JP5850755B2 - Power transmission mechanism - Google Patents

Power transmission mechanism Download PDF

Info

Publication number
JP5850755B2
JP5850755B2 JP2012012085A JP2012012085A JP5850755B2 JP 5850755 B2 JP5850755 B2 JP 5850755B2 JP 2012012085 A JP2012012085 A JP 2012012085A JP 2012012085 A JP2012012085 A JP 2012012085A JP 5850755 B2 JP5850755 B2 JP 5850755B2
Authority
JP
Japan
Prior art keywords
power transmission
rotating element
transmission shaft
rotating
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012012085A
Other languages
Japanese (ja)
Other versions
JP2013151961A (en
Inventor
日吉 俊男
俊男 日吉
大谷 哲也
哲也 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012012085A priority Critical patent/JP5850755B2/en
Publication of JP2013151961A publication Critical patent/JP2013151961A/en
Application granted granted Critical
Publication of JP5850755B2 publication Critical patent/JP5850755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Transmissions (AREA)

Description

本発明は、動力伝達機構に関し、より詳細には2つの遊星歯車機構を有する変速機構を備える動力伝達機構に関する。   The present invention relates to a power transmission mechanism, and more particularly, to a power transmission mechanism including a speed change mechanism having two planetary gear mechanisms.

図13に示すように、特許文献1には、モータの回転軸248と駆動軸232aとの接続及び接続の解除を行うと共に、モータの回転軸248の動力を2段に減速して駆動軸232aに伝達できるように構成された変速機260が記載されている。   As shown in FIG. 13, in Patent Document 1, the rotation shaft 248 of the motor and the drive shaft 232 a are connected and released, and the power of the motor rotation shaft 248 is decelerated in two stages to reduce the drive shaft 232 a. A transmission 260 configured to be able to transmit to is described.

変速機260は、ダブルピニオンの遊星歯車機構260aと、この遊星歯車機構260aに対して回転軸線方向に並んで配置されるシングルピニオンの遊星歯車機構260bと、二つのブレーキ200B1,200B2と、により構成されている。   The transmission 260 includes a double-pinion planetary gear mechanism 260a, a single-pinion planetary gear mechanism 260b arranged side by side in the rotational axis direction with respect to the planetary gear mechanism 260a, and two brakes 200B1 and 200B2. Has been.

ダブルピニオンの遊星歯車機構260aは、外歯歯車のサンギヤ261と、このサンギヤ261と同心円上に配置された内歯歯車のリングギヤ262と、サンギヤ261に噛合する複数の第1ピニオンギヤ263aと、第1ピニオンギヤ263aに噛合すると共にリングギヤ262に噛合する複数の第2ピニオンギヤ263bと、複数の第1ピニオンギヤ263aおよび複数の第2ピニオンギヤ263bを連結して自転及び公転自在に保持するキャリア264と、を備えている。サンギヤ261はブレーキ200B1のオンオフによりその回転を自由に又は停止でき、リングギヤ262はブレーキ200B2のオンオフによりその回転を自由に又は停止できるようになっている。   The planetary gear mechanism 260a of a double pinion includes an external gear sun gear 261, an internal gear ring gear 262 arranged concentrically with the sun gear 261, a plurality of first pinion gears 263a meshing with the sun gear 261, and a first pinion gear 263a. A plurality of second pinion gears 263b that mesh with the pinion gear 263a and mesh with the ring gear 262; and a carrier 264 that holds the plurality of first pinion gears 263a and the plurality of second pinion gears 263b in a freely rotating and revolving manner. Yes. The sun gear 261 can be freely rotated or stopped by turning on / off the brake 200B1, and the ring gear 262 can be freely rotated or stopped by turning on / off the brake 200B2.

シングルピニオンの遊星歯車機構260bは、外歯歯車のサンギヤ265と、このサンギヤ265と同心円上に配置された内歯歯車のリングギヤ266と、サンギヤ265に噛合すると共にリングギヤ266に噛合する複数のピニオンギヤ267と、複数のピニオンギヤ267を自転及び公転自在に保持するキャリア268とを備えている。サンギヤ265はモータの回転軸248に、キャリア268は駆動軸232aに、それぞれ連結されていると共に、リングギヤ266はブレーキ200B2のオンオフによりその回転が自由にまたは停止できるようになっている。   The planetary gear mechanism 260b of a single pinion includes an external gear sun gear 265, an internal gear ring gear 266 arranged concentrically with the sun gear 265, and a plurality of pinion gears 267 that mesh with the sun gear 265 and mesh with the ring gear 266. And a carrier 268 that holds the plurality of pinion gears 267 so as to rotate and revolve. The sun gear 265 is connected to the rotation shaft 248 of the motor, the carrier 268 is connected to the drive shaft 232a, and the rotation of the ring gear 266 can be freely or stopped by turning on and off the brake 200B2.

ダブルピニオンの遊星歯車機構260aとシングルピニオンの遊星歯車機構260bとは、リングギヤ262とリングギヤ266、キャリア264とキャリア268とによりそれぞれ連結されている。変速機260は、ブレーキ200B1,200B2を共にオフとすることによりモータの回転軸248を駆動軸232aから切り離すことができ、ブレーキ200B1をオフとすると共にブレーキ200B2をオンとしてモータの回転軸248の回転を比較的大きな減速比で減速して駆動軸232aに伝達し、ブレーキ200B1をオンとすると共にブレーキ200B2をオフとしてモータの回転軸248の回転を比較的小さな減速比で減速して駆動軸232aに伝達する。ブレーキ200B1,200B2を共にオンとする状態は回転軸248や駆動軸232aの回転を禁止するものとなる。   The double pinion planetary gear mechanism 260a and the single pinion planetary gear mechanism 260b are connected by a ring gear 262 and a ring gear 266, and a carrier 264 and a carrier 268, respectively. The transmission 260 can disconnect the motor rotation shaft 248 from the drive shaft 232a by turning off both the brakes 200B1 and 200B2. The transmission 260 turns off the brake 200B1 and turns on the brake 200B2 to rotate the rotation shaft 248 of the motor. Is reduced and transmitted to the drive shaft 232a, the brake 200B1 is turned on, the brake 200B2 is turned off, and the rotation of the motor rotation shaft 248 is reduced at a relatively small reduction ratio to the drive shaft 232a. introduce. When the brakes 200B1 and 200B2 are both turned on, the rotation of the rotary shaft 248 and the drive shaft 232a is prohibited.

特開2006−234063号公報JP 2006-234063 A

このように、特許文献1に記載の変速機260では、2つの遊星歯車機構260a,260bによる変速比の変更を、回転を規制する要素(サンギヤ261、及びリングギヤ266)を切り替えて行なっている。しかしながら、これらの回転を規制する要素を切り替えるためには、切替手段を2つ(ブレーキ200B1,200B2)設ける必要があり、部品点数が多くなり、変速機が大型化してしまう虞があった。   As described above, in the transmission 260 described in Patent Document 1, the gear ratio is changed by the two planetary gear mechanisms 260a and 260b by switching the elements (sun gear 261 and ring gear 266) that restrict the rotation. However, two switching means (brakes 200B1 and 200B2) need to be provided in order to switch the elements that restrict the rotation, which may increase the number of parts and increase the size of the transmission.

本発明は、上記課題を鑑みてなされたものであり、小型化が可能な動力伝達機構を提供することにある。   The present invention has been made in view of the above problems, and provides a power transmission mechanism that can be miniaturized.

上記の目的を達成するために、請求項1に記載の発明は、
駆動源(例えば、後述の実施形態のモータMOT)と、
前記駆動源によって駆動される被駆動装置(例えば、後述の実施形態の車輪LW,RW)と、
前記駆動源によって駆動され、前記駆動源と前記被駆動装置との間で変速比の変更を伴って動力を伝達する変速機構(例えば、後述の実施形態の変速機構3)と、
を備え、
前記変速機構は、第1及び第2遊星歯車機構(例えば、後述の実施形態の第1,第2サイクロイド減速機10A,10B、第1,第2遊星歯車式減速機110A,110B)を有し、
前記第1遊星歯車機構は、
互いに差動回転を行う第1回転要素(例えば、後述の実施形態の外ピン20A、偏心体50A、リングギヤ120A、サンギヤ150A)と、第2回転要素(例えば、後述の実施形態の曲線板30A、プラネタリギヤ130A)と、第3回転要素(例えば、後述の実施形態の内ピン40A、プラネタリキャリア140A)と、第4回転要素(例えば、後述の実施形態の偏心体50A、外ピン20A、サンギヤ150A、リングギヤ120A)と、
を有し、
前記第3回転要素は、第2回転要素を公転可能に支持し、
前記第2回転要素は、前記第1回転要素及び前記第4回転要素と当接し、
前記第2遊星歯車機構は、
互いに差動回転を行う第5回転要素(例えば、後述の実施形態の外ピン20B、偏心体50B、リングギヤ120B、サンギヤ150B)と、第6回転要素例えば、後述の実施形態の曲線板30B、プラネタリギヤ130B)と、第7回転要素(例えば、後述の実施形態の内ピン40B、プラネタリキャリア140B)と、第8回転要素(例えば、後述の実施形態の偏心体50B、外ピン20B、サンギヤ150B、リングギヤ120B)と、
を有し、
前記第7回転要素は、第6回転要素を公転可能に支持し、
前記第6回転要素は、前記第5回転要素及び前記第8回転要素と当接する動力伝達機構(例えば、後述の実施形態の動力伝達機構1)であって、
前記第1及び第2遊星歯車機構の回転軸線は、同一線上に配置され、
前記第3及び第7回転要素は、互いに連結され、
前記被駆動装置は、前記第3及び第7回転要素に対し接続され、
前記第1及び第5回転要素は、前記回転軸線周りの回転を規制されて配置され、
一端側が前記駆動源に接続され、他端側が前記第4又は前記第8回転要素に対し切替可能に接続される動力伝達軸(例えば、後述の実施形態の動力伝達軸5)を備え、
前記動力伝達軸は、前記駆動源に対し前記回転軸線方向の相対移動を可能に、且つ回転方向の動力伝達を可能に接続され、
該動力伝達軸を制御する動力伝達軸制御装置(例えば、後述の実施形態のアクチュエータACT)は、前記動力伝達軸が第1の位置で前記第4回転要素と接続状態とされ、前記動力伝達軸が第2の位置で前記第8回転要素と接続状態とされるように制御することを特徴とする。
In order to achieve the above object, the invention described in claim 1
A drive source (for example, a motor MOT in an embodiment described later);
Driven devices driven by the drive source (for example, wheels LW and RW in the embodiments described later);
A speed change mechanism (for example, speed change mechanism 3 in an embodiment described later) that is driven by the drive source and transmits power with a change in speed change ratio between the drive source and the driven device;
With
The speed change mechanism includes first and second planetary gear mechanisms (for example, first and second cycloid speed reducers 10A and 10B and first and second planetary gear speed reducers 110A and 110B in the embodiments described later). ,
The first planetary gear mechanism is
A first rotating element (for example, an outer pin 20A, an eccentric body 50A, a ring gear 120A, a sun gear 150A in an embodiment described later) and a second rotating element (for example, a curved plate 30A in an embodiment described later) that perform differential rotation with each other. Planetary gear 130A), a third rotating element (for example, inner pin 40A and planetary carrier 140A in an embodiment described later), and a fourth rotating element (for example, eccentric body 50A, outer pin 20A, sun gear 150A in an embodiment described later), Ring gear 120A),
Have
The third rotating element supports the second rotating element so as to revolve,
The second rotating element is in contact with the first rotating element and the fourth rotating element;
The second planetary gear mechanism is
A fifth rotating element (for example, an outer pin 20B, an eccentric body 50B, a ring gear 120B, and a sun gear 150B in the embodiment described later) that performs differential rotation with each other, and a sixth rotating element, for example, a curved plate 30B and a planetary gear in the embodiment described later. 130B), a seventh rotating element (for example, an inner pin 40B and a planetary carrier 140B in an embodiment described later), and an eighth rotating element (for example, an eccentric body 50B, an outer pin 20B, a sun gear 150B, and a ring gear in an embodiment described later). 120B)
Have
The seventh rotating element supports the sixth rotating element so that it can revolve,
The sixth rotation element is a power transmission mechanism (for example, a power transmission mechanism 1 of an embodiment described later) that contacts the fifth rotation element and the eighth rotation element,
The rotation axes of the first and second planetary gear mechanisms are arranged on the same line,
The third and seventh rotating elements are connected to each other;
The driven device is connected to the third and seventh rotating elements;
The first and fifth rotating elements are disposed so as to be restricted from rotating about the rotation axis,
One end side is connected to the drive source, and the other end side is provided with a power transmission shaft (for example, a power transmission shaft 5 in an embodiment described later) connected to the fourth or eighth rotation element in a switchable manner,
The power transmission shaft is connected to the drive source so as to be capable of relative movement in the rotational axis direction and to transmit power in the rotational direction.
In a power transmission shaft control device that controls the power transmission shaft (for example, an actuator ACT in an embodiment described later), the power transmission shaft is connected to the fourth rotating element at a first position, and the power transmission shaft Is controlled to be connected to the eighth rotation element at the second position.

請求項2に記載の発明は、
駆動源(例えば、後述の実施形態のモータMOT)と、
前記駆動源によって駆動される被駆動装置(例えば、後述の実施形態の車輪LW,RW)と、
前記駆動源によって駆動され、前記駆動源と前記被駆動装置との間で変速比の変更を伴って動力を伝達する変速機構(例えば、後述の実施形態の変速機構3)と、
を備え、
前記変速機構は、第1及び第2遊星歯車機構(例えば、後述の実施形態の第1,第2サイクロイド減速機10A,10B、第1,第2遊星歯車式減速機110A,110B)を有し、
前記第1遊星歯車機構は、
互いに差動回転を行う第1回転要素(例えば、後述の実施形態の外ピン20A、偏心体50A、リングギヤ120A、サンギヤ150A)と、第2回転要素(例えば、後述の実施形態の曲線板30A、プラネタリギヤ130A)と、第3回転要素(例えば、後述の実施形態の内ピン40A、プラネタリキャリア140A)と、第4回転要素(例えば、後述の実施形態の偏心体50A、外ピン20A、サンギヤ150A、リングギヤ120A)と、
を有し、
前記第3回転要素は、第2回転要素を公転可能に支持し、
前記第2回転要素は、前記第1回転要素及び前記第4回転要素と当接し、
前記第2遊星歯車機構は、
互いに差動回転を行う第5回転要素(例えば、後述の実施形態の外ピン20B、偏心体50B、リングギヤ120B、サンギヤ150B)と、第6回転要素例えば、後述の実施形態の曲線板30B、プラネタリギヤ130B)と、第7回転要素(例えば、後述の実施形態の内ピン40B、プラネタリキャリア140B)と、第8回転要素(例えば、後述の実施形態の偏心体50B、外ピン20B、サンギヤ150B、リングギヤ120B)と、
を有し、
前記第7回転要素は、第6回転要素を公転可能に支持し、
前記第6回転要素は、前記第5回転要素及び前記第8回転要素と当接する動力伝達機構(例えば、後述の実施形態の動力伝達機構1)であって、
前記第1及び第2遊星歯車機構の回転軸線は、同一線上に配置され、
前記第3及び第7回転要素は、互いに連結され、
前記被駆動装置は、前記第3及び第7回転要素に対し接続され、
前記第1及び第5回転要素は、前記回転軸線周りの回転を規制されて配置され、
一端側が前記駆動源に接続され、他端側が前記第4又は前記第8回転要素に対し切替可能に接続される動力伝達軸(例えば、後述の実施形態の動力伝達軸5)を備え、
前記動力伝達軸は、前記動力伝達軸から径方向に延出する動力伝達部(例えば、後述の実施形態の動力伝達部7,7A,7B)を有し、
該動力伝達部は、前記回転軸線方向で前記第4回転要素と前記第8回転要素との間に配置され、
該動力伝達軸を制御する動力伝達軸制御装置(例えば、後述の実施形態のアクチュエータACT)は、前記動力伝達軸が第1の位置で、前記動力伝達部と前記第4回転要素とが接続され、前記動力伝達軸が第2の位置で、前記動力伝達部と前記第8回転要素とが接続されるように制御することを特徴とする。
The invention described in claim 2
A drive source (for example, a motor MOT in an embodiment described later);
Driven devices driven by the drive source (for example, wheels LW and RW in the embodiments described later);
A speed change mechanism (for example, speed change mechanism 3 in an embodiment described later) that is driven by the drive source and transmits power with a change in speed change ratio between the drive source and the driven device;
With
The speed change mechanism includes first and second planetary gear mechanisms (for example, first and second cycloid speed reducers 10A and 10B and first and second planetary gear speed reducers 110A and 110B in the embodiments described later). ,
The first planetary gear mechanism is
A first rotating element (for example, an outer pin 20A, an eccentric body 50A, a ring gear 120A, a sun gear 150A in an embodiment described later) and a second rotating element (for example, a curved plate 30A in an embodiment described later) that perform differential rotation with each other. Planetary gear 130A), a third rotating element (for example, inner pin 40A and planetary carrier 140A in an embodiment described later), and a fourth rotating element (for example, eccentric body 50A, outer pin 20A, sun gear 150A in an embodiment described later), Ring gear 120A),
Have
The third rotating element supports the second rotating element so as to revolve,
The second rotating element is in contact with the first rotating element and the fourth rotating element;
The second planetary gear mechanism is
A fifth rotating element (for example, an outer pin 20B, an eccentric body 50B, a ring gear 120B, and a sun gear 150B in the embodiment described later) that performs differential rotation with each other, and a sixth rotating element, for example, a curved plate 30B and a planetary gear in the embodiment described later. 130B), a seventh rotating element (for example, an inner pin 40B and a planetary carrier 140B in an embodiment described later), and an eighth rotating element (for example, an eccentric body 50B, an outer pin 20B, a sun gear 150B, and a ring gear in an embodiment described later). 120B)
Have
The seventh rotating element supports the sixth rotating element so that it can revolve,
The sixth rotation element is a power transmission mechanism (for example, a power transmission mechanism 1 of an embodiment described later) that contacts the fifth rotation element and the eighth rotation element,
The rotation axes of the first and second planetary gear mechanisms are arranged on the same line,
The third and seventh rotating elements are connected to each other;
The driven device is connected to the third and seventh rotating elements;
The first and fifth rotating elements are disposed so as to be restricted from rotating about the rotation axis,
One end side is connected to the drive source, and the other end side is provided with a power transmission shaft (for example, a power transmission shaft 5 in an embodiment described later) connected to the fourth or eighth rotation element in a switchable manner,
The power transmission shaft has a power transmission portion (for example, power transmission portions 7, 7A, 7B in the embodiments described later) extending in a radial direction from the power transmission shaft,
The power transmission unit is disposed between the fourth rotation element and the eighth rotation element in the rotation axis direction,
In a power transmission shaft control device that controls the power transmission shaft (for example, an actuator ACT in an embodiment described later), the power transmission shaft is in a first position, and the power transmission unit and the fourth rotation element are connected. The power transmission shaft is controlled to be connected at the second position so that the power transmission unit and the eighth rotating element are connected.

請求項3に記載の発明は、請求項2に記載の構成に加えて、
前記第1回転要素(例えば、後述の実施形態の外ピン20A、リングギヤ120A)は、前記第2回転要素の径方向外側に配置され、
前記第4回転要素(例えば、後述の実施形態の偏心体50A、サンギヤ150A)は、前記第2回転要素の径方向内側に配置され、
前記第5回転要素(例えば、後述の実施形態の外ピン20B、リングギヤ120B)は、前記第6回転要素の径方向外側に配置され、
前記第8回転要素(例えば、後述の実施形態の偏心体50B、サンギヤ150B)は、前記第6回転要素の径方向内側に配置され、
前記第3及び第7回転要素は、前記回転軸線方向に延びる連結部材(例えば、後述の実施形態の連結部材46)によって連結され、
前記動力伝達部は、前記連結部材の径方向内側に配置されることを特徴とする。
In addition to the structure of Claim 2, the invention of Claim 3 is
The first rotating element (for example, the outer pin 20A and the ring gear 120A in the embodiment described later) is disposed on the radially outer side of the second rotating element,
The fourth rotating element (for example, an eccentric body 50A and a sun gear 150A in an embodiment described later) is disposed on the radially inner side of the second rotating element,
The fifth rotating element (for example, the outer pin 20B and the ring gear 120B in the embodiment described later) is disposed on the radially outer side of the sixth rotating element,
The eighth rotating element (for example, an eccentric body 50B and a sun gear 150B in the embodiment described later) is disposed on the radially inner side of the sixth rotating element,
The third and seventh rotating elements are connected by a connecting member (for example, a connecting member 46 in an embodiment described later) extending in the rotation axis direction,
The power transmission unit is disposed on a radially inner side of the connecting member.

請求項4に記載の発明は、請求項3に記載の構成に加えて、
前記駆動源は、前記回転軸線方向で前記連結部材とオフセットし、前記連結部材の外側に配置され、
前記第4回転要素と第8回転要素との少なくとも一方は、軸心に中空部(例えば、後述の実施形態の中空部56A,56B)を有する中空構造とされ、
前記中空部には、前記動力伝達軸が挿通されることを特徴とする。
In addition to the structure of Claim 3, the invention of Claim 4 is
The drive source is offset from the connecting member in the direction of the rotation axis, and is disposed outside the connecting member;
At least one of the fourth rotating element and the eighth rotating element has a hollow structure having a hollow portion (for example, hollow portions 56A and 56B in the embodiments described later) in the axial center,
The power transmission shaft is inserted through the hollow portion.

請求項5に記載の発明は、請求項1〜4の何れか1項に記載の構成に加えて、
前記第1遊星歯車機構の前記第4回転要素と前記第3回転要素との間の減速比は、前記第2遊星歯車機構の前記第8回転要素と前記第7回転要素との間の減速比よりも高く設定され、
前記動力伝達軸制御装置は、前記被駆動装置の回転数が相対的に低い領域で、前記動力伝達軸を前記第1の位置に制御し、前記被駆動装置の回転数が相対的に高い領域で、前記動力伝達軸を前記第2の位置に制御することを特徴とする。
In addition to the structure of any one of Claims 1-4, the invention of Claim 5 is
The reduction ratio between the fourth rotation element and the third rotation element of the first planetary gear mechanism is the reduction ratio between the eighth rotation element and the seventh rotation element of the second planetary gear mechanism. Set higher than
The power transmission shaft control device controls the power transmission shaft to the first position in a region where the rotational speed of the driven device is relatively low, and a region where the rotational speed of the driven device is relatively high Then, the power transmission shaft is controlled to the second position.

請求項に記載の発明は、請求項1〜の何れか1項に記載の構成に加えて、
前記第1及び第2遊星歯車機構は、サイクロイド減速機(例えば、後述の実施形態のサイクロイド減速機10A,10B)であり、
前記第4及び第8回転要素は、偏心部(例えば、後述の実施形態の偏心部52A,52B)を有する偏心体(例えば、後述の実施形態の偏心体50A,50B)であり、
前記第2及び第6回転要素は、外周(例えば、後述の実施形態の外周31A,31B)に波形を有し、前記偏心体が挿通される貫通孔(例えば、後述の実施形態の内側貫通孔32A,32B)と、前記貫通孔の径方向外側に配置される他の貫通孔(例えば、後述の実施形態の外側貫通孔34A,34B)と、が形成され、前記駆動源の回転に伴って前記回転軸線を中心とする自転運動を行う曲線板(例えば、後述の実施形態の曲線板30A,30B)であり、
前記第1及び第5回転要素は、前記曲線板の前記外周に係合して前記曲線板に前記自転運動を生じさせる外ピン(例えば、後述の実施形態の外ピン20A,20B)であり、
前記第3及び第7回転要素は、前記他の貫通孔に嵌挿される内ピン(例えば、後述の実施形態の内ピン40A,40B)であることを特徴とする。
In addition to the structure of any one of Claims 1-5 , the invention of Claim 6 is
The first and second planetary gear mechanisms are cycloid reducers (for example, cycloid reducers 10A and 10B according to embodiments described later),
The fourth and eighth rotating elements are eccentric bodies (for example, eccentric bodies 50A and 50B in embodiments described later) having eccentric portions (for example, eccentric sections 52A and 52B in embodiments described later),
The second and sixth rotating elements have corrugations on the outer periphery (for example, outer peripheries 31A and 31B in the embodiments described later), and through holes (for example, the inner through holes in the embodiments described later) through which the eccentric body is inserted. 32A, 32B) and other through-holes (for example, outer through-holes 34A, 34B in the embodiments described later) disposed on the radially outer side of the through-holes are formed, and the drive source rotates. It is a curved plate (for example, curved plates 30A and 30B in the embodiments described later) that performs a rotation motion around the rotation axis,
The first and fifth rotating elements are outer pins (for example, outer pins 20A and 20B in the embodiments described later) that engage with the outer periphery of the curved plate to cause the curved plate to rotate.
The third and seventh rotating elements are inner pins (for example, inner pins 40A and 40B in the embodiments described later) that are fitted into the other through holes.

請求項に記載の発明は、
駆動源(例えば、後述の実施形態のモータMOT)と、
前記駆動によって駆動される被駆動装置(例えば、後述の実施形態の車輪LW,RW)と、
前記駆動源によって駆動され、前記駆動源と前記被駆動装置との間で変速比の変更を伴って動力を伝達する変速機構(例えば、後述の実施形態の変速機構3)と、
を備え、
前記変速機構は、第1及び第2遊星歯車機構(例えば、後述の実施形態の第1,第2サイクロイド減速機10A,10B、第1,第2遊星歯車式減速機110A,110B)を有し、
前記第1遊星歯車機構は、
互いに差動回転を行う第1回転要素(例えば、後述の実施形態の外ピン20A、偏心体50A、リングギヤ120A、サンギヤ150A)と、第2回転要素(例えば、後述の実施形態の曲線板30A、プラネタリギヤ130A)と、第3回転要素(例えば、後述の実施形態の内ピン40A、プラネタリキャリア140A)と、第4回転要素(例えば、後述の実施形態の偏心体50A、外ピン20A、サンギヤ150A、リングギヤ120A)と、
を有し
前記第3回転要素は、第2回転要素を公転可能に支持し、
前記第2回転要素は、前記第1回転要素及び前記第4回転要素と当接し、
前記第2遊星歯車機構は、
互いに差動回転を行う第5回転要素(例えば、後述の実施形態の外ピン20B、偏心体50B、リングギヤ120B、サンギヤ150B)と、第6回転要素(例えば、後述の実施形態の曲線板30B、プラネタリギヤ130B)と、第7回転要素(例えば、後述の実施形態の内ピン40B、プラネタリキャリア140B)と、第8回転要素(例えば、後述の実施形態の偏心体50B、外ピン20B、サンギヤ150B、リングギヤ120B)と、
を有し
前記第7回転要素は、第6回転要素を公転可能に支持し、
前記第6回転要素は、前記第5回転要素及び前記第8回転要素と当接する動力伝達機構(例えば、後述の実施形態の動力伝達機構1)であって、
前記第1及び第2遊星歯車機構の回転軸線は、同一線上に配置され、
前記第3及び第7回転要素は、互いに連結され、
前記被駆動装置は、前記第3及び第7回転要素に対し接続され、
前記第1及び第5回転要素は、前記回転軸線周りの回転を規制されて配置され、
一端側が前記駆動源に接続され、他端側が前記第4又は前記第8回転要素に対し切替可能に接続される動力伝達軸(例えば、後述の実施形態の動力伝達軸5)を備え、
前記動力伝達軸と前記第4回転要素との間に、前記動力伝達軸の順方向の回転動力を伝達し、逆方向の回転動力を伝達しない一方向回転動力伝達手段(例えば、後述の実施形態のワンウェイクラッチOWC)が配置され、
前記第1遊星歯車機構の減速比は、前記第2遊星歯車機構の減速比よりも高く設定され、
前記動力伝達軸を制御する動力伝達軸制御装置(例えば、後述の実施形態のアクチュエータACT)は、前記動力伝達軸が第1の位置で前記第8回転要素と非接続状態とされ、前記動力伝達軸が第2の位置で前記第8回転要素と接続状態とされるように制御することを特徴とする。
The invention described in claim 7
A drive source (for example, a motor MOT in an embodiment described later);
Driven devices driven by the drive source (for example, wheels LW and RW in the embodiments described later);
A speed change mechanism (for example, speed change mechanism 3 in an embodiment described later) that is driven by the drive source and transmits power with a change in speed change ratio between the drive source and the driven device;
With
The speed change mechanism includes first and second planetary gear mechanisms (for example, first and second cycloid speed reducers 10A and 10B and first and second planetary gear speed reducers 110A and 110B in the embodiments described later). ,
The first planetary gear mechanism is
A first rotating element (for example, an outer pin 20A, an eccentric body 50A, a ring gear 120A, a sun gear 150A in an embodiment described later) and a second rotating element (for example, a curved plate 30A in an embodiment described later) that perform differential rotation with each other. Planetary gear 130A), a third rotating element (for example, inner pin 40A and planetary carrier 140A in an embodiment described later), and a fourth rotating element (for example, eccentric body 50A, outer pin 20A, sun gear 150A in an embodiment described later), Ring gear 120A),
The third rotating element supports the second rotating element so as to be capable of revolving,
The second rotating element is in contact with the first rotating element and the fourth rotating element;
The second planetary gear mechanism is
A fifth rotating element (for example, an outer pin 20B, an eccentric body 50B, a ring gear 120B, a sun gear 150B in the embodiment described later) and a sixth rotating element (for example, a curved plate 30B in the embodiment described later) that perform differential rotation with each other. A planetary gear 130B), a seventh rotating element (for example, an inner pin 40B and a planetary carrier 140B in an embodiment described later), and an eighth rotating element (for example, an eccentric body 50B, an outer pin 20B, a sun gear 150B in an embodiment described later), Ring gear 120B),
The seventh rotating element supports the sixth rotating element so as to be capable of revolving,
The sixth rotation element is a power transmission mechanism (for example, a power transmission mechanism 1 of an embodiment described later) that contacts the fifth rotation element and the eighth rotation element,
The rotation axes of the first and second planetary gear mechanisms are arranged on the same line,
The third and seventh rotating elements are connected to each other;
The driven device is connected to the third and seventh rotating elements;
The first and fifth rotating elements are disposed so as to be restricted from rotating about the rotation axis,
One end side is connected to the drive source, and the other end side is provided with a power transmission shaft (for example, a power transmission shaft 5 in an embodiment described later) connected to the fourth or eighth rotation element in a switchable manner,
One-way rotational power transmission means that transmits forward rotational power of the power transmission shaft and does not transmit reverse rotational power between the power transmission shaft and the fourth rotational element (for example, an embodiment described later) Of the one-way clutch OWC)
The reduction ratio of the first planetary gear mechanism is set higher than the reduction ratio of the second planetary gear mechanism,
In a power transmission shaft control device that controls the power transmission shaft (for example, an actuator ACT in an embodiment described later), the power transmission shaft is disconnected from the eighth rotation element at a first position, and the power transmission is performed. Control is performed such that the shaft is connected to the eighth rotating element at the second position.

請求項1に記載の発明によれば、第1及び第2遊星歯車機構の回転軸線は同一線上に配置され、第3及び第7回転要素は互いに連結され、被駆動装置は前記第3及び第7回転要素に対し接続され、第1及び第5回転要素は回転軸線周りの回転を規制されて配置され、一端側が駆動源に接続され、他端側が第4又は第8回転要素に対し切替可能に接続される動力伝達軸を備える。さらに、動力伝達軸を制御する動力伝達軸制御装置は、動力伝達軸が第1の位置で第4回転要素と接続状態とされ、動力伝達軸が第2の位置で第8回転要素と接続状態とされるように制御する。すなわち、駆動源に接続される要素(第4又は第8回転要素)を、切替手段としての動力伝達軸を動力伝達軸制御装置によって制御することにより、切替可能に構成されている。したがって、本発明においては切替手段としての動力伝達軸が1つで済み、従来の特許文献1のように切替手段を2つ設ける必要がなくなり、部品点数の削減が可能となり、動力伝達機構を小型化できる。   According to the first aspect of the present invention, the rotation axes of the first and second planetary gear mechanisms are arranged on the same line, the third and seventh rotation elements are connected to each other, and the driven device is the third and Connected to 7 rotation elements, the 1st and 5th rotation elements are arranged with the rotation around the rotation axis restricted, the one end side is connected to the drive source, and the other end side can be switched to the 4th or 8th rotation element A power transmission shaft connected to the Further, in the power transmission shaft control device that controls the power transmission shaft, the power transmission shaft is connected to the fourth rotation element at the first position, and the power transmission shaft is connected to the eighth rotation element at the second position. To be controlled. In other words, the elements (fourth or eighth rotating element) connected to the drive source are configured to be switchable by controlling the power transmission shaft as the switching means by the power transmission shaft control device. Therefore, in the present invention, only one power transmission shaft as the switching means is required, and there is no need to provide two switching means as in the conventional patent document 1, the number of parts can be reduced, and the power transmission mechanism can be reduced in size. Can be

請求項2に記載の発明によれば、第1及び第2遊星歯車機構の回転軸線は同一線上に配置され、第3及び第7回転要素は互いに連結され、被駆動装置は前記第3及び第7回転要素に対し接続され、第1及び第5回転要素は回転軸線周りの回転を規制されて配置され、一端側が駆動源に接続され、他端側が第4又は第8回転要素に対し切替可能に接続される動力伝達軸を備える。さらに、動力伝達軸を制御する動力伝達軸制御装置は、動力伝達軸が第1の位置で第4回転要素と接続状態とされ、動力伝達軸が第2の位置で第8回転要素と接続状態とされるように制御する。すなわち、駆動源に接続される要素(第4又は第8回転要素)を、切替手段としての動力伝達軸を動力伝達軸制御装置によって制御することにより、切替可能に構成されている。したがって、本発明においては切替手段としての動力伝達軸が1つで済み、従来の特許文献1のように切替手段を2つ設ける必要がなくなり、部品点数の削減が可能となり、動力伝達機構を小型化できる。
また、第4及び第8回転要素との動力伝達を行う動力伝達部が、回転軸線方向で第4回転要素と第8回転要素との間に配置されるので、当該動力伝達部は1つだけで構成でき、動力伝達機構の回転軸線方向への拡大を防止可能となる。
According to the second aspect of the present invention, the rotation axes of the first and second planetary gear mechanisms are arranged on the same line, the third and seventh rotation elements are connected to each other, and the driven device is the third and third planetary gear mechanisms. Connected to 7 rotation elements, the 1st and 5th rotation elements are arranged with the rotation around the rotation axis restricted, the one end side is connected to the drive source, and the other end side can be switched to the 4th or 8th rotation element A power transmission shaft connected to the Further, in the power transmission shaft control device that controls the power transmission shaft, the power transmission shaft is connected to the fourth rotation element at the first position, and the power transmission shaft is connected to the eighth rotation element at the second position. To be controlled. In other words, the elements (fourth or eighth rotating element) connected to the drive source are configured to be switchable by controlling the power transmission shaft as the switching means by the power transmission shaft control device. Therefore, in the present invention, only one power transmission shaft as the switching means is required, and there is no need to provide two switching means as in the conventional patent document 1, the number of parts can be reduced, and the power transmission mechanism can be reduced in size. Can be
Moreover, since the power transmission part which transmits power with the 4th and 8th rotation element is arrange | positioned between a 4th rotation element and an 8th rotation element in the rotating shaft direction, there is only one said power transmission part. The power transmission mechanism can be prevented from expanding in the direction of the rotational axis.

請求項3に記載の発明によれば、動力伝達部は、回転軸線方向に延びて第3及び第7回転要素を連結する連結部材の径方向内側に配置されるので、連結部材の径方向外側に配置される場合に比べて、動力伝達機構の径方向への拡大を防止可能となる。
また、回転軸線周りの回転を規制されて配置される第1及び第5回転要素が、第2及び第6回転要素の径方向外側に配置され、動力伝達軸と切替可能に接続される第4及び第8回転要素が、第2及び第6回転要素の径方向内側に配置されるので、第1及び第5回転要素が第2及び第6回転要素の径方向内側に配置され、第4及び第8回転要素が第2及び第6回転要素の径方向外側に配置される場合に比べて、動力伝達機構の径方向への拡大を防止可能となる。
According to the third aspect of the present invention, the power transmission portion is disposed on the radially inner side of the connecting member that extends in the rotational axis direction and connects the third and seventh rotating elements. Compared with the case where it arrange | positions to, it becomes possible to prevent the expansion to the radial direction of a power transmission mechanism.
In addition, the first and fifth rotating elements arranged to be restricted from rotating around the rotation axis are arranged on the radially outer side of the second and sixth rotating elements, and are connected to the power transmission shaft in a switchable manner. And the eighth rotating element is disposed radially inward of the second and sixth rotating elements, so that the first and fifth rotating elements are disposed radially inward of the second and sixth rotating elements, Compared with the case where the eighth rotating element is arranged on the radially outer side of the second and sixth rotating elements, it is possible to prevent the power transmission mechanism from expanding in the radial direction.

請求項4に記載の発明によれば、駆動源は、回転軸線方向で連結部材とオフセットし、連結部材の外側に配置されるので、連結部材の回転軸線方向への拡大を防止可能であるとともに、駆動源の径方向の大きさを拡大可能となる。
また、第4回転要素と第8回転要素との少なくとも一方の軸心に設けられた中空部に、動力伝達軸が挿通されるので、動力伝達機構の径方向への拡大を防止可能となる。
According to the fourth aspect of the present invention, the drive source is offset from the connecting member in the rotational axis direction and is disposed outside the connecting member, so that it is possible to prevent the connecting member from expanding in the rotational axis direction. The size of the drive source in the radial direction can be enlarged.
In addition, since the power transmission shaft is inserted into the hollow portion provided at the center of at least one of the fourth rotation element and the eighth rotation element, it is possible to prevent the power transmission mechanism from expanding in the radial direction.

請求項5に記載の発明によれば、被駆動装置の回転数が相対的に低い領域で、動力伝達軸の位置を第1の位置に制御し、第2遊星歯車機構よりも減速比が高い第1遊星歯車機構に駆動源の動力が伝達され、被駆動装置の回転数が相対的に高い領域で、動力伝達軸の位置を第2の位置に制御し、第1遊星歯車機構よりも減速比が低い第2遊星歯車機構に駆動源の動力が伝達されるので、幅広い回転域に対応可能となる。   According to the invention described in claim 5, in the region where the rotational speed of the driven device is relatively low, the position of the power transmission shaft is controlled to the first position, and the reduction ratio is higher than that of the second planetary gear mechanism. In the region where the power of the drive source is transmitted to the first planetary gear mechanism and the rotational speed of the driven device is relatively high, the position of the power transmission shaft is controlled to the second position, and the speed is reduced more than the first planetary gear mechanism. Since the power of the drive source is transmitted to the second planetary gear mechanism having a low ratio, it is possible to deal with a wide range of rotation.

請求項に記載の発明によれば、第1及び第2遊星歯車機構はサイクロイド減速機で構成されるので、第1及び第2遊星歯車機構を遊星歯車式減速機とした場合よりも変速比を大きく取ることが可能であり、動力伝達機構の径方向への拡大を抑えることが可能である。 According to the sixth aspect of the present invention, since the first and second planetary gear mechanisms are composed of cycloid reduction gears, the gear ratio is higher than when the first and second planetary gear mechanisms are planetary gear type reduction gears. The power transmission mechanism can be prevented from expanding in the radial direction.

請求項に記載の発明によれば、駆動源に動力伝達軸を介して接続される要素(第4又は第8回転要素)は、切替手段としての動力伝達軸を制御することによって、切替可能に構成されている。したがって、本発明においては切替手段としての動力伝達軸が1つで済み、従来の特許文献1のように切替手段を2つ設ける必要がなくなり、部品点数の削減が可能となり、動力伝達機構を小型化できる。
さらに、変速機構は、減速比が異なる第1及び第2遊星歯車機構を有するので、駆動源に接続される機構を切り替えることで2段変速が可能となる。
また、動力伝達軸の順方向の回転動力を伝達し、逆方向の回転動力を伝達しない一方向回転動力伝達手段が、動力伝達軸と、第2遊星歯車機構に比べて減速比が高い第1遊星歯車機構の第4回転要素と、の間に配置される。したがって、低速段側の第1遊星歯車機構から高速段側の第2遊星歯車機構に接続を切り替える際に、ニュートラル状態になることが無いので、スムーズな変速が可能となる。
また、動力伝達軸が第4及び第8回転要素に接続していない状態であっても、駆動源の動力を、一方向回転動力伝達手段を介して第1遊星歯車機構に伝達可能となる。
According to the seventh aspect of the present invention, the element (fourth or eighth rotating element) connected to the drive source via the power transmission shaft can be switched by controlling the power transmission shaft as the switching means. It is configured. Therefore, in the present invention, only one power transmission shaft as the switching means is required, and there is no need to provide two switching means as in the conventional patent document 1, the number of parts can be reduced, and the power transmission mechanism can be reduced in size. Can be
Furthermore, since the speed change mechanism has first and second planetary gear mechanisms with different reduction ratios, two-stage speed change is possible by switching the mechanism connected to the drive source.
Further, the unidirectional rotational power transmission means that transmits the rotational power in the forward direction of the power transmission shaft and does not transmit the rotational power in the reverse direction has a reduction ratio that is higher than that of the power transmission shaft and the second planetary gear mechanism. And the fourth rotating element of the planetary gear mechanism. Therefore, when the connection is switched from the first planetary gear mechanism on the low speed stage side to the second planetary gear mechanism on the high speed stage side, there is no neutral state, and smooth shifting is possible.
Further, even when the power transmission shaft is not connected to the fourth and eighth rotating elements, the power of the drive source can be transmitted to the first planetary gear mechanism via the one-way rotational power transmission means.

本発明の第1実施形態に係る動力伝達機構を示すスケルトン図であり、図2に示すサイクロイド減速機をA−A´断面で示した図である。It is a skeleton figure which shows the power transmission mechanism which concerns on 1st Embodiment of this invention, and is the figure which showed the cycloid reduction gear shown in FIG. 2 in the AA 'cross section. 第1実施形態のサイクロイド減速機の断面図である。It is sectional drawing of the cycloid reduction gear of 1st Embodiment. 動力伝達軸の動力伝達部が第1サイクロイド減速機に接続した状態を示すスケルトン図である。It is a skeleton figure which shows the state which the power transmission part of the power transmission shaft connected to the 1st cycloid reduction gear. 動力伝達軸の動力伝達部が第2サイクロイド減速機に接続した状態を示すスケルトン図である。It is a skeleton figure which shows the state which the power transmission part of the power transmission shaft connected to the 2nd cycloid reduction gear. 第1実施形態の変形例1に係る動力伝達機構を示すスケルトン図である。It is a skeleton figure which shows the power transmission mechanism which concerns on the modification 1 of 1st Embodiment. 第1実施形態の変形例2に係る動力伝達機構を示すスケルトン図である。It is a skeleton figure which shows the power transmission mechanism which concerns on the modification 2 of 1st Embodiment. 第1実施形態の変形例3に係る動力伝達機構を示すスケルトン図である。It is a skeleton figure which shows the power transmission mechanism which concerns on the modification 3 of 1st Embodiment. 第1実施形態の変形例4に係る動力伝達機構を示すスケルトン図である。It is a skeleton figure which shows the power transmission mechanism which concerns on the modification 4 of 1st Embodiment. 本発明の第2実施形態に係る動力伝達機構を示すスケルトン図である。It is a skeleton figure which shows the power transmission mechanism which concerns on 2nd Embodiment of this invention. 動力伝達軸の動力伝達部が第1サイクロイド減速機に接続した状態を示すスケルトン図である。It is a skeleton figure which shows the state which the power transmission part of the power transmission shaft connected to the 1st cycloid reduction gear. 動力伝達軸の動力伝達部が第2サイクロイド減速機に接続した状態を示すスケルトン図である。It is a skeleton figure which shows the state which the power transmission part of the power transmission shaft connected to the 2nd cycloid reduction gear. 本発明の第3実施形態に係る動力伝達機構を示すスケルトン図である。It is a skeleton figure which shows the power transmission mechanism which concerns on 3rd Embodiment of this invention. 従来の変速機を示すスケルトン図である。It is a skeleton figure which shows the conventional transmission.

以下、本発明に係る動力伝達機構の各実施形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of a power transmission mechanism according to the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1に示すように、本実施形態の動力伝達機構1は、例えば自動車等の車両に設けられ、駆動源としてのモータMOTと、モータMOTによって駆動される被駆動装置としての左右の車輪LW,RWと、モータMOTによって駆動され、モータMOTと車輪LW,RWとの間で変速比の変更を伴って動力を伝達する変速機構3と、を備える。
(First embodiment)
As shown in FIG. 1, a power transmission mechanism 1 according to the present embodiment is provided in a vehicle such as an automobile, for example, and includes a motor MOT as a drive source and left and right wheels LW as driven devices driven by the motor MOT. And a transmission mechanism 3 that is driven by the motor MOT and transmits power between the motor MOT and the wheels LW and RW with a change in transmission ratio.

変速機構3は、回転軸線が同一線上となるように互いに並んで配置された第1,第2遊星歯車機構としての第1,第2サイクロイド減速機10A,10Bと、回転軸線方向一端側(図1中、左側)がモータMOTに接続され、他端側(図1中、右側)が第1又は第2サイクロイド減速機10A,10Bに対し切替可能に接続される動力伝達軸5と、第1,第2サイクロイド減速機10A,10Bに動力伝達可能に接続されて、当該動力を左右のドライブシャフトLD,RDに配分して伝達するディファレンシャルギヤDIFFと、を有している。   The speed change mechanism 3 includes first and second cycloid reduction gears 10A and 10B as first and second planetary gear mechanisms arranged side by side so that their rotation axes are on the same line, and one end side in the direction of the rotation axis (see FIG. 1, the left side) is connected to the motor MOT, and the other end side (right side in FIG. 1) is connected to the first or second cycloid reducer 10 </ b> A, 10 </ b> B in a switchable manner, , A differential gear DIFF that is connected to the second cycloid reducers 10A and 10B so as to be able to transmit power and distributes the power to the left and right drive shafts LD and RD for transmission.

図2も参照し、第1,第2サイクロイド減速機10A,10Bは、互いに差動回転を行う第1,第5回転要素としての外ピン20A,20Bと、径方向内側に配置される第2,第6回転要素としての曲線板30A,30Bと、第3,第7回転要素としての内ピン40A,40Bと、曲線板30A,30Bの径方向内側に配置される第4,第8回転要素としての偏心体50A,50Bと、を有する。内ピン40A,40Bは、外ピン20A,20Bの径方向内側且つ偏心体50A,50Bの径方向外側に配置され、曲線板30A,30Bを公転可能に支持する。また、曲線板30A,30Bは、外ピン20A,20B及び偏心体50A,50Bと当接する。   Referring also to FIG. 2, the first and second cycloid reducers 10A and 10B include outer pins 20A and 20B as first and fifth rotating elements that perform differential rotation with each other, and a second that is disposed radially inward. , Curved plates 30A and 30B as sixth rotating elements, inner pins 40A and 40B as third and seventh rotating elements, and fourth and eighth rotating elements disposed radially inward of the curved plates 30A and 30B. As eccentric bodies 50A and 50B. The inner pins 40A and 40B are disposed radially inward of the outer pins 20A and 20B and radially outward of the eccentric bodies 50A and 50B, and support the curved plates 30A and 30B so that they can revolve. Further, the curved plates 30A and 30B are in contact with the outer pins 20A and 20B and the eccentric bodies 50A and 50B.

偏心体50A,50Bは、回転軸線方向に延在する回転軸部51A,51Bと、回転軸部51A,51Bの回転軸線方向中間部に一体に形成されて、回転軸部51A,51Bの軸心から偏心量eだけ偏心した偏心部52A,52Bと、を有しており、その軸心に動力伝達軸5を挿通可能な中空部56A,56Bを有する中空構造とされている。回転軸部51A,51Bの回転軸線方向内側端部は、動力伝達軸5の動力伝達部7(後述)と接続可能とされており、モータMOTの駆動力によって回転軸部51A,51Bが回転することによって、偏心部52A,52Bが偏心回転する。また、偏心部52A,52Bの外周部には、軸受53A,53Bが設けられており、当該軸受53A,53Bの複数のころ54A,54Bは、曲線板30A,30Bの内側貫通孔32A,32B(後述)に当接し、曲線板30A,30Bを回転自在に支持する。したがって、モータMOTの回転に伴って、偏心体50A,50Bの偏心部52A,52Bが偏心回転した場合、曲線板30A,30Bは、第1,第2サイクロイド減速機10A,10Bの回転軸線を中心として偏心体50A,50Bとは逆方向に偏心回転運動(自転運動)を行う。   The eccentric bodies 50A and 50B are formed integrally with the rotation shaft portions 51A and 51B extending in the rotation axis direction and the rotation shaft direction intermediate portions of the rotation shaft portions 51A and 51B, and the shaft centers of the rotation shaft portions 51A and 51B. The eccentric parts 52A and 52B are eccentric by an eccentric amount e, and the hollow structure has hollow parts 56A and 56B through which the power transmission shaft 5 can be inserted. Inner ends in the rotation axis direction of the rotation shaft portions 51A and 51B can be connected to a power transmission portion 7 (described later) of the power transmission shaft 5, and the rotation shaft portions 51A and 51B rotate by the driving force of the motor MOT. As a result, the eccentric portions 52A and 52B rotate eccentrically. Further, bearings 53A and 53B are provided on the outer peripheral portions of the eccentric portions 52A and 52B, and the plurality of rollers 54A and 54B of the bearings 53A and 53B are provided in the inner through holes 32A and 32B ( The curved plates 30A and 30B are rotatably supported. Accordingly, when the eccentric portions 52A and 52B of the eccentric bodies 50A and 50B are eccentrically rotated with the rotation of the motor MOT, the curved plates 30A and 30B are centered on the rotation axes of the first and second cycloid reducers 10A and 10B. As described above, eccentric rotation (rotation) is performed in the opposite direction to the eccentric bodies 50A and 50B.

曲線板30A,30Bは、軸心を回転軸線方向一端側面から他端側面に貫通して、偏心体50A,50Bが挿通される内側貫通孔32A,32Bと、内側貫通孔32A,32Bの径方向外側において回転軸線方向一端側面から他端側面に貫通する外側貫通孔34A,34Bと、が形成され、外周31A,31Bにエピトロコイド等のトロコイド系曲線で構成される波形を有している。外側貫通孔34A,34Bは、曲線板30A,30Bの軸心を中心とする円周上に等間隔に複数個設けられており、その内部に内ピン40A,40Bが嵌通される。   The curved plates 30A, 30B penetrate the shaft center from one end side surface to the other end side surface in the rotational axis direction, and the inner through holes 32A, 32B through which the eccentric bodies 50A, 50B are inserted and the radial directions of the inner through holes 32A, 32B. Outer through-holes 34A and 34B penetrating from one end side surface to the other end side surface in the rotation axis direction are formed on the outer side, and the outer peripheries 31A and 31B have a waveform composed of a trochoidal curve such as epitrochoid. A plurality of outer through holes 34A and 34B are provided at equal intervals on the circumference centered on the axis of the curved plates 30A and 30B, and the inner pins 40A and 40B are fitted therein.

内ピン40A,40Bは、第1,第2サイクロイド減速機10A,10Bの回転軸線を中心とする円周上に等間隔に設けられ、複数の外側貫通孔34A,34Bを嵌通する複数のピン42A,42Bと、複数のピン42A,42Bの回転軸線方向両側から径方向内側に延びる略円環形状の一対のフランジ44A,44Bと、から構成される。一対のフランジ44A,44Bの径方向内側端部は、軸受58A,58Bを介して、偏心体50A,50Bの回転軸部51A,51Bに相対回転可能に支持される。また、第1,第2サイクロイド減速機10A,10Bの回転軸線方向内側のフランジ44A,44Bが、回転軸線方向に延びる略円環形状の連結部材46によって互いに連結されているので、内ピン40A,40Bは、第1,第2サイクロイド減速機10A,10Bの回転軸線を中心として一体に公転運動する。この内ピン40A,40Bの回転動力は、連結部材46の回転軸線方向中間部に設けられたファイナルギヤ48によって、ディファレンシャルギヤDIFFに伝達される。   The inner pins 40A, 40B are provided at equal intervals on the circumference centering on the rotation axis of the first and second cycloid reducers 10A, 10B, and are inserted into the plurality of outer through holes 34A, 34B. 42A, 42B and a pair of substantially annular flanges 44A, 44B extending radially inward from both sides of the plurality of pins 42A, 42B in the rotational axis direction. The radially inner ends of the pair of flanges 44A and 44B are supported by the rotation shafts 51A and 51B of the eccentric bodies 50A and 50B via bearings 58A and 58B so as to be relatively rotatable. Further, since the flanges 44A and 44B on the inner side in the rotation axis direction of the first and second cycloid reducers 10A and 10B are connected to each other by a substantially annular connecting member 46 extending in the rotation axis direction, 40B revolves integrally around the rotation axis of the first and second cycloid reducers 10A and 10B. The rotational power of the inner pins 40A, 40B is transmitted to the differential gear DIFF by a final gear 48 provided at the intermediate portion in the rotational axis direction of the connecting member 46.

外ピン20A,20Bは、回転が規制されたピンホルダー(不図示)に等間隔に設けられた複数のピン24A,24Bから構成されている。したがって、複数のピン24A,24Bは、第1,第2サイクロイド減速機10A,10Bの回転軸線周りの回転(公転)が規制される。また、複数のピン24A,24Bは、曲線板30A,30Bの外周31A,31Bに係合して、曲線板30A,30Bに第1,第2サイクロイド減速機10A,10Bの回転軸線周りの自転運動を生じさせる。なお、複数のピン24A,24Bは、第1,第2サイクロイド減速機10A,10Bの回転軸線周りの回転(公転)が規制される限り、自転する構成としても構わない。   The outer pins 20A and 20B are composed of a plurality of pins 24A and 24B provided at equal intervals on a pin holder (not shown) whose rotation is restricted. Therefore, the plurality of pins 24A and 24B are restricted from rotating (revolving) around the rotation axis of the first and second cycloid reducers 10A and 10B. Further, the plurality of pins 24A, 24B are engaged with the outer peripheries 31A, 31B of the curved plates 30A, 30B, and rotate around the rotation axes of the first and second cycloid reducers 10A, 10B on the curved plates 30A, 30B. Give rise to The plurality of pins 24A and 24B may be configured to rotate as long as rotation (revolution) around the rotation axis of the first and second cycloid reducers 10A and 10B is restricted.

なお、図2においては、簡単のために、第1及び第2サイクロイド減速機10A,10Bは、曲線板30A,30Bの外周31A,31Bの波の数、及び外ピン20A,20Bのピン24A,24Bの数を等しく図示しているが、実際は異なり、第1サイクロイド減速機10Aの偏心体50Aと内ピン40Aとの間の減速比が、第2サイクロイド減速機の偏心体50Bと内ピン40Bとの間の減速比よりも高くなるように設定される。すなわち、第1サイクロイド減速機10Aは低速段用の減速機であり、第2サイクロイド減速機10Bは高速段用の減速機である。   In FIG. 2, for the sake of simplicity, the first and second cycloid reducers 10A and 10B include the number of waves on the outer circumferences 31A and 31B of the curved plates 30A and 30B and the pins 24A and 24A of the outer pins 20A and 20B. Although the number of 24B is illustrated equally, in reality, the reduction ratio between the eccentric body 50A of the first cycloid reducer 10A and the inner pin 40A is different from the eccentric body 50B and the inner pin 40B of the second cycloid reducer. It is set to be higher than the reduction ratio during That is, the first cycloid reduction gear 10A is a reduction gear for a low speed stage, and the second cycloid reduction gear 10B is a reduction gear for a high speed stage.

モータMOTには、動力伝達軸5の回転軸線方向一端部がスライドスプラインによって接続されており、モータMOTと動力伝達軸5とが、回転軸線方向への相対移動を可能に、且つ回転方向の動力伝達を可能に接続されている。また、動力伝達軸5は、回転軸方向他端側に延びて偏心体50A,50Bの中空部56A,56Bを挿通する。さらに、動力伝達軸5は、回転軸線方向で偏心体50A,50Bの間且つ連結部材46の径方向内側で、動力伝達軸5から径方向外側に延出する動力伝達部7が形成されると共に、第1及び第2サイクロイド減速機10A,10Bよりも回転軸線方向他端側において動力伝達軸制御装置としてのアクチュエータACTが接続される。   One end of the power transmission shaft 5 in the rotational axis direction is connected to the motor MOT by a slide spline, and the motor MOT and the power transmission shaft 5 are capable of relative movement in the rotational axis direction, and power in the rotational direction. Connected to allow transmission. Further, the power transmission shaft 5 extends to the other end side in the rotation axis direction and passes through the hollow portions 56A and 56B of the eccentric bodies 50A and 50B. Further, the power transmission shaft 5 is formed with a power transmission portion 7 extending radially outward from the power transmission shaft 5 between the eccentric bodies 50A and 50B in the rotational axis direction and radially inside the connecting member 46. The actuator ACT as a power transmission shaft control device is connected to the other end side in the rotational axis direction from the first and second cycloid reducers 10A and 10B.

アクチュエータACTは、動力伝達軸5の回転軸線方向への変位制御がシフトフォークSF(操作子)によって可能であり、図3に示すように動力伝達軸5を回転軸線方向一端側に変位させることによって、動力伝達部7と偏心体50Aの回転軸部51Aとを接続状態とし(このときの動力伝達軸5の位置を「第1の位置」と呼ぶ。)、図4に示すように動力伝達軸5を回転軸線方向他端側に変位させることによって、動力伝達部7と偏心体50Bの回転軸部51Bとを接続状態とする(このときの動力伝達軸5の位置を「第2の位置」と呼ぶ。)。なお、動力伝達軸5と偏心体50A,50Bとの接続構造は、シンクロでも、ドグクラッチによるものでもよい。   In the actuator ACT, displacement control of the power transmission shaft 5 in the rotational axis direction can be performed by a shift fork SF (operator). As shown in FIG. 3, the power transmission shaft 5 is displaced toward one end in the rotational axis direction. The power transmission unit 7 and the rotating shaft 51A of the eccentric body 50A are connected (the position of the power transmission shaft 5 at this time is referred to as “first position”), and the power transmission shaft as shown in FIG. 5 is displaced to the other end side in the rotation axis direction, thereby connecting the power transmission unit 7 and the rotation shaft unit 51B of the eccentric body 50B (the position of the power transmission shaft 5 at this time is “second position”). Call it.) Note that the connection structure between the power transmission shaft 5 and the eccentric bodies 50A and 50B may be synchronized or a dog clutch.

ここで、アクチュエータACTは、車輪LW,RWの回転数が相対的に低い領域で動力伝達軸5を第1の位置に制御して、低速段用の第1サイクロイド減速機10Aに接続し、車輪LW,RWの回転数が相対的に高い領域で第2の位置に制御して、動力伝達軸5を高速段用の第2サイクロイド減速機10Bに接続して車輪LW,RWを駆動するので、幅広い回転域に対応可能となる。また、回生時には、動力伝達軸5を第1,第2の位置に制御することによって、車輪LW,RWの回転動力をモータMOTに入力可能である。なお、動力伝達軸5を、第1及び第2の位置ではない位置に変位させた場合(例えば、図1の状態)は、モータMOTの動力は車輪LW,RWに伝達されず、ニュートラル状態となる。   Here, the actuator ACT controls the power transmission shaft 5 to the first position in a region where the rotational speeds of the wheels LW and RW are relatively low, and is connected to the first cycloid reducer 10A for the low speed stage. Since the LW and RW rotation speed is controlled to the second position in the relatively high region, the power transmission shaft 5 is connected to the second cycloid reducer 10B for the high speed stage, and the wheels LW and RW are driven. A wide range of rotation is possible. During regeneration, the rotational power of the wheels LW and RW can be input to the motor MOT by controlling the power transmission shaft 5 to the first and second positions. When the power transmission shaft 5 is displaced to a position other than the first and second positions (for example, the state of FIG. 1), the power of the motor MOT is not transmitted to the wheels LW and RW, and the neutral state Become.

以上、説明したように、本実施形態の動力伝達機構1によれば、第1及び第2サイクロイド減速機10A,10Bの回転軸線は同一線上に配置され、内ピン40A,40Bは互いに連結され、車輪LW,RWは内ピン40A,40Bに対し接続され、外ピン20A,20Bは回転軸線周りの回転を規制されて配置され、一端側がモータMOTに接続され、他端側が偏心体50A又は50Bに対し切替可能に接続される動力伝達軸5を備える。さらに、動力伝達軸5を制御するアクチュエータACTは、動力伝達軸5が第1の位置で偏心体50Aと接続状態とされ、動力伝達軸5が第2の位置で偏心体50Bと接続状態とされるように制御する。すなわち、モータMOTに接続される要素(偏心体50A,50B)を、切替手段としての動力伝達軸5をアクチュエータACTによって制御することにより、切替可能に構成されている。したがって、本発明においては切替手段としての動力伝達軸5が1つで済み、従来の特許文献1のように切替手段を2つ設ける必要がなくなり、部品点数の削減が可能となり、動力伝達機構1を小型化できる。   As described above, according to the power transmission mechanism 1 of the present embodiment, the rotation axes of the first and second cycloid reducers 10A and 10B are arranged on the same line, and the inner pins 40A and 40B are connected to each other. The wheels LW and RW are connected to the inner pins 40A and 40B, and the outer pins 20A and 20B are arranged so as to be restricted from rotating around the rotation axis, one end side is connected to the motor MOT, and the other end side is connected to the eccentric body 50A or 50B. On the other hand, a power transmission shaft 5 connected to be switchable is provided. Further, in the actuator ACT for controlling the power transmission shaft 5, the power transmission shaft 5 is connected to the eccentric body 50A at the first position, and the power transmission shaft 5 is connected to the eccentric body 50B at the second position. To control. That is, the elements (eccentric bodies 50A, 50B) connected to the motor MOT are configured to be switchable by controlling the power transmission shaft 5 as switching means by the actuator ACT. Therefore, in the present invention, only one power transmission shaft 5 as the switching means is required, and there is no need to provide two switching means as in the conventional patent document 1, the number of parts can be reduced, and the power transmission mechanism 1 Can be miniaturized.

また、偏心体50A,50Bとの動力伝達を行う動力伝達部7が、回転軸線方向で偏心体50A,50Bの間に配置されるので、当該動力伝達部7は1つだけで構成でき、動力伝達機構1の回転軸線方向への拡大を防止可能となる。   In addition, since the power transmission unit 7 that transmits power to the eccentric bodies 50A and 50B is disposed between the eccentric bodies 50A and 50B in the rotation axis direction, the power transmission unit 7 can be configured with only one power source. It becomes possible to prevent the transmission mechanism 1 from expanding in the direction of the rotation axis.

また、動力伝達部7は、回転軸線方向に延びて内ピン40A,40Bを連結する連結部材46の径方向内側に配置されるので、連結部材46の径方向外側に配置される場合に比べて、動力伝達機構1の径方向への拡大を防止可能となる。
また、回転軸線周りの回転を規制されて配置される第1及び第5回転要素(外ピン20A,20B)が、第2及び第6回転要素(曲線板30A,30B)の径方向外側に配置され、動力伝達軸5と接続される第4及び第8回転要素(偏心体50A,50B)が、第2及び第6回転要素(曲線板30A,30B)の径方向内側に配置されるので、第1及び第5回転要素が第2及び第6回転要素の径方向内側に配置され、第4及び第8回転要素が第2及び第6回転要素の径方向外側に配置される場合(すなわち、第1及び第5回転要素が偏心体50A,50Bであり、第2及び第6回転要素が外ピン20A,20Bである場合:後述の変形例4)に比べて、動力伝達機構1の径方向への拡大を防止可能となる。
Moreover, since the power transmission part 7 is arrange | positioned in the radial direction inner side of the connection member 46 which extends in a rotating shaft direction and connects inner pin 40A, 40B, compared with the case where it arrange | positions at the radial direction outer side of the connection member 46. Thus, it is possible to prevent the power transmission mechanism 1 from expanding in the radial direction.
In addition, the first and fifth rotating elements (outer pins 20A, 20B), which are arranged so as to be restricted from rotating around the rotation axis, are arranged on the radially outer side of the second and sixth rotating elements (curved plates 30A, 30B). Since the fourth and eighth rotating elements (eccentric bodies 50A, 50B) connected to the power transmission shaft 5 are arranged radially inside the second and sixth rotating elements (curved plates 30A, 30B), When the first and fifth rotating elements are disposed radially inside the second and sixth rotating elements, and the fourth and eighth rotating elements are disposed radially outside the second and sixth rotating elements (ie, When the first and fifth rotating elements are the eccentric bodies 50A and 50B and the second and sixth rotating elements are the outer pins 20A and 20B: the radial direction of the power transmission mechanism 1 as compared with the modified example 4) described later It is possible to prevent the expansion to.

また、モータMOTは、回転軸線方向で連結部材46とオフセットし、連結部材46の外側に配置されるので、連結部材46の回転軸線方向への拡大を防止可能であるとともに、モータMOTの径方向の大きさを拡大可能となる。
また、偏心体50A,50Bの軸心に設けられた中空部56に、動力伝達軸5が挿通されるので、動力伝達機構1の径方向への拡大を防止可能となる。
Further, since the motor MOT is offset from the connecting member 46 in the rotational axis direction and is disposed outside the connecting member 46, it is possible to prevent the connecting member 46 from being expanded in the rotational axis direction, and the radial direction of the motor MOT. The size of can be expanded.
Further, since the power transmission shaft 5 is inserted into the hollow portion 56 provided in the shaft centers of the eccentric bodies 50A and 50B, it is possible to prevent the power transmission mechanism 1 from expanding in the radial direction.

また、車輪LW,RWの回転数が相対的に低い領域で、動力伝達軸5の位置を第1の位置に制御し、第2サイクロイド減速機10Bよりも減速比が高い第1サイクロイド減速機10AにモータMOTの動力が伝達され、車輪LW,RWの回転数が相対的に高い領域で、動力伝達軸5の位置を第2の位置に制御し、第1サイクロイド減速機10Aよりも減速比が低い第2サイクロイド減速機10BにモータMOTの動力が伝達されるので、幅広い回転域に対応可能となる。   Further, in the region where the rotational speeds of the wheels LW and RW are relatively low, the position of the power transmission shaft 5 is controlled to the first position, and the first cycloid reducer 10A having a higher reduction ratio than the second cycloid reducer 10B. In the region where the power of the motor MOT is transmitted and the rotation speed of the wheels LW and RW is relatively high, the position of the power transmission shaft 5 is controlled to the second position, and the reduction ratio is higher than that of the first cycloid reducer 10A. Since the power of the motor MOT is transmitted to the low second cycloid reduction gear 10B, it is possible to deal with a wide rotation range.

また、モータMOTと動力伝達軸5の一端側とは、回転軸線方向の相対移動を可能に、且つ回転方向の動力伝達を可能に、スライドスプラインによって接続される。すなわち、動力を供給するモータMOTは固定され、モータMOTからの動力伝達を行う動力伝達軸5が回転軸線方向に移動可能に配置されるので、回転軸線方向に移動する部品が少なくなり、動力伝達機構1の小型化が可能となる。   Further, the motor MOT and one end side of the power transmission shaft 5 are connected by a slide spline so as to be capable of relative movement in the rotational axis direction and to transmit power in the rotational direction. In other words, the motor MOT that supplies power is fixed, and the power transmission shaft 5 that transmits power from the motor MOT is arranged so as to be movable in the direction of the rotation axis. The mechanism 1 can be downsized.

また、本実施形態の第1及び第2遊星歯車機構はサイクロイド減速機で構成されるので、第1及び第2遊星歯車機構を遊星歯車式減速機とした場合よりも変速比を大きく取ることが可能であり、動力伝達機構1の径方向への拡大を抑えることが可能である。   In addition, since the first and second planetary gear mechanisms of the present embodiment are constituted by cycloid reducers, the gear ratio can be made larger than when the first and second planetary gear mechanisms are planetary gear type reducers. It is possible to suppress the expansion of the power transmission mechanism 1 in the radial direction.

(変形例1)
なお、上述した第1実施形態の動力伝達機構1では、動力伝達軸5に、第1及び第2サイクロイド減速機10A,10Bよりも回転軸線方向他端側において、すなわちモータMOTの遠位側でアクチュエータACTが接続されるとした。しかしながら、図5に示すように、動力伝達軸5に、第1及び第2サイクロイド減速機10A,10Bよりも回転軸線方向一端側において、すなわちモータMOTの近位側で、アクチュエータACTが接続される構成としてもよい。このように構成した場合、偏心体50Aの中空部56Aを挿通して回転軸線方向他端側に延びる動力伝達軸5の回転軸線方向他端部は、回転軸線方向で偏心体50A,50Bの間に配置され、当該回転軸線方向他端部に、径方向外側に延出する動力伝達部7が形成される。したがって、第2サイクロイド減速機10Bの偏心体50Bに中空部56Bを設ける必要がなくなり、偏心体50Bが中実構造とされる共に、動力伝達軸5の回転軸線方向長さを短くすることができるので、動力伝達機構1の拡大をさらに抑制可能となる。
(Modification 1)
In the power transmission mechanism 1 according to the first embodiment described above, the power transmission shaft 5 is connected to the power transmission shaft 5 at the other end side in the rotational axis direction from the first and second cycloid reducers 10A and 10B, that is, at the distal side of the motor MOT. The actuator ACT is assumed to be connected. However, as shown in FIG. 5, the actuator ACT is connected to the power transmission shaft 5 at one end side in the rotational axis direction from the first and second cycloid reducers 10A and 10B, that is, at the proximal side of the motor MOT. It is good also as a structure. When configured in this manner, the other end portion in the rotation axis direction of the power transmission shaft 5 extending through the hollow portion 56A of the eccentric body 50A and extending to the other end side in the rotation axis direction is between the eccentric bodies 50A and 50B in the rotation axis direction. And a power transmission portion 7 extending outward in the radial direction is formed at the other end in the rotational axis direction. Accordingly, there is no need to provide the hollow portion 56B in the eccentric body 50B of the second cycloid reduction gear 10B, the eccentric body 50B has a solid structure, and the length of the power transmission shaft 5 in the rotation axis direction can be shortened. Therefore, expansion of the power transmission mechanism 1 can be further suppressed.

(変形例2)
また、図6に示すように、動力伝達軸5に形成される動力伝達部7は、偏心体50A,50Bの回転軸線方向外側にそれぞれ形成された第1,第2動力伝達部7A,7Bからなる構成としてもよい。このように構成した場合、アクチュエータACTは、動力伝達軸5を回転軸線方向他端側に変位させて第1の位置とすることによって、第1動力伝達部7Aと偏心体50Aの回転軸部51Aとを接続状態とし、動力伝達軸5を回転軸線方向一端側に変位させて第2の位置とすることによって、第2動力伝達部7Bと偏心体50Bの回転軸部51Bとを接続状態とする。
(Modification 2)
As shown in FIG. 6, the power transmission unit 7 formed on the power transmission shaft 5 includes first and second power transmission units 7 </ b> A and 7 </ b> B formed on the outer sides in the rotation axis direction of the eccentric bodies 50 </ b> A and 50 </ b> B, respectively. It is good also as composition which becomes. In this case, the actuator ACT displaces the power transmission shaft 5 to the other end side in the rotation axis direction to the first position, so that the first power transmission portion 7A and the rotation shaft portion 51A of the eccentric body 50A. Are connected, and the power transmission shaft 5 is displaced to one end side in the rotational axis direction to be in the second position, thereby bringing the second power transmission portion 7B and the rotational shaft portion 51B of the eccentric body 50B into a connected state. .

(変形例3)
また、図7に示すように、変形例2の動力伝達機構1において、動力伝達軸5に、第1及び第2サイクロイド減速機10A,10Bよりも回転軸線方向一端側において、すなわちモータMOTの近位側で、アクチュエータACTが接続される構成としてもよい。
(Modification 3)
Further, as shown in FIG. 7, in the power transmission mechanism 1 of the second modification, the power transmission shaft 5 is closer to one end side in the rotation axis direction than the first and second cycloid reducers 10A and 10B, that is, near the motor MOT. The actuator ACT may be connected on the rear side.

(変形例4)
また、図8に示すように、回転軸線周りの回転を規制されて配置される第1,第5回転要素を偏心体50A,50Bとし、動力伝達軸5に切替可能に接続される第4,第8回転要素を外ピン20A,20Bとしてもよい。
(Modification 4)
Further, as shown in FIG. 8, the first and fifth rotating elements arranged with the rotation around the rotation axis being restricted are the eccentric bodies 50A and 50B, and are connected to the power transmission shaft 5 in a switchable manner. The eighth rotation element may be the outer pins 20A and 20B.

この場合、偏心体50A,50Bは、回転軸線方向に互いに接続されて、中実構造の1つの偏心体を構成する。なお、偏心体50A,50Bは、回転軸線周りの回転が規制されて配置される限り、第1実施形態と同様、別体に形成されても構わない。   In this case, the eccentric bodies 50A and 50B are connected to each other in the rotation axis direction to constitute one eccentric body having a solid structure. The eccentric bodies 50A and 50B may be formed separately as in the first embodiment as long as the rotation around the rotation axis is restricted.

また、動力伝達軸5は、外ピン20A,20Bよりも径方向外側に配置され、動力伝達部7を構成する第1,第2動力伝達部7A,7Bが形成される。アクチュエータACTは、動力伝達軸5を回転軸線方向一端側に変位させて第1の位置とすることによって、第1動力伝達部7Aと外ピン20Aとを接続状態とし、動力伝達軸5を回転軸線方向他端側に変位させて第2の位置とすることによって、第2動力伝達部7Bと外ピン20Bとを接続状態とする。   In addition, the power transmission shaft 5 is disposed radially outside the outer pins 20 </ b> A and 20 </ b> B, and first and second power transmission parts 7 </ b> A and 7 </ b> B that constitute the power transmission part 7 are formed. The actuator ACT displaces the power transmission shaft 5 toward one end in the rotational axis direction to be in the first position, whereby the first power transmission portion 7A and the outer pin 20A are connected, and the power transmission shaft 5 is turned into the rotational axis. The second power transmission unit 7B and the outer pin 20B are brought into a connected state by being displaced to the other end side in the direction to be the second position.

以上のように構成することによって、モータMOTの動力を、外ピン20A,20Bに切替可能に動力伝達可能となり、動力伝達された外ピン20A,20Bは第1,第2サイクロイド減速機10A,10Bの回転軸線周りに自転運動し、曲線板30A,30B、内ピン40A,40B,連結部材46等を介して車輪LW,RWに駆動力が出力される。   By configuring as described above, the power of the motor MOT can be transmitted to the outer pins 20A and 20B in a switchable manner, and the outer pins 20A and 20B to which the power has been transmitted are the first and second cycloid reducers 10A and 10B. , And the driving force is output to the wheels LW and RW via the curved plates 30A and 30B, the inner pins 40A and 40B, the connecting member 46, and the like.

(第2実施形態)
次に、本発明の第2実施形態に係る動力伝達機構について説明する。なお、本実施形態の動力伝達機構は、第1実施形態の動力伝達機構と基本的構成を同一とするので、同一部分に同一符号を付すことにより説明を省略又は簡略化し、相違部分を中心に説明する。
(Second Embodiment)
Next, a power transmission mechanism according to a second embodiment of the present invention will be described. The power transmission mechanism of the present embodiment has the same basic configuration as that of the power transmission mechanism of the first embodiment. Therefore, the same reference numerals are assigned to the same parts to omit or simplify the description, with the focus on the different parts. explain.

図9に示すように、動力伝達軸5と低速段の第1サイクロイド減速機10Aの偏心体50Aの回転軸部51Aとの間には、モータMOTにより駆動された動力伝達軸5の順方向の回転動力を偏心体50Aに伝達し、逆方向の回転動力を伝達しない一方向回転動力伝達手段としてのワンウェイクラッチOWCが配置されている。   As shown in FIG. 9, the forward direction of the power transmission shaft 5 driven by the motor MOT is between the power transmission shaft 5 and the rotary shaft portion 51A of the eccentric body 50A of the low-speed first cycloid reduction gear 10A. A one-way clutch OWC is arranged as a one-way rotational power transmission means that transmits rotational power to the eccentric body 50A and does not transmit reverse rotational power.

このようにワンウェイクラッチOWCを配置した場合、アクチュエータACTが動力伝達軸5の動力伝達部7を偏心体50Bの回転軸部51Bに接続しない位置(このときの動力伝達軸5の位置を「第1の位置」と呼ぶ。)に制御することによって、動力伝達軸5の回転動力を低速段の第1サイクロイド減速機10Aに入力する。より具体的に、第1の位置における動力伝達軸5と偏心体50Bとの非接続状態とは、図9に示すように、動力伝達軸5の動力伝達部7が偏心体50A,50Bの回転軸部51A,51Bのどちらにも接続しない状態か、図10に示すように、動力伝達軸5の動力伝達部7が偏心体50Aの回転軸部51Aに接続する状態をいう。動力伝達軸5の回転動力は、図9に示される状態では、ワンウェイクラッチOWCを介して偏心体50Aの回転軸部51Aに入力され、図10に示される状態では、動力伝達軸5の動力伝達部7を介して偏心体50Aの回転軸部51Aに入力される。   When the one-way clutch OWC is arranged in this way, the actuator ACT does not connect the power transmission portion 7 of the power transmission shaft 5 to the rotation shaft portion 51B of the eccentric body 50B (the position of the power transmission shaft 5 at this time is “first position”). In this case, the rotational power of the power transmission shaft 5 is input to the first cycloid reducer 10A in the low speed stage. More specifically, the non-connected state of the power transmission shaft 5 and the eccentric body 50B at the first position means that the power transmission portion 7 of the power transmission shaft 5 rotates the eccentric bodies 50A and 50B as shown in FIG. The state where it is not connected to either of the shaft portions 51A and 51B, or the state where the power transmission portion 7 of the power transmission shaft 5 is connected to the rotating shaft portion 51A of the eccentric body 50A as shown in FIG. In the state shown in FIG. 9, the rotational power of the power transmission shaft 5 is input to the rotational shaft portion 51A of the eccentric body 50A via the one-way clutch OWC, and in the state shown in FIG. 10, the power transmission of the power transmission shaft 5 is performed. It is input to the rotating shaft 51 </ b> A of the eccentric body 50 </ b> A via the part 7.

また、図11に示すように、アクチュエータACTが動力伝達軸5の動力伝達部7を偏心体50Bの回転軸部51Bに接続する位置(このときの動力伝達軸5の位置を「第2の位置」と呼ぶ。)に制御することによって、動力伝達軸5の回転動力を高速段の第2サイクロイド減速機10Bに入力する。   11, the position where the actuator ACT connects the power transmission portion 7 of the power transmission shaft 5 to the rotation shaft portion 51B of the eccentric body 50B (the position of the power transmission shaft 5 at this time is referred to as “second position”). In this case, the rotational power of the power transmission shaft 5 is input to the second cycloid reducer 10B at the high speed stage.

ここで、アクチュエータACTは、車輪LW,RWの回転数が相対的に低い領域で動力伝達軸5を第1の位置に制御して、低速段用の第1サイクロイド減速機10Aに接続し、車輪LW,RWの回転数が相対的に高い領域で第2の位置に制御して、動力伝達軸5を高速段用の第2サイクロイド減速機10Bに接続して車輪LW,RWを駆動するので幅広い回転域に対応可能となる。特に本実施形態では、動力伝達軸5の接続を、低速段用の第1サイクロイド減速機10Aから高速段用の第2サイクロイド減速機10Bに切り替える際に、ニュートラル状態となることがなく、動力伝達軸5の動力伝達部7が偏心体50Bの回転軸部51Bに接続した瞬間にワンウェイクラッチOWCが非係合状態となるため、シームレス(空走時間なし)な切替が可能となる。また、動力伝達軸5の接続を、高速段の第2サイクロイド減速機10Bから低速段の第1サイクロイド減速機10Aに切り替える際には、動力伝達軸5を再び第1の位置に制御すればよく、この場合、動力伝達軸5の動力伝達部7が偏心体50Aの回転軸部51Aに接続する状態(図10参照。)よりも、動力伝達軸5の動力伝達部7が偏心体50A,50Bの回転軸部51A,51Bのどちらにも接続しない状態(図9参照。)に制御することが望ましい。   Here, the actuator ACT controls the power transmission shaft 5 to the first position in a region where the rotational speeds of the wheels LW and RW are relatively low, and is connected to the first cycloid reducer 10A for the low speed stage. Since the LW and RW rotation speed is controlled to the second position in a relatively high region, the power transmission shaft 5 is connected to the second cycloid reducer 10B for the high speed stage, and the wheels LW and RW are driven. It becomes possible to correspond to the rotation range. In particular, in this embodiment, when the connection of the power transmission shaft 5 is switched from the first cycloid reduction gear 10A for the low speed stage to the second cycloid reduction gear 10B for the high speed stage, the power transmission is not performed. Since the one-way clutch OWC is disengaged at the moment when the power transmission portion 7 of the shaft 5 is connected to the rotating shaft portion 51B of the eccentric body 50B, seamless (no idle time) switching is possible. Further, when the connection of the power transmission shaft 5 is switched from the high speed second cycloid reducer 10B to the low speed first cycloid reducer 10A, the power transmission shaft 5 may be controlled to the first position again. In this case, the power transmission unit 7 of the power transmission shaft 5 is more eccentric than the state in which the power transmission unit 7 of the power transmission shaft 5 is connected to the rotary shaft 51A of the eccentric body 50A (see FIG. 10). It is desirable to control so that it is not connected to either of the rotating shaft portions 51A and 51B (see FIG. 9).

また、回生時には、動力伝達軸5の動力伝達部7が偏心体50A,50Bの回転軸部51A,51Bに接続する(図10,11参照。)ように制御することによって、車輪LW,RWの回転動力をモータMOTに入力可能である。特に、本実施形態の場合、動力伝達軸5と偏心体50Aとをドグクラッチによって接続することで、回生量増加が可能である。なお、回生が不要であり、車輪LW,RWが回転しているときにモータMOTを停止させる場合は、動力伝達軸5の動力伝達部7が偏心体50A,50Bの回転軸部51A,51Bのどちらにも接続しない状態(図9参照。)とすればよい。   Further, at the time of regeneration, the power transmission unit 7 of the power transmission shaft 5 is controlled so as to be connected to the rotation shaft portions 51A and 51B of the eccentric bodies 50A and 50B (see FIGS. 10 and 11), thereby the wheels LW and RW are controlled. Rotational power can be input to the motor MOT. In particular, in the case of this embodiment, the amount of regeneration can be increased by connecting the power transmission shaft 5 and the eccentric body 50A by a dog clutch. When regeneration is not required and the motor MOT is stopped when the wheels LW and RW are rotating, the power transmission unit 7 of the power transmission shaft 5 is connected to the rotation shafts 51A and 51B of the eccentric bodies 50A and 50B. What is necessary is just to set it as the state (refer FIG. 9) which is not connected to either.

以上、説明したように、本実施形態の動力伝達機構1によれば、モータMOTに動力伝達軸5を介して接続される要素(偏心体50A,50B)は、切替手段としての動力伝達軸5を制御することによって、切替可能に構成されている。したがって、本発明においては切替手段としての動力伝達軸5が1つで済み、従来の特許文献1のように切替手段を2つ設ける必要がなくなり、部品点数の削減が可能となり、動力伝達機構1を小型化できる。
さらに、変速機構3は、減速比が異なる第1及び第2サイクロイド減速機10A,10Bを有するので、モータMOTに接続される機構を切り替えることで2段変速が可能となる。
また、動力伝達軸5の順方向の回転動力を伝達し、逆方向の回転動力を伝達しないワンウェイクラッチOWCが、動力伝達軸5と、第2サイクロイド減速機10Bに比べて減速比が高い第1サイクロイド減速機10Aの偏心体50Aと、の間に配置される。したがって、低速段側の第1サイクロイド減速機10Aから高速段側の第2サイクロイド減速機10Bに接続を切り替える際に、ニュートラル状態になることが無いので、スムーズな変速が可能となる。
As described above, according to the power transmission mechanism 1 of the present embodiment, the elements (eccentric bodies 50A, 50B) connected to the motor MOT via the power transmission shaft 5 are the power transmission shaft 5 as switching means. By being controlled, it can be switched. Therefore, in the present invention, only one power transmission shaft 5 as the switching means is required, and there is no need to provide two switching means as in the conventional patent document 1, the number of parts can be reduced, and the power transmission mechanism 1 Can be miniaturized.
Furthermore, since the speed change mechanism 3 includes the first and second cycloid reducers 10A and 10B having different speed reduction ratios, a two-stage speed change is possible by switching the mechanism connected to the motor MOT.
Further, the one-way clutch OWC that transmits the rotational power in the forward direction of the power transmission shaft 5 and does not transmit the rotational power in the reverse direction has a first reduction ratio higher than that of the power transmission shaft 5 and the second cycloid reducer 10B. It arrange | positions between 50 A of eccentric bodies of 10 A of cycloid reduction gears. Therefore, when the connection is switched from the first cycloid reduction gear 10A on the low speed stage side to the second cycloid reduction gear 10B on the high speed stage side, a neutral state is not brought about, and a smooth speed change is possible.

なお、本実施形態の動力伝達機構1においても、第1実施形態の変形例4(図8参照。)のように、回転軸線周りの回転を規制されて配置される第1,第5回転要素を偏心体50A,50Bとし、動力伝達軸5に切替可能に接続される第4,第8回転要素を外ピン20A,20Bとしてもよい。この場合、ワンウェイクラッチOWCは、動力伝達軸5と低速段の第1サイクロイド減速機10Aの外ピン20Aとの間に設けられる。   Note that, also in the power transmission mechanism 1 of the present embodiment, the first and fifth rotating elements that are disposed so as to be restricted from rotating about the rotation axis, as in Modification 4 (see FIG. 8) of the first embodiment. May be the eccentric bodies 50A and 50B, and the fourth and eighth rotating elements connected to the power transmission shaft 5 in a switchable manner may be the outer pins 20A and 20B. In this case, the one-way clutch OWC is provided between the power transmission shaft 5 and the outer pin 20A of the first low-speed first cycloid reducer 10A.

(第3実施形態)
次に、本発明の第3実施形態に係る動力伝達機構について説明する。なお、本実施形態の動力伝達機構は、第1実施形態の動力伝達機構と基本的構成を同一とし、第1,第2遊星歯車機構の構成が異なるのみであるため、同一部分には同一符号を付すことで説明を省略又は簡略化し、相違部分について詳述する。
(Third embodiment)
Next, a power transmission mechanism according to a third embodiment of the present invention will be described. The power transmission mechanism of the present embodiment has the same basic configuration as the power transmission mechanism of the first embodiment and is different only in the configuration of the first and second planetary gear mechanisms. The description will be omitted or simplified by attaching, and the differences will be described in detail.

図12に示すように、本実施形態の変速機構3は、回転軸線が同一線上となるように互いに並んで配置された第1,第2遊星歯車機構としての第1,第2遊星歯車式減速機110A,110Bを有している。第1,第2遊星歯車式減速機110A,110Bは、回転軸線周りの回転を規制されて配置された第1,第5回転要素としての略円環形状のリングギヤ120A,120Bと、リングギヤ120A,120Bの径方向内側に配置されて当該リングギヤ120A,120Bと噛合する第2,第6回転要素としての複数のプラネタリギヤ130A,130Bと、複数のプラネタリギヤ130A,130Bを公転可能に支持する第3,第7回転要素としてのプラネタリキャリア140A,140Bと、プラネタリギヤ130A,130Bの径方向内側に配置されて当該プラネタリギヤ130A,130Bと噛合する第4,第8回転要素としてのサンギヤ150A,150Bと、を有する。   As shown in FIG. 12, the speed change mechanism 3 of the present embodiment includes first and second planetary gear type reduction gears as first and second planetary gear mechanisms that are arranged side by side so that their rotational axes are on the same line. 110A and 110B. The first and second planetary gear type speed reducers 110A and 110B include substantially ring-shaped ring gears 120A and 120B serving as first and fifth rotating elements disposed so as to be restricted from rotating around the rotation axis, and ring gears 120A, A plurality of planetary gears 130A and 130B as second and sixth rotating elements that are arranged radially inward of 120B and mesh with the ring gears 120A and 120B, and a third and a third that support the plurality of planetary gears 130A and 130B in a revolving manner. Planetary carriers 140A and 140B as seven rotating elements, and sun gears 150A and 150B as fourth and eighth rotating elements disposed on the radial inner side of the planetary gears 130A and 130B and meshing with the planetary gears 130A and 130B.

プラネタリキャリア140A,140Bは、互いに連結部材46によって連結されて一体に自転運動する。このプラネタリキャリア140A,140Bの回転動力は、連結部材46の回転軸線方向中間部に設けられたファイナルギヤ48によって、ディファレンシャルギヤDIFFに伝達される。リングギヤ120A,120Bは、回転軸線周りの回転を規制されて配置される。   The planetary carriers 140A and 140B are connected to each other by the connecting member 46 and rotate together. The rotational power of the planetary carriers 140A and 140B is transmitted to the differential gear DIFF by the final gear 48 provided at the intermediate portion in the rotational axis direction of the connecting member 46. The ring gears 120A and 120B are arranged such that the rotation around the rotation axis is restricted.

ここで、サンギヤ150Aの外径はサンギヤ150Bの外径より小さく形成されており、リングギヤ120Aの内径はリングギヤ120Bの内径よりも大きく形成される。すなわち、サンギヤ150Aの歯数はサンギヤ150Bの歯数よりも少なく、リングギヤ120Aの歯数はリングギヤ120Bの歯数よりも多く形成される。したがって、第1遊星歯車式減速機110Aの減速比は、第2遊星歯車式減速機の減速比よりも高くなり、第1,第2遊星歯車式減速機110A,110Bはそれぞれ低速段用、高速段用の減速機とされる。   Here, the outer diameter of the sun gear 150A is smaller than the outer diameter of the sun gear 150B, and the inner diameter of the ring gear 120A is larger than the inner diameter of the ring gear 120B. That is, the number of teeth of sun gear 150A is smaller than the number of teeth of sun gear 150B, and the number of teeth of ring gear 120A is larger than the number of teeth of ring gear 120B. Therefore, the reduction ratio of the first planetary gear type reduction gear 110A is higher than the reduction ratio of the second planetary gear type reduction device, and the first and second planetary gear reduction devices 110A and 110B are for the low speed stage and the high speed, respectively. It is considered as a stage reducer.

アクチュエータACTは、車輪LW,RWの回転数が相対的に低い領域で動力伝達軸5を第1の位置に制御して、動力伝達軸5を低速段用の第1遊星歯車式減速機110Aのサンギヤ150Aに接続し、車輪LW,RWの回転数が相対的に高い領域で第2の位置に制御して、動力伝達軸5を高速段用の第2遊星歯車式減速機110Bのサンギヤ150Bに接続し、車輪LW,RWを駆動するので、幅広い回転域に対応可能となる。また、回生時には、動力伝達軸5を第1,第2の位置に制御することによって、車輪LW,RWの回転動力をモータMOTに入力可能である。なお、動力伝達軸5を、第1及び第2の位置ではない位置に変位させた場合は、モータMOTの動力は車輪LW,RWに伝達されず、ニュートラル状態となる。   The actuator ACT controls the power transmission shaft 5 to the first position in a region where the rotational speeds of the wheels LW and RW are relatively low, and the power transmission shaft 5 is controlled by the first planetary gear speed reducer 110A for the low speed stage. The power transmission shaft 5 is connected to the sun gear 150A of the second planetary gear speed reducer 110B for the high speed stage by connecting to the sun gear 150A and controlling to the second position in the region where the rotational speeds of the wheels LW and RW are relatively high. Since they are connected and the wheels LW and RW are driven, a wide range of rotation can be handled. During regeneration, the rotational power of the wheels LW and RW can be input to the motor MOT by controlling the power transmission shaft 5 to the first and second positions. When the power transmission shaft 5 is displaced to a position other than the first and second positions, the power of the motor MOT is not transmitted to the wheels LW and RW, and a neutral state is obtained.

このように、本実施形態の動力伝達機構によれば、第1実施形態の動力伝達機構の効果と同様の効果を奏することが可能である。なお、上述したように、変速機構3の変速比を大きく取るためには、第1実施形態のように遊星歯車機構をサイクロイド減速機によって構成することが望ましい。   Thus, according to the power transmission mechanism of the present embodiment, it is possible to achieve the same effects as the effects of the power transmission mechanism of the first embodiment. As described above, in order to increase the speed ratio of the speed change mechanism 3, it is desirable to configure the planetary gear mechanism with a cycloid reduction gear as in the first embodiment.

また、本実施形態の動力伝達機構においても、第2実施形態と同様に、ワンウェイクラッチOWCを、動力伝達軸5と、第2遊星歯車式減速機110Bに比べて減速比が高い第1遊星歯車式減速機110Aのサンギヤ150Aと、の間に配置される構成としても構わない。   Also in the power transmission mechanism of the present embodiment, similarly to the second embodiment, the one-way clutch OWC is a first planetary gear having a higher reduction ratio than the power transmission shaft 5 and the second planetary gear type speed reducer 110B. It may be configured to be disposed between the sun gear 150A of the type reduction gear 110A.

また、第1実施形態の変形例4のように、回転軸線周りの回転を規制されて配置される第1,第5回転要素をサンギヤ150A,150Bとし、動力伝達軸5に切替可能に接続される第4,第8回転要素をリングギヤ120A,120Bとしてもよい。   Further, as in the fourth modification of the first embodiment, the first and fifth rotating elements arranged with the rotation around the rotation axis being restricted are the sun gears 150A and 150B, and are switchably connected to the power transmission shaft 5. The fourth and eighth rotating elements may be ring gears 120A and 120B.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
例えば、上述の実施形態においては、被駆動装置として車輪LW,RWを適用したが、ウインチ等の他の回転機構を適用しても構わない。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
For example, in the above-described embodiment, the wheels LW and RW are applied as the driven devices, but other rotating mechanisms such as a winch may be applied.

また、偏心体50A,50Bには、偏心運動による遠心力を打ち消すために、複数の偏心部52A,52Bが位相を変えて設けられる構成としてもよい。例えば、偏心体50A,50Bに、3つの偏心部52A,52Bを設ける場合には、それぞれ120°ずつ位相を変えて設けられる。   The eccentric bodies 50A and 50B may have a configuration in which a plurality of eccentric portions 52A and 52B are provided with different phases in order to cancel the centrifugal force due to the eccentric motion. For example, when the eccentric bodies 50A and 50B are provided with the three eccentric portions 52A and 52B, the eccentric bodies 50A and 50B are provided with phases shifted by 120 °.

また、上述の実施形態においては、回転軸線方向一端側に第1遊星歯車機構を配置し、他端側に第2遊星歯車機構を配置するとしたが、一端側に第2遊星歯車機構を配置し、他端側に第1遊星歯車機構を配置してもよい。   In the above-described embodiment, the first planetary gear mechanism is arranged on one end side in the rotation axis direction and the second planetary gear mechanism is arranged on the other end side. However, the second planetary gear mechanism is arranged on one end side. The first planetary gear mechanism may be disposed on the other end side.

1 動力伝達機構
3 変速機構
5 動力伝達軸
7,7A,7B 動力伝達部
10A,10B サイクロイド減速機(遊星歯車機構)
20A 外ピン(第1回転要素又は第4回転要素)
20B 外ピン(第5回転要素又は第8回転要素)
24A,24B ピン
30A 曲線板(第2回転要素)
30B 曲線板(第6回転要素)
31A,31B 外周
32A,32B 内側貫通孔(貫通孔)
34A,34B 外側貫通孔(貫通孔)
40A 内ピン(第3回転要素)
40B 内ピン(第7回転要素)
42A,42B ピン
44A,44B フランジ
46 連結部材
48 ファイナルギヤ
50A 偏心体(第4回転要素又は第1回転要素)
50B 偏心体(第8回転要素又は第5回転要素)
51A,51B 回転軸部
52A,52B 偏心部
53A,53B 軸受
54A,54B ころ
56A,56B 中空部
58A,58B 軸受
110A,110B 遊星歯車式減速機(遊星歯車機構)
120A リングギヤ(第1回転要素又は第4回転要素)
120B リングギヤ(第5回転要素又は第8回転要素)
130A プラネタリギヤ(第2回転要素)
130B プラネタリギヤ(第6回転要素)
140A プラネタリキャリア(第3回転要素)
140B プラネタリキャリア(第7回転要素)
150A サンギヤ(第4回転要素又は第1回転要素)
150B サンギヤ(第8回転要素又は第5回転要素)
ACT アクチュエータ(動力伝達軸制御装置)
DIFF ディファレンシャルギヤ
LD,RD ドライブシャフト
LW,RW 車輪(被駆動装置)
MOT モータ(駆動源)
OWC ワンウェイクラッチ(一方向回転動力伝達手段)
SF シフトフォーク
DESCRIPTION OF SYMBOLS 1 Power transmission mechanism 3 Transmission mechanism 5 Power transmission shaft 7, 7A, 7B Power transmission part 10A, 10B Cycloid speed reducer (planetary gear mechanism)
20A outer pin (first rotating element or fourth rotating element)
20B Outer pin (5th or 8th rotating element)
24A, 24B Pin 30A Curved plate (second rotating element)
30B Curved plate (sixth rotating element)
31A, 31B Outer perimeter 32A, 32B Inside through hole (through hole)
34A, 34B Outer through hole (through hole)
40A inner pin (third rotating element)
40B Inner pin (seventh rotating element)
42A, 42B Pins 44A, 44B Flange 46 Connecting member 48 Final gear 50A Eccentric body (fourth rotating element or first rotating element)
50B Eccentric body (8th rotating element or 5th rotating element)
51A, 51B Rotating shaft portion 52A, 52B Eccentric portion 53A, 53B Bearing 54A, 54B Roller 56A, 56B Hollow portion 58A, 58B Bearing 110A, 110B Planetary gear type reduction gear (planetary gear mechanism)
120A ring gear (first rotating element or fourth rotating element)
120B ring gear (5th or 8th rotating element)
130A planetary gear (second rotating element)
130B Planetary gear (6th rotating element)
140A planetary carrier (third rotating element)
140B planetary carrier (seventh rotating element)
150A sun gear (fourth rotating element or first rotating element)
150B sun gear (8th or 5th rotating element)
ACT Actuator (Power transmission shaft controller)
DIFF Differential gear LD, RD Drive shaft LW, RW Wheel (driven device)
MOT motor (drive source)
OWC one-way clutch (unidirectional rotational power transmission means)
SF shift fork

Claims (7)

駆動源と、
前記駆動源によって駆動される被駆動装置と、
前記駆動源によって駆動され、前記駆動源と前記被駆動装置との間で変速比の変更を伴って動力を伝達する変速機構と、
を備え、
前記変速機構は、第1及び第2遊星歯車機構を有し、
前記第1遊星歯車機構は、
互いに差動回転を行う第1回転要素と、第2回転要素と、第3回転要素と、第4回転要素と、
を有し、
前記第3回転要素は、第2回転要素を公転可能に支持し、
前記第2回転要素は、前記第1回転要素及び前記第4回転要素と当接し、
前記第2遊星歯車機構は、
互いに差動回転を行う第5回転要素と、第6回転要素と、第7回転要素と、第8回転要素と、
を有し、
前記第7回転要素は、第6回転要素を公転可能に支持し、
前記第6回転要素は、前記第5回転要素及び前記第8回転要素と当接する動力伝達機構であって、
前記第1及び第2遊星歯車機構の回転軸線は、同一線上に配置され、
前記第3及び第7回転要素は、互いに連結され、
前記被駆動装置は、前記第3及び第7回転要素に対し接続され、
前記第1及び第5回転要素は、前記回転軸線周りの回転を規制されて配置され、
一端側が前記駆動源に接続され、他端側が前記第4又は前記第8回転要素に対し切替可能に接続される動力伝達軸を備え、
前記動力伝達軸は、前記駆動源に対し前記回転軸線方向の相対移動を可能に、且つ回転方向の動力伝達を可能に接続され、
該動力伝達軸を制御する動力伝達軸制御装置は、前記動力伝達軸が第1の位置で前記第4回転要素と接続状態とされ、前記動力伝達軸が第2の位置で前記第8回転要素と接続状態とされるように制御することを特徴とする動力伝達機構。
A driving source;
A driven device driven by the drive source;
A speed change mechanism that is driven by the drive source and transmits power with a change in speed change ratio between the drive source and the driven device;
With
The speed change mechanism has first and second planetary gear mechanisms,
The first planetary gear mechanism is
A first rotating element, a second rotating element, a third rotating element, and a fourth rotating element that perform differential rotation with each other;
Have
The third rotating element supports the second rotating element so as to revolve,
The second rotating element is in contact with the first rotating element and the fourth rotating element;
The second planetary gear mechanism is
A fifth rotating element, a sixth rotating element, a seventh rotating element, and an eighth rotating element that perform differential rotation with respect to each other;
Have
The seventh rotating element supports the sixth rotating element so that it can revolve,
The sixth rotating element is a power transmission mechanism that contacts the fifth rotating element and the eighth rotating element,
The rotation axes of the first and second planetary gear mechanisms are arranged on the same line,
The third and seventh rotating elements are connected to each other;
The driven device is connected to the third and seventh rotating elements;
The first and fifth rotating elements are disposed so as to be restricted from rotating about the rotation axis,
One end side is connected to the drive source, and the other end side includes a power transmission shaft that is switchably connected to the fourth or eighth rotating element,
The power transmission shaft is connected to the drive source so as to be capable of relative movement in the rotational axis direction and to transmit power in the rotational direction.
In the power transmission shaft control device for controlling the power transmission shaft, the power transmission shaft is connected to the fourth rotation element at a first position, and the power transmission shaft is connected to the eighth rotation element at a second position. And a power transmission mechanism that is controlled so as to be in a connected state.
駆動源と、
前記駆動源によって駆動される被駆動装置と、
前記駆動源によって駆動され、前記駆動源と前記被駆動装置との間で変速比の変更を伴って動力を伝達する変速機構と、
を備え、
前記変速機構は、第1及び第2遊星歯車機構を有し、
前記第1遊星歯車機構は、
互いに差動回転を行う第1回転要素と、第2回転要素と、第3回転要素と、第4回転要素と、
を有し、
前記第3回転要素は、第2回転要素を公転可能に支持し、
前記第2回転要素は、前記第1回転要素及び前記第4回転要素と当接し、
前記第2遊星歯車機構は、
互いに差動回転を行う第5回転要素と、第6回転要素と、第7回転要素と、第8回転要素と、
を有し、
前記第7回転要素は、第6回転要素を公転可能に支持し、
前記第6回転要素は、前記第5回転要素及び前記第8回転要素と当接する動力伝達機構であって、
前記第1及び第2遊星歯車機構の回転軸線は、同一線上に配置され、
前記第3及び第7回転要素は、互いに連結され、
前記被駆動装置は、前記第3及び第7回転要素に対し接続され、
前記第1及び第5回転要素は、前記回転軸線周りの回転を規制されて配置され、
一端側が前記駆動源に接続され、他端側が前記第4又は前記第8回転要素に対し切替可能に接続される動力伝達軸を備え、
前記動力伝達軸は、前記動力伝達軸から径方向に延出する動力伝達部を有し、
該動力伝達部は、前記回転軸線方向で前記第4回転要素と前記第8回転要素との間に配置され、
該動力伝達軸を制御する動力伝達軸制御装置は、前記動力伝達軸が第1の位置で、前記動力伝達部と前記第4回転要素とが接続され、前記動力伝達軸が第2の位置で、前記動力伝達部と前記第8回転要素とが接続されるように制御することを特徴とする動力伝達機構。
A driving source;
A driven device driven by the drive source;
A speed change mechanism that is driven by the drive source and transmits power with a change in speed change ratio between the drive source and the driven device;
With
The speed change mechanism has first and second planetary gear mechanisms,
The first planetary gear mechanism is
A first rotating element, a second rotating element, a third rotating element, and a fourth rotating element that perform differential rotation with each other;
Have
The third rotating element supports the second rotating element so as to revolve,
The second rotating element is in contact with the first rotating element and the fourth rotating element;
The second planetary gear mechanism is
A fifth rotating element, a sixth rotating element, a seventh rotating element, and an eighth rotating element that perform differential rotation with respect to each other;
Have
The seventh rotating element supports the sixth rotating element so that it can revolve,
The sixth rotating element is a power transmission mechanism that contacts the fifth rotating element and the eighth rotating element,
The rotation axes of the first and second planetary gear mechanisms are arranged on the same line,
The third and seventh rotating elements are connected to each other;
The driven device is connected to the third and seventh rotating elements;
The first and fifth rotating elements are disposed so as to be restricted from rotating about the rotation axis,
One end side is connected to the drive source, and the other end side includes a power transmission shaft that is switchably connected to the fourth or eighth rotating element,
The power transmission shaft has a power transmission portion extending in a radial direction from the power transmission shaft,
The power transmission unit is disposed between the fourth rotation element and the eighth rotation element in the rotation axis direction,
In the power transmission shaft control device for controlling the power transmission shaft, the power transmission shaft is in the first position, the power transmission unit and the fourth rotating element are connected, and the power transmission shaft is in the second position. , characterized in that said power transmission portion and the eighth rotary element is controlled to be connected dynamic force transmission mechanism.
前記第1回転要素は、前記第2回転要素の径方向外側に配置され、
前記第4回転要素は、前記第2回転要素の径方向内側に配置され、
前記第5回転要素は、前記第6回転要素の径方向外側に配置され、
前記第8回転要素は、前記第6回転要素の径方向内側に配置され、
前記第3及び第7回転要素は、前記回転軸線方向に延びる連結部材によって連結され、
前記動力伝達部は、前記連結部材の径方向内側に配置されることを特徴とする請求項2に記載の動力伝達機構。
The first rotating element is disposed radially outside the second rotating element;
The fourth rotating element is disposed radially inward of the second rotating element;
The fifth rotating element is disposed radially outside the sixth rotating element;
The eighth rotating element is disposed radially inward of the sixth rotating element;
The third and seventh rotating elements are connected by a connecting member extending in the rotation axis direction,
The power transmission mechanism according to claim 2, wherein the power transmission unit is disposed radially inward of the connecting member.
前記駆動源は、前記回転軸線方向で前記連結部材とオフセットし、前記連結部材の外側に配置され、
前記第4回転要素と第8回転要素との少なくとも一方は、軸心に中空部を有する中空構造とされ、
前記中空部には、前記動力伝達軸が挿通されることを特徴とする請求項3に記載の動力伝達機構。
The drive source is offset from the connecting member in the direction of the rotation axis, and is disposed outside the connecting member;
At least one of the fourth rotating element and the eighth rotating element has a hollow structure having a hollow portion in the axial center;
The power transmission mechanism according to claim 3, wherein the power transmission shaft is inserted into the hollow portion.
前記第1遊星歯車機構の前記第4回転要素と前記第3回転要素との間の減速比は、前記第2遊星歯車機構の前記第8回転要素と前記第7回転要素との間の減速比よりも高く設定され、
前記動力伝達軸制御装置は、前記被駆動装置の回転数が相対的に低い領域で、前記動力伝達軸を前記第1の位置に制御し、前記被駆動装置の回転数が相対的に高い領域で、前記動力伝達軸を前記第2の位置に制御することを特徴とする請求項1〜4の何れか1項に記載の動力伝達機構。
The reduction ratio between the fourth rotation element and the third rotation element of the first planetary gear mechanism is the reduction ratio between the eighth rotation element and the seventh rotation element of the second planetary gear mechanism. Set higher than
The power transmission shaft control device controls the power transmission shaft to the first position in a region where the rotational speed of the driven device is relatively low, and a region where the rotational speed of the driven device is relatively high The power transmission mechanism according to any one of claims 1 to 4, wherein the power transmission shaft is controlled to the second position.
前記第1及び第2遊星歯車機構は、サイクロイド減速機であり、
前記第4及び第8回転要素は、偏心部を有する偏心体であり、
前記第2及び第6回転要素は、外周に波形を有し、前記偏心体が挿通される貫通孔と、前記貫通孔の径方向外側に配置される他の貫通孔と、が形成され、前記駆動源の回転に伴って前記回転軸線を中心とする自転運動を行う曲線板であり、
前記第1及び第5回転要素は、前記曲線板の前記外周に係合して前記曲線板に前記自転運動を生じさせる外ピンであり、
前記第3及び第7回転要素は、前記他の貫通孔に嵌挿される内ピンであることを特徴とする請求項1〜の何れか1項に記載の動力伝達機構。
The first and second planetary gear mechanisms are cycloid reducers,
The fourth and eighth rotating elements are eccentric bodies having an eccentric portion,
The second and sixth rotating elements have a waveform on the outer periphery, and are formed with a through hole into which the eccentric body is inserted and another through hole disposed on the radially outer side of the through hole, A curved plate that rotates around the rotation axis along with the rotation of the drive source,
The first and fifth rotating elements are outer pins that engage with the outer periphery of the curved plate and cause the curved plate to generate the rotational motion,
The power transmission mechanism according to any one of claims 1 to 5 , wherein the third and seventh rotating elements are inner pins that are inserted into the other through holes.
駆動源と、
前記駆動によって駆動される被駆動装置と、
前記駆動源によって駆動され、前記駆動源と前記被駆動装置との間で変速比の変更を伴って動力を伝達する変速機構と、
を備え、
前記変速機構は、第1及び第2遊星歯車機構を有し、
前記第1遊星歯車機構は、
互いに差動回転を行う第1回転要素と、第2回転要素と、第3回転要素と、第4回転要素と、
を有し、
前記第3回転要素は、第2回転要素を公転可能に支持し、
前記第2回転要素は、前記第1回転要素及び前記第4回転要素と当接し
記第2遊星歯車機構は、
互いに差動回転を行う第5回転要素と、第6回転要素と、第7回転要素と、第8回転要素と、
を有し、
前記第7回転要素は、第6回転要素を公転可能に支持し、
前記第6回転要素は、前記第5回転要素及び前記第8回転要素と当接する動力伝達機構であって、
前記第1及び第2遊星歯車機構の回転軸線は、同一線上に配置され、
前記第3及び第7回転要素は互いに連結され、
前記被駆動装置は、前記第3及び第7回転要素に対し接続され、
前記第1及び第5回転要素は、前記回転軸線周りの回転を規制されて配置され、
一端側が前記駆動源に接続され、他端側が前記第4又は前記第8回転要素に対し切替可能に接続される動力伝達軸を備え、
前記動力伝達軸と前記第4回転要素との間に、前記動力伝達軸の順方向の回転動力を伝達し、逆方向の回転動力を伝達しない一方向回転動力伝達手段が配置され、
前記第1遊星歯車機構の減速比は、前記第2遊星歯車機構の減速比よりも高く設定され、
前記動力伝達軸を制御する動力伝達軸制御装置は、前記動力伝達軸が第1の位置で前記第8回転要素と非接続状態とされ、前記動力伝達軸が第2の位置で前記第8回転要素と接続状態とされるように制御することを特徴とする動力伝達機構。
A driving source;
A driven device driven by the drive source ;
A speed change mechanism that is driven by the drive source and transmits power with a change in speed change ratio between the drive source and the driven device;
With
The speed change mechanism has first and second planetary gear mechanisms,
The first planetary gear mechanism is
A first rotating element, a second rotating element, a third rotating element, and a fourth rotating element that perform differential rotation with each other;
Have
The third rotating element supports the second rotating element so as to revolve,
The second rotating element is in contact with the first rotating element and the fourth rotating element ;
Before Symbol the second planetary gear mechanism,
A fifth rotating element, a sixth rotating element, a seventh rotating element, and an eighth rotating element that perform differential rotation with respect to each other;
Have
The seventh rotating element supports the sixth rotating element so that it can revolve,
The sixth rotating element is a power transmission mechanism that contacts the fifth rotating element and the eighth rotating element,
The rotation axes of the first and second planetary gear mechanisms are arranged on the same line,
The third and seventh rotating elements are connected to each other;
The driven device is connected to the third and seventh rotating elements;
The first and fifth rotating elements are disposed so as to be restricted from rotating about the rotation axis,
One end side is connected to the drive source, and the other end side includes a power transmission shaft that is switchably connected to the fourth or eighth rotating element,
Between the power transmission shaft and the fourth rotating element, unidirectional rotational power transmission means for transmitting the rotational power in the forward direction of the power transmission shaft and not transmitting the rotational power in the reverse direction is disposed,
The reduction ratio of the first planetary gear mechanism is set higher than the reduction ratio of the second planetary gear mechanism,
In the power transmission shaft control device for controlling the power transmission shaft, the power transmission shaft is disconnected from the eighth rotation element at the first position, and the power transmission shaft is rotated at the eighth position at the second position. A power transmission mechanism that is controlled to be connected to an element.
JP2012012085A 2012-01-24 2012-01-24 Power transmission mechanism Expired - Fee Related JP5850755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012012085A JP5850755B2 (en) 2012-01-24 2012-01-24 Power transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012012085A JP5850755B2 (en) 2012-01-24 2012-01-24 Power transmission mechanism

Publications (2)

Publication Number Publication Date
JP2013151961A JP2013151961A (en) 2013-08-08
JP5850755B2 true JP5850755B2 (en) 2016-02-03

Family

ID=49048458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012012085A Expired - Fee Related JP5850755B2 (en) 2012-01-24 2012-01-24 Power transmission mechanism

Country Status (1)

Country Link
JP (1) JP5850755B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730819B2 (en) * 1989-03-06 1995-04-10 株式会社鈴鹿サーキットランド Transmission for self-propelled play vehicle
JPH03229044A (en) * 1990-01-31 1991-10-11 Iseki & Co Ltd Gearshift device
JP3009799B2 (en) * 1993-02-10 2000-02-14 住友重機械工業株式会社 Geared motor adopting internal meshing planetary gear structure and its series

Also Published As

Publication number Publication date
JP2013151961A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP6869236B2 (en) CVT differential
JP6137809B2 (en) Dual clutch automatic transmission
JP5811267B2 (en) Vehicle drive device
WO2013146247A1 (en) Automatic transmission
JP2008286294A (en) Variable speed gear
JP2007285527A (en) Automatic transmission
JP5062122B2 (en) Vehicle drive device
WO2018181557A1 (en) Vehicle drive device
JP5850755B2 (en) Power transmission mechanism
WO2016021293A1 (en) Planetary gear transmission
JP5903288B2 (en) Stepped transmission
JP2009250402A (en) Differential gear
JP6802743B2 (en) transmission
JP2013204676A (en) Transmission
JP6802742B2 (en) transmission
JP2008014500A5 (en)
WO2024070143A1 (en) Transmission, and vehicular drive transmission device provided with same
JP5796092B2 (en) Vehicle transmission
WO2018079843A1 (en) Vehicle drive transmission apparatus
JP6952625B2 (en) Transmission for motors
JP2003106387A (en) Automatic transmission
JP2013096451A (en) Power transmission device
JP2012122523A (en) Automatic transmission
WO2016021292A1 (en) Planetary gear transmission
JP6802744B2 (en) transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5850755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees