JP5850422B2 - Electronic material composition - Google Patents

Electronic material composition Download PDF

Info

Publication number
JP5850422B2
JP5850422B2 JP2011185282A JP2011185282A JP5850422B2 JP 5850422 B2 JP5850422 B2 JP 5850422B2 JP 2011185282 A JP2011185282 A JP 2011185282A JP 2011185282 A JP2011185282 A JP 2011185282A JP 5850422 B2 JP5850422 B2 JP 5850422B2
Authority
JP
Japan
Prior art keywords
electronic material
material composition
liquid crystal
branched
discotic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011185282A
Other languages
Japanese (ja)
Other versions
JP2013043987A5 (en
JP2013043987A (en
Inventor
清水 洋
洋 清水
雅則 尾▲崎▼
雅則 尾▲崎▼
彰彦 藤井
彰彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Osaka University NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Osaka University NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011185282A priority Critical patent/JP5850422B2/en
Publication of JP2013043987A publication Critical patent/JP2013043987A/en
Publication of JP2013043987A5 publication Critical patent/JP2013043987A5/ja
Application granted granted Critical
Publication of JP5850422B2 publication Critical patent/JP5850422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Liquid Crystal Substances (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、電子材料組成物に関する。   The present invention relates to an electronic material composition.

近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGSなどの化合物系の太陽電池、あるいは色素増感型太陽電池などが提案・実用化されている。   Due to the recent rise in fossil energy, a system that can generate electric power directly from natural energy has been demanded. Solar cells using monocrystalline, polycrystalline, or amorphous Si, compound-based solar cells such as GaAs and CIGS, or Dye-sensitized solar cells have been proposed and put into practical use.

化石燃料による発電コストよりも低コストな太陽電池として、透明電極と対電極との間に電子供与体層(π電子ドナー層)と電子受容体層(π電子アクセプター層)を設けた電子材料組成物を含む太陽電池が提案されている(非特許文献1参照)。   An electronic material composition in which an electron donor layer (π electron donor layer) and an electron acceptor layer (π electron acceptor layer) are provided between a transparent electrode and a counter electrode as a solar cell at a lower cost than fossil fuel power generation costs. A solar cell including an object has been proposed (see Non-Patent Document 1).

しかしながら、これらの太陽電池は、内部量子効率が低く、より高い光電変換効率を実現できる電子材料組成物が求められている。   However, these solar cells have low internal quantum efficiency, and electronic material compositions that can realize higher photoelectric conversion efficiency are demanded.

A.Heeger:Nature Mat.;vol.6(2007),p497A. Heeger: Nature Mat. Vol. 6 (2007), p497

本発明は、高いキャリア移動度を有する電子材料組成物を提供することを目的とする。   An object of the present invention is to provide an electronic material composition having high carrier mobility.

光吸収材料において、単独成分からなる材料は、その固有の分子構造に由来するがその異方的な分子集合体における異方的な電子状態への摂動によっても光吸収特性は変化し得る。しかしながら1つの分子構造からカバーし得る光吸収領域は限られたものであり、光吸収波長域の拡大には自ずから限界があった。光吸収波長の拡大には異なる光吸収体を持つ材料を混合する手法が考えられるが、要求される仕様に高速のキャリア移動度及び効率的な電荷輸送性が加わる場合、電子状態の異なる分子種の混合は電荷輸送行程にエネルギー的不均一性をもたらすためにキャリア移動度及び電荷輸送効率は著しく低下する。   In a light-absorbing material, a material composed of a single component is derived from its inherent molecular structure, but its light-absorbing characteristics can also be changed by perturbation to an anisotropic electronic state in its anisotropic molecular assembly. However, the light absorption region that can be covered from one molecular structure is limited, and there has been a limit to the expansion of the light absorption wavelength region. To increase the light absorption wavelength, a method of mixing materials with different light absorbers can be considered, but if high-speed carrier mobility and efficient charge transportability are added to the required specifications, molecular species with different electronic states can be used. The carrier mobility and the charge transport efficiency are remarkably lowered because of the energy non-uniformity in the charge transport process.

一方、液晶性物質は熱力学的に同等の液晶相では任意の組成で混和性を示すことが知られている。また、非液晶性物質であっても特定の組成範囲である温度域の液晶相を維持することができる。現行のディスプレー用ネマチック材料はその原理を応用している。有機系電子材料においては液晶の混和性をそのまま利用できないが、本発明者は半導体特性を持つディスコチック液晶を有する電子材料組成物が、高速のキャリア移動を維持し、光吸収域の拡大が図れることを見出した。   On the other hand, it is known that liquid crystalline substances are miscible with an arbitrary composition in a thermodynamically equivalent liquid crystal phase. Moreover, even if it is a non-liquid crystalline substance, the liquid crystal phase of the temperature range which is a specific composition range can be maintained. Current display nematic materials apply that principle. In organic electronic materials, the miscibility of liquid crystals cannot be used as it is, but the present inventor can maintain high-speed carrier movement and expand the light absorption range by using an electronic material composition having a discotic liquid crystal having semiconductor characteristics. I found out.

本発明は、以下の電子材料組成物を提供するものである。
項1. 半導体特性を有するディスコチック液晶を少なくとも1種含むことを特徴とする電子材料組成物。
項2. 前記組成物を構成する少なくとも1種の成分がカラムナー中間相を有することを特徴とする項1に記載の電子材料組成物。
項3. 前記組成物がアルキル鎖長が互いに異なる以外は同種の化学構造を有する2種以上の成分を有することを特徴とする項1または2に記載の電子材料組成物。
項4. 前記組成物が、配位子とその金属錯体を含み、前記配位子とその金属錯体の少なくとも1種はディスコチック液晶を形成し得る、項1〜3のいずれかに記載の電子材料組成物。
項5. 前記組成物が、可視光域の吸収が互いに異なる2種以上の成分を含む、項1〜4のいずれかに記載の電子材料組成物。
項6. 前記組成物がフタロシアニン化合物を含む、項1〜5のいずれかに記載の電子材料組成物。
項7. 前記組成物がポルフィリン化合物を含む、項1〜5のいずれかに記載の電子材料組成物。
項8. 前記組成物が10-1cm2V-1s-1以上のキャリア移動度を示すことを特徴とする項1に記載の電子材料組成物。
The present invention provides the following electronic material composition.
Item 1. An electronic material composition comprising at least one discotic liquid crystal having semiconductor characteristics.
Item 2. Item 2. The electronic material composition according to Item 1, wherein at least one component constituting the composition has a columnar intermediate phase.
Item 3. Item 3. The electronic material composition according to Item 1 or 2, wherein the composition has two or more components having the same chemical structure except that the alkyl chain lengths are different from each other.
Item 4. Item 4. The electronic material composition according to any one of Items 1 to 3, wherein the composition contains a ligand and a metal complex thereof, and at least one of the ligand and the metal complex can form a discotic liquid crystal. .
Item 5. Item 5. The electronic material composition according to any one of Items 1 to 4, wherein the composition contains two or more types of components having different absorption in the visible light region.
Item 6. Item 6. The electronic material composition according to any one of Items 1 to 5, wherein the composition contains a phthalocyanine compound.
Item 7. Item 6. The electronic material composition according to any one of Items 1 to 5, wherein the composition contains a porphyrin compound.
Item 8. Item 2. The electronic material composition according to Item 1, wherein the composition exhibits a carrier mobility of 10 -1 cm 2 V -1 s -1 or more.

本発明の電子材料組成物は、10-1cm2V-1s-1以上の高いキャリア移動度を有し、有機薄膜太陽電池、有機半導体などに有用である。特に、電子材料組成物が可視光域の光吸収が異なる2種以上の化合物を含む場合、広範囲の可視光を吸収することができ、さらに高い光電変換効率を実現できる The electronic material composition of the present invention has a high carrier mobility of 10 −1 cm 2 V −1 s −1 or more, and is useful for organic thin film solar cells, organic semiconductors, and the like. In particular, when the electronic material composition contains two or more compounds having different light absorption in the visible light region, it can absorb a wide range of visible light, and can realize higher photoelectric conversion efficiency.

C10PcH2-C10PcZn2成分系相図。C10PcH2-C10PcZn binary phase diagram. 飛行時間計測法によるC10PcH2-C10PcZn(1:1)の98℃における光電流過渡波形。Photocurrent transient waveform at 98 ° C of C10PcH2-C10PcZn (1: 1) by time-of-flight measurement. C10PcH2-C10PcZn(1:1)混合系の薄膜の吸収スペクトル。Absorption spectrum of thin film of C10PcH2-C10PcZn (1: 1) mixed system.

本発明の電子材料組成物は、半導体特性を有するディスコチック液晶を少なくとも1種含むことを特徴とする。   The electronic material composition of the present invention is characterized by including at least one discotic liquid crystal having semiconductor characteristics.

半導体特性を有するディスコチック液晶としては、以下のような化学構造を有する化合物が例示される:   Examples of the discotic liquid crystal having semiconductor characteristics include compounds having the following chemical structure:


(式中、Rは、互いに独立してC〜C22の直鎖又は分岐を有するアルキル基、C〜C22の直鎖又は分岐を有するアルケニル基、C〜C22の直鎖又は分岐を有するアルキニル基、C〜C22の直鎖又は分岐を有するアルコキシ基、C〜C22の直鎖又は分岐を有するアルキルチオ基である。 (Wherein R is independently a C 2 -C 22 linear or branched alkyl group, a C 2 -C 22 linear or branched alkenyl group, a C 2 -C 22 linear chain, an alkynyl group having a branched, straight-chain or alkoxy group having branched C 2 -C 22, an alkylthio group having a straight-chain or branched C 2 -C 22.

金属Mは、Zn、Cu、Ni、Co、Feである。   The metal M is Zn, Cu, Ni, Co, or Fe.

XはCHまたは   X is CH or

を示す。) Indicates. )

好ましい半導体特性を有するディスコチック液晶はフタロシアニン系化合物(I)/(Ia)、又はポルフィリン化合物(II)/(IIa)が好ましく例示できる。
Preferred examples of the discotic liquid crystal having semiconductor characteristics include phthalocyanine compounds (I) / (Ia) or porphyrin compounds (II) / (IIa) .

好ましいフタロシアニン化合物は、一般式(I)で表されるフタロシアニン化合物またはその金属錯体(Ia)である。また、好ましいポルフィリン化合物は、一般式(II)で表されるポルフィリン化合物またはその金属錯体(IIa)である。
A preferred phthalocyanine compound is a phthalocyanine compound represented by the general formula (I) or a metal complex (Ia) thereof. A preferred porphyrin compound is a porphyrin compound represented by the general formula (II) or a metal complex (IIa) thereof.

(式中、Rは、互いに独立してC〜C22の直鎖又は分岐を有するアルキル基、C〜C22の直鎖又は分岐を有するアルケニル基、C〜C22の直鎖又は分岐を有するアルキニル基、C〜C22の直鎖又は分岐を有するアルコキシ基、C〜C22の直鎖又は分岐を有するアルキルチオ基である。 (Wherein R is independently a C 2 -C 22 linear or branched alkyl group, a C 2 -C 22 linear or branched alkenyl group, a C 2 -C 22 linear chain, an alkynyl group having a branched, straight-chain or alkoxy group having branched C 2 -C 22, an alkylthio group having a straight-chain or branched C 2 -C 22.

金属Mは、Zn、Cu、Ni、Co、Feである。   The metal M is Zn, Cu, Ni, Co, or Fe.

XはCHまたは   X is CH or

を示す。) Indicates. )

〜C22のアルキルとしては、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、エイコシル、ドコシルなどの直鎖又は分岐を有するC〜C22アルキル基、好ましくはC〜Cアルキル基が挙げられ、好ましくはn-ペンチル、n-ヘキシルである。 C 2 -C 22 alkyl includes ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, eicosyl, straight-chain or C 2 -C 22 alkyl group having a branched such as docosyl, preferably include C 2 -C 7 alkyl group, preferably n-pentyl and n-hexyl.

〜C22のアルケニルとしては、ビニル、n-プロペニル、イソプロペニル、n-ブテニル、イソブテニル、sec-ブテニル、tert-ブテニル、n-ペンテニル、n-ヘキセニル、n-ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル、ヘキサデセニル、ヘプタデセニル、オクタデセニル、エイコセニル、ドコセニルなどの直鎖又は分岐を有するC〜C22アルケニル基、好ましくはC〜Cアルケニル基が挙げられる。 C 2 -C 22 alkenyl includes vinyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, sec-butenyl, tert-butenyl, n-pentenyl, n-hexenyl, n-heptenyl, octenyl, nonenyl, decenyl , undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, eicosenyl, straight-chain or C 2 -C 22 alkenyl group having a branched such docosenyl, and the like, preferably a C 2 -C 7 alkenyl group.

〜C22のアルキニルとしては、アセチニル、n-プロパルギル、n-ブチニル、sec-ブチニル、n-ペンチニル、n-ヘキシニル、n-ヘプチニル、オクチニル、ノニニル、デシニル、ウンデシニル、ドデシニル、トリデシニル、テトラデシニル、ペンタデシニル、ヘキサデシニル、ヘプタデシニル、オクタデシニル、エイコシニル、ドコシニルなどの直鎖又は分岐を有するC〜C22アルキニル基、好ましくはC〜Cアルキニル基が挙げられる。 The alkynyl of C 2 -C 22, Asechiniru, n- propargyl, n- butynyl, sec- butynyl, n- pentynyl, n- hexynyl, n- heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, Examples thereof include linear or branched C 2 to C 22 alkynyl groups such as pentadecynyl, hexadecynyl, heptadecinyl, octadecynyl, eicosinyl, docosinyl, and preferably C 2 to C 7 alkynyl groups.

〜C22のアルコキシとしては、-O-(C〜C22のアルキル)で表される基が挙げられ、好ましくはn-プロポキシ、イソプロポキシ、n-ブチルオキシ、イソブチルオキシ、sec-ブチルオキシ、tert-ブチルオキシ、n-ペンチルオキシ、n-ヘキシルオキシ、n-ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ、トリデシルオキシ、テトラデシルオキシ、ペンタデシルオキシ、ヘキサデシルオキシ、ヘプタデシルオキシ、オクタデシルオキシ、エイコシルオキシ、ドコシルオキシなどの直鎖又は分岐を有するC〜C22アルコキシ基、好ましくはC〜Cアルコキシ基が挙げられ、好ましくはn-ペンチルオキシ、n-ヘキシルオキシである。 Examples of C 2 -C 22 alkoxy include a group represented by —O— (C 2 -C 22 alkyl), preferably n-propoxy, isopropoxy, n-butyloxy, isobutyloxy, sec-butyloxy. Tert-butyloxy, n-pentyloxy, n-hexyloxy, n-heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tridecyloxy, tetradecyloxy, pentadecyloxy, hexadecyloxy, Examples include linear or branched C 2 -C 22 alkoxy groups such as heptadecyloxy, octadecyloxy, eicosyloxy, docosyloxy, preferably C 2 -C 7 alkoxy groups, preferably n-pentyloxy, n- Hexyloxy.

〜C22のアルキルチオとしては、-S-(C〜C22のアルキル)で表される基が挙げられ、好ましくはエチルチオ、n-プロピルチオ、イソプロピルチオ、n-ブチルチオ、イソブチルチオ、sec-ブチルチオ、tert-ブチルチオ、n-ペンチルチオ、n-ヘキシルチオ、n-ヘプチルチオ、オクチルチオ、ノニルチオ、デシルチオ、ウンデシルチオ、ドデシルチオ、トリデシルチオ、テトラデシルチオ、ペンタデシルチオ、ヘキサデシルチオ、ヘプタデシルチオ、オクタデシルチオ、エイコシルチオ、ドコシルチオなどの直鎖又は分岐を有するC〜C22アルキルチオ基、好ましくはC〜Cアルキルチオ基が挙げられ、好ましくはn-ペンチルチオ、n-ヘキシルチオである。 The alkylthio of the C 2 -C 22, -S- include groups represented by (C 2 alkyl -C 22), preferably ethylthio, n- propylthio, isopropylthio, n- butylthio, isobutylthio, sec -Butylthio, tert-butylthio, n-pentylthio, n-hexylthio, n-heptylthio, octylthio, nonylthio, decylthio, undecylthio, dodecylthio, tridecylthio, tetradecylthio, pentadecylthio, hexadecylthio, heptadecylthio, octadecylthio, eicosylthio, docosylthio, etc. Or a C 2 -C 22 alkylthio group having a straight chain or a branched chain, preferably a C 2 -C 7 alkylthio group, preferably n-pentylthio or n-hexylthio.

半導体特性を有するディスコチック液晶を形成可能な化合物において、複数のR基は全て同一でもよく、1つの化合物の中に2種以上の置換基が存在してもよい。例えば、一般式(I)、(II)及びその金属錯体の(Ia)、(IIa)において、8つのR基は全て同一でもよく、1つの化合物の中に2種以上の置換基が存在してもよい(例えば4つがヘキシル基であり、4つがペンチル基である化合物)。   In the compound capable of forming a discotic liquid crystal having semiconductor characteristics, the plurality of R groups may all be the same, or two or more kinds of substituents may be present in one compound. For example, in the general formulas (I), (II) and (Ia), (IIa) of the metal complex thereof, all eight R groups may be the same, and two or more kinds of substituents exist in one compound. (For example, four are hexyl groups and four are pentyl groups).

好ましいフタロシアニン化合物は、フタロシアニン環の1,4,8,11,15,18,22,25位にアルキル基を持つ化合物である。   Preferred phthalocyanine compounds are compounds having an alkyl group at the 1,4,8,11,15,18,22,25 position of the phthalocyanine ring.

好ましいポルフィリン化合物は、Rがアルキル基の化合物である。   A preferred porphyrin compound is a compound in which R is an alkyl group.

ベンゼン、トリフェニレン、アントラキノン、トルキセン、ジケトナート金属錯体などの半導体特性を有するディスコチック液晶を形成可能な他の化合物においても同様に、Rがアルキル基の化合物が好ましい。   Similarly, other compounds capable of forming a discotic liquid crystal having semiconductor characteristics such as benzene, triphenylene, anthraquinone, truxene, diketonate metal complex, and the like are preferably compounds in which R is an alkyl group.

一般式(I)及びその金属錯体の(Ia)の化合物は、公知の化合物であり、公知の方法により合成でき、例えば以下のスキーム1に従い合成することができる。   The compound of the general formula (I) and the metal complex (Ia) is a known compound and can be synthesized by a known method, for example, according to the following scheme 1.

(R、Mは前記に定義されるとおりである) (R and M are as defined above)

上記ジシアノ化合物において2つのR基が異なるか(例えばペンチル基とヘキシル基)、或いは、Rが異なる2種以上のジシアノ化合物を原料として用いれば、一般式(I)及びその金属錯体の(Ia)においてRが2種以上である化合物を得ることができる。   In the above dicyano compound, if two R groups are different (for example, pentyl group and hexyl group), or if two or more dicyano compounds having different R are used as raw materials, the general formula (I) and the metal complex (Ia) A compound in which R is 2 or more can be obtained.

一般式(I)、(Ia)以外の半導体特性を有するディスコチック液晶を形成可能な化合物も公知であり、市販品を使用するか、公知の方法により容易に製造することができる。   Compounds capable of forming discotic liquid crystals having semiconductor characteristics other than those of general formulas (I) and (Ia) are also known, and commercially available products can be used or they can be easily produced by known methods.

一般式(I)、(II) 及びその金属錯体の(Ia)、(IIa)の化合物はカラムナー中間相を有する。このうち、中間相の発現及びその温度領域を広げるという観点から8個のRは異なる2種以上の直鎖或は分岐鎖の炭化水素基からなるのが好ましい。ここで、中間相とは、結晶相と非晶相の中間に位置する一定の分子配向秩序をもった相状態の総称であり、ディスコティックカラムナー液晶相の分子凝集状態を指す。かかる中間相形成性化合物は、その自発的配向性により得られる膜の大面積均一性とキャリヤ移動に好都合な分子配向様式という2つの長所をあわせ持つことから、有機半導体、有機薄膜太陽電池などのデバイス作製上有利である。   The compounds of formulas (I), (II) and their metal complexes (Ia), (IIa) have a columnar mesophase. Of these, from the viewpoint of developing the intermediate phase and expanding its temperature range, the eight Rs are preferably composed of two or more different linear or branched hydrocarbon groups. Here, the intermediate phase is a general term for a phase state having a certain molecular orientation order located between the crystalline phase and the amorphous phase, and indicates a molecular aggregation state of a discotic columnar liquid crystal phase. Such a mesophase-forming compound has the two advantages of a large-area uniformity of the film obtained by its spontaneous orientation and a molecular orientation mode convenient for carrier movement, so that it can be used for organic semiconductors, organic thin-film solar cells, etc. This is advantageous for device fabrication.

本発明の電子材料組成物は、半導体特性を有するディスコチック液晶の他にC5〜C22アルカン、C5〜C22アルキルアルコール、C5〜C22アルキルアクリレート、ジC5〜C22アルキルアクリレート、C5〜C22アルキルメタクリレート、ジC5〜C22アルキルメタクリレート、C5〜C22アルキルアミン、イオン性アルカン、重合性官能基を持つディスコチック液晶性化合物及びその非液晶性類縁体などの添加剤を配合してもよい。これらの添加剤は、電子材料組成物の粘性、流動性などを調整し、基体への塗布を容易にすることができる。また、これらの化合物は、アルキル基などの官能基を含んでいるので、ディスコチック液晶を構成する化合物のR基と相互作用することができる。さらに、C5〜C22アルキルアクリレート、ジC5〜C22アルキルアクリレート、C5〜C22アルキルメタクリレート、ジC5〜C22アルキルメタクリレート、重合性官能基を持つディスコチック液晶性化合物などは重合性官能基を有しているので、該組成物を硬化剤、紫外線、電子線などを用いて硬化させることで、ディスコチック液晶の構造を保持したままで硬化膜を形成することができる。 Electronic material composition of the present invention, C 5 -C 22 alkanes, C 5 -C 22 alkyl alcohols, C 5 -C 22 alkyl acrylates, di C 5 -C 22 alkyl acrylates other discotic liquid crystal having a semiconductor characteristic , C 5 -C 22 alkyl methacrylates, di C 5 -C 22 alkyl methacrylates, C 5 -C 22 alkyl amine, ionic alkanes, such as polymerizable discotic liquid crystalline compound having a functional group and a non-liquid crystalline analogs You may mix | blend an additive. These additives can adjust the viscosity, fluidity, etc. of the electronic material composition to facilitate application to the substrate. Further, since these compounds contain a functional group such as an alkyl group, they can interact with the R group of the compound constituting the discotic liquid crystal. Furthermore, C 5 -C 22 alkyl acrylates, di C 5 -C 22 alkyl acrylates, C 5 -C 22 alkyl methacrylates, di C 5 -C 22 alkyl methacrylates, discotic liquid crystalline compound having a polymerizable functional group such as polymerization Since it has a functional functional group, a cured film can be formed while maintaining the structure of the discotic liquid crystal by curing the composition using a curing agent, ultraviolet light, electron beam or the like.

本発明において、ディスコチック液晶を形成可能な2種以上の化合物を含むことで、さらなる性能の向上を図ることができる。例えばRで表される官能基のアルキル長鎖の異なる2種以上の化合物を混合することで、キャリア移動度、内部量子効率などの向上が期待できる。   In the present invention, by including two or more compounds capable of forming a discotic liquid crystal, further improvement in performance can be achieved. For example, by mixing two or more compounds having different alkyl long chains of the functional group represented by R, improvements in carrier mobility, internal quantum efficiency, and the like can be expected.

本発明において、ディスコチック液晶を形成可能な2種以上の化合物が金属の配位子を含む場合、配位子とその金属錯体を各々1種以上含むことで、キャリア移動度、内部量子効率などの向上が期待できる。配位子とその金属錯体は、両方共にディスコチック液晶を形成可能であることが好ましい。配位子とその金属錯体は、吸収波長が異なるので、光吸収波長の拡大により光電変換効率の改善効果も期待できる。   In the present invention, when two or more kinds of compounds capable of forming a discotic liquid crystal contain a metal ligand, each of them contains at least one kind of the ligand and its metal complex, so that carrier mobility, internal quantum efficiency, etc. Improvement can be expected. Both the ligand and its metal complex are preferably capable of forming a discotic liquid crystal. Since the ligand and its metal complex have different absorption wavelengths, the effect of improving the photoelectric conversion efficiency can be expected by expanding the light absorption wavelength.

本発明において、ディスコチック液晶を形成可能な2種以上の化合物が可視光域に
光吸収を有する化合物である場合、キャリア移動度、内部量子効率、光電変換効率の改善が期待できる。なお、本発明の電子材料組成物は、ディスコチック液晶を形成可能な化合物が1種であり、液晶を形成しないが可視光吸収可能な化合物を添加剤として配合した場合でも太陽光に対する光電変換効率を向上させることができる。
In the present invention, when two or more compounds capable of forming a discotic liquid crystal are compounds having light absorption in the visible light region, improvement in carrier mobility, internal quantum efficiency, and photoelectric conversion efficiency can be expected. The electronic material composition of the present invention has only one compound capable of forming a discotic liquid crystal, and even when a compound that does not form a liquid crystal but can absorb visible light is added as an additive, photoelectric conversion efficiency with respect to sunlight. Can be improved.

本発明の電子材料組成物は、キャリア移動度が10-1cm2V-1s-1以上のものが好ましい。 The electronic material composition of the present invention preferably has a carrier mobility of 10 −1 cm 2 V −1 s −1 or higher.

以下、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these Examples.

実施例1
一般式(I)においてR=n-デカン(n-C10H21)であるC10PcH2とその亜鉛錯体C10PcZnの混合物を、それぞれ所定濃度のトルエン溶液を所定量混合し、トルエンを留去することにより調製した。
Example 1
A mixture of C10PcH2 which is R = n-decane (nC 10 H 21 ) in the general formula (I) and its zinc complex C10PcZn was prepared by mixing a predetermined amount of a toluene solution of a predetermined concentration and distilling off the toluene. .

このようにして調製したC10PcH2/C10PcZn混合物をDSC測定し、温度可変の蛍光顕微鏡で状態観察を行ったところ、図1に示すような相図となることが判った。C10PcH2とC10PcZnは混和性を示す。この相図から、本混合系は任意の組成比で分子レベルで混和性を持つことが判った。また、結晶相では固溶体の形成が示された。   When the C10PcH2 / C10PcZn mixture thus prepared was subjected to DSC measurement and observed with a variable-temperature fluorescence microscope, it was found that the phase diagram shown in FIG. 1 was obtained. C10PcH2 and C10PcZn are miscible. From this phase diagram, it was found that this mixed system is miscible at the molecular level at an arbitrary composition ratio. The crystal phase showed the formation of a solid solution.

モル比で1:1組成の試料について飛行時間計測法にてキャリア移動度を測定したところ、良好な過渡光電流波形を得た。98℃での過渡光電流波形を図2に示す。この結果、混和前のそれぞれの化合物は、C10PcH2で1.0×10-1cm2V-1s-1、C10PcZnで3.6×10-1cm2V-1s-1であったキャリア移動度は1:1混合系では7.0×10-2cm2V-1s-1となり、若干のキャリア移動度減少はあるものの、高速性は維持していることが明らかになった。 When a carrier mobility was measured by a time-of-flight measurement method for a sample having a molar composition of 1: 1, a good transient photocurrent waveform was obtained. Fig. 2 shows the transient photocurrent waveform at 98 ° C. As a result, each compound before mixing had a carrier mobility of 1.0 × 10 −1 cm 2 V −1 s −1 for C10PcH2 and 3.6 × 10 −1 cm 2 V −1 s −1 for C10PcZn. In the 1-mixture system, it was 7.0 × 10 −2 cm 2 V −1 s −1 , and it was revealed that the high speed performance was maintained although there was a slight decrease in carrier mobility.

このC10PcH2/C10PcZn(1:1)混合物の薄膜の吸収スペクトルを測定したところ(図3)、元の単一成分において見られる吸収スペクトルのほぼ重ね合わせとなっており、それぞれの光吸収が有効であることから光吸収の波長範囲はより広がるばかりでなく、波長によってその見かけの吸光係数の増大が見られた。   When the absorption spectrum of the thin film of this C10PcH2 / C10PcZn (1: 1) mixture was measured (Fig. 3), the absorption spectrum seen in the original single component was almost superimposed, and each light absorption was effective. For this reason, not only did the wavelength range of light absorption increase, but the apparent extinction coefficient increased with wavelength.

Claims (4)

半導体特性を有するディスコチック液晶であって可視光域の吸収が互いに異なるディスコチック液晶成分を2種以上含むことを特徴とする電子材料組成物において、
前記半導体特性を有するディスコチック液晶が
[i]下記一般式(I)及び(Ia)で表されるフタロシアニン系化合物(I)及び(Ia)、又は
[ii]下記一般式(II)及び(IIa)で表されるポルフィリン化合物(II)及び(IIa)
である電子材料組成物
(式中、Rは、互いに独立してC 〜C 22 の直鎖又は分岐を有するアルキル基、C 〜C 22 の直鎖又は分岐を有するアルケニル基、C 〜C 22 の直鎖又は分岐を有するアルキニル基、C 〜C 22 の直鎖又は分岐を有するアルコキシ基、C 〜C 22 の直鎖又は分岐を有するアルキルチオ基である。
金属Mは、Zn、Cu、Ni、Co、Feである。
XはCHまたは
を示す。)
In an electronic material composition comprising a discotic liquid crystal component having semiconductor characteristics and two or more discotic liquid crystal components having different absorption in the visible light region ,
The discotic liquid crystal having the semiconductor characteristics is
[I] Phthalocyanine compounds (I) and (Ia) represented by the following general formulas (I) and (Ia), or
[Ii] Porphyrin compounds (II) and (IIa) represented by the following general formulas (II) and (IIa)
An electronic material composition .
(Wherein R is independently a C 2 -C 22 linear or branched alkyl group, a C 2 -C 22 linear or branched alkenyl group, a C 2 -C 22 linear chain, an alkynyl group having a branched, straight-chain or alkoxy group having branched C 2 -C 22, an alkylthio group having a straight-chain or branched C 2 -C 22.
The metal M is Zn, Cu, Ni, Co, or Fe.
X is CH or
Indicates. )
前記組成物を構成する少なくとも1種のディスコチック液晶成分がカラムナー中間相を有することを特徴とする請求項1に記載の電子材料組成物。 2. The electronic material composition according to claim 1, wherein at least one discotic liquid crystal component constituting the composition has a columnar intermediate phase. 前記組成物がアルキル鎖長が互いに異なる以外は同種の化学構造を有する2種以上のディスコチック液晶成分を有することを特徴とする請求項1または2に記載の電子材料組成物。 3. The electronic material composition according to claim 1, wherein the composition has two or more discotic liquid crystal components having the same chemical structure except that the alkyl chain lengths are different from each other. 前記組成物が7.0×10 -2 cm 2 V -1 s -1 以上のキャリア移動度を示すことを特徴とする請求項1に記載の電子材料組成物。
2. The electronic material composition according to claim 1, wherein the composition exhibits a carrier mobility of 7.0 × 10 −2 cm 2 V −1 s −1 or more.
JP2011185282A 2011-08-26 2011-08-26 Electronic material composition Expired - Fee Related JP5850422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011185282A JP5850422B2 (en) 2011-08-26 2011-08-26 Electronic material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011185282A JP5850422B2 (en) 2011-08-26 2011-08-26 Electronic material composition

Publications (3)

Publication Number Publication Date
JP2013043987A JP2013043987A (en) 2013-03-04
JP2013043987A5 JP2013043987A5 (en) 2014-12-18
JP5850422B2 true JP5850422B2 (en) 2016-02-03

Family

ID=48008138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011185282A Expired - Fee Related JP5850422B2 (en) 2011-08-26 2011-08-26 Electronic material composition

Country Status (1)

Country Link
JP (1) JP5850422B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6120271B2 (en) * 2013-02-19 2017-04-26 国立研究開発法人産業技術総合研究所 Organic semiconductor composition
GB201304613D0 (en) * 2013-03-14 2013-05-01 Cambridge Display Tech Ltd Blend

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215783A (en) * 1989-02-17 1990-08-28 Eastern:Kk Octasubstituted-tetrapyrazinotetraazaporphyrazines and composition containing the same capable of assuming discotic liquid crystal phase
JP3005769B2 (en) * 1990-09-11 2000-02-07 巌 山本 Tetraphenylporphyrin compound
JP2976057B2 (en) * 1990-11-15 1999-11-10 巌 山本 Octakis (alkoxyphenyl) phthalocyanine compounds and their transition metal complexes
JP2976058B2 (en) * 1990-11-16 1999-11-10 巌 山本 Octakis (dialkoxyphenyl) phthalocyanine compounds and their transition metal complexes
JPH06100566A (en) * 1992-09-18 1994-04-12 Eastern:Kk Octakis@(3754/24)alkoxyphenyl)tetrapyrazinoporphyradine compounds and composition containing the same and capable of forming discotic liquid crystal phase
JP3248020B2 (en) * 1993-03-11 2002-01-21 巌 山本 Phenylporphyrin compound
JPH10321371A (en) * 1997-05-20 1998-12-04 Asahi Glass Co Ltd Novel organic electroluminescent element, manufacture thereof and application thereof
JP2958454B2 (en) * 1998-03-12 1999-10-06 工業技術院長 Liquid crystalline phthalocyanine oxo titanium complex
JP4076288B2 (en) * 1998-10-09 2008-04-16 富士フイルム株式会社 Optically anisotropic material, anisotropic conductive material, production method thereof, and discotic liquid crystal molecule
JP2005225986A (en) * 2004-02-13 2005-08-25 Fuji Photo Film Co Ltd Liquid crystal composition and liquid crystal element
JP5117074B2 (en) * 2007-03-01 2013-01-09 Jx日鉱日石エネルギー株式会社 New discotic liquid crystalline compounds
JP5219386B2 (en) * 2007-03-01 2013-06-26 Jx日鉱日石エネルギー株式会社 New discotic liquid crystalline compounds
JP5142560B2 (en) * 2007-03-09 2013-02-13 Jx日鉱日石エネルギー株式会社 New discotic liquid crystalline compounds

Also Published As

Publication number Publication date
JP2013043987A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
Kim et al. A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances
Liu et al. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers
AU2007221706B2 (en) Dye-sensitized photoelectric conversion device
Gong et al. Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications
Huang et al. Structure, optical and electrical properties of CH3NH3SnI3 single crystal
JP5850422B2 (en) Electronic material composition
Long et al. π-π conjugate structure enabling the channel construction of carrier-facilitated transport in 1D–3D multidimensional CsPbI2Br solar cells with high stability
Song et al. Non‐halogenated Solvent‐Processed Organic Solar Cells with Approaching 20% Efficiency and Improved Photostability
Funahashi High open-circuit voltage under the bulk photovoltaic effect for the chiral smectic crystal phase of a double chiral ferroelectric liquid crystal doped with a fullerene derivative
Zhuang et al. Effect of molecular configuration of additives on perovskite crystallization and hot carriers behavior in perovskite solar cells
Imran et al. Enhanced efficiency and stability of perovskite solar cells by partial replacement of CH3NH3+ with inorganic Cs+ in CH3NH3PbI3 perovskite absorber layer
Zhang et al. Controlling orientation diversity of mixed ion perovskites: reduced crystal microstrain and improved structural stability
Zhang et al. Effect of the modulating of organic content on optical properties of single-crystal perovskite
Albero et al. Photo-induced charge recombination kinetics in low bandgap PCPDTBT polymer: CdSe quantum dot bulk heterojunction solar cells
Liang et al. Passivating defects via 4-cyanobenzenaminium iodide enables 22.44% efficiency perovskite solar cells
Alfanaar et al. Synthesis of TiO2/ZnO-anthocyanin hybrid material for dye sensitized solar cell (DSSC)
Mane et al. Synthesis, Photophysical, electrochemical and thermal investigation of anthracene doped 2-Naphthol Luminophors and their thin films for optoelectronic devices
Bashir et al. Fabrication and characterization of Cd1-xZnxTe thin films for photovoltaic applications
Shirakata et al. Electroreflectance of CuInSe 2 single crystals
He et al. Optical and nonlinear optical properties of an octasubstituted liquid crystalline copper phthalocyanine
Helen et al. Investigation on the properties of L-serine doped zinc tris (thiourea) sulphate crystal for NLO application
Zhang et al. Synthesis and application in photovoltaic device of the porphyrin derivatives with liquid crystal properties
Ke et al. Suppressing photoinduced phase segregation in mixed halide perovskites
Xia et al. Synthesis and photovoltaic properties of novel porphyrin derivatives
Liu The development of low toxic and high efficient solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5850422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees