中間体2−Aであることを、H−NMRにより確認した。H−NMRの測定結果を以下に示す。
H−NMR(400MHz、CDCl、TMS)δ7.92(2H、br)、7.16−7.33(5H、m)、6.68(2H、d)、6.14(2H、d)、5.91(2H、s)、5.46(1H、s)
It was confirmed by 1 H-NMR that the obtained compound was Intermediate 2-A. The measurement result of 1 H-NMR is shown below.
1 H-NMR (400 MHz, CDCl 3 , TMS) δ 7.92 (2H, br), 7.16-7.33 (5H, m), 6.68 (2H, d), 6.14 (2H, d ), 5.91 (2H, s), 5.46 (1H, s)

(2)化合物1の合成
2000mlフラスコに中間体2−A(36.9mmol、8.2g)、塩化メチレン850mlを入れて室温で撹拌した。この溶液に2、3−ジクロロ−5、6−ジシアノ−p−ベンゾキノン(DDQ)(36.9mmol、8.4g)の塩化メチレン120mlを加えて室温で7時間撹拌した。エバポレーターを用いてこの反応混合物から溶媒を完全に除去した。得られた反応物を1000mlフラスコに入れて、真空ポンプで系内を減圧にして、窒素置換を行なった。この操作を3回実施後、トルエン500ml、N、N−ジイソプロピルエチルアミン(369mmol、45.5ml)を加えて、10分間室温で撹拌した。次いで、三フッ化ホウ素ジエチルエーテル錯体(369mmol、64.2ml)を添加して、室温で1時間、80℃で6時間加熱撹拌を行なった。
反応溶液をセライトを通してろ過し、エバポレーターを用いて溶媒を除去後、シリカカラムクロマトグラフィ(塩化メチレンのみ)にて緑色発光の留分を分取した。得られた分取物をさらにシリカカラムクロマトグラフィ(ヘキサン/塩化メチレン=70/30〜60/40)で精製して赤褐色の結晶を得た(2.0g、収率20%)。
(2) Synthesis of Compound 1 Intermediate 2000-A (36.9 mmol, 8.2 g) and 850 ml of methylene chloride were placed in a 2000 ml flask and stirred at room temperature. To this solution, 120 ml of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) (36.9 mmol, 8.4 g) in methylene chloride was added and stirred at room temperature for 7 hours. The solvent was completely removed from the reaction mixture using an evaporator. The obtained reaction product was put into a 1000 ml flask, and the inside of the system was decompressed with a vacuum pump to perform nitrogen substitution. After performing this operation three times, 500 ml of toluene and N, N-diisopropylethylamine (369 mmol, 45.5 ml) were added and stirred at room temperature for 10 minutes. Next, boron trifluoride diethyl ether complex (369 mmol, 64.2 ml) was added, and the mixture was heated and stirred at room temperature for 1 hour and at 80 ° C. for 6 hours.
The reaction solution was filtered through celite, the solvent was removed using an evaporator, and the green light emitting fraction was fractionated by silica column chromatography (methylene chloride only). The obtained fraction was further purified by silica column chromatography (hexane / methylene chloride = 70 / 30-60 / 40) to obtain reddish brown crystals (2.0 g, yield 20%).

得られた化合物が化合物1であることを、H−NMRにより確認した。H−NMRの測定結果を以下に示す。
H−NMR(400MHz、CDCl、TMS)δ7.94(2H、s)、7.50−7.60(5H、m)、6.93(2H、d)、6.54(2H、d)
It was confirmed by 1 H-NMR that the obtained compound was Compound 1. The measurement result of 1 H-NMR is shown below.
1 H-NMR (400 MHz, CDCl 3 , TMS) δ 7.94 (2H, s), 7.50-7.60 (5H, m), 6.93 (2H, d), 6.54 (2H, d )

(3)中間体2−Bの合成
300mlフラスコに化合物1(4.0mmol、1.1g)を入れて、真空ポンプで系内を減圧にして、窒素置換を行なった。この操作を3回実施後、N,N−ジメチルホルムアミド(100ml)及び塩化メチレン(100ml)を入れて、室温で撹拌した。滴下ロートから、塩化メチレン60mlに溶解させたN−ブロモスクシンイミド(9.6mmol、1.7g)を30分で滴下した。さらに室温にて16時間反応させた。
反応溶液を水200mlで3回洗浄し、有機層を硫酸ナトリウムで乾燥後、エバポレーターを用いて溶媒を除去した。得られたオイルをシリカゲルカラムクロマトグラフィ(ヘキサン/酢酸エチル=90/10〜85/15)で精製して褐色結晶を得た(1.6g、収率93%)。
(3) Synthesis of Intermediate 2-B Compound 1 (4.0 mmol, 1.1 g) was placed in a 300 ml flask, and the inside of the system was decompressed with a vacuum pump to perform nitrogen substitution. After performing this operation three times, N, N-dimethylformamide (100 ml) and methylene chloride (100 ml) were added and stirred at room temperature. From the dropping funnel, N-bromosuccinimide (9.6 mmol, 1.7 g) dissolved in 60 ml of methylene chloride was added dropwise over 30 minutes. The reaction was further continued at room temperature for 16 hours.
The reaction solution was washed 3 times with 200 ml of water, the organic layer was dried over sodium sulfate, and then the solvent was removed using an evaporator. The obtained oil was purified by silica gel column chromatography (hexane / ethyl acetate = 90 / 10-85 / 15) to obtain brown crystals (1.6 g, yield 93%).

得られた化合物が中間体2−Bであることを、H−NMRにより確認した。H−NMRの測定結果を以下に示す。
H−NMR(400MHz、CDCl、TMS)δ7.85(2H、s)、7.50−7.65(5H、m)、6.95(2H、s)
It was confirmed by 1 H-NMR that the obtained compound was intermediate 2-B. The measurement result of 1 H-NMR is shown below.
1 H-NMR (400 MHz, CDCl 3 , TMS) δ 7.85 (2H, s), 7.50-7.65 (5H, m), 6.95 (2H, s)

(4)化合物2の合成
1000mlフラスコに中間体1(2.8mmol、1.2g)、フェニルボロン酸(6.7mmol、0.82g)、トリスジベンジリデンアセトンジパラジウム(0.28mmol、0.25g)、テトラフルオロホウ酸トリtert−ブチルホスフィン(1.12mmol、0.32g)及び炭酸セシウム(11.2mmol、3.6g)を入れて、真空ポンプで系内を減圧にして、窒素置換を行なった。この操作を3回実施後、テトラヒドロフラン(600ml)、水4mlを加えて、室温で16時間撹拌した。
応溶液からエバポレーターを用いて溶媒を除去し、塩化メチレン300ml、水200mlで抽出し、有機層を硫酸ナトリウムで乾燥した。溶媒除去後得られたオイルをシリカゲルカラムクロマトグラフィ(ヘキサン/塩化メチレン=85/15〜65/35)で精製して褐色結晶を得た(0.6g、収率54%)。
(4) Synthesis of Compound 2 Intermediate 1 (2.8 mmol, 1.2 g), phenylboronic acid (6.7 mmol, 0.82 g), trisdibenzylideneacetone dipalladium (0.28 mmol, 0.25 g) in a 1000 ml flask. ), Tritert-butylphosphine tetrafluoroborate (1.12 mmol, 0.32 g) and cesium carbonate (11.2 mmol, 3.6 g), and the inside of the system was depressurized with a vacuum pump to perform nitrogen substitution. It was. After performing this operation three times, tetrahydrofuran (600 ml) and 4 ml of water were added, and the mixture was stirred at room temperature for 16 hours.
The solvent was removed from the reaction solution using an evaporator, extracted with 300 ml of methylene chloride and 200 ml of water, and the organic layer was dried over sodium sulfate. The oil obtained after removing the solvent was purified by silica gel column chromatography (hexane / methylene chloride = 85/15 to 65/35) to obtain brown crystals (0.6 g, yield 54%).

得られた化合物が化合物2であることを、H−NMR及びFD−MS(Field Desorption Mass Spectrometry)により確認した。H−NMR及びFD−MSの測定結果を以下に示す。
H−NMR]
H−NMR(500MHz、CDCl、TMS)δ8.30(2H、s)、7.66−7.71(3H、m)、7.62(2H、t)、7.58(4H、d)、7.39(4H、t)、7.29(2H、t)、7.18(2H、t)
[FD−MS]
m/z 420(420.16 for C2719BF
It was confirmed by 1 H-NMR and FD-MS (Field Desorption Mass Spectrometry) that the obtained compound was Compound 2. The measurement results of 1 H-NMR and FD-MS are shown below.
[ 1 H-NMR]
1 H-NMR (500 MHz, CD 2 Cl 2 , TMS) δ 8.30 (2H, s), 7.66-7.71 (3H, m), 7.62 (2H, t), 7.58 (4H D), 7.39 (4H, t), 7.29 (2H, t), 7.18 (2H, t)
[FD-MS]
m / z 420 (420.16 for C 27 H 19 BF 2 N 2 )

実施例2
化合物3を下記合成スキームに従って製造した。

Figure 0005851268
Example 2
Compound 3 was prepared according to the following synthetic scheme.
Figure 0005851268

中間体2−Bを実施例1と同様にして合成した。
1000mlフラスコに中間体2−B(3.7mmol、1.6g)、o−メトキシフェニルボロン酸(9.3mmol、1.5g)、トリスジベンジリデンアセトンジパラジウム(0.37mmol、0.34g)、テトラフルオロホウ酸トリtert−ブチルホスフィン(1.49mmol、0.43g)及び炭酸セシウム(14.9mmol、4.8g)を入れて、真空ポンプで系内を減圧にして、窒素置換を行なった。この操作を3回実施後、テトラヒドロフラン(650ml)、水5mlを加えて、室温で15時間撹拌した。
応溶液からエバポレーターを用いて溶媒を除去し、塩化メチレン300ml、水200mlで抽出し、有機層を硫酸ナトリウムで乾燥した。溶媒除去後得られたオイルをシリカゲルカラムクロマトグラフィ(ヘキサン/酢酸エチル=80/20)で精製して褐色結晶を得た(0.53g、収率30%)。
Intermediate 2-B was synthesized in the same manner as Example 1.
In a 1000 ml flask, intermediate 2-B (3.7 mmol, 1.6 g), o-methoxyphenylboronic acid (9.3 mmol, 1.5 g), trisdibenzylideneacetone dipalladium (0.37 mmol, 0.34 g), Tritert-butylphosphine tetrafluoroborate (1.49 mmol, 0.43 g) and cesium carbonate (14.9 mmol, 4.8 g) were added, and the inside of the system was decompressed with a vacuum pump to perform nitrogen substitution. After performing this operation three times, tetrahydrofuran (650 ml) and 5 ml of water were added, and the mixture was stirred at room temperature for 15 hours.
The solvent was removed from the reaction solution using an evaporator, extracted with 300 ml of methylene chloride and 200 ml of water, and the organic layer was dried over sodium sulfate. The oil obtained after removing the solvent was purified by silica gel column chromatography (hexane / ethyl acetate = 80/20) to obtain brown crystals (0.53 g, yield 30%).

得られた化合物が化合物3であることを、H−NMR及びFD−MS(Field Desorption Mass Spectrometry)により確認した。H−NMR及びFD−MSの測定結果を以下に示す。
H−NMR]
H−NMR(500MHz、CDCl、TMS)δ8.48(2H、s)、7.68(2H、d)、7.62(1H、t)、7.60(2H、t)、7.48(2H、d)、7.23−7.28(4H、m)、6.88−7.00(4H、m)、3.90(6H、s)
[FD−MS]
m/z 480(480.3 for C2923BF
It was confirmed by 1 H-NMR and FD-MS (Field Desorption Mass Spectrometry) that the obtained compound was Compound 3. The measurement results of 1 H-NMR and FD-MS are shown below.
[ 1 H-NMR]
1 H-NMR (500 MHz, CD 2 Cl 2 , TMS) δ 8.48 (2H, s), 7.68 (2H, d), 7.62 (1H, t), 7.60 (2H, t), 7.48 (2H, d), 7.23-7.28 (4H, m), 6.88-7.00 (4H, m), 3.90 (6H, s)
[FD-MS]
m / z 480 (480.3 for C 29 H 23 BF 2 N 2 O 2 )

実施例3
化合物10を下記合成スキームに従って製造した。

Figure 0005851268
Example 3
Compound 10 was prepared according to the following synthetic scheme.
Figure 0005851268

(1)中間体10−Aの合成
化合物1を実施例1と同様にして合成した。
300mlフラスコに化合物1(4.1mmol、1.1g)を入れて、真空ポンプで系内を減圧にして、窒素置換を行なった。この操作を3回実施後、N,N−ジメチルホルムアミド(100ml)及び塩化メチレン(100ml)を入れて、室温で撹拌した。滴下ロートから、塩化メチレン40mlに溶解させたN−ブロモスクシンイミド(4.9mmol、0.87g)を40分で滴下した。さらに室温にて20時間反応させた。
反応溶液を水200mlで3回洗浄し、有機層を硫酸ナトリウムで乾燥後、エバポレーターを用いて溶媒を除去した。得られたオイルをシリカゲルカラムクロマトグラフィ(ヘキサン/酢酸エチル=80/20)で精製して褐色結晶を得た(1.28g、収率90%)。
(1) Synthesis of Intermediate 10-A Compound 1 was synthesized in the same manner as Example 1.
Compound 1 (4.1 mmol, 1.1 g) was placed in a 300 ml flask, and the inside of the system was decompressed with a vacuum pump to perform nitrogen substitution. After performing this operation three times, N, N-dimethylformamide (100 ml) and methylene chloride (100 ml) were added and stirred at room temperature. From the dropping funnel, N-bromosuccinimide (4.9 mmol, 0.87 g) dissolved in 40 ml of methylene chloride was added dropwise over 40 minutes. Furthermore, it was made to react at room temperature for 20 hours.
The reaction solution was washed 3 times with 200 ml of water, the organic layer was dried over sodium sulfate, and then the solvent was removed using an evaporator. The obtained oil was purified by silica gel column chromatography (hexane / ethyl acetate = 80/20) to obtain brown crystals (1.28 g, yield 90%).

(2)化合物10の合成
1000mlフラスコに中間体10−A(3.6mmol、1.3g)、5−(4,4、5、5−テトラメチル−1、3、2−ジオキサボロラン−2−イル)−2、2‘−ビチオフェン)(4.3mmol、1.3g)、トリスジベンジリデンアセトンジパラジウム(0.36mmol、0.33g)、テトラフルオロホウ酸トリtert−ブチルホスフィン(1.44mmol、0.42g)及び炭酸セシウム(14.4mmol、4.7g)を入れて、真空ポンプで系内を減圧にして、窒素置換を行なった。この操作を3回実施後、テトラヒドロフラン(500ml)、水5mlを加えて、室温で18時間撹拌した。
応溶液からエバポレーターを用いて溶媒を除去し、塩化メチレン300ml、水200mlで抽出し、有機層を硫酸ナトリウムで乾燥した。溶媒除去後得られたオイルをシリカゲルカラムクロマトグラフィ(トルエンのみ)で精製して濃褐色結晶を得た(0.90g、収率57%)。
(2) Synthesis of Compound 10 Intermediate 10-A (3.6 mmol, 1.3 g), 5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl in a 1000 ml flask ) -2,2′-bithiophene) (4.3 mmol, 1.3 g), trisdibenzylideneacetone dipalladium (0.36 mmol, 0.33 g), tritert-butylphosphine tetrafluoroborate (1.44 mmol, 0 .42 g) and cesium carbonate (14.4 mmol, 4.7 g) were added, and the inside of the system was depressurized with a vacuum pump to perform nitrogen substitution. After performing this operation 3 times, tetrahydrofuran (500 ml) and 5 ml of water were added and stirred at room temperature for 18 hours.
The solvent was removed from the reaction solution using an evaporator, extracted with 300 ml of methylene chloride and 200 ml of water, and the organic layer was dried over sodium sulfate. The oil obtained after removing the solvent was purified by silica gel column chromatography (toluene only) to obtain dark brown crystals (0.90 g, yield 57%).

得られた化合物が化合物10であることを、H−NMR及びFD−MS(Field Desorption Mass Spectrometry)により確認した。H−NMR及びFD−MSの測定結果を以下に示す。
H−NMR]
H−NMR(400MHz、CDCl、TMS)δ8.18(1H、s)、7.96(1H、s)、7.57−7.65(5H、m)、7.21(1H、d)、7.15(1H、d)、7.10(1H、d)、7.07(1H、d)、7.01(1H、dd)、6.95(1H、d)、6.92(1H、s)、6.57(1H、s)
[FD−MS]
m/z 432(432.3 for C2315BF
It was confirmed by 1 H-NMR and FD-MS (Field Desorption Mass Spectrometry) that the obtained compound was compound 10. The measurement results of 1 H-NMR and FD-MS are shown below.
[ 1 H-NMR]
1 H-NMR (400 MHz, CDCl 3 , TMS) δ 8.18 (1H, s), 7.96 (1H, s), 7.57-7.65 (5H, m), 7.21 (1H, d ), 7.15 (1H, d), 7.10 (1H, d), 7.07 (1H, d), 7.01 (1H, dd), 6.95 (1H, d), 6.92 (1H, s), 6.57 (1H, s)
[FD-MS]
m / z 432 (432.3 for C 23 H 15 BF 2 N 2 S 2 )

参考例
化合物15を下記合成スキームに従って製造した。

Figure 0005851268
Reference Example Compound 15 was produced according to the following synthesis scheme.
Figure 0005851268

(1)中間体15−Aの合成
200mlフラスコにピロール(70ml)、5−ホルミル−2,2‘−ビチオフェン(50mmol、9.7g)を入れて、室温下で撹拌しながら、トリフルオロ酢酸(1.0ml)を添加した。室温で20分反応させ、水酸化ナトリウム水溶液(200ml)を加えて反応を停止した。
反応混合物を塩化メチレン200mlで抽出して、さらに有機層を水酸化ナトリウム水溶液200mlで洗浄した。有機層を硫酸ナトリウムで乾燥後、エバポレーターを用いて溶媒及び過剰のピロールを除去した。得られた残渣をシリカゲルカラムクロマトグラフィ(塩化メチレンのみ)に通した後に、さらにシリカゲルカラムクロマトグラフィ(ヘキサン/酢酸エチル=85/25)で精製した。得られた結晶をヘキサン−酢酸エチルで再結晶して白色結晶を得た(7.5g、収率48%)。
(1) Synthesis of Intermediate 15-A Pyrrol (70 ml) and 5-formyl-2,2′-bithiophene (50 mmol, 9.7 g) were placed in a 200 ml flask and stirred at room temperature while trifluoroacetic acid ( 1.0 ml) was added. The reaction was allowed to proceed at room temperature for 20 minutes, and the reaction was stopped by adding an aqueous sodium hydroxide solution (200 ml).
The reaction mixture was extracted with 200 ml of methylene chloride, and the organic layer was further washed with 200 ml of an aqueous sodium hydroxide solution. After drying the organic layer with sodium sulfate, the solvent and excess pyrrole were removed using an evaporator. The obtained residue was passed through silica gel column chromatography (methylene chloride only), and further purified by silica gel column chromatography (hexane / ethyl acetate = 85/25). The obtained crystals were recrystallized from hexane-ethyl acetate to obtain white crystals (7.5 g, yield 48%).

得られた化合物が中間体15−Aであることは、H−NMRにより確認した。H−NMRの測定結果を以下に示す。
H−NMR(400MHz、CDCl、TMS)δ8.01(2H、br)、7.17(1H、d)、7.08(1H、d、J=7Hz)、6.96−7.01(2H、m)、6.79(1H、s)、6.71(2H、s)、6.18(2H、d)、6.09(2H、s)、5.70(1H、s)
It was confirmed by 1 H-NMR that the obtained compound was Intermediate 15-A. The measurement result of 1 H-NMR is shown below.
1 H-NMR (400 MHz, CDCl 3 , TMS) δ 8.01 (2H, br), 7.17 (1H, d), 7.08 (1H, d, J = 7 Hz), 6.96-7.01 (2H, m), 6.79 (1H, s), 6.71 (2H, s), 6.18 (2H, d), 6.09 (2H, s), 5.70 (1H, s)

(2)化合物15の合成
1000mlフラスコに中間体15−A(24.1mmol、7.5g)、塩化メチレン500mlを入れて室温で撹拌した。この溶液に2、3−ジクロロ−5、6−ジシアノ−p−ベンゾキノン(DDQ)(24.1mmol、5.5g)の塩化メチレン150mlを加えて室温で5時間撹拌した。エバポレーターを用いてこの反応混合物から溶媒を完全に除去した。得られた反応物を500mlフラスコに入れて、真空ポンプで系内を減圧にして、窒素置換を行なった。この操作を3回実施後、トルエン350ml、N、N−ジイソプロピルエチルアミン(240mmol、41.8ml)を加えて、15分間室温で撹拌した。次いで、三フッ化ホウ素ジエチルエーテル錯体(240mmol、29.6ml)を添加して、室温で1時間、80℃で6時間加熱撹拌を行なった。
反応溶液をセライトを通してろ過し、エバポレーターを用いて溶媒を除去後、シリカカラム(塩化メチレンのみ)を通した。得られた分取物をさらにシリカカラムクロマトグラフィ(ヘキサン/塩化メチレン=70/30)で精製して黒褐色の結晶を得た(2.0g、収率23%)。
(2) Synthesis of Compound 15 Intermediate 15-A (24.1 mmol, 7.5 g) and 500 ml of methylene chloride were placed in a 1000 ml flask and stirred at room temperature. To this solution, 150 ml of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) (24.1 mmol, 5.5 g) in methylene chloride was added and stirred at room temperature for 5 hours. The solvent was completely removed from the reaction mixture using an evaporator. The obtained reaction product was put into a 500 ml flask, and the inside of the system was decompressed with a vacuum pump to perform nitrogen substitution. After performing this operation three times, 350 ml of toluene and N, N-diisopropylethylamine (240 mmol, 41.8 ml) were added and stirred at room temperature for 15 minutes. Next, boron trifluoride diethyl ether complex (240 mmol, 29.6 ml) was added, and the mixture was stirred with heating at room temperature for 1 hour and at 80 ° C. for 6 hours.
The reaction solution was filtered through celite, the solvent was removed using an evaporator, and then passed through a silica column (methylene chloride only). The obtained fraction was further purified by silica column chromatography (hexane / methylene chloride = 70/30) to obtain black-brown crystals (2.0 g, yield 23%).

得られた化合物が化合物15であることを、H−NMR及びFD−MS(Field Desorption Mass Spectrometry)により確認した。H−NMR及びFD−MSの測定結果を以下に示す。
H−NMR]
H−NMR(500MHz、CDCl、TMS)δ7.90(2H、s)、7.57(1H、d)、7.38−7.41(5H、m)、7.12(1H、dd)、6.63(2H、br)
[FD−MS]
m/z 356(356.2 for C1711BF
It was confirmed by 1 H-NMR and FD-MS (Field Desorption Mass Spectrometry) that the obtained compound was Compound 15. The measurement results of 1 H-NMR and FD-MS are shown below.
[ 1 H-NMR]
1 H-NMR (500 MHz, CD 2 Cl 2 , TMS) δ 7.90 (2H, s), 7.57 (1H, d), 7.38-7.41 (5H, m), 7.12 (1H , Dd), 6.63 (2H, br)
[FD-MS]
m / z 356 (356.2 for C 17 H 11 BF 2 N 2 S 2 )

実施例5
化合物18を下記合成スキームに従って製造した。

Figure 0005851268
Example 5
Compound 18 was prepared according to the following synthetic scheme.
Figure 0005851268

(1)中間体18−Aの合成
200mlフラスコにピロール(60ml)、4−(N,N−ジフェニルアミノ)ベンズアルデヒド(39mmol、10.6g)を入れて、室温下で撹拌しながら、トリフルオロ酢酸(1.0ml)を添加した。室温で20分反応させ、水酸化ナトリウム水溶液(200ml)を加えて反応を停止した。
反応混合物を塩化メチレン200mlで抽出して、さらに有機層を水酸化ナトリウム水溶液200mlで洗浄した。有機層を硫酸ナトリウムで乾燥後、エバポレーターを用いて溶媒及び過剰のピロールを除去した。得られた残渣をシリカゲルカラムクロマトグラフィ(ヘキサン/酢酸エチル=80/20)で精製して淡褐色結晶を得た(10.5g、収率70%)。
(1) Synthesis of Intermediate 18-A Into a 200 ml flask was added pyrrole (60 ml) and 4- (N, N-diphenylamino) benzaldehyde (39 mmol, 10.6 g), and while stirring at room temperature, trifluoroacetic acid (1.0 ml) was added. The reaction was allowed to proceed at room temperature for 20 minutes, and the reaction was stopped by adding an aqueous sodium hydroxide solution (200 ml).
The reaction mixture was extracted with 200 ml of methylene chloride, and the organic layer was further washed with 200 ml of an aqueous sodium hydroxide solution. After drying the organic layer with sodium sulfate, the solvent and excess pyrrole were removed using an evaporator. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 80/20) to obtain pale brown crystals (10.5 g, yield 70%).

(2)化合物18の合成
1000mlフラスコに中間体18−A(27mmol、10.5g)、テトラヒドロフラン500mlを入れて室温で撹拌した。この溶液に2、3−ジクロロ−5、6−ジシアノ−p−ベンゾキノン(DDQ)(27mmol、6.1g)のテトラヒドロフラン50mlを加えて室温で2時間撹拌した。エバポレーターを用いてこの反応混合物から溶媒を完全に除去した。得られた反応物を1000mlフラスコに入れて、真空ポンプで系内を減圧にして、窒素置換を行なった。この操作を3回実施後、トルエン400ml、N、N−ジイソプロピルエチルアミン(270mmol、47.0ml)を加えて、15分間室温で撹拌した。次いで、三フッ化ホウ素ジエチルエーテル錯体(270mmol、33.3ml)を添加して、室温で1時間、80℃で2時間加熱撹拌を行なった。
反応溶液をセライトを通してろ過し、エバポレーターを用いて溶媒を除去後、シリカカラム(塩化メチレンのみ)を通した。得られた分取物をさらにシリカカラムクロマトグラフィ(ヘキサン/塩化メチレン=75/25)で精製して黒褐色の結晶を得た(5.2g、収率44%)。
(2) Synthesis of Compound 18 Intermediate 18-A (27 mmol, 10.5 g) and 500 ml of tetrahydrofuran were placed in a 1000 ml flask and stirred at room temperature. To this solution was added 50 ml of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) (27 mmol, 6.1 g) in tetrahydrofuran, and the mixture was stirred at room temperature for 2 hours. The solvent was completely removed from the reaction mixture using an evaporator. The obtained reaction product was put into a 1000 ml flask, and the inside of the system was decompressed with a vacuum pump to perform nitrogen substitution. After performing this operation three times, 400 ml of toluene and N, N-diisopropylethylamine (270 mmol, 47.0 ml) were added and stirred at room temperature for 15 minutes. Subsequently, boron trifluoride diethyl ether complex (270 mmol, 33.3 ml) was added, and the mixture was heated and stirred at room temperature for 1 hour and at 80 ° C. for 2 hours.
The reaction solution was filtered through celite, the solvent was removed using an evaporator, and then passed through a silica column (methylene chloride only). The obtained fraction was further purified by silica column chromatography (hexane / methylene chloride = 75/25) to obtain black-brown crystals (5.2 g, yield 44%).

得られた化合物が化合物18であることを、H−NMR及びFD−MS(Field Desorption Mass Spectrometry)により確認した。H−NMR及びFD−MSの測定結果を以下に示す。
H−NMR]
H−NMR(500MHz、CDCl、TMS)δ7.89(2H、s)、δ7.49(2H、dt)7.37(4H、td)、7.23(4H、dd)、7.18(2H、td)、6.95−7.15(4H、m)、6.54(2H、dd)
[FD−MS]
m/z 435(435.2 for C2720BF
It was confirmed by 1 H-NMR and FD-MS (Field Desorption Mass Spectrometry) that the obtained compound was compound 18. The measurement results of 1 H-NMR and FD-MS are shown below.
[ 1 H-NMR]
1 H-NMR (500 MHz, CD 2 Cl 2 , TMS) δ 7.89 (2H, s), δ 7.49 (2H, dt) 7.37 (4H, td), 7.23 (4H, dd), 7 .18 (2H, td), 6.95-7.15 (4H, m), 6.54 (2H, dd)
[FD-MS]
m / z 435 (435.2 for C 27 H 20 BF 2 N 3)

[有機太陽電池の作製]
実施例6
25mm×75mm×0.7mm厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間実施した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着した。
下部電極である透明電極ラインが形成されている側の面上に、当該透明電極を覆うようにして実施例2で調製した化合物3を抵抗加熱蒸着により1Å/sで成膜し、膜厚30nmの化合物A膜(p層)を形成した。化合物A膜上に膜厚60nmのC60膜(n層)を加熱蒸着により1Å/sで成膜し、続けて、膜厚10nmのBCP膜(バッファー層)を1Å/sで成膜した。最後に対向電極として膜厚100nmの金属Al膜を蒸着して、有機太陽電池(素子面積0.25cm)を作製した。
[Production of organic solar cells]
Example 6
A glass substrate with an ITO transparent electrode having a thickness of 25 mm × 75 mm × 0.7 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The glass substrate with a transparent electrode line after washing was mounted on a substrate holder of a vacuum deposition apparatus.
On the surface on the side where the transparent electrode line, which is the lower electrode, is formed, the compound 3 prepared in Example 2 so as to cover the transparent electrode is formed at 1 Å / s by resistance heating vapor deposition, and the film thickness is 30 nm. Compound A film (p layer) was formed. A C60 film (n layer) having a thickness of 60 nm was formed on the compound A film at 1 Å / s by thermal evaporation, and subsequently, a BCP film (buffer layer) having a thickness of 10 nm was formed at 1 Å / s. Finally, a metal Al film having a thickness of 100 nm was deposited as a counter electrode to produce an organic solar cell (element area: 0.25 cm 2 ).

上記有機太陽電池の製造に用いた材料を以下に示す。

Figure 0005851268
The material used for manufacture of the said organic solar cell is shown below.
Figure 0005851268

得られた有機薄膜太陽電池について、以下の方法で、エアマスAM1.5条件下(光強度(Pin)100mW/cm)で電流電圧特性(I−V特性)を測定した。開放端電圧(Voc)、短絡電流密度(Jsc)、曲線因子(FF)及び変換効率(η)の結果を表1に示す。
尚、太陽電池特性の評価時は、作製した素子に光学マスクを被せて面積0.00225cmの範囲の太陽電池特性を測定した。また、変換効率η[%]は、Voc×Jsc×FF/Pin×100より算出した。
変換効率ηは、入射光エネルギーPinが一定であるので、Voc、Jsc及びFFのいずれか1以上が大きな化合物ほど優れた変換効率を示すことになる。
The obtained organic thin film solar cell, the following method, the measurement of the current-voltage characteristic (I-V characteristic) in air mass AM1.5 conditions (light intensity (P in) 100mW / cm 2 ). Table 1 shows the results of open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), and conversion efficiency (η).
At the time of evaluating the solar cell characteristics, the manufactured element was covered with an optical mask, and the solar cell characteristics in an area of 0.00225 cm 2 were measured. Further, the conversion efficiency η [%] was calculated from Voc × Jsc × FF / P in × 100.
The conversion efficiency eta, the incident light energy P in is constant, thus showing the transformation efficiency Voc, either Jsc and FF of 1 or more is good as a large compound.

実施例7
化合物3の代わりに化合物10を用いてp層を積層した他は実施例6と同様にして有機薄膜太陽電池を製造し、評価した。結果を表1に示す。
Example 7
An organic thin film solar cell was produced and evaluated in the same manner as in Example 6 except that the p layer was laminated using the compound 10 instead of the compound 3. The results are shown in Table 1.

実施例8
25mm×75mm×0.7mm厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間実施した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着した。
下部電極である透明電極ラインが形成されている側の面上に、透明電極を覆うようにして膜厚10nmの化合物10膜(p層)を抵抗加熱蒸着により1Å/sで成膜した。続いて、膜厚5nmとなるように化合物10を0.5Å/sで、膜厚20nmとなるようにC60を1Å/sで同時蒸着し、i層(混合層)を形成した。i層上に膜厚40nmのC60膜(n層)を加熱蒸着により1Å/sで成膜した。さらに、バッファー層として膜厚10nmのBCP膜を1Å/sで成膜した。最後に対向電極として金属Alを膜厚100nm蒸着させ、有機薄膜太陽電池を作製した。
得られた有機薄膜太陽電池を実施例6と同様にして評価した。結果を表1に示す。
Example 8
A glass substrate with an ITO transparent electrode having a thickness of 25 mm × 75 mm × 0.7 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The glass substrate with a transparent electrode line after washing was mounted on a substrate holder of a vacuum deposition apparatus.
A compound 10 film (p layer) having a thickness of 10 nm was formed at 1 Å / s by resistance heating vapor deposition on the surface on the side where the transparent electrode line as the lower electrode was formed, so as to cover the transparent electrode. Subsequently, the compound 10 was co-evaporated at 0.5 Å / s to a film thickness of 5 nm and C60 at 1 Å / s to a film thickness of 20 nm to form an i layer (mixed layer). A C60 film (n layer) having a thickness of 40 nm was formed on the i layer by heating evaporation at 1 Å / s. Further, a BCP film having a thickness of 10 nm was formed as a buffer layer at 1 Å / s. Finally, metal Al was deposited to a thickness of 100 nm as a counter electrode to produce an organic thin film solar cell.
The obtained organic thin film solar cell was evaluated in the same manner as in Example 6. The results are shown in Table 1.

比較例1
化合物3の代わりに下記化合物Aを用いてp層を積層した他は実施例6と同様にして有機薄膜太陽電池を製造し、評価した。結果を表1に示す。

Figure 0005851268
Comparative Example 1
An organic thin film solar cell was manufactured and evaluated in the same manner as in Example 6 except that the p-layer was laminated using the following compound A instead of the compound 3. The results are shown in Table 1.
Figure 0005851268

比較例2
化合物3の代わりに下記化合物Bを用いてp層を積層した他は実施例6と同様にして有機薄膜太陽電池を製造し、評価した。結果を表1に示す。

Figure 0005851268
Comparative Example 2
An organic thin film solar cell was produced and evaluated in the same manner as in Example 6 except that the p-layer was laminated using the following compound B instead of the compound 3. The results are shown in Table 1.
Figure 0005851268

Figure 0005851268
Figure 0005851268

表1から分かるように、本発明の有機薄膜太陽電池材料は従来のピロメテン誘導体(比較例1及の化合物A及び比較例2の化合物B)に比べJscが高く変換効率が良く、優れた太陽電池特性を示していることが分かる。   As can be seen from Table 1, the organic thin film solar cell material of the present invention has high Jsc and good conversion efficiency as compared with conventional pyromethene derivatives (Compound A in Comparative Examples 1 and 2 and Compound B in Comparative Example 2), and an excellent solar cell. It turns out that the characteristic is shown.

本発明の有機薄膜太陽電池材料は有機薄膜太陽電池に使用でき、この有機薄膜太陽電池は、時計、携帯電話及びモバイルパソコン等の各種装置、電化製品の電源として使用できる。   The organic thin film solar cell material of the present invention can be used for an organic thin film solar cell, and this organic thin film solar cell can be used as a power source for various devices such as watches, mobile phones and mobile personal computers, and electrical appliances.

Claims (10)

下記式(1)で表される化合物を含む有機薄膜太陽電池素子用材料。
Figure 0005851268
(式中、 は、水素原子、置換若しくは無置換の炭素数1〜20のアルキル基、又は置換若しくは無置換の環形成炭素数6〜20のアリール基であり、R 〜Rは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜20のアルキル基、置換若しくは無置換の環形成炭素数6〜20のアリール基、又は置換若しくは無置換の環形成原子数5〜20の複素環基であり、R〜Rのうち隣接するものは、互いに結合して環を形成してもよい。
Xは、それぞれ独立に、ハロゲン原子又はアルコキシ基である。)
The material for organic thin-film solar cell elements containing the compound represented by following formula (1).
Figure 0005851268
( Wherein R 0 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, and R 1 to R 4 are Each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, or a substituted or unsubstituted ring atom having 5 to 5 ring atoms. 20 heterocyclic groups, and adjacent ones of R 0 to R 4 may be bonded to each other to form a ring.
X is each independently a halogen atom or an alkoxy group. )
前記式(1)の2つのXがフッ素原子である請求項1に記載の有機薄膜太陽電池素子用材料。   The organic thin film solar cell element material according to claim 1, wherein two Xs in the formula (1) are fluorine atoms. 前記式(1)で表される化合物が、下記式(2)で表わされる化合物又は下記式(3)で表わされる化合物である請求項1又は2に記載の有機薄膜太陽電池素子用材料。
Figure 0005851268
The organic thin-film solar cell element material according to claim 1 or 2, wherein the compound represented by the formula (1) is a compound represented by the following formula (2) or a compound represented by the following formula (3).
Figure 0005851268
前記式(1)〜(3)のいずれかで表される化合物が、p層又はi層に用いられる請求項1〜3のいずれかに記載の有機薄膜太陽電池素子用材料。   The organic thin-film solar cell element material according to any one of claims 1 to 3, wherein the compound represented by any one of the formulas (1) to (3) is used for the p layer or the i layer. 一対の電極間に1以上の有機薄膜層を備える有機薄膜太陽電池であって、前記有機薄膜層の少なくとも一層が、下記式(1)で表される化合物を含む有機薄膜太陽電池。
Figure 0005851268
(式中、 は、水素原子、置換若しくは無置換の炭素数1〜20のアルキル基、又は置換若しくは無置換の環形成炭素数6〜20のアリール基であり、R 〜Rは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜20のアルキル基、置換若しくは無置換の環形成炭素数6〜20のアリール基、又は置換若しくは無置換の環形成原子数5〜20の複素環基であり、R〜Rのうち隣接するものは、互いに結合して環を形成してもよい。
Xは、それぞれ独立に、ハロゲン原子又はアルコキシ基である。)
An organic thin-film solar battery comprising one or more organic thin-film layers between a pair of electrodes, wherein at least one of the organic thin-film layers contains a compound represented by the following formula (1).
Figure 0005851268
( Wherein R 0 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, and R 1 to R 4 are Each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, or a substituted or unsubstituted ring atom having 5 to 5 ring atoms. 20 heterocyclic groups, and adjacent ones of R 0 to R 4 may be bonded to each other to form a ring.
X is each independently a halogen atom or an alkoxy group. )
前記式(1)の2つのXがフッ素原子である請求項5に記載の有機薄膜太陽電池。   The organic thin-film solar cell according to claim 5, wherein two Xs in the formula (1) are fluorine atoms. 前記式(1)で表される化合物が、下記式(2)で表わされる化合物又は下記式(3)で表わされる化合物である請求項5又は6に記載の有機薄膜太陽電池。
Figure 0005851268
The organic thin film solar cell according to claim 5 or 6, wherein the compound represented by the formula (1) is a compound represented by the following formula (2) or a compound represented by the following formula (3).
Figure 0005851268
前記1以上の有機薄膜層がp層、i層、n層のいずれかであって、前記p層及び/又は前記i層に、前記式(1)〜(3)のいずれかで表される化合物を含む請求項5〜7のいずれかに記載の有機薄膜太陽電池。   The one or more organic thin film layers are any one of a p layer, an i layer, and an n layer, and the p layer and / or the i layer are represented by any one of the formulas (1) to (3). The organic thin-film solar cell in any one of Claims 5-7 containing a compound. 前記n層及び/又は前記i層が、フラーレン又はフラーレン誘導体をさらに含む請求項8に記載の有機薄膜太陽電池。   The organic thin film solar cell according to claim 8, wherein the n layer and / or the i layer further contains fullerene or a fullerene derivative. 請求項5〜9のいずれかに記載の有機薄膜太陽電池を具備する装置。   The apparatus which comprises the organic thin-film solar cell in any one of Claims 5-9.
JP2012029522A 2012-02-14 2012-02-14 Material for organic thin film solar cell element and organic thin film solar cell using the same Expired - Fee Related JP5851268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012029522A JP5851268B2 (en) 2012-02-14 2012-02-14 Material for organic thin film solar cell element and organic thin film solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012029522A JP5851268B2 (en) 2012-02-14 2012-02-14 Material for organic thin film solar cell element and organic thin film solar cell using the same

Publications (2)

Publication Number Publication Date
JP2013168424A JP2013168424A (en) 2013-08-29
JP5851268B2 true JP5851268B2 (en) 2016-02-03

Family

ID=49178639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012029522A Expired - Fee Related JP5851268B2 (en) 2012-02-14 2012-02-14 Material for organic thin film solar cell element and organic thin film solar cell using the same

Country Status (1)

Country Link
JP (1) JP5851268B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2499213B1 (en) 2009-11-09 2019-01-16 University Of Washington Center For Commercialization Functionalized chromophoric polymer dots and bioconjugates thereof
CN103261087B (en) 2010-10-18 2018-08-10 华盛顿大学商业化中心 Chromophoric polymers point
US10150841B2 (en) 2011-12-30 2018-12-11 University Of Washington Through Its Center For Commercialization Chromophoric polymer dots with narrow-band emission
WO2013116614A1 (en) 2012-02-03 2013-08-08 University Of Washington Through Its Center For Commercialization Polyelectrolyte-coated polymer dots and related methods
JP6339561B2 (en) * 2012-05-15 2018-06-06 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Dipyrine-based materials for photovoltaic, compounds capable of symmetrically destructive intramolecular charge transfer in polar media, and organic photovoltaic devices containing the same
CN105209916A (en) 2013-03-14 2015-12-30 华盛顿大学商业中心 Polymer dot compositions and related methods
US20160312113A1 (en) * 2013-12-13 2016-10-27 Nippon Kayaku Kabushikikaisha Optical Wavelength Conversion Element Containing Ionic Liquid, And Article Equipped With Said Optical Wavelength Conversion Element
US10175557B2 (en) 2014-01-31 2019-01-08 Nippon Kayaku Kabushikikaisha Optical wavelength conversion element containing ionic liquid, and article equipped with said optical wavelength conversion element
KR20210062098A (en) * 2014-02-05 2021-05-28 도레이 카부시키가이샤 Photoelectric conversion element and image sensor
KR102204111B1 (en) * 2014-04-17 2021-01-15 삼성전자주식회사 Compound and organic photoelectronic device and image sensor
JP6440296B2 (en) * 2014-08-27 2018-12-19 公立大学法人首都大学東京 Triphenylamine-linked dibenzopyromethene dyes as sensitizers for dye-sensitized solar cells
JP7397621B2 (en) 2018-10-31 2023-12-13 三星電子株式会社 Organic compounds and organic photoelectric devices, image sensors, and electronic devices containing them
US20220109106A1 (en) * 2020-07-30 2022-04-07 The University Of Southern California Symmetric Charge Transfer Compounds for Organic Photovoltaics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109097A (en) * 2006-09-28 2008-05-08 Toray Ind Inc Material for photovolatic element and the photovolatic element

Also Published As

Publication number Publication date
JP2013168424A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5851268B2 (en) Material for organic thin film solar cell element and organic thin film solar cell using the same
JP5417039B2 (en) Indole derivatives and organic thin film solar cells using the same
JP5513386B2 (en) Indenopyrene compound, organic thin film solar cell material and organic thin film solar cell using the same
JP2010073987A (en) Material for organic thin-film solar cell
JP5398397B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
JPWO2013035303A1 (en) Organic thin film solar cell materials
JP2009132674A (en) Photoelectric converter material composed of acenaphthofluoranthene compound and photoelectric converter using the same
JP5363164B2 (en) Benzofluoranthene compound and organic thin film solar cell using the same
JP2014177409A (en) Anthradithiophene compound, organic thin film solar cell material including the anthradithiophene compound, and organic thin film solar cell using the organic thin film solar cell material
JP2011111392A (en) Acenaphthothiophene compound and organic thin film solar battery material using the same
WO2013035305A1 (en) Organic solar cell
JP5693825B2 (en) Phthalimide compounds, naphthalimide compounds, naphthalic anhydride compounds, electron transport materials containing them, and organic thin film solar cells
JP2008166558A (en) Material for photoelectric conversion element, and photoelectric conversion element using the same
JPWO2011093067A1 (en) Dibenzofluoranthene compound and organic thin-film solar cell using the same
JP5340065B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
JP5657298B2 (en) Phenanthroline compound, electron transport material comprising the compound, and organic thin film solar cell comprising the compound
JP2008166561A (en) Material for photoelectric conversion element, and photoelectric conversion element using the same
JP5525895B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
WO2012014460A1 (en) Indenoperylene compound, material for organic thin-film photovotaic cell containing indenoperylene derivative, and organic thin-film photovotaic cell using same
JP5658937B2 (en) Indenoperylene compound and organic thin film solar cell using the same
JP5427500B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
JP2014065685A (en) Organic thin film solar cell material including azadipyrromethene compound
JP2012033606A (en) Photoelectric conversion element
JP5560132B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
JP2013168470A (en) Organic thin film solar cell material including dipyrrin compound and organic thin film solar cell manufactured using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151202

R150 Certificate of patent or registration of utility model

Ref document number: 5851268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees