JP5850658B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP5850658B2
JP5850658B2 JP2011148736A JP2011148736A JP5850658B2 JP 5850658 B2 JP5850658 B2 JP 5850658B2 JP 2011148736 A JP2011148736 A JP 2011148736A JP 2011148736 A JP2011148736 A JP 2011148736A JP 5850658 B2 JP5850658 B2 JP 5850658B2
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer layer
layer
lead
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011148736A
Other languages
Japanese (ja)
Other versions
JP2013016663A (en
JP2013016663A5 (en
Inventor
和弘 小池
和弘 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2011148736A priority Critical patent/JP5850658B2/en
Publication of JP2013016663A publication Critical patent/JP2013016663A/en
Publication of JP2013016663A5 publication Critical patent/JP2013016663A5/ja
Application granted granted Critical
Publication of JP5850658B2 publication Critical patent/JP5850658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固体電解コンデンサおよびその製造方法に関する。   The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.

従来から、タンタル、アルミニウム等を用いた固体電解コンデンサは、静電容量が大きく、周波数特性に優れていることから、携帯電子端末やパーソナルコンピュータ等の電子機器に広く使用されている。近年では、電子機器の高信頼性化や高性能化に伴って、漏れ電流(LC)の低減、低等価直列抵抗(低ESR)化などの要求がさらに高まってきている。   Conventionally, solid electrolytic capacitors using tantalum, aluminum, and the like have been widely used in electronic devices such as portable electronic terminals and personal computers because of their large capacitance and excellent frequency characteristics. In recent years, with the increase in reliability and performance of electronic devices, demands such as reduction of leakage current (LC) and low equivalent series resistance (low ESR) are increasing.

ここで、従来の固体電解コンデンサの構造を説明する。図2は、従来の固体電解コンデンサの断面図である。陽極体21は、タンタルやアルミニウム等の弁作用金属の微粉末を成型し焼結した、微小な多数の孔(多孔質層)を有した焼結体である。陽極体21とともに、陽極部となる陽極リード28は、弁作用金属のワイヤー等からなり、陽極体21の陽極リード導出面(導出面)から導出している。陽極体21の導出面、側面、底面および内部の多孔質層の表面には酸化皮膜による誘電体層22を形成している。さらに、誘電体層22の表面には固体電解質層23を形成している。絶縁部30は、エポキシ樹脂からなり、固体電解質層23が陽極リード28に接触して電気的短絡を生じないように配置している。   Here, the structure of a conventional solid electrolytic capacitor will be described. FIG. 2 is a cross-sectional view of a conventional solid electrolytic capacitor. The anode body 21 is a sintered body having a large number of minute holes (porous layer) obtained by molding and sintering fine powder of valve action metal such as tantalum or aluminum. Together with the anode body 21, the anode lead 28 serving as the anode portion is made of a valve metal wire or the like, and is led out from the anode lead lead-out surface (lead-out surface) of the anode body 21. A dielectric layer 22 made of an oxide film is formed on the lead-out surface, side surface, bottom surface of the anode body 21 and the surface of the internal porous layer. Further, a solid electrolyte layer 23 is formed on the surface of the dielectric layer 22. The insulating part 30 is made of an epoxy resin and is arranged so that the solid electrolyte layer 23 does not contact the anode lead 28 and cause an electrical short circuit.

固体電解質層23の表面には、陰極部としてグラファイト層24、銀ペースト層25を形成し、コンデンサ素子を構成している。コンデンサ素子の陽極部と陰極部は、外部電極端子であるリードフレーム27に導電性接着剤26、または溶接で電気的に接続される。その後、外装樹脂29からなる外装を設けて固体電解コンデンサ120が完成する。   On the surface of the solid electrolyte layer 23, a graphite layer 24 and a silver paste layer 25 are formed as a cathode portion to constitute a capacitor element. The anode part and the cathode part of the capacitor element are electrically connected to the lead frame 27 which is an external electrode terminal by a conductive adhesive 26 or welding. Thereafter, an exterior made of the exterior resin 29 is provided to complete the solid electrolytic capacitor 120.

固体電解質層は、誘電体層と陰極部との間を電気的に接続させ、誘電体層のもつ静電容量を引き出す機能を有する。固体電解質層は、固体電解コンデンサの電気的特性を得る上で重要な構成部分の一つであり、構造や製造方法等の検討がなされている。近年においては、固体電解質層として導電性高分子からなる導電性高分子層を用いた固体電解コンデンサが製造されている。   The solid electrolyte layer has a function of electrically connecting the dielectric layer and the cathode portion to draw out the capacitance of the dielectric layer. The solid electrolyte layer is one of the important components for obtaining the electrical characteristics of the solid electrolytic capacitor, and the structure, manufacturing method, and the like have been studied. In recent years, solid electrolytic capacitors using a conductive polymer layer made of a conductive polymer as a solid electrolyte layer have been manufactured.

導電性高分子層の形成には、従来、モノマー、触媒、ドーパントとなる酸化剤等を溶媒に添加した溶液に、誘電体層が形成された陽極体(陽極体素子)を浸漬させ、誘電体層の表面で重合させる、化学酸化重合法が用いられる。一般的に、化学酸化重合法では、浸透性が良く、多孔質層の細部まで入り込み易い溶液が用いられ、誘電体層と陰極部として形成する層との密着性を良好にする等の特徴を持つ導電性高分子層が得られる。   Conventionally, a conductive polymer layer is formed by immersing an anode body (anode body element) on which a dielectric layer is formed in a solution obtained by adding a monomer, a catalyst, an oxidant as a dopant to a solvent, and the like. A chemical oxidative polymerization method is used in which polymerization is performed on the surface of the layer. In general, the chemical oxidative polymerization method uses a solution that has good permeability and easily penetrates into the details of the porous layer, and has features such as good adhesion between the dielectric layer and the layer formed as the cathode part. A conductive polymer layer is obtained.

また、化学酸化重合法に加え、導電性高分子懸濁溶液による方法も用いられる。この導電性高分子懸濁溶液による方法(導電性高分子懸濁溶液法)とは、予め重合させた上でドーパントを添加した導電性高分子を含有する導電性高分子懸濁溶液に、陽極体素子を浸漬して含浸させ、それを引き上げた後に、加熱により乾燥させて導電性高分子層を形成する方法である。この方法で得られる導電性高分子層は、化学酸化重合法等で得られる導電性高分子層と比較して密度が高く、耐熱性が良いことや、導電性高分子層の形成が速い特徴がある。この方法に用いられる導電性高分子懸濁溶液(特許文献では導電性高分子化合物懸濁水溶液と記載。)および製造方法が、特許文献1の請求項2、3、段落0014〜0028に記載されている。   In addition to the chemical oxidative polymerization method, a method using a conductive polymer suspension is also used. This conductive polymer suspension solution method (conductive polymer suspension solution method) is a method in which a conductive polymer suspension solution containing a conductive polymer that has been polymerized in advance and added with a dopant is added to an anode. In this method, a body element is immersed and impregnated, pulled up, and then dried by heating to form a conductive polymer layer. The conductive polymer layer obtained by this method has a higher density, better heat resistance, and faster formation of the conductive polymer layer than a conductive polymer layer obtained by a chemical oxidative polymerization method, etc. There is. A conductive polymer suspension solution (described as a conductive polymer compound suspension aqueous solution in Patent Document) and a production method used in this method are described in Claims 2 and 3, paragraphs 0014 to 0028 of Patent Document 1. ing.

導電性高分子懸濁溶液法による導電性高分子層の誘電体層に対する形成の状態として、前述した図2に示すように、導出面の表面まで導電性高分子層(図2では固体電解質層)で覆っている場合がある。このような構造の固体電解コンデンサの例が特許文献2の図1、段落0016に記載されている。   As a state of formation of the conductive polymer layer with respect to the dielectric layer by the conductive polymer suspension solution method, as shown in FIG. 2, the conductive polymer layer (in FIG. 2, solid electrolyte layer) ). An example of a solid electrolytic capacitor having such a structure is described in FIG.

また、導電性高分子懸濁溶液法による、特許文献2とは違う導電性高分子層の誘電体層に対する形成の状態として、導出面には導電性高分子層を形成せず、誘電体層を露出させる場合がある。このような構造の固体電解コンデンサの例が特許文献3の図1に記載されている。   Further, as a state of formation of the conductive polymer layer different from Patent Document 2 by the conductive polymer suspension solution method, the conductive polymer layer is not formed on the lead-out surface, and the dielectric layer May be exposed. An example of a solid electrolytic capacitor having such a structure is described in FIG.

特開平11−121281号公報Japanese Patent Laid-Open No. 11-121281 特開2010−3772号公報JP 2010-3772 A 特開2005−109252号公報JP 2005-109252 A

導電性高分子懸濁溶液法を用いて導電性高分子層を形成する工程では、導電性高分子懸濁溶液に陽極体素子を浸漬するため、陽極体素子の多孔質層に残存する空気や、多孔質層に浸透した導電性高分子懸濁溶液の溶媒である水分等が多孔質層内部に残留し易い。これらの残留物が十分放出されないまま、導電性高分子層が陽極体素子の表面全体を被覆した場合、前述の空気や水分等が乾燥時の加熱によって膨張する。この空気や水蒸気等に起因するガスが導電性高分子層と誘電体層の界面に微少な剥離を生じさせる場合がある。その結果、ESRが増加し、製造歩留まりが低下するという課題がある。   In the step of forming the conductive polymer layer using the conductive polymer suspension solution method, since the anode element is immersed in the conductive polymer suspension solution, air remaining in the porous layer of the anode element and In addition, moisture or the like, which is a solvent of the conductive polymer suspension solution that has permeated into the porous layer, tends to remain inside the porous layer. When the conductive polymer layer covers the entire surface of the anode element without sufficiently releasing these residues, the above-described air, moisture and the like expand due to heating during drying. In some cases, the gas resulting from air, water vapor, or the like may cause minute separation at the interface between the conductive polymer layer and the dielectric layer. As a result, there is a problem that ESR increases and manufacturing yield decreases.

また、特許文献3の図1のように、陽極体素子の導出面において導電性高分子層で覆わない部分があると、導電性高分子懸濁溶液を含浸した陽極体素子を加熱する時に陽極体素子の外部にガスが放出されやすくなるが、外装を設けるまでに、外部からガスの侵入を受け易く、多孔質層内部の導電性高分子層が酸化される場合がある。その結果、ESRが増加し、信頼性が低下するという課題がある。   Further, as shown in FIG. 1 of Patent Document 3, if there is a portion that is not covered with the conductive polymer layer on the lead-out surface of the anode body element, the anode body element impregnated with the conductive polymer suspension solution is heated when the anode body element is heated. Gas tends to be released to the outside of the body element, but before the exterior is provided, the gas is likely to enter from the outside, and the conductive polymer layer inside the porous layer may be oxidized. As a result, there is a problem that ESR increases and reliability decreases.

従って、本発明の目的は、上記課題を解決することによって、ESRの増加を抑制するとともに、製造歩留まりを向上し、高い信頼性を備えた固体電解コンデンサおよびその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a solid electrolytic capacitor and a manufacturing method thereof with high reliability by suppressing the increase in ESR and improving the manufacturing yield by solving the above-mentioned problems.

本発明の固体電解コンデンサは、陽極リードを導出する導出面と、前記導出面に対向する底面と、前記導出面および前記底面に接する側面を備え、多孔質層を有した弁作用金属からなる陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の表面に形成された導電性高分子層と、前記導電性高分子層の表面に順次形成されたグラファイト層および銀ペースト層とを備えたコンデンサ素子を有し、前記コンデンサ素子は外部接続端子と電気的に接続するとともに、絶縁材料により全面を覆う外装を備える固体電解コンデンサであって、前記導電性高分子層は第一の導電性高分子層と第二の導電性高分子層からなり、前記第一の導電性高分子層は、前記底面および前記側面の少なくとも一部を覆い、かつ、前記導出面の少なくとも一部を開放して成り、前記第二の導電性高分子層は、前記第一の導電性高分子層と前記導出面を覆って成り、前記誘電体層と前記第一の導電性高分子層の間、および前記導出面の少なくとも一部と前記第二の導電性高分子層の間に、ガス透過性と、前記誘電体層と前記第一の導電性高分子層の密着性、および前記誘電体層と前記第二の導電性高分子層の密着性を備える第三の導電性高分子層を有することを特徴とする。 A solid electrolytic capacitor according to the present invention includes a lead-out surface for leading out an anode lead, a bottom surface facing the lead-out surface, a side surface in contact with the lead-out surface and the bottom surface, and an anode made of a valve metal having a porous layer A dielectric layer formed on the surface of the anode body, a conductive polymer layer formed on the surface of the dielectric layer, a graphite layer sequentially formed on the surface of the conductive polymer layer, and A capacitor element comprising a silver paste layer, the capacitor element being a solid electrolytic capacitor electrically connected to an external connection terminal and having an exterior covering the entire surface with an insulating material, the conductive polymer layer Consists of a first conductive polymer layer and a second conductive polymer layer, the first conductive polymer layer covering at least a part of the bottom surface and the side surface, and of the lead-out surface at least Made by opening part, the second conductive polymer layer, the first conductive polymer layer and Ri formed over said outlet surface, the dielectric layer and the first conductive polymer Gas permeability, adhesion between the dielectric layer and the first conductive polymer layer, and between the layers and between at least a portion of the lead-out surface and the second conductive polymer layer; and wherein characterized Rukoto that having a third conductive polymer layer comprising a dielectric layer and the adhesion of the second conductive polymer layer.

本発明の固体電解コンデンサは、前記第一の導電性高分子層が前記側面の面積の少なくとも70%以上を覆うことが好ましい。   In the solid electrolytic capacitor of the present invention, it is preferable that the first conductive polymer layer covers at least 70% of the area of the side surface.

本発明の固体電解コンデンサは、前記第一の導電性高分子層および前記第二の導電性高分子層が、ガス遮断性を備えることを特徴とする。   The solid electrolytic capacitor of the present invention is characterized in that the first conductive polymer layer and the second conductive polymer layer have gas barrier properties.

本発明の固体電解コンデンサの製造方法は、陽極リードを導出する導出面と、前記導出面に対向する底面と、前記導出面および前記底面に接する側面を備え、多孔質層を有した弁作用金属からなる陽極体を形成する工程と、前記陽極体の表面に酸化皮膜からなる誘電体層を形成する工程と、導電性高分子懸濁液に浸漬し乾燥して、前記底面、および前記側面の少なくとも一部を覆い、かつ、前記導出面の少なくとも一部を開放して第一の導電性高分子層を形成する工程と、前記第一の導電性高分子層と前記導出面を覆うように第二の導電性高分子層を形成する工程と、前記第二の導電性高分子層の表面にグラファイト層を形成後、銀ペースト層を形成し、陰極部を形成する工程と、前記陽極リードと前記陰極部を外部電極端子と電気的に接続し、絶縁材料でモールドする工程を含むことを特徴とする。   The solid electrolytic capacitor manufacturing method of the present invention includes a lead-out surface for leading out the anode lead, a bottom surface facing the lead-out surface, a side surface in contact with the lead-out surface and the bottom surface, and a valve metal having a porous layer A step of forming an anode body comprising: a step of forming a dielectric layer comprising an oxide film on the surface of the anode body; dipping in a conductive polymer suspension and drying; Covering at least a portion and opening at least a portion of the lead-out surface to form a first conductive polymer layer; and covering the first conductive polymer layer and the lead-out surface A step of forming a second conductive polymer layer, a step of forming a silver paste layer after forming a graphite layer on the surface of the second conductive polymer layer, and forming a cathode portion; and the anode lead And the cathode part electrically connected to the external electrode terminal , Characterized in that it comprises a step of molding an insulating material.

本発明の固体電解コンデンサの製造方法は、前記誘電体層と前記第一の導電性高分子層の間、および前記導出面の少なくとも一部と前記第二の導電性高分子層の間に、化学酸化重合法によって、ガス透過性と、前記誘電体層と前記第一の導電性高分子層の密着性、および前記誘電体層と前記第二の導電性高分子層の密着性を備える第三の導電性高分子層を形成する工程を、さらに含むことを特徴とする。   In the method for producing a solid electrolytic capacitor of the present invention, between the dielectric layer and the first conductive polymer layer, and between at least a part of the lead-out surface and the second conductive polymer layer, The chemical oxidative polymerization method is used to provide gas permeability, adhesion between the dielectric layer and the first conductive polymer layer, and adhesion between the dielectric layer and the second conductive polymer layer. The method further includes a step of forming three conductive polymer layers.

なお、第一の導電性高分子層を形成する工程では、導電性高分子懸濁液への1回の浸漬で形成させる場合、浸漬の時間を制御して実施することや、陽極体素子を浸漬させる作業を複数回に分けて実施し、陽極体素子の側面を覆う面積の割合を徐々に大きくすること等によって、ガスの残留を十分少なくすことが可能となる。従って、第一の導電性高分子層を形成した後の陽極体素子からは、ESR等の増加に影響するようなガスの発生は抑制され、第二の導電性高分子層を形成しても、従来技術のような剥離が生じる問題は発生しない。   In addition, in the step of forming the first conductive polymer layer, in the case of forming by one immersion in the conductive polymer suspension, the immersion time is controlled or the anode element is used. The operation of immersing is performed in a plurality of times, and the residual gas can be sufficiently reduced by gradually increasing the ratio of the area covering the side surface of the anode element. Therefore, generation of gas that affects the increase in ESR and the like is suppressed from the anode element after the formation of the first conductive polymer layer, and even if the second conductive polymer layer is formed. Thus, the problem of peeling as in the prior art does not occur.

第一の導電性高分子層が、陽極体素子の底面、および側面の少なくとも一部を覆って、かつ、導出面の少なくとも一部を開放して形成されることにより、第一の導電性高分子層の形成時に多孔質層に残存するガスの放出を容易にする。これにより、乾燥時に加熱されも誘電体層と第一の導電性高分子層の剥離を抑制することが可能となる。さらに、第二の導電性高分子層で陽極体素子の表面全体を被覆することにより、外装を設けるまでの間に、導電性高分子層が形成されない部分からガスが侵入するのを抑制するため、多孔質層内部の導電性高分子層の酸化による劣化を防止する。これらにより、ESRの増加を抑制し、製造歩留まりを向上し、かつ、高信頼性を備えた固体電解コンデンサおよびその製造方法を提供することが可能となる。   The first conductive polymer layer is formed so as to cover at least a part of the bottom surface and the side surface of the anode element and to open at least a part of the lead-out surface. It facilitates the release of the gas remaining in the porous layer during the formation of the molecular layer. As a result, even when heated during drying, it is possible to suppress peeling of the dielectric layer and the first conductive polymer layer. Further, by covering the entire surface of the anode element with the second conductive polymer layer, gas is prevented from entering from a portion where the conductive polymer layer is not formed until the exterior is provided. The deterioration of the conductive polymer layer inside the porous layer due to oxidation is prevented. As a result, it is possible to provide a solid electrolytic capacitor and a method for manufacturing the same that suppress an increase in ESR, improve the manufacturing yield, and have high reliability.

本発明の固体電解コンデンサの構成を説明する概略断面図。The schematic sectional drawing explaining the structure of the solid electrolytic capacitor of this invention. 従来の固体電解コンデンサの構成を説明する概略断面図。The schematic sectional drawing explaining the structure of the conventional solid electrolytic capacitor.

本発明の実施の形態を図面を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の固体電解コンデンサの構成を説明する概略断面図である。本発明の固体電解コンデンサは、陽極リード8を導出する導出面を備え、多孔質層を有する弁作用金属の焼結体からなる陽極体1を有する。その多孔質層を有する陽極体1の表面には誘電体層2が形成される。絶縁部11は、エポキシ樹脂等を塗布し形成する。   FIG. 1 is a schematic cross-sectional view illustrating the configuration of the solid electrolytic capacitor of the present invention. The solid electrolytic capacitor of the present invention has an anode body 1 made of a sintered body of a valve action metal having a lead-out surface for leading out the anode lead 8 and having a porous layer. Dielectric layer 2 is formed on the surface of anode body 1 having the porous layer. The insulating part 11 is formed by applying an epoxy resin or the like.

陽極体1は、弁作用を有する金属微粒子からなる焼結体や、エッチングによって拡面処理され多孔質層化した弁作用金属などによって形成する。弁作用金属は、タンタル、アルミニウム、チタン、ニオブ、ジルコニウム、またはこれらの合金などから適宜選定する。   The anode body 1 is formed of a sintered body made of metal fine particles having a valve action, a valve action metal whose surface is expanded by etching and formed into a porous layer, and the like. The valve metal is appropriately selected from tantalum, aluminum, titanium, niobium, zirconium, or alloys thereof.

誘電体層2は、弁作用金属の表面を電解酸化させた膜であり、陽極体1の導出面、側面、底面および内部の多孔質層の表面に形成する。誘電体層2の厚みは、電解酸化の電圧によって適宜調整できる。   The dielectric layer 2 is a film obtained by electrolytically oxidizing the surface of the valve action metal, and is formed on the lead-out surface, the side surface, the bottom surface of the anode body 1 and the surface of the internal porous layer. The thickness of the dielectric layer 2 can be adjusted as appropriate by the voltage of electrolytic oxidation.

ここで本発明と従来技術の違いを説明する。本発明の固体電解コンデンサは、誘電体層を形成させた陽極体(陽極体素子)を導電性高分子懸濁液に浸漬して含浸させ、それを引き上げた後に加熱により乾燥させて形成する第一の導電性高分子層3を、陽極体素子の底面および側面を覆って、かつ導出面を開放して形成する。さらに、導出面と第一の導電性高分子層3を覆うように第二の導電性高分子層10を形成する。なお、第二の導電性高分子層10を形成する時の導電性高分子懸濁液の浸漬は、絶縁部11まで達し、かつ、陽極リード8には付着しないように実施する。   Here, the difference between the present invention and the prior art will be described. The solid electrolytic capacitor of the present invention is formed by immersing and impregnating an anode body (anode body element) on which a dielectric layer is formed in a conductive polymer suspension, lifting it and drying it by heating. One conductive polymer layer 3 is formed so as to cover the bottom and side surfaces of the anode element and open the lead-out surface. Further, the second conductive polymer layer 10 is formed so as to cover the lead-out surface and the first conductive polymer layer 3. The immersion of the conductive polymer suspension when forming the second conductive polymer layer 10 is performed so as to reach the insulating portion 11 and not adhere to the anode lead 8.

このように第一の導電性高分子層3を、陽極体素子の底面および側面を覆って、かつ、導出面を開放して誘電体層2の表面に形成することにより、第一の導電性高分子層3を形成する時に多孔質層に残存するガスの放出を容易にする。これにより、乾燥時に加熱されも誘電体層と第一の導電性高分子層の剥離を抑制することが可能となる。これにより、ESRの増加を抑制し、製造歩留まりを向上させた固体電解コンデンサおよびその製造方法を提供することが可能となる。   In this way, the first conductive polymer layer 3 is formed on the surface of the dielectric layer 2 so as to cover the bottom surface and the side surface of the anode element and open the lead-out surface. When the polymer layer 3 is formed, the gas remaining in the porous layer is easily released. As a result, even when heated during drying, it is possible to suppress peeling of the dielectric layer and the first conductive polymer layer. As a result, it is possible to provide a solid electrolytic capacitor in which an increase in ESR is suppressed and a manufacturing yield is improved, and a manufacturing method thereof.

また、第一の導電性高分子層3は、多孔質層に残存するガスの放出を容易にし、かつ第二の導電性高分子層10を形成する際に多孔質層に入り込む溶媒の影響を低減するために、陽極体素子の側面の面積の少なくとも70%以上を覆っていることが好ましい。   The first conductive polymer layer 3 facilitates the release of the gas remaining in the porous layer, and the influence of the solvent that enters the porous layer when forming the second conductive polymer layer 10. In order to reduce, it is preferable to cover at least 70% of the area of the side surface of the anode element.

なお、第一の導電性高分子層3は、導出面の全面を開放して形成しなくてもよく、ガスが放出可能であれば、前記導出面の一部だけを開放して形成してもよい。   The first conductive polymer layer 3 does not have to be formed by opening the entire lead-out surface. If the gas can be released, the first conductive polymer layer 3 is formed by opening only a part of the lead-out surface. Also good.

さらに、第二の導電性高分子層10で第一の導電性高分子層3を形成した陽極体素子の表面全体を覆うことにより、外装樹脂9による外装を設けるまでの間に、第一の導電性高分子層3を形成していない部分からガスが侵入するのを防止する。特に、多孔質層内部の第一の導電性高分子層3に対して、ガスによる酸化での劣化を防止する。これにより高い信頼性を備えた固体電解コンデンサおよびその製造方法を提供することが可能となる。   Further, by covering the entire surface of the anode element on which the first conductive polymer layer 3 is formed with the second conductive polymer layer 10, until the exterior is provided with the exterior resin 9, the first Gas is prevented from entering from a portion where the conductive polymer layer 3 is not formed. In particular, the first conductive polymer layer 3 inside the porous layer is prevented from being deteriorated by oxidation due to gas. As a result, it is possible to provide a solid electrolytic capacitor having high reliability and a method for manufacturing the same.

導電性高分子懸濁液に用いられる導電性高分子としては、高い導電性を示すことから、ポリアニリン、ポリピロール、ポリチオフェンおよびそれらの誘導体等から少なくとも一つ選ぶことが好ましく、ドーパントは上記導電性高分子の高い導電性を発現し、熱安定性を高める性質を持つ、ポリスチレンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸およびそれらの誘導体等の少なくとも一つから選ぶことが好ましい。溶媒は、水と、アルコール、アセトン等の有機溶媒の混合溶媒でもよいが、導電性高分子懸濁液の乾燥工程で蒸発する溶媒蒸気の排気設備設置の容易さ、環境負荷の低さ、除去の容易さの観点から水のみであることがより好ましい。 As the conductive polymer used in the conductive polymer suspension, it is preferable to select at least one of polyaniline, polypyrrole, polythiophene, and derivatives thereof because it exhibits high conductivity. It is preferable to select from at least one of polystyrene sulfonic acid, benzene sulfonic acid, naphthalene sulfonic acid, and derivatives thereof, which have high molecular conductivity and enhance thermal stability. The solvent may be a mixed solvent of water and an organic solvent such as alcohol or acetone, but it is easy to install exhaust equipment for solvent vapor that evaporates during the drying process of the conductive polymer suspension, has low environmental impact, and is removed. From the viewpoint of easiness, it is more preferable to use only water.

なお、導電性高分子懸濁液における導電性高分子の含有量は、分散性または溶解を良好にすることから、溶媒である水100質量部に対して0.1質量部以上20.0質量部以下であることが好ましい。   In addition, since content of the conductive polymer in the conductive polymer suspension makes dispersibility or dissolution favorable, 0.1 part by mass or more and 20.0 parts by mass with respect to 100 parts by mass of water as a solvent. Part or less.

また、導電性高分子の結合性を向上させるために、ポリアクリルニトリル、メチルセルロース、ポリビニールアルコール等のバインダーを用いてもよい。   In order to improve the binding property of the conductive polymer, a binder such as polyacrylonitrile, methylcellulose, polyvinyl alcohol, or the like may be used.

なお、第一の導電性高分子層3と第二の導電性高分子層10は、導電性高分子懸濁液法により形成する導電性高分子層に限定されるものではなく、ガスを遮断し、侵入を防止する機能を備える材質で形成する導電性高分子層であればよい。   The first conductive polymer layer 3 and the second conductive polymer layer 10 are not limited to the conductive polymer layer formed by the conductive polymer suspension method, and block the gas. The conductive polymer layer may be formed of a material having a function of preventing intrusion.

また、本発明の固体電解コンデンサは、誘電体層2と第一の導電性高分子層3の間、および導出面の少なくとも一部と第二の導電性高分子層10の間に、ガス透過性と、前記誘電体層と前記第一の導電性高分子層の密着性、および前記誘電体層と前記第二の導電性高分子層の密着性を、さらに向上させることから、化学酸化重合法によって形成する第三の導電性高分子層(図示せず)を設けてもよい。   Further, the solid electrolytic capacitor of the present invention has gas permeation between the dielectric layer 2 and the first conductive polymer layer 3 and between at least a part of the lead-out surface and the second conductive polymer layer 10. And further improving the adhesion between the dielectric layer and the first conductive polymer layer and the adhesion between the dielectric layer and the second conductive polymer layer. A third conductive polymer layer (not shown) formed by a legal method may be provided.

なお、この第三の導電性高分子層は、化学酸化重合法によって形成する導電性高分子層に限定されるものではなく、ガス透過性および密着性を備える材質で形成する導電性高分子層であればよい。   The third conductive polymer layer is not limited to the conductive polymer layer formed by the chemical oxidative polymerization method, but is formed from a material having gas permeability and adhesion. If it is.

その後、第二の導電性高分子層10の表面に陰極部となるグラファイト層4、銀ペースト層5を形成し、コンデンサ素子を得る。最終的にコンデンサ素子と外部電極端子であるリードフレーム7とを導電性接着剤6または溶接で電気的に接続し、外装樹脂9による外装を設け、本発明の固体電解コンデンサ100が完成する。   Thereafter, a graphite layer 4 and a silver paste layer 5 serving as a cathode portion are formed on the surface of the second conductive polymer layer 10 to obtain a capacitor element. Finally, the capacitor element and the lead frame 7 which is an external electrode terminal are electrically connected by the conductive adhesive 6 or welding, and the exterior by the exterior resin 9 is provided to complete the solid electrolytic capacitor 100 of the present invention.

導電性高分子懸濁溶液は、加熱のほかに紫外線照射で乾燥させることにより導電性高分子層を形成することができる。加熱で乾燥させる場合の加熱温度は、100℃以上250℃以下が好ましい。   The conductive polymer suspension can form a conductive polymer layer by drying with ultraviolet irradiation in addition to heating. The heating temperature when drying by heating is preferably 100 ° C. or higher and 250 ° C. or lower.

その理由としては、100℃未満では溶媒の揮発が効率的ではなく、250℃を超えると導電性高分子の導電性が損なわれるおそれがあるためである。   The reason is that if the temperature is lower than 100 ° C., the volatilization of the solvent is not efficient, and if it exceeds 250 ° C., the conductivity of the conductive polymer may be impaired.

以下に本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

(実施例1)
本発明の実施例1の固体電解コンデンサは、実施の形態と同様の構造である。
Example 1
The solid electrolytic capacitor of Example 1 of the present invention has the same structure as that of the embodiment.

陽極リードはタンタルワイヤーを用いた。タンタル微粉末を充填した成形金型において、陽極リードの導出面になる一つの面に、予め陽極リードを埋め込みプレス成形を行った。その成形体を焼結し、陽極リードを導出させた多孔質層を有した陽極体を得た。その後、陽極体をリン酸水溶液中で電解酸化し、誘電体層を形成した。陽極体の形状は、長さが3.5mm、幅が1.0mmであり、厚さは4.5mmである。導出面は、長さが3.5mm、幅が1.0mmの部分となる。絶縁部は、エポキシ樹脂を塗布し形成した。   Tantalum wire was used for the anode lead. In a molding die filled with fine tantalum powder, an anode lead was embedded in advance on one surface serving as a lead-out surface of the anode lead, and press molding was performed. The molded body was sintered to obtain an anode body having a porous layer from which an anode lead was derived. Thereafter, the anode body was electrolytically oxidized in a phosphoric acid aqueous solution to form a dielectric layer. The anode body has a length of 3.5 mm, a width of 1.0 mm, and a thickness of 4.5 mm. The lead-out surface is a portion having a length of 3.5 mm and a width of 1.0 mm. The insulating part was formed by applying an epoxy resin.

次に、誘電体層が形成された陽極体(陽極体素子)の底面から側面にかけて導電性高分子懸濁溶液に浸漬し、かつ、導出面に導電性高分子懸濁溶液を付着させないように制御し、引き上げる工程を1回行った。この工程の浸漬時間は1分間とした。その後、125℃で1時間乾燥させて第一の導電性高分子層を形成した。第一の導電性高分子層の厚さは平均で10μmとなるように形成した。   Next, it is immersed in the conductive polymer suspension solution from the bottom surface to the side surface of the anode body (anode element) on which the dielectric layer is formed, and the conductive polymer suspension solution is not attached to the lead-out surface. The process of controlling and lifting was performed once. The immersion time in this step was 1 minute. Then, it dried at 125 degreeC for 1 hour, and formed the 1st conductive polymer layer. The first conductive polymer layer was formed to have an average thickness of 10 μm.

続いて、導出面を含む陽極体素子の表面に導電性高分子懸濁溶液を付着させるため、絶縁部まで達するように浸漬し、引き上げを1回行った後、125℃で1時間乾燥させて第二の導電性高分子層を形成した。第二の導電性高分子層の厚さも平均で10μmとなるように形成した。   Subsequently, in order to attach the conductive polymer suspension solution to the surface of the anode element including the lead-out surface, the conductive polymer suspension is immersed so as to reach the insulating portion, pulled up once, and then dried at 125 ° C. for 1 hour. A second conductive polymer layer was formed. The second conductive polymer layer was formed so as to have an average thickness of 10 μm.

なお、第一の導電性高分子層および第二の導電性高分子層の形成は、導電性高分子であるポリチオフェンと、ドーパントとしてポリスチレンスルホン酸を、溶媒の水100質量部に対して10質量部になるよう含有した導電性高分子懸濁液を用いた。   The formation of the first conductive polymer layer and the second conductive polymer layer is performed by using polythiophene, which is a conductive polymer, and polystyrene sulfonic acid as a dopant in an amount of 10 masses per 100 mass parts of solvent water. The conductive polymer suspension contained so as to be part was used.

その後、第二の導電性高分子層の上にグラファイト層と銀ペースト層からなる陰極部を形成しコンデンサ素子を得た。さらに、陽極リードと陰極部とを陽極側と陰極側のリードフレームに溶接と導電接着剤を用いて電気的に接続し、最後に外装樹脂でモールド成形し、定格電圧20V、容量22μFの固体電解コンデンサを得た。作製数量は200個とした。   Thereafter, a cathode part composed of a graphite layer and a silver paste layer was formed on the second conductive polymer layer to obtain a capacitor element. Further, the anode lead and the cathode part are electrically connected to the anode and cathode side lead frames by using welding and a conductive adhesive, and finally molded with an exterior resin, and the solid electrolytic having a rated voltage of 20 V and a capacity of 22 μF is used. A capacitor was obtained. The production quantity was 200 pieces.

作製した固体電解コンデンサにおける、周波数が100kHzの時のESRと、印加電圧20VでのLCの測定結果と、製品歩留まりおよび信頼性評価の結果を表1に示す。ESRとLCはJIS C 5101−1に順じて測定した。測定数は100個である。また、製造歩留まりはESRの判定基準値により合否判断をした。信頼性の評価は高温放置後(105℃、500時間、大気中)のESRの増加率を評価した。測定数は50個である。   Table 1 shows the ESR when the frequency is 100 kHz, the LC measurement result at an applied voltage of 20 V, and the product yield and reliability evaluation results for the manufactured solid electrolytic capacitor. ESR and LC were measured according to JIS C5101-1. The number of measurements is 100. In addition, the manufacturing yield was judged as acceptable based on the ESR criterion value. For the evaluation of reliability, the increase rate of ESR after standing at high temperature (105 ° C., 500 hours, in air) was evaluated. The number of measurements is 50.

(比較例1)
次に、比較例1として、陽極リードの導出面を含む陽極体素子の表面全体に導電性高分子懸濁溶液が付着するように、浸漬し、引き上げを行い、第一の導電性高分子層を形成した。その他の点に関しては、実施例1と同様とした。作製数量は200個とした。
(Comparative Example 1)
Next, as Comparative Example 1, the first conductive polymer layer was dipped and pulled up so that the conductive polymer suspension solution adhered to the entire surface of the anode element including the lead-out surface of the anode lead. Formed. The other points were the same as in Example 1. The production quantity was 200 pieces.

作製した固体電解コンデンサのESR、LCの測定結果と、製造歩留まりおよび信頼性評価の結果を表1に示す。測定方法等は実施例1と同様である。   Table 1 shows the measurement results of ESR and LC of the manufactured solid electrolytic capacitor, and the results of manufacturing yield and reliability evaluation. The measurement method and the like are the same as in Example 1.

Figure 0005850658
Figure 0005850658

(実施例2)
実施例2は、誘電体層の表面に化学酸化重合により、ガスが透過し、密着性が向上するような第三の導電性高分子層を形成した。その第三の導電性高分子層の表面に、ガスを放出させるために、導出面を開放して第一の導電性高分子層を形成した。
(Example 2)
In Example 2, a third conductive polymer layer was formed on the surface of the dielectric layer by chemical oxidative polymerization so that gas permeated and adhesion was improved. In order to release gas on the surface of the third conductive polymer layer, the lead-out surface was opened to form the first conductive polymer layer.

さらに、第一の導電性高分子層と開放した導出面の全面を覆うように第二の導電性高分子層を形成した。用いた導電性高分子懸濁液の成分や製造条件は、実施例1と同様とした。   Further, a second conductive polymer layer was formed so as to cover the entire surface of the first conductive polymer layer and the opened lead-out surface. The components and production conditions of the conductive polymer suspension used were the same as in Example 1.

なお、化学酸化重合では、モノマーであるチオフェンと、ドーパントをかねる酸化剤である芳香族スルホン酸鉄塩を、溶媒のエタノール100質量部に対して25質量部になるよう添加した導電性高分子液を用いた。   In chemical oxidative polymerization, a conductive polymer solution in which thiophene as a monomer and aromatic sulfonic acid iron salt as an oxidant that also serves as a dopant are added to 25 parts by mass with respect to 100 parts by mass of ethanol as a solvent. Was used.

ESRおよびLCの測定結果と、製造歩留まりおよび信頼性評価の結果を表2に示す。測定条件等は実施例1と同様とした。   Table 2 shows the measurement results of ESR and LC, and the results of manufacturing yield and reliability evaluation. The measurement conditions were the same as in Example 1.

(比較例2)
誘電体層の表面に、実施例2と同様の液を用いて化学酸化重合により、ガスが透過し、密着性が向上するような第三の導電性高分子層を形成した。その他は、比較例1と同様とした。
(Comparative Example 2)
On the surface of the dielectric layer, a third conductive polymer layer was formed by chemical oxidative polymerization using the same liquid as in Example 2 so that the gas permeated and the adhesion was improved. Others were the same as in Comparative Example 1.

ESRおよびLCの測定結果と、製造歩留まりおよび信頼性評価の結果を表2に示す。測定条件等は実施例1と同様とした。   Table 2 shows the measurement results of ESR and LC, and the results of manufacturing yield and reliability evaluation. The measurement conditions were the same as in Example 1.

Figure 0005850658
Figure 0005850658

表1に示すように、実施例1で得られた固体電解コンデンサは、比較例1で得られた固体電解コンデンサよりもESRの増加が抑制された。また、製造歩留まりおよび信頼性試験の結果も改善している。また、表2に示すように、実施例2で得られた固体電解コンデンサは、比較例2で得られた固体電解コンデンサよりもESRの増加が抑制された。また、製造歩留まりおよび信頼性試験の結果も改善している。これらより、本発明の効果が確認できた。   As shown in Table 1, in the solid electrolytic capacitor obtained in Example 1, an increase in ESR was suppressed as compared with the solid electrolytic capacitor obtained in Comparative Example 1. It also improves manufacturing yield and reliability test results. In addition, as shown in Table 2, the solid electrolytic capacitor obtained in Example 2 was suppressed from increasing in ESR than the solid electrolytic capacitor obtained in Comparative Example 2. It also improves manufacturing yield and reliability test results. From these, the effect of this invention has been confirmed.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

1、21 陽極体
2、22 誘電体層
3 第一の導電性高分子層
4、24 グラファイト層
5、25 銀ペースト層
6、26 導電接着剤
7、27 外部電極端子
8、28 陽極リード
9、29 外装樹脂
10 第二の導電性高分子層
11、30 絶縁部
23 固体電解質層
100、120 固体電解コンデンサ
1, 21 Anode body 2, 22 Dielectric layer 3 First conductive polymer layer 4, 24 Graphite layer 5, 25 Silver paste layer 6, 26 Conductive adhesive 7, 27 External electrode terminal 8, 28 Anode lead 9, 29 Exterior resin 10 Second conductive polymer layer 11, 30 Insulating part 23 Solid electrolyte layer 100, 120 Solid electrolytic capacitor

Claims (5)

陽極リードを導出する導出面と、前記導出面に対向する底面と、前記導出面および前記底面に接する側面を備え、多孔質層を有した弁作用金属からなる陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の表面に形成された導電性高分子層と、前記導電性高分子層の表面に順次形成されたグラファイト層および銀ペースト層とを備えたコンデンサ素子を有し、前記コンデンサ素子は外部接続端子と電気的に接続するとともに、絶縁材料により全面を覆う外装を備える固体電解コンデンサであって、前記導電性高分子層は第一の導電性高分子層と第二の導電性高分子層を有し、前記第一の導電性高分子層は、前記底面および前記側面の少なくとも一部を覆い、かつ、前記導出面の少なくとも一部を開放して成り、前記第二の導電性高分子層は、前記第一の導電性高分子層と前記導出面を覆って成り、前記誘電体層と前記第一の導電性高分子層の間、および前記導出面の少なくとも一部と前記第二の導電性高分子層の間に、ガス透過性と、前記誘電体層と前記第一の導電性高分子層の密着性、および前記誘電体層と前記第二の導電性高分子層の密着性を備える第三の導電性高分子層を有することを特徴とする固体電解コンデンサ。   An anode body comprising a lead-out surface for leading out the anode lead, a bottom surface facing the lead-out surface, a side surface in contact with the lead-out surface and the bottom surface, and made of a valve metal having a porous layer, and a surface of the anode body A dielectric layer formed on the surface of the dielectric layer, a conductive polymer layer formed on the surface of the dielectric layer, and a graphite layer and a silver paste layer sequentially formed on the surface of the conductive polymer layer. A solid electrolytic capacitor having an element, wherein the capacitor element is electrically connected to an external connection terminal and has an exterior covering the entire surface with an insulating material, wherein the conductive polymer layer is a first conductive polymer A first conductive polymer layer covering at least a part of the bottom surface and the side surface and opening at least a part of the lead-out surface. The second guide The conductive polymer layer covers the first conductive polymer layer and the lead-out surface, and is between the dielectric layer and the first conductive polymer layer and at least a part of the lead-out surface. Between the second conductive polymer layer, gas permeability, adhesion between the dielectric layer and the first conductive polymer layer, and the dielectric layer and the second conductive polymer A solid electrolytic capacitor comprising a third conductive polymer layer having layer adhesion. 前記第一の導電性高分子層は前記側面の面積の少なくとも70%以上を覆うことを特徴とする請求項1に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the first conductive polymer layer covers at least 70% or more of the area of the side surface. 前記第一の導電性高分子層および前記第二の導電性高分子層は、ガス遮断性を備えることを特徴とする請求項1または2に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the first conductive polymer layer and the second conductive polymer layer have gas barrier properties. 陽極リードを導出する導出面と、前記導出面に対向する底面と、前記導出面および前記底面に接する側面を備え、多孔質層を有した弁作用金属からなる陽極体を形成する工程と、前記陽極体の表面に酸化皮膜からなる誘電体層を形成する工程と、導電性高分子懸濁液に浸漬し乾燥して、前記底面、および前記側面の少なくとも一部を覆い、かつ、前記導出面の少なくとも一部を開放して第一の導電性高分子層を形成する工程と、前記第一の導電性高分子層と前記導出面を覆うように第二の導電性高分子層を形成する工程と、前記第二の導電性高分子層の表面にグラファイト層を形成後、銀ペースト層を形成し、陰極部を形成する工程と、前記陽極リードと前記陰極部を外部電極端子と電気的に接続し、絶縁材料でモールドする工程を含むことを特徴とする固体電解コンデンサの製造方法。   A step of forming an anode body made of a valve metal having a porous layer having a lead-out surface for leading out the anode lead, a bottom surface facing the lead-out surface, and a side surface in contact with the lead-out surface and the bottom surface; Forming a dielectric layer made of an oxide film on the surface of the anode body, dipping in a conductive polymer suspension and drying, covering at least a part of the bottom surface and the side surface, and the lead-out surface Forming a first conductive polymer layer by opening at least a part of the first conductive polymer layer, and forming a second conductive polymer layer so as to cover the first conductive polymer layer and the lead-out surface Forming a graphite layer on the surface of the second conductive polymer layer and then forming a silver paste layer to form a cathode portion; electrically connecting the anode lead and the cathode portion to an external electrode terminal; Connecting to and molding with insulating material Method for producing a solid electrolytic capacitor according to claim. 前記誘電体層と前記第一の導電性高分子層の間、および前記導出面の少なくとも一部と前記第二の導電性高分子層の間に、化学酸化重合法によって、ガス透過性と、前記誘電体層と前記第一の導電性高分子層の密着性、および前記誘電体層と前記第二の導電性高分子層の密着性を備える第三の導電性高分子層を形成する工程を、さらに含むことを特徴とす
る請求項に記載の固体電解コンデンサの製造方法。
Gas permeability between the dielectric layer and the first conductive polymer layer and between at least a part of the lead-out surface and the second conductive polymer layer by chemical oxidative polymerization, Forming a third conductive polymer layer having adhesion between the dielectric layer and the first conductive polymer layer, and adhesion between the dielectric layer and the second conductive polymer layer; The method for producing a solid electrolytic capacitor according to claim 4 , further comprising:
JP2011148736A 2011-07-05 2011-07-05 Solid electrolytic capacitor and manufacturing method thereof Active JP5850658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148736A JP5850658B2 (en) 2011-07-05 2011-07-05 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148736A JP5850658B2 (en) 2011-07-05 2011-07-05 Solid electrolytic capacitor and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2013016663A JP2013016663A (en) 2013-01-24
JP2013016663A5 JP2013016663A5 (en) 2014-03-13
JP5850658B2 true JP5850658B2 (en) 2016-02-03

Family

ID=47689039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148736A Active JP5850658B2 (en) 2011-07-05 2011-07-05 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5850658B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788282B2 (en) * 2011-09-29 2015-09-30 Necトーキン株式会社 Solid electrolytic capacitor and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792469B2 (en) * 1995-05-27 1998-09-03 日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP4931778B2 (en) * 2007-11-21 2012-05-16 三洋電機株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2013016663A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
TWI478189B (en) Solid electrolytic capacitor and method of manufacturing thereof
JP5884068B2 (en) Manufacturing method of solid electrolytic capacitor
TWI492253B (en) Method for manufacturing solid electrolytic capacitor
JP3231689B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
US6733545B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP5788282B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4868601B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009505413A (en) Solid capacitor and manufacturing method thereof
KR102104424B1 (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP5895227B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4944359B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012069788A (en) Solid electrolytic capacitor
JP5850658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009105171A (en) Solid-state electrolytic capacitor and its method for manufacturing
JP2008277344A (en) Method for manufacturing solid-state electrolytic capacitor
JP2007281268A (en) Solid electrolytic capacitor and its manufacturing method
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP4632134B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009246138A (en) Solid electrolytic capacitor and its manufacturing method
JP2022167434A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2007048947A (en) Solid electrolytic capacitor and manufacturing method thereof
JP4795331B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4934788B2 (en) Capacitor, capacitor element and manufacturing method thereof
JP2008060295A (en) Solid state electrolytic capacitor, and its manufacturing process
JP2003272953A (en) Method of manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5850658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250