JP5849927B2 - Lithium ion secondary battery and method for producing lithium ion secondary battery - Google Patents

Lithium ion secondary battery and method for producing lithium ion secondary battery Download PDF

Info

Publication number
JP5849927B2
JP5849927B2 JP2012234742A JP2012234742A JP5849927B2 JP 5849927 B2 JP5849927 B2 JP 5849927B2 JP 2012234742 A JP2012234742 A JP 2012234742A JP 2012234742 A JP2012234742 A JP 2012234742A JP 5849927 B2 JP5849927 B2 JP 5849927B2
Authority
JP
Japan
Prior art keywords
negative electrode
separator
active material
positive electrode
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012234742A
Other languages
Japanese (ja)
Other versions
JP2014086293A (en
Inventor
三橋 利彦
利彦 三橋
藤田 秀明
秀明 藤田
井上 薫
薫 井上
行広 岡田
行広 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012234742A priority Critical patent/JP5849927B2/en
Publication of JP2014086293A publication Critical patent/JP2014086293A/en
Application granted granted Critical
Publication of JP5849927B2 publication Critical patent/JP5849927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、正極活物質層を有する正極板と負極活物質層を有する負極板とを、セパレータを介して捲回した電極体を備えるリチウムイオン二次電池、及び、このようなリチウムイオン二次電池の製造方法に関する。   The present invention relates to a lithium ion secondary battery including an electrode body obtained by winding a positive electrode plate having a positive electrode active material layer and a negative electrode plate having a negative electrode active material layer through a separator, and such a lithium ion secondary The present invention relates to a battery manufacturing method.

近年、ハイブリッド自動車、電気自動車などの車両や、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、充放電可能なリチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
このような電池に関して、例えば、特許文献1には、捲回型の電極体を有する電池の初期充電工程及びエージング工程を備える電池の製造方法が開示されている。また、特許文献2には、セパレータに、互いに対向しあう正極合材層と負極合材層との間でリチウムイオンの移動を許容するイオン通過部と、このイオン通過部の外側に位置し、正極合材層から負極合材層の端面へのリチウムイオンの移動を制限するイオン制限部とを形成した蓄電デバイスが開示されている。
In recent years, lithium-ion secondary batteries (hereinafter also simply referred to as “batteries”) that can be charged and discharged have been used as driving power sources for vehicles such as hybrid vehicles and electric vehicles, and portable electronic devices such as notebook computers and video camcorders. Yes.
Regarding such a battery, for example, Patent Document 1 discloses a battery manufacturing method including an initial charging process and an aging process of a battery having a wound electrode body. Further, in Patent Document 2, the separator is positioned outside the ion passage portion, an ion passage portion that allows lithium ions to move between the positive electrode mixture layer and the negative electrode mixture layer facing each other, An electricity storage device in which an ion restricting portion that restricts the movement of lithium ions from the positive electrode mixture layer to the end face of the negative electrode mixture layer is disclosed.

特開2012−84346号公報JP 2012-84346 A 特開2009−188037号公報JP 2009-188037 A

ところで、上述の特許文献1に記載の、捲回型の電極体を備える電池を充電(初期充電)した後に、例えば80℃以上の高温下で放置すると、正極板のうち電極体の径方向の最外周に位置する正極最外周部の正極活物質層の一部が、リチウムイオンを放出し過ぎて、局所的に正極電位が高い状態となる場合があることが判ってきた。この理由は、以下であると考えられる。
図1には、捲回型の電極体210を備える従来の電池201のうち、電極体210の部分拡大断面図を示す。この電極体210では、正極板230のうち、電極体210の径方向DR(図1中、上下方向)の最外周(図中、上方)に正極最外周部330を、負極板240のうち負極外周部340で、セパレータ220を介して径方向外側DR1(図中、上方)から覆っている。なお、この負極外周部340は、セパレータ220を挟んで正極最外周部330に対向しており、セパレータ220のうちセパレータ外周部320が、正極最外周部330と負極外周部340との間に介在している。
By the way, after charging (initial charging) a battery having a wound electrode body described in Patent Document 1 described above, if the battery is left at a high temperature of, for example, 80 ° C. or higher, the radial direction of the electrode body in the positive electrode plate It has been found that a part of the positive electrode active material layer at the outermost peripheral portion of the positive electrode located at the outermost periphery may release lithium ions too much to locally have a high positive electrode potential. The reason for this is considered as follows.
FIG. 1 shows a partially enlarged cross-sectional view of an electrode body 210 in a conventional battery 201 including a wound electrode body 210. In the electrode body 210, the positive electrode outermost peripheral portion 330 is disposed on the outermost periphery (upward in the drawing) of the electrode body 210 in the radial direction DR (upward and downward direction in FIG. 1). The outer peripheral portion 340 covers the separator 220 from the radially outer side DR1 (upward in the figure). The negative electrode outer peripheral portion 340 faces the positive electrode outermost peripheral portion 330 with the separator 220 interposed therebetween, and the separator outer peripheral portion 320 of the separator 220 is interposed between the positive electrode outermost peripheral portion 330 and the negative electrode outer peripheral portion 340. doing.

なお、この電池201では、軸線方向DX(図中、左右方向)に見て、負極活物質層241が正極活物質層231よりも幅広に形成されている。従って、負極外周部340において負極活物質層341は、セパレータ外周部320を介して、正極最外周部330の正極活物質層331に対向する対向部342と、この対向部342よりも軸線方向DXの一方側DX1(図中、右側)に配置され、正極活物質層331と対向しない一方側非対向部343と、対向部342よりも軸線方向DXの他方側DX2(図中、左側)に配置され、正極活物質層331と対向しない他方側非対向部344とを有している。
また、負極板240の負極箔48及び2つの負極活物質層241,241は、軸線方向DXの他方側DX2の端縁において共通の他方側端面240Pをなしている。この他方側端面240Pのうち、負極外周部340に属するものを外周部端面340Pとする(図1参照)。
In the battery 201, the negative electrode active material layer 241 is formed wider than the positive electrode active material layer 231 when viewed in the axial direction DX (left-right direction in the figure). Accordingly, the negative electrode active material layer 341 in the negative electrode outer peripheral portion 340 is opposed to the positive electrode active material layer 331 of the positive electrode outermost peripheral portion 330 via the separator outer peripheral portion 320, and the axial direction DX more than the opposite portion 342. 1 is disposed on one side DX1 (right side in the figure) and is disposed on the other side DX2 (left side in the figure) in the axial direction DX with respect to the one side non-opposing part 343 that does not face the positive electrode active material layer 331. And the other side non-facing portion 344 that does not face the positive electrode active material layer 331.
Further, the negative electrode foil 48 and the two negative electrode active material layers 241 and 241 of the negative electrode plate 240 form a common other side end surface 240P at the end edge of the other side DX2 in the axial direction DX. Of the other side end surface 240P, one belonging to the negative electrode outer peripheral portion 340 is defined as an outer peripheral end surface 340P (see FIG. 1).

この電池201を充電すると、正極活物質層231からリチウムイオンが放出され、セパレータ220を介して負極活物質層241に挿入される。従って、正極最外周部330の正極活物質層331からもリチウムイオンが放出され、セパレータ外周部320を通じて、負極外周部340の第1外周活物質層341H(負極外周部340の表裏の負極活物質層341,341のうち、正極活物質層331に対向するもの)の第1対向部342Hにもリチウムイオンが挿入される(図1参照)。すると、この第1外周活物質層341Hの第1対向部342Hに挿入されたリチウムイオンの一部は、拡散によって、隣在する第1一方側非対向部343H(上述の一方側非対向部343のうち第1外周活物質層341Hに含まれるもの)、及び、第1他方側非対向部344H(上述の他方側非対向部344のうち第1外周活物質層341Hに含まれるもの)にまでそれぞれ拡がる(図2参照)。   When the battery 201 is charged, lithium ions are released from the positive electrode active material layer 231 and inserted into the negative electrode active material layer 241 through the separator 220. Accordingly, lithium ions are also released from the positive electrode active material layer 331 of the positive electrode outermost peripheral portion 330, and the first outer peripheral active material layer 341H of the negative electrode outer peripheral portion 340 (the negative electrode active materials on the front and back of the negative electrode outer peripheral portion 340) through the separator outer peripheral portion 320. Lithium ions are also inserted into the first facing portion 342H of the layers 341 and 341 facing the positive electrode active material layer 331 (see FIG. 1). Then, a part of the lithium ions inserted into the first facing portion 342H of the first outer peripheral active material layer 341H is diffused to be adjacent to the first one-side non-facing portion 343H (the one-side non-facing portion 343 described above). Of the first outer peripheral active material layer 341H) and the first other-side non-facing portion 344H (of the other-side non-facing portion 344 described above, included in the first outer peripheral active material layer 341H). Each expands (see FIG. 2).

ところで、負極外周部340の外周部端面340Pに電解液が付着すると、負極箔48を挟んで2つの負極活物質層341,341の間(具体的には、第1外周活物質層341Hと、負極外周部340の負極活物質層341,341のうち、第1外周活物質層341Hよりも径方向外側に位置し、セパレータ220を介して正極活物質層331と対向していない第2外周活物質層341Jとの間)で、電解液を通じた液絡が生じる(図2参照)。すると、第1外周活物質層341Hの第1他方側非対向部344Hに移動したリチウムイオンがさらに電解液を介して第2外周活物質層341Jに拡散移動する。
従って、第1対向部342Hのうち第1他方側非対向部344Hに隣在する部位342HPでは、さらに多くのリチウムイオンが第1他方側非対向部344Hに向けて拡散することとなり、結果として、この部位342HPに挿入されたリチウムイオンの濃度が低くなり、局所的に負極電位が高くなる(図3参照)。
By the way, when the electrolytic solution adheres to the outer peripheral end surface 340P of the negative electrode outer peripheral portion 340, between the two negative electrode active material layers 341 and 341 (specifically, the first outer peripheral active material layer 341H, Of the negative electrode active material layers 341 and 341 of the negative electrode outer peripheral portion 340, the second outer peripheral active material that is located radially outside the first outer peripheral active material layer 341H and does not face the positive electrode active material layer 331 with the separator 220 interposed therebetween. Between the material layer 341J), a liquid junction through the electrolytic solution is generated (see FIG. 2). Then, the lithium ions that have moved to the first other-side non-opposing portion 344H of the first outer circumferential active material layer 341H are further diffused and moved to the second outer circumferential active material layer 341J through the electrolytic solution.
Accordingly, in the portion 342HP adjacent to the first other-side non-facing portion 344H in the first facing portion 342H, more lithium ions diffuse toward the first other-side non-facing portion 344H. The concentration of lithium ions inserted into this portion 342HP decreases, and the negative electrode potential locally increases (see FIG. 3).

すると、正極活物質層331の他方側DX2の端部(正極活物質層331のうち、上述の部位342HPに対向する正極リード部39)に沿う部位331Pからは、セパレータ外周部320を介してさらにリチウムイオンが放出される。
かくして、電池201を充電すると、正極最外周部330のうち、正極活物質層331の他方側DX2の端部331Pで、正極活物質からリチウムイオンを放出し過ぎて、局所的に正極電位が高い状態となる(図3参照)。
Then, from the portion 331P along the end portion of the other side DX2 of the positive electrode active material layer 331 (the positive electrode lead portion 39 facing the above-described portion 342HP in the positive electrode active material layer 331), further through the separator outer peripheral portion 320, Lithium ions are released.
Thus, when the battery 201 is charged, lithium ions are excessively released from the positive electrode active material at the end portion 331P of the other side DX2 of the positive electrode active material layer 331 in the positive electrode outermost peripheral portion 330, and the positive electrode potential is locally high. A state is reached (see FIG. 3).

ところで、リチウムイオンを過剰に放出した正極活物質粒子では、正極活物質粒子を構成している遷移金属がイオンとなって電解液中に溶出しやすい。溶出した金属イオンは、高温エージングなど電池が高温(80℃以上)に保持された場合に、第1外周活物質層341H(対向部342Hのうち他方側非対向部344Hに隣在する部位342HP)上で金属化し針状に析出する。これにより、この針状結晶が多孔質状のセパレータを貫通すると正負極間で微小短絡が生じる虞がある。   By the way, in the positive electrode active material particles from which lithium ions are excessively released, the transition metal constituting the positive electrode active material particles is easily ionized and eluted into the electrolytic solution. When the battery is kept at a high temperature (80 ° C. or higher) such as high-temperature aging, the eluted metal ions are the first outer peripheral active material layer 341H (site 342HP adjacent to the other non-opposing portion 344H of the opposing portion 342H). It is metallized above and precipitates in a needle shape. Thereby, when this acicular crystal penetrates a porous separator, there is a possibility that a micro short circuit may occur between the positive and negative electrodes.

なお、図2に示すように、負極外周部340のうち、軸線方向DXの一方側DX1には、負極箔48の露出した負極リード部49が存在しているため、この負極外周部340の一方側DX1では、第1外周活物質層341Hと第2外周活物質層341Jとの間で電解液による液絡は生じない。このため、正極活物質層331の一方側DX1では、上述の現象は生じない。
また、上述した正極最外周部330の正極活物質層331の一部のほか、正極板30のうち径方向の最内周に位置する正極最内周部の正極活物質層の一部でも、同様に局所的に正極電位が高い状態となりうる。
As shown in FIG. 2, the negative electrode lead portion 49 where the negative electrode foil 48 is exposed is present on one side DX1 in the axial direction DX of the negative electrode outer peripheral portion 340. On the side DX1, a liquid junction due to the electrolytic solution does not occur between the first outer peripheral active material layer 341H and the second outer peripheral active material layer 341J. Therefore, the above phenomenon does not occur on one side DX1 of the positive electrode active material layer 331.
Further, in addition to a part of the positive electrode active material layer 331 of the positive electrode outermost peripheral part 330 described above, even a part of the positive electrode active material layer of the positive electrode innermost peripheral part located in the radially innermost periphery of the positive electrode plate 30, Similarly, the positive electrode potential can be locally high.

一方、前述した特許文献2に記載のセパレータを備えるリチウムイオン二次電池には、セパレータにイオン制限部があるため、充電の際、正極活物質層から放出されたリチウムイオンが、セパレータを通じて、負極活物質層のうち正極活物質層と対向しない部位や負極活物質層の端面に直接移動できない。
しかしながら、このリチウムイオン二次電池でも、前述した外周部端面340Pを有する場合には、この外周部端面に液絡が生じてしまう。このため、このリチウムイオン二次電池を初充電した後に高温エージングを行うと、このリチウムイオン二次電池においても、正極板の正極電位が局所的に高い状態になり、正負極間で微小短絡が生じる虞がある。
On the other hand, in the lithium ion secondary battery provided with the separator described in Patent Document 2 described above, since the separator has an ion limiting portion, lithium ions released from the positive electrode active material layer during charging pass through the separator through the negative electrode. It cannot move directly to the portion of the active material layer that does not face the positive electrode active material layer or to the end face of the negative electrode active material layer.
However, even in this lithium ion secondary battery, when it has the above-described outer peripheral end face 340P, a liquid junction occurs on the outer peripheral end face. For this reason, when high-temperature aging is performed after the lithium ion secondary battery is initially charged, the positive electrode potential of the positive electrode plate is also locally high in this lithium ion secondary battery, and there is a minute short circuit between the positive and negative electrodes. May occur.

本発明は、かかる知見に鑑みてなされたものであって、高温下での負極活物質層上への金属の析出による正負極間の短絡の発生を抑制できるリチウムイオン二次電池を提供することを目的とする。また、このようなリチウムイオン二次電池の製造方法を提供することを目的とする。   The present invention has been made in view of such knowledge, and provides a lithium ion secondary battery capable of suppressing the occurrence of a short circuit between positive and negative electrodes due to metal deposition on a negative electrode active material layer at a high temperature. With the goal. Moreover, it aims at providing the manufacturing method of such a lithium ion secondary battery.

本発明の一態様は、帯状の正極板と帯状の負極板とを帯状のセパレータを介して捲回してなる電極体、及び、上記セパレータに含浸された電解液を備え、上記負極板は、捲回された上記正極板のうち最外周に位置する正極最外周部に、上記セパレータを介して径方向外側から対向する負極外周部、及び、上記正極板のうち最内周に位置する正極最内周部に、上記セパレータを介して上記径方向内側から対向する負極内周部、を有するリチウムイオン二次電池であって、上記正極板は、帯状の正極箔及びこの正極箔の両主面上で、捲回軸に沿う軸線方向の一方側に位置する正極活物質層を有し、上記負極板は、帯状の負極箔及びこの負極箔の両主面上で上記軸線方向の他方側に位置する負極活物質層を有し、前記負極外周部と前記負極内周部との間に位置する負極中間部を有し、上記負極箔及び2つの上記負極活物質層は、上記他方側の端縁で共通の他方側端面をなし、上記負極活物質層は、上記セパレータを介して上記正極活物質層に対向する対向部と、この対向部の上記他方側に隣在し上記正極活物質層に対向しない他方側非対向部とを含み、上記セパレータは、上記正極活物質層とこれに対向する上記負極活物質層の上記対向部との間に介在する介在部及び上記介在部よりも上記電解液の保持性を低下させた液保持性低下部を有し、上記負極板の上記他方側端面のうち、上記負極外周部に属する外周部端面及び上記負極内周部に属する内周部端面は、上記セパレータの上記液保持性低下部で覆われてなり、上記他方側端面のうち、上記負極中間部に属する中間部端面は、前記電極体の前記他方側に露出してなるリチウムイオン二次電池である。 One embodiment of the present invention includes an electrode body obtained by winding a strip-shaped positive electrode plate and a strip-shaped negative electrode plate through a strip-shaped separator, and an electrolytic solution impregnated in the separator. The positive electrode outermost part located on the outermost periphery of the rotated positive electrode plate, the negative electrode outer peripheral part facing from the radially outer side through the separator, and the innermost positive electrode located on the innermost periphery of the positive electrode plate A lithium ion secondary battery having a negative electrode inner peripheral part facing from the radially inner side through the separator in the peripheral part, the positive electrode plate comprising a strip-shaped positive foil and both main surfaces of the positive foil A positive electrode active material layer positioned on one side in the axial direction along the winding axis, and the negative electrode plate is positioned on the other side in the axial direction on both main surfaces of the strip-shaped negative electrode foil and the negative electrode foil negative active has a material layer, the negative electrode outer peripheral portion and the negative in-electrode periphery to Has a negative intermediate portion located between said negative electrode foil and two of the negative electrode active material layer, without a common other end face at the end edge of the other side, the negative electrode active material layer through the separator And the other side non-facing portion that is adjacent to the other side of the facing portion and does not face the positive electrode active material layer, and the separator includes the positive electrode active material layer A negative electrode plate having an intervening portion interposed between the negative electrode active material layer and the opposing portion of the negative electrode active material layer opposite to the negative electrode active material layer of the other end face, the inner peripheral end surface belonging to the outer peripheral end surface and the negative in-electrode peripheral portion belonging to the negative electrode outer peripheral portion, Ri Na covered with the liquid-retaining property deterioration of the separator, the other Of the side end faces, the end face of the intermediate part belonging to the negative electrode intermediate part is the electrode. Body is the lithium ion secondary battery comprising exposed on the other side of.

上述のリチウムイオン二次電池では、負極板の他方側端面のうち、外周部端面及び内周部端面が、セパレータの液保持性低下部で覆われている。液保持性低下部では電解液の保持性が低いので、これに覆われない従来の他方側端面に比して、液保持性低下部に覆われた外周部端面や内周部端面において、2つの負極活物質層同士の液絡に寄与する電解液の量を少なくできる。これにより、負極外周部及び負極内周部のいずれにおいても液絡によって、2つの負極活物質層のうちセパレータを介して正極活物質層と対向していない側の負極活物質層にまで、リチウムイオンが拡散移動するのを確実に抑えることができる。従って、正極最外周部及び正極最内周部において、正極活物質層の正極活物質粒子から金属イオンが溶出するのを確実に抑制することができる。
かくして、正極最外周部及び正極最内周部において、正極活物質層の正極活物質粒子から金属イオンが溶出するのを抑制することができ、高温下での負極活物質層上への金属の析出による短絡の発生を抑制した電池とすることができる。
但し、セパレータの液保持性低下部で負極板の他方側端面を覆うと、電極体の他方側から負極活物質層に電解液を含浸させ難くなる。特に、負極板全体にわたり液保持性低下部で他方側端面を覆う場合には、他方側端面を通じて負極活物質層に電解液を含浸できないため、負極活物質層において、軸線方向について電解液の含浸状態にムラが生じ易い。
これに対し、上述の電池では、他方側端面のうち、外周部端面及び内周部端面が液保持性低下部で覆われているものの、負極中間部に属する中間部端面が電極体の他方側に露出している。このため、正極最外周部及び正極最内周部で金属イオンの溶出を確実に抑制できる一方で、負極板のうちの負極中間部において、他方側からも電極体に電解液を含浸させることできる。従って、負極活物質層における、軸線方向についての電解液の含浸状態のムラを抑制することができる。
In the lithium ion secondary battery described above, among the other end surface of the negative electrode plate, an outer peripheral end face and the inner peripheral end face is covered with a liquid retention property deterioration of the separator. Since the electrolyte retainability is low in the liquid retainability lowered portion, the outer peripheral end face and the inner peripheral end face covered with the liquid retainable degraded portion are 2 in comparison with the other end face on the other side that is not covered with this. The amount of the electrolyte solution that contributes to the liquid junction between the two negative electrode active material layers can be reduced. Thus , the lithium negative electrode active material layer on the side not facing the positive electrode active material layer through the separator of the two negative electrode active material layers by liquid junction in both the negative electrode outer peripheral portion and the negative electrode inner peripheral portion. It is possible to reliably prevent ions from diffusing and moving. Therefore, in the positive electrode outermost peripheral part and the positive electrode innermost peripheral part, it can suppress reliably that a metal ion elutes from the positive electrode active material particle of a positive electrode active material layer.
Thus, positive topmost outer peripheral portion and Oite the positive electrode innermost portion, the positive electrode active material particles of the positive electrode active material layer can be metal ions can be inhibited from eluting, onto the negative electrode active material layer at a high temperature Thus, a battery in which occurrence of a short circuit due to deposition of the metal is suppressed can be obtained.
However, if the other side end face of the negative electrode plate is covered with the liquid retention lowering portion of the separator, it is difficult to impregnate the negative electrode active material layer with the electrolyte from the other side of the electrode body. In particular, when the other side end face is covered with the liquid retention lowering portion over the entire negative electrode plate, the negative electrode active material layer cannot be impregnated with the electrolyte solution through the other side end face. Unevenness is likely to occur in the state.
On the other hand, in the battery described above, of the other side end surface, the outer peripheral end surface and the inner peripheral end surface are covered with the liquid retention lowering portion, but the intermediate end surface belonging to the negative electrode intermediate portion is the other side of the electrode body. Is exposed. For this reason, while elution of metal ions can be reliably suppressed in the positive electrode outermost peripheral part and the positive electrode innermost peripheral part, the electrode body can be impregnated with the electrolyte from the other side in the negative electrode intermediate part of the negative electrode plate. . Therefore, unevenness in the impregnated state of the electrolytic solution in the axial direction in the negative electrode active material layer can be suppressed.

た、セパレータの液保持性低下部としては、多孔性樹脂からなるセパレータの該当部位を加熱により熱収縮させたり、該当部位に樹脂等を塗布して介在部よりも空孔率を低下させたものや、該当部位に電解液に濡れずにこれをはじく特性を付与したものが挙げられる。
また、正極最外周部は、捲回された正極板のうち最外周に位置する部位、即ち、正極板のうち最外側の一周分の捲回をなす部位である。一方、正極最内周部は、捲回された正極板のうち最内周に位置する部位、即ち、正極版のうち最内側の一周分の捲回をなす部位である。
また、負極外周部は、捲回された負極板のうち正極最外周部にセパレータを介して径方向外側から対向する部位である。つまり、この負極外周部は、負極板が上述した正極最外周部の正極活物質層に対向する負極活物質層と、この負極活物質層よりも外側に位置し、セパレータを介して正極活物質層とは対向していない負極活物質層とを有する形態である。一方、負極内周部は、捲回された負極板のうち正極最内周部にセパレータを介して径方向内側から対向する部位である。つまり、この負極内周部は、上述した正極最内周部の正極活物質層に対向する負極活物質層と、この負極活物質層よりも内側に位置し、セパレータを介して正極活物質層とは対向していない負極活物質層とを有する形態である。
Also, as the liquid retaining deterioration of the separator, or the corresponding portion of the separator made of porous resin and heat-shrunk by heat, reduced the porosity than intermediate portion by applying a resin or the like to the appropriate site And those having the property of repelling the relevant part without getting wet with the electrolyte.
The positive electrode outermost peripheral portion is a portion located on the outermost periphery of the wound positive electrode plate, that is, a portion forming the outermost one turn of the positive electrode plate. On the other hand, the innermost peripheral portion of the positive electrode is a portion located on the innermost periphery of the wound positive electrode plate, that is, a portion forming the innermost turn of the positive electrode plate.
The negative electrode outer peripheral portion is a portion of the wound negative electrode plate that faces the outermost positive electrode outer peripheral portion from the radially outer side via a separator. That is, the negative electrode outer peripheral portion is located on the outer side of the negative electrode active material layer with the negative electrode plate facing the positive electrode active material layer of the positive electrode outermost peripheral portion described above, and the positive electrode active material via the separator. The layer has a negative electrode active material layer that is not opposed to the layer. On the other hand, the inner periphery of the negative electrode is a portion of the wound negative electrode plate that faces the innermost peripheral portion of the positive electrode from the inner side in the radial direction via a separator. That is, the negative electrode inner peripheral part is located on the inner side of the negative electrode active material layer facing the positive electrode active material layer of the positive electrode innermost peripheral part, and the positive electrode active material layer via the separator. Is a form having a negative electrode active material layer not facing each other.

さらに、上述のいずれかのリチウムイオン二次電池であって、前記セパレータは、多孔質の樹脂からなるセパレータ本体と、上記セパレータ本体の片方の主面上に形成され、無機粒子を含む耐熱層と、を有し、前記電極体において、上記セパレータ本体が前記負極活物質層側となる形態に配置されてなり、前記液保持性低下部は、記セパレータ本体熱収縮した部位であるリチウムイオン二次電池とすると良い。 Furthermore, in any of the above lithium ion secondary batteries, the separator is formed of a separator body made of a porous resin, and a heat-resistant layer including inorganic particles formed on one main surface of the separator body. has, in the electrode body, it is arranged in the form of the separator body is the negative electrode active material layer side, the liquid retention lowered portion, lithium is the site where the upper Symbol separator body is thermally contracted ions A secondary battery is recommended.

上述の電池では、セパレータが上述のセパレータ本体と耐熱層とを有するため、電池内の温度が上昇してセパレータ本体が溶融しても、耐熱層により正極板と負極板との接触を防ぐことができる。
また、セパレータは、電極体において、セパレータ本体が負極活物質層側となる形態に配置されてなるため、加熱によりセパレータ本体を熱収縮させると、セパレータ全体がセパレータ本体側に曲がるので、負極板の他方側端面を覆う液保持性低下部を容易かつ確実に形成できる。かくして、介在部よりもセパレータ全体の空孔率を低下させた液保持性低下部で負極板の他方側端面を確実に覆った電池とすることができる。
In the battery described above, since the separator has the separator main body and the heat-resistant layer, even if the temperature in the battery rises and the separator main body melts, the heat-resistant layer prevents contact between the positive electrode plate and the negative electrode plate. it can.
Further, since the separator is arranged in the electrode body such that the separator main body is on the negative electrode active material layer side, when the separator main body is thermally contracted by heating, the entire separator is bent to the separator main body side. It is possible to easily and reliably form the liquid retainability lowering portion that covers the other end face. Thus, a battery can be obtained in which the other end face of the negative electrode plate is reliably covered with the liquid retention lowering portion in which the porosity of the entire separator is lower than that of the interposition portion.

なお、耐熱層に含まれる無機粒子としては、例えば、アルミナ、マグネシア、ジルコニア、シリカ等が挙げられる。また、耐熱層としては、上述の無機粒子に加え、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等の結着材を含むものも挙げられる。   In addition, as an inorganic particle contained in a heat-resistant layer, an alumina, a magnesia, a zirconia, a silica etc. are mentioned, for example. Examples of the heat-resistant layer include those containing a binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) in addition to the inorganic particles described above.

さらに、本発明の他の一態様は、帯状の正極板と帯状の負極板とを帯状のセパレータを介して捲回してなる電極体、及び、上記セパレータに含浸された電解液を備え、上記負極板は、捲回された上記正極板のうち最外周に位置する正極最外周部に、上記セパレータを介して径方向外側から対向する負極外周部、及び、上記正極板のうち最内周に位置する正極最内周部に、上記セパレータを介して上記径方向内側から対向する負極内周部、を有し、上記正極板は、帯状の正極箔及びこの正極箔の両主面上で、捲回軸に沿う軸線方向の一方側に位置する正極活物質層を有し、上記負極板は、帯状の負極箔及びこの負極箔の両主面上で上記軸線方向の他方側に位置する負極活物質層を有し、前記負極外周部と前記負極内周部との間に位置する負極中間部を有し、上記負極箔及び2つの上記負極活物質層は、上記他方側の端縁で共通の他方側端面をなし、上記負極活物質層は、上記セパレータを介して上記正極活物質層に対向する対向部と、この対向部の上記他方側に隣在し上記正極活物質層に対向しない他方側非対向部とを含み、上記セパレータは、上記正極活物質層とこれに対向する上記負極活物質層の上記対向部との間に介在する介在部及び上記介在部よりも上記電解液の保持性を低下させた液保持性低下部を有し、上記負極板の上記他方側端面のうち、上記負極外周部に属する外周部端面及び上記負極内周部に属する内周部端面は、上記セパレータの上記液保持性低下部で覆われてなり、上記他方側端面のうち、上記負極中間部に属する中間部端面は、前記電極体の前記他方側に露出してなるリチウムイオン二次電池の製造方法であって、帯状の上記正極板と帯状の上記負極板とを帯状で上記液保持性低下部を有さないセパレータを介して捲回して、電極体を作製する電極体作製工程と、上記電極体をなして捲回された上記セパレータに、上記液保持性低下部を形成する低下部形成工程と、を備えるリチウムイオン二次電池の製造方法である。 Furthermore, another aspect of the present invention includes an electrode body obtained by winding a strip-shaped positive electrode plate and a strip-shaped negative electrode plate through a strip-shaped separator, and an electrolyte solution impregnated in the separator, The plate is positioned on the innermost periphery of the positive electrode plate, on the outermost periphery of the positive electrode located on the outermost periphery of the wound positive electrode, on the outer periphery of the negative electrode facing the outer side in the radial direction via the separator A negative electrode inner peripheral portion facing from the inner side in the radial direction through the separator on the innermost peripheral portion of the positive electrode, and the positive electrode plate has a strip-shaped positive foil and both main surfaces of the positive foil. A positive electrode active material layer positioned on one side in the axial direction along the rotation axis, and the negative electrode plate comprises a strip-shaped negative electrode foil and a negative electrode active material positioned on the other side in the axial direction on both main surfaces of the negative electrode foil. It has a material layer, negative electrode in which is located between the negative electrode outer peripheral portion and the negative in-electrode peripheral portion Has a section, the negative electrode foil and two of the negative electrode active material layer, without a common other end face at the end edge of the other side, the negative electrode active material layer, the positive electrode active material layer through the separator And the other side non-facing portion that is adjacent to the other side of the facing portion and does not face the positive electrode active material layer, and the separator faces the positive electrode active material layer and the above-mentioned An intervening portion interposed between the opposing portion of the negative electrode active material layer and a liquid retainability lowering portion that lowers the retainability of the electrolytic solution than the intervening portion, and the other end face of the negative electrode plate among them, the inner peripheral end surface belonging to the outer peripheral end surface and the negative in-electrode peripheral portion belonging to the negative electrode outer peripheral portion, Ri Na covered with the liquid-retaining property deterioration of the separator, of the other side end face, the The end face of the intermediate part belonging to the negative electrode intermediate part is exposed to the other side of the electrode body. A lithium ion secondary battery production method of which is formed by, a strip of the positive electrode plate and strip of the negative electrode plate in strip form wound with a separator not having the liquid holding deterioration section, the electrode body And a reduced portion forming step of forming the liquid retention reduced portion on the separator wound in the electrode body, and a method for manufacturing a lithium ion secondary battery. .

上述のリチウムイオン二次電池の製造方法は、上述の電極体作製工程と低下部形成工程とを備える。このため、負極板の他方側端面のうち、少なくとも外周部端面及び内周部端面のいずれかがセパレータの液保持性低下部で覆われた電池を製造することができる。従って、少なくとも正極最外周部及び正極最内周部のいずれかにおいて、正極活物質層の正極活物質粒子から金属イオンが溶出するのを抑制することができ、高温下での負極活物質層上への金属の析出による短絡の発生を抑制した電池を製造することができる。   The above-described method for manufacturing a lithium ion secondary battery includes the above-described electrode body manufacturing step and the lowered portion forming step. For this reason, a battery in which at least one of the outer peripheral end face and the inner peripheral end face of the other side end face of the negative electrode plate is covered with the liquid retention lowering portion of the separator can be manufactured. Therefore, it is possible to suppress the elution of metal ions from the positive electrode active material particles of the positive electrode active material layer at least in either the positive electrode outermost peripheral part or the positive electrode innermost peripheral part, and on the negative electrode active material layer at a high temperature. A battery that suppresses the occurrence of a short circuit due to metal deposition on the substrate can be produced.

さらに、上述のリチウムイオン二次電池の製造方法であって、前記セパレータは、多孔質の樹脂からなるセパレータ本体と、上記セパレータ本体の片方の主面上に形成され、無機粒子を含む耐熱層と、を有し、前記電極体において、上記セパレータ本体が前記負極活物質層側となる形態に配置されてなり、前記液保持性低下部は、加熱により上記セパレータ本体を熱収縮させてなり、前記低下部形成工程は、前記電極体をなして捲回された前記液保持性低下部を有さないセパレータのうち、前記他方側端面よりも、他方側に突出する突出部を加熱し、上記セパレータ本体を熱収縮させて上記液保持性低下部を形成するリチウムイオン二次電池の製造方法とすると良い。   Furthermore, in the above-described method for manufacturing a lithium ion secondary battery, the separator includes a separator body made of a porous resin, a heat-resistant layer including inorganic particles formed on one main surface of the separator body. In the electrode body, the separator body is arranged in a form that is on the negative electrode active material layer side, and the liquid retention lowering portion is formed by thermally shrinking the separator body by heating, The lowering portion forming step heats a protruding portion that protrudes to the other side of the other end surface of the separator that does not have the liquid retention decreasing portion wound around the electrode body, A method of manufacturing a lithium ion secondary battery in which the main body is thermally shrunk to form the liquid retention lowering portion is preferable.

上述の電池の製造方法のうち低下部形成工程では、電極体をなして捲回されたセパレータの突出部を加熱して、セパレータ本体を熱収縮させて液保持性低下部を形成する。なお、セパレータ本体と耐熱層とを有するセパレータを加熱すると、セパレータ本体が大きく熱収縮するため、セパレータ本体側に曲がり、他方側端面を覆う形態の液保持性低下部を容易に形成することができる。   In the lowered part forming step of the battery manufacturing method described above, the protrusion of the separator wound as an electrode body is heated, and the separator main body is thermally contracted to form the liquid retention reduced part. In addition, when a separator having a separator body and a heat-resistant layer is heated, the separator body largely heat shrinks, so that it is possible to easily form a liquid retainability lowering portion that is bent toward the separator body and covers the other end face. .

なお、セパレータ本体を熱収縮させて液保持性低下部を形成する手法としては、例えば、加熱した2枚の金属板を用いて、セパレータの突出部を加熱し熱収縮させて形成する手法や、ヒータ等の加熱装置を、電極体の他方側から正極板(正極箔)の端部に接触させて正極箔を加熱し、他方側から徐々に加熱された正極箔によって、正極板同士間に位置するセパレータの突出部を間接的に加熱し熱収縮させて形成する手法も挙げられる。また、ヒータ等の加熱装置で、正極箔を挟んでこれを加熱して、間接的に突出部を加熱し熱収縮させて形成する手法も挙げられる。さらに、負極外周部の外周部端面を覆う熱収縮部を形成する場合には、電極体の径方向外側から加熱装置をセパレータの突出部に当接させて、これを加熱し熱収縮させる手法が挙げられる。   In addition, as a method of forming the liquid retention reduced portion by thermally shrinking the separator body, for example, using a heated two metal plate, a method of forming the separator protrusion by heating and shrinking, A heating device such as a heater is brought into contact with the end of the positive electrode plate (positive electrode foil) from the other side of the electrode body to heat the positive electrode foil, and the positive electrode foil gradually heated from the other side is positioned between the positive electrode plates. There is also a method in which the protruding portion of the separator to be formed is indirectly heated and thermally contracted. In addition, there is also a method in which a positive electrode foil is sandwiched and heated by a heating device such as a heater, and the protrusion is indirectly heated and thermally contracted. Furthermore, in the case of forming a heat-shrinkable portion covering the outer peripheral end face of the negative electrode outer peripheral portion, there is a method in which a heating device is brought into contact with the protruding portion of the separator from the radially outer side of the electrode body, and this is heated and thermally contracted. Can be mentioned.

従来の電池にかかり、捲回型の電極体における、充電時の正極板から負極板へのリチウムイオンの移動を示す説明図である。It is explanatory drawing which shows the movement of the lithium ion from the positive electrode plate at the time of charge in the winding type electrode body concerning a conventional battery at the time of charge. 従来の電池にかかり、充電時の負極活物質層内及び負極活物質層間におけるリチウムイオンの拡散移動を示す説明図である。It is explanatory drawing which shows the diffusion movement of the lithium ion in the negative electrode active material layer at the time of charge concerning the conventional battery, and between negative electrode active material layers. 従来の電池にかかり、負極活物質層における、電位の分布を示す説明図である。It is explanatory drawing which shows the distribution of the electric potential in the negative electrode active material layer concerning the conventional battery. 実施形態にかかる電池の斜視図である。It is a perspective view of the battery concerning an embodiment. 実施形態にかかる電池に用いる正極板の斜視図である。It is a perspective view of the positive electrode plate used for the battery concerning an embodiment. 実施形態にかかる電池に用いる負極板の斜視図である。It is a perspective view of the negative electrode plate used for the battery concerning an embodiment. 実施形態にかかる電池の断面図(図4のC−C矢視断面図)である。It is sectional drawing (CC sectional view taken on the line of FIG. 4) of the battery concerning embodiment. 実施形態にかかる電池における電極体のうち外側部分の部分拡大断面図(図7のD−D断面)である。It is a partial expanded sectional view (DD section of Drawing 7) of an outside portion among electrode bodies in a battery concerning an embodiment. 実施形態にかかる電池における電極体のうち内側部分の部分拡大断面図(図7のD−D断面)である。It is the elements on larger scale of the inner part among the electrode bodies in the battery concerning embodiment (DD section of Drawing 7). 実施形態にかかる電池の製造方法の説明図(電極体作製工程に用いる形成前セパレータの斜視図)である。It is explanatory drawing (the perspective view of the separator before formation used for an electrode body production process) of the manufacturing method of the battery concerning embodiment. 実施形態にかかる電池の製造方法のうち、電極体作製工程の説明図である。It is explanatory drawing of an electrode body preparation process among the manufacturing methods of the battery concerning embodiment. 実施形態にかかる電池の製造方法のうち、低下部形成工程の説明図である。It is explanatory drawing of a fall part formation process among the manufacturing methods of the battery concerning embodiment. 実施形態にかかる電池の製造方法のうち、低下部形成工程の説明図である。It is explanatory drawing of a fall part formation process among the manufacturing methods of the battery concerning embodiment.

次に、本発明の実施形態について、図面を参照しつつ説明する。
まず、本実施形態にかかる電池1について、図4を参照して説明する。
この電池1は、いずれも長手方向DAに延びる帯状の正極板30と負極板40とを帯状の2枚のセパレータ20X,20Yを介して捲回した捲回型の電極体10、及び、セパレータ20に含浸された電解液50を備えるリチウムイオン二次電池である(図4参照)。この電池1は、さらにこれら電極体10,電解液50のほか、電極体10及び電解液50を内部に収容する電池ケース80と、正極集電部材91と負極集電部材92とを備える(図4参照)。このうち、アルミニウム製でクランク状に屈曲した板状の正極集電部材91は、電極体10をなす正極板30の正極リード部39(後述)と接合している。また、銅製でクランク状に屈曲した板状の負極集電部材92は、電極体10をなす負極板40の負極リード部49(後述)と接合している。
Next, embodiments of the present invention will be described with reference to the drawings.
First, the battery 1 according to the present embodiment will be described with reference to FIG.
The battery 1 includes a wound electrode body 10 in which a belt-like positive electrode plate 30 and a negative electrode plate 40 both extending in the longitudinal direction DA are wound through two belt-like separators 20X and 20Y, and the separator 20 It is a lithium ion secondary battery provided with the electrolyte solution 50 impregnated in (see FIG. 4). In addition to the electrode body 10 and the electrolytic solution 50, the battery 1 further includes a battery case 80 that accommodates the electrode body 10 and the electrolytic solution 50 therein, and a positive current collecting member 91 and a negative current collecting member 92 (see FIG. 4). Among these, a plate-like positive electrode current collector 91 made of aluminum and bent in a crank shape is joined to a positive electrode lead portion 39 (described later) of the positive electrode plate 30 constituting the electrode body 10. A plate-shaped negative electrode current collector 92 made of copper and bent in a crank shape is joined to a negative electrode lead portion 49 (described later) of the negative electrode plate 40 constituting the electrode body 10.

また、電池ケース80は、いずれもアルミニウム製の電池ケース本体81及び封口蓋82を有する。このうち電池ケース本体81は有底矩形箱形であり、この電池ケース80と電極体10との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。また、封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。この封口蓋82には、正極集電部材91及び負極集電部材92のうち、それぞれ先端に位置する正極端子部91A及び負極端子部92Aが貫通しており、図4中、上方に向く蓋表面82aから突出している。これら正極端子部91A及び負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、互いを絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。   The battery case 80 includes an aluminum battery case body 81 and a sealing lid 82. Among these, the battery case main body 81 has a bottomed rectangular box shape, and an insulating film (not shown) made of a resin and bent into a box shape is interposed between the battery case 80 and the electrode body 10. The sealing lid 82 has a rectangular plate shape, closes the opening of the battery case body 81, and is welded to the battery case body 81. Of the positive electrode current collecting member 91 and the negative electrode current collecting member 92, the positive electrode terminal portion 91A and the negative electrode terminal portion 92A, which are located at the tips, pass through the sealing lid 82, and the lid surface facing upward in FIG. Projecting from 82a. Insulating members 95 made of insulating resin are interposed between the positive electrode terminal portion 91A and the negative electrode terminal portion 92A and the sealing lid 82 to insulate each other. Further, a rectangular plate-shaped safety valve 97 is also sealed on the sealing lid 82.

また、電解液50は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とエチルメチルカーボネート(EMC)を、体積比でEC:DEC:EMC=3:3:4に調整した混合有機溶媒に、溶質としてLiPF6を添加し、リチウムイオンを1mol/lの濃度とした非水電解液である。 The electrolytic solution 50 is a solute in a mixed organic solvent in which ethylene carbonate (EC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) are adjusted to a volume ratio of EC: DEC: EMC = 3: 3: 4. LiPF 6 is added as a nonaqueous electrolyte solution with a lithium ion concentration of 1 mol / l.

また、電極体10は、正極板30及び負極板40が、2枚のセパレータ20X,20Yを介して、捲回軸AXの周りを扁平形状に捲回された形態である(図4,7参照)。
電極体10をなす正極板30は、図5の斜視図に示すように、長手方向DAに延びる帯状で、アルミニウム製の正極箔38と、この正極箔38の両主面38F、38F上にそれぞれ形成された2つの正極活物質層31,31とを有している。なお、正極板30を捲回した電極体10において、正極板30の幅方向は、電極体10の捲回軸AXに沿う軸線方向DXと一致する。そこで、以下では、正極板30について、その幅方向に代えて軸線方向DXを用いて説明する。
The electrode body 10 has a configuration in which the positive electrode plate 30 and the negative electrode plate 40 are wound in a flat shape around the winding axis AX via two separators 20X and 20Y (see FIGS. 4 and 7). ).
As shown in the perspective view of FIG. 5, the positive electrode plate 30 constituting the electrode body 10 has a strip shape extending in the longitudinal direction DA, and is formed on an aluminum positive electrode foil 38 and both main surfaces 38F and 38F of the positive electrode foil 38. The two positive electrode active material layers 31 and 31 are formed. In the electrode body 10 wound with the positive electrode plate 30, the width direction of the positive electrode plate 30 coincides with the axial direction DX along the winding axis AX of the electrode body 10. Therefore, in the following, the positive electrode plate 30 will be described using the axial direction DX instead of the width direction.

この正極板30は、正極箔38の軸線方向DXの他方側DX2(図5中、左上側)に位置し、この正極箔38の両主面38F,38Fが露出した正極リード部39を有している(図5参照)。
逆に、正極板30の正極活物質層31は、正極箔38(両主面38F,38F)上の軸線方向DXの一方側DX1(図5中、右下側)に配置されている。この正極活物質層31は、LiNi1/3Co1/3Mn1/32からなる正極活物質粒子(図示しない)と、アセチレンブラックからなる導電材(図示しない)と、ポリフッ化ビニリデン(PVDF)からなる結着材(図示しない)とを含む。
The positive electrode plate 30 is located on the other side DX2 (upper left side in FIG. 5) of the positive electrode foil 38 in the axial direction DX, and has a positive electrode lead portion 39 in which both main surfaces 38F and 38F of the positive electrode foil 38 are exposed. (See FIG. 5).
Conversely, the positive electrode active material layer 31 of the positive electrode plate 30 is arranged on one side DX1 (lower right side in FIG. 5) in the axial direction DX on the positive electrode foil 38 (both main surfaces 38F, 38F). The positive electrode active material layer 31 includes positive electrode active material particles (not shown) made of LiNi 1/3 Co 1/3 Mn 1/3 O 2, a conductive material (not shown) made of acetylene black, polyvinylidene fluoride ( And a binder (not shown) made of PVDF.

なお、電極体10において、正極板30は、このうち、径方向DRの外側DR1(図8中、上方)の最外周に位置する正極最外周部30Sと、径方向DRの内側DR2(図9中、下方)の最内周に位置する正極最内周部30Tと、これら正極最外周部30Sと正極最内周部30Tとの間に位置する正極中間部30Uとに分けられる(図8,9参照)。このうち、正極最外周部30Sは、第2セパレータ20Y(このうち後述する第2セパレータ外周部20YS)を介して径方向DRの外側DR1から負極板40(このうち後述する負極外周部40S)に覆われている。また、正極最内周部30Tは、第1セパレータ20X(このうち後述する第1セパレータ内周部20XT)を介して径方向DRの内側から負極板40(このうち後述する負極内周部40T)に覆われている。   In addition, in the electrode body 10, the positive electrode plate 30 includes a positive electrode outermost peripheral portion 30S located on the outermost periphery of the outer side DR1 in the radial direction DR (upward in FIG. 8) and an inner side DR2 in the radial direction DR (FIG. 9). The innermost positive electrode innermost portion 30T located in the innermost and lowermost inner periphery, and the positive electrode intermediate portion 30U located between the outermost positive electrode outer peripheral portion 30S and the innermost positive electrode inner peripheral portion 30T (FIG. 8, 9). Among these, the positive electrode outermost peripheral portion 30S passes from the outer side DR1 in the radial direction DR to the negative electrode plate 40 (of which the negative electrode outer peripheral portion 40S described later) via the second separator 20Y (the second separator outer peripheral portion 20YS described later). Covered. The positive innermost peripheral portion 30T is connected to the negative electrode plate 40 (the negative inner peripheral portion 40T described later) from the inside in the radial direction DR through the first separator 20X (the first separator inner peripheral portion 20XT described below). Covered with

また、負極板40は、図6の斜視図に示すように、長手方向DAに延びる帯状で、銅製の負極箔48と、この負極箔48の両主面48F、48F上にそれぞれ形成された2つの負極活物質層41,41とを有している。なお、負極板40を捲回した電極体10において、負極板の幅方向もまた、前述した正極板30と同様、電極体10の軸線方向DXと一致する。そこで、以下では、負極板40についても、その幅方向に代えて軸線方向DXを用いて説明する。   Further, as shown in the perspective view of FIG. 6, the negative electrode plate 40 has a strip shape extending in the longitudinal direction DA, and is formed on the copper negative electrode foil 48 and the two main surfaces 48F and 48F of the negative electrode foil 48, respectively. Two negative electrode active material layers 41, 41. In the electrode body 10 in which the negative electrode plate 40 is wound, the width direction of the negative electrode plate also coincides with the axial direction DX of the electrode body 10 as in the positive electrode plate 30 described above. Therefore, hereinafter, the negative electrode plate 40 will also be described using the axial direction DX instead of the width direction.

この負極板40は、負極箔48の軸線方向DXの一方側DX1に位置し、この負極箔48の両主面48F,48Fが露出した負極リード部49を有している(図6参照)。
逆に、負極板40の負極活物質層41は、負極箔48(両主面48F,48F)上の軸線方向DXの他方側DX2に配置されている。この負極活物質層41は、黒鉛からなる負極活物質粒子(図示しない)、及び、スチレンブタジエンゴム(SBR)からなる結着材(図示しない)を含む。
The negative electrode plate 40 is located on one side DX1 of the negative electrode foil 48 in the axial direction DX, and has a negative electrode lead portion 49 in which both main surfaces 48F and 48F of the negative electrode foil 48 are exposed (see FIG. 6).
Conversely, the negative electrode active material layer 41 of the negative electrode plate 40 is disposed on the other side DX2 in the axial direction DX on the negative electrode foil 48 (both main surfaces 48F, 48F). The negative electrode active material layer 41 includes negative electrode active material particles (not shown) made of graphite and a binder (not shown) made of styrene butadiene rubber (SBR).

なお、本実施例1では、負極活物質層41は、長手方向DA及び軸線方向DXの寸法が、正極活物質層31に比してそれぞれ大きくされている。このため、図6,8に示すように、負極活物質層41は、セパレータ20X(20Y)を介して正極活物質層31に対向する対向部42と、この対向部42の軸線方向一方側DX1に隣在し、正極活物質層31に対向しない一方側非対向部43と、対向部42の軸線方向他方側DX2に隣在し、正極活物質層31に対向しない他方側非対向部44とを含む。さらに、この負極活物質層41は、上述の対向部42、一方側非対向部43及び他方側非対向部44よりも長手方向DAの外側で、電極体10において径方向内側に位置する内側部45と、電極体10において径方向外側に位置する外側部46とを含む(図6参照)。
つまり、負極活物質層41では、対向部42が、負極活物質層41の、長手方向DA及び軸線方向DXのそれぞれ中央に位置し、一方側非対向部43、他方側非対向部44、内側部45及び外側部46が、対向部42の周囲に枠状に位置している(図6参照)。但し、負極活物質層41における対向部42、一方側非対向部43、他方側非対向部44、内側部45及び外側部46の境界は、負極板40、2枚のセパレータ20X,20Y及び正極板30を捲回して電極体10を作製したときに定まる。
In Example 1, the negative electrode active material layer 41 has the dimensions in the longitudinal direction DA and the axial direction DX larger than those of the positive electrode active material layer 31. Therefore, as shown in FIGS. 6 and 8, the negative electrode active material layer 41 includes a facing portion 42 that faces the positive electrode active material layer 31 through the separator 20X (20Y), and one axial direction DX1 of the facing portion 42. Adjacent to the positive electrode active material layer 31 and the other non-facing portion 44 adjacent to the other side DX2 in the axial direction of the opposing portion 42 and not facing the positive electrode active material layer 31. including. Further, the negative electrode active material layer 41 is an inner portion located on the radially inner side in the electrode body 10 on the outer side in the longitudinal direction DA than the above-described facing portion 42, one side non-facing portion 43, and the other side non-facing portion 44. 45 and an outer portion 46 positioned radially outward in the electrode body 10 (see FIG. 6).
That is, in the negative electrode active material layer 41, the facing portion 42 is located in the center of each of the longitudinal direction DA and the axial direction DX of the negative electrode active material layer 41, and the one side non-facing portion 43, the other side non-facing portion 44, and the inside The part 45 and the outer part 46 are located in a frame shape around the facing part 42 (see FIG. 6). However, the boundaries of the facing portion 42, the one-side non-facing portion 43, the other-side non-facing portion 44, the inner portion 45, and the outer portion 46 in the negative electrode active material layer 41 are the negative electrode plate 40, the two separators 20X and 20Y, and the positive electrode. It is determined when the electrode body 10 is produced by winding the plate 30.

また、図6に示すように、負極箔48及び2つの負極活物質層41,41は、他方側DX2の端縁が切断によって形成されており、共通の他方側端面40Pをなしている。この他方側端面40Pに電解液50が付着すると、負極箔48を挟んで2つの負極活物質層41,41の間で、電解液50を通じた液絡が生じる。   Further, as shown in FIG. 6, the negative electrode foil 48 and the two negative electrode active material layers 41, 41 are formed by cutting the edge of the other side DX2 to form a common other side end face 40P. When the electrolytic solution 50 adheres to the other end face 40P, a liquid junction through the electrolytic solution 50 is generated between the two negative electrode active material layers 41 and 41 with the negative electrode foil 48 interposed therebetween.

なお、電極体10において、負極板40は、このうち、第2セパレータ20Yを介して径方向DRの外側DR1から前述の正極最外周部30Sに対向する負極外周部40Sと、第1セパレータ20Xを介して径方向DRの内側DR2から前述の正極最内周部30Tに対向する負極内周部40Tと、これら負極外周部40Sと負極内周部40Tとの間に位置する負極中間部40Uとを有する(図8,9参照)。
このうち、負極外周部40Sは、2層の負極活物質層41,41のうち、正極最外周部30Sの正極活物質層31に対向する第1外周活物質層41SHと、この第1外周活物質層41SHよりも径方向外側DR1に位置し、第1セパレータ20X(後述する第1セパレータ外周部20XS)を介して正極活物質層とは対向していない第2外周活物質層41SJとを有する(図8参照)。このうち、第1外周活物質層41SHは、正極活物質層31に対向する対向部42SHと、この対向部42SHの一方側DX1に隣在し、正極活物質層31に対向しない一方側非対向部43SHと、対向部42SHの他方側DX2に隣在し、正極活物質層31に対向しない他方側非対向部44SHとを含む。
In the electrode body 10, the negative electrode plate 40 includes a negative electrode outer peripheral portion 40S facing the positive outermost peripheral portion 30S from the outer side DR1 in the radial direction DR via the second separator 20Y, and the first separator 20X. A negative electrode inner peripheral portion 40T opposed to the positive electrode innermost peripheral portion 30T from the inner side DR2 in the radial direction DR, and a negative electrode intermediate portion 40U positioned between the negative electrode outer peripheral portion 40S and the negative electrode inner peripheral portion 40T. (See FIGS. 8 and 9).
Among these, the negative electrode outer peripheral portion 40S includes a first outer peripheral active material layer 41SH facing the positive electrode active material layer 31 of the positive electrode outermost peripheral portion 30S among the two negative electrode active material layers 41 and 41, and the first outer peripheral active material layer 41SH. It has a second outer peripheral active material layer 41SJ that is located on the radially outer side DR1 from the material layer 41SH and is not opposed to the positive electrode active material layer via the first separator 20X (first separator outer peripheral portion 20XS described later). (See FIG. 8). Among these, the first outer peripheral active material layer 41SH is adjacent to the facing portion 42SH facing the positive electrode active material layer 31 and one side DX1 of the facing portion 42SH, and does not face the positive electrode active material layer 31. Part 43SH and the other side non-facing part 44SH that is adjacent to the other side DX2 of the facing part 42SH and does not face the positive electrode active material layer 31.

一方、負極内周部40Tは、2層の負極活物質層41,41のうち、正極最内周部30Tの正極活物質層31に対向する第1内周活物質層41THと、この第1内周活物質層41THよりも径方向内側DR2に位置し、第2セパレータ20Y(後述する第2セパレータ内周部20YT)を介して正極活物質層とは対向していない第2内周活物質層41TJとを有する(図9参照)。このうち、第1内周活物質層41THは、正極活物質層31に対向する対向部42THと、この対向部42THの一方側DX1に隣在し、正極活物質層31に対向しない一方側非対向部43THと、対向部42THの他方側DX2に隣在し、正極活物質層31に対向しない他方側非対向部44THとを含む。   On the other hand, the negative electrode inner peripheral portion 40T includes a first inner peripheral active material layer 41TH facing the positive electrode active material layer 31 of the positive innermost peripheral portion 30T of the two negative electrode active material layers 41 and 41, and the first inner peripheral active material layer 41TH. The second inner peripheral active material that is located on the radially inner side DR2 from the inner peripheral active material layer 41TH and is not opposed to the positive electrode active material layer via the second separator 20Y (second separator inner peripheral portion 20YT described later). Layer 41TJ (see FIG. 9). Among these, the first inner peripheral active material layer 41TH is adjacent to the facing portion 42TH facing the positive electrode active material layer 31 and one side DX1 of the facing portion 42TH, and is not on one side not facing the positive electrode active material layer 31. It includes a facing portion 43TH and a second non-facing portion 44TH that is adjacent to the other side DX2 of the facing portion 42TH and does not face the positive electrode active material layer 31.

なお、電極体10において、負極板40の他方側端面40Pのうち、負極外周部40Sに属する外周部端面40SPは、後述する第1熱収縮部26XS,第2熱収縮部26YSで覆われている。また、負極内周部40Tに属する内周部端面40TPは、後述する第1熱収縮部26XT,第2熱収縮部26YTで覆われている(図8,9参照)。これに対し、負極中間部40Uに属する中間部端面40UPは、電極体10の他方側DX2に露出している(図8参照)。   In the electrode body 10, the outer peripheral end surface 40SP belonging to the negative electrode outer peripheral portion 40S among the other end surface 40P of the negative electrode plate 40 is covered with a first heat contraction portion 26XS and a second heat contraction portion 26YS described later. . Further, the inner peripheral end face 40TP belonging to the negative electrode inner peripheral portion 40T is covered with a first heat shrinkable portion 26XT and a second heat shrinkable portion 26YT described later (see FIGS. 8 and 9). On the other hand, the intermediate portion end face 40UP belonging to the negative electrode intermediate portion 40U is exposed on the other side DX2 of the electrode body 10 (see FIG. 8).

一方、2枚のセパレータ20X,20Yは、多孔質の樹脂からなるセパレータ本体20Aと、このセパレータ本体20Aの片方の主面20AF上に形成された耐熱層20Bとを有する。このうち、セパレータ本体20Aは、ポリプロピレン(PP)製の2枚の多孔質状フィルムの間にポリエチレン(PE)製の1枚の多孔質状フィルムを重ね合わせた3層構造である。一方、耐熱層20Bは、アルミナからなる無機粒子(図示しない)と結着材(図示しない)とを含む。   On the other hand, the two separators 20X and 20Y have a separator body 20A made of porous resin and a heat-resistant layer 20B formed on one main surface 20AF of the separator body 20A. Among these, the separator main body 20A has a three-layer structure in which one porous film made of polyethylene (PE) is overlapped between two porous films made of polypropylene (PP). On the other hand, the heat-resistant layer 20B includes inorganic particles (not shown) made of alumina and a binder (not shown).

なお、2枚のセパレータ20X,20Yのうち、電極体10において負極板40の径方向外側DR1に位置する第1セパレータ20Xは、負極外周部40Sの径方向外側DR1に位置する第1セパレータ外周部20XSと、負極内周部40Tの径方向外側DR1に位置する第1セパレータ内周部20XTと、これら第1セパレータ外周部20XSと第1セパレータ内周部20XTとの間に位置する第1セパレータ中間部20XUとに分けられる。なお、この第1セパレータ20Xは、負極板40側、即ち径方向内側DR2に、セパレータ本体20Aが位置し、耐熱層20Bが一方側DX1に位置する形態に配置されている。
また、2枚のセパレータ20X,20Yのうち、電極体10において負極板40の径方向内側DR2に位置する第2セパレータ20Yは、負極外周部40Sの径方向内側DR2に位置する第2セパレータ外周部20YSと、負極内周部40Tの径方向内側DR2に位置する第2セパレータ内周部20YTと、これら第2セパレータ外周部20YSと第2セパレータ内周部20YTとの間に位置する第2セパレータ中間部20YUとに分けられる。なお、この第2セパレータ20Yは、負極板40側、即ち径方向外側DR1に、セパレータ本体20Aが位置し、耐熱層20Bが他方側DX2に位置する形態に配置されている。
Of the two separators 20X and 20Y, the first separator 20X located on the radial outer side DR1 of the negative electrode plate 40 in the electrode body 10 is the first separator outer peripheral part located on the radial outer side DR1 of the negative electrode outer peripheral part 40S. 20XS, the 1st separator inner peripheral part 20XT located in radial direction outer side DR1 of the negative electrode inner peripheral part 40T, and the 1st separator intermediate | middle located between these 1st separator outer peripheral part 20XS and 1st separator inner peripheral part 20XT It is divided into 20XU. The first separator 20X is arranged in such a manner that the separator body 20A is located on the negative electrode plate 40 side, that is, on the radially inner side DR2, and the heat-resistant layer 20B is located on the one side DX1.
Of the two separators 20X and 20Y, the second separator 20Y located on the radial inner side DR2 of the negative electrode plate 40 in the electrode body 10 is the second separator outer circumferential part located on the radial inner side DR2 of the negative electrode outer circumferential part 40S. 20YS, the second separator inner peripheral portion 20YT located on the radially inner side DR2 of the negative electrode inner peripheral portion 40T, and the second separator intermediate portion located between the second separator outer peripheral portion 20YS and the second separator inner peripheral portion 20YT. And 20YU. The second separator 20Y is arranged in such a manner that the separator body 20A is located on the negative electrode plate 40 side, that is, the radially outer side DR1, and the heat-resistant layer 20B is located on the other side DX2.

このうち、第1セパレータ20Xの第1セパレータ中間部20XUは、正極活物質層31とこの正極活物質層31に対向する負極活物質層41の対向部42との間に介在する介在部22XUと、この介在部22XUから軸線方向DXの一方側DX1に延出する一方側延出部23XUと、介在部22XUから他方側DX2に延出する他方側延出部24XUとからなる(図8参照)。なお、これら介在部22XU、一方側延出部23XU及び他方側延出部24XUは、前述した多孔質のセパレータ本体20A及び耐熱層20Bからなり、電解液50を十分に保持できる。
第2セパレータ20Yの第2セパレータ中間部20YUもまた、第1セパレータ中間部20XUと同様、正極活物質層31と負極活物質層41の対向部42との間に介在する介在部22YUと、この介在部22YUから一方側DX1に延出する一方側延出部23YUと、他方側DX2に延出する他方側延出部24YUとからなる(図8参照)。なお、これら介在部22YU、一方側延出部23YU及び他方側延出部24YUもまた、第1セパレータ中間部20XUと同様に、多孔質のセパレータ本体20A及び耐熱層20Bからなり、電解液50を十分に保持できる。
Among these, the first separator intermediate portion 20XU of the first separator 20X includes an intervening portion 22XU interposed between the positive electrode active material layer 31 and the facing portion 42 of the negative electrode active material layer 41 facing the positive electrode active material layer 31. The one-side extension 23XU extending from the interposition part 22XU to the one side DX1 in the axial direction DX and the other-side extension part 24XU extending from the interposition part 22XU to the other side DX2 (see FIG. 8). . In addition, these interposition part 22XU, the one side extension part 23XU, and the other side extension part 24XU consist of the porous separator main body 20A and the heat-resistant layer 20B mentioned above, and can fully hold the electrolyte solution 50.
Similarly to the first separator intermediate portion 20XU, the second separator intermediate portion 20YU of the second separator 20Y also includes an intervening portion 22YU interposed between the positive electrode active material layer 31 and the facing portion 42 of the negative electrode active material layer 41. It consists of one side extension part 23YU extending from the interposition part 22YU to one side DX1, and the other side extension part 24YU extending to the other side DX2 (see FIG. 8). The intervening portion 22YU, the one-side extending portion 23YU, and the other-side extending portion 24YU are also composed of a porous separator body 20A and a heat-resistant layer 20B in the same manner as the first separator intermediate portion 20XU. Can hold enough.

一方、第1セパレータ20Xの第1セパレータ外周部20XSは、セパレータ本体20A及び耐熱層20Bからなる第1本体部25XSと、この第1本体部25XSの軸線方向他方側DX2に位置し、耐熱層20B、及び、セパレータ本体20Aをなす樹脂が熱収縮した収縮セパレータ本体20Cからなる第1熱収縮部26XSとからなる(図8参照)。第1熱収縮部26XSをなす収縮セパレータ本体20Cは、第1本体部25XSのセパレータ本体20Aよりも空孔率が低くなっているため、例えば、前述した第1セパレータ中間部20XUの介在部22XUなど、セパレータ本体20Aを有する第1セパレータ20Xの部位よりも、第1熱収縮部26XSでは電解液50の保持性が低くなっている。   On the other hand, the first separator outer peripheral portion 20XS of the first separator 20X is located on the first main body portion 25XS composed of the separator main body 20A and the heat-resistant layer 20B and the other axial side DX2 of the first main body portion 25XS, and the heat-resistant layer 20B. And a first heat shrinking portion 26XS comprising a shrinking separator body 20C in which the resin constituting the separator body 20A is heat-shrinked (see FIG. 8). Since the shrinkage separator main body 20C forming the first heat shrinkable portion 26XS has a lower porosity than the separator main body 20A of the first main body portion 25XS, for example, the interposition portion 22XU of the first separator intermediate portion 20XU described above, etc. The retention of the electrolytic solution 50 is lower in the first heat contraction portion 26XS than in the portion of the first separator 20X having the separator body 20A.

また、第2セパレータ20Xの第2セパレータ外周部20YSは、セパレータ本体20A及び耐熱層20Bからなる第2本体部25YSと、この第2本体部25YSの軸線方向他方側DX2に位置し、耐熱層20B、及び、上述した収縮セパレータ本体20Cからなる第2熱収縮部26YSとからなる(図8参照)。このうち、第2本体部25YSは、正極最外周部30Sの正極活物質層31と、この正極活物質層31に対向する、負極外周部40Sの第1外周活物質層41SHの対向部42SHとの間に介在する介在部22YSを含む形態である。
第2熱収縮部26YSをなす収縮セパレータ本体20Cも、第2本体部25YSのセパレータ本体20Aよりも空孔率が低くなっているため、第2本体部25YSに含む介在部22YSよりも、第2熱収縮部26YSでは電解液50の保持性が低くなっている。
Further, the second separator outer peripheral portion 20YS of the second separator 20X is positioned on the second main body portion 25YS composed of the separator main body 20A and the heat resistant layer 20B and the other axial side DX2 of the second main body portion 25YS, and the heat resistant layer 20B. And the second heat shrink part 26YS comprising the shrink separator body 20C described above (see FIG. 8). Among these, the second main body portion 25YS includes a positive electrode active material layer 31 of the positive electrode outermost peripheral portion 30S and a facing portion 42SH of the first outer peripheral active material layer 41SH of the negative electrode outer peripheral portion 40S facing the positive electrode active material layer 31. It is a form including the interposition part 22YS intervening between.
The shrinkage separator body 20C forming the second heat shrinkage part 26YS also has a lower porosity than the separator body 20A of the second body part 25YS, so that the second separator part 20YS is second than the interposition part 22YS included in the second body part 25YS. In the heat shrink part 26YS, the retainability of the electrolyte solution 50 is low.

なお、図8に示すように、第1セパレータ外周部20XSの第1熱収縮部26XSと、第2セパレータ外周部20YSの第2熱収縮部26YSとは、負極外周部40Sの外周部端面40SPよりも他方側DX2で互いに接合している。具体的には、第1熱収縮部26XSをなす収縮セパレータ本体20Cと、第2熱収縮部26YSをなす収縮セパレータ本体20Cとは、熱収縮すると共に互いに溶着している。これにより、外周部端面40SPは、第1セパレータ外周部20XSの第1熱収縮部26XS、及び、第2セパレータ外周部20YSの第2熱収縮部26YSで覆われている。   As shown in FIG. 8, the first heat contraction portion 26XS of the first separator outer peripheral portion 20XS and the second heat contraction portion 26YS of the second separator outer peripheral portion 20YS are from the outer peripheral end surface 40SP of the negative electrode outer peripheral portion 40S. Are joined to each other on the other side DX2. Specifically, the shrink separator body 20C forming the first heat shrink portion 26XS and the shrink separator body 20C forming the second heat shrink portion 26YS are thermally contracted and welded to each other. Thereby, the outer peripheral end surface 40SP is covered with the first heat shrinking part 26XS of the first separator outer peripheral part 20XS and the second heat shrinking part 26YS of the second separator outer peripheral part 20YS.

なお、本実施形態の電池1では、負極外周部40Sの外周部端面40SPのみならず、負極外周部40Sのうち他方側DX2の端部も、第1熱収縮部26XS及び第2熱収縮部26YSで覆われている(図8参照)。
但し、第1熱収縮部26XS及び第2熱収縮部26YSの形態としては、負極外周部40Sの外周部端面40SPのみを覆う形態としても良い。また、外周部端面40SPのほか第1外周活物質層41SHの他方側非対向部44SH全体を第2熱収縮部26YSで覆う形態としても良い。
In the battery 1 of the present embodiment, not only the outer peripheral end surface 40SP of the negative electrode outer peripheral portion 40S but also the end portion on the other side DX2 of the negative electrode outer peripheral portion 40S is not limited to the first heat contraction portion 26XS and the second heat contraction portion 26YS. (See FIG. 8).
However, as a form of the 1st heat contraction part 26XS and the 2nd heat contraction part 26YS, it is good also as a form which covers only the outer peripheral part end surface 40SP of the negative electrode outer peripheral part 40S. Moreover, it is good also as a form which covers the whole other side non-facing part 44SH of 1st outer periphery active material layer 41SH other than outer peripheral part end surface 40SP with the 2nd heat contraction part 26YS.

また、第1セパレータ20Xの第1セパレータ内周部20XTは、セパレータ本体20A及び耐熱層20Bからなる第1本体部25XTと、この第1本体部25XTの軸線方向他方側DX2に位置し、耐熱層20B及び前述した収縮セパレータ本体20Cからなる第1熱収縮部26XTとからなる(図9参照)。このうち、第1本体部25XTは、正極最内周部30Tの正極活物質層31と、この正極活物質層31に対向する、負極内周部40Tの第1内周活物質層41THの対向部42THとの間に介在する介在部22XTを含む形態である。
第1熱収縮部26XTをなす収縮セパレータ本体20Cも、第1本体部25XTのセパレータ本体20Aよりも空孔率が低くなっているため、第1本体部25XTに含む介在部22XTよりも、第1熱収縮部26XTでは電解液50の保持性が低くなっている。
The first separator inner peripheral portion 20XT of the first separator 20X is located on the first main body portion 25XT composed of the separator main body 20A and the heat-resistant layer 20B, and the other axial side DX2 of the first main body portion 25XT, and the heat-resistant layer. 20B and the first thermal contraction portion 26XT composed of the shrink separator body 20C described above (see FIG. 9). Among these, the first main body portion 25XT is opposed to the positive electrode active material layer 31 of the positive innermost periphery portion 30T and the first inner peripheral active material layer 41TH of the negative electrode inner peripheral portion 40T facing the positive electrode active material layer 31. It is a form including the interposition part 22XT interposed between the part 42TH.
The shrinkable separator body 20C that forms the first heat shrink part 26XT also has a lower porosity than the separator body 20A of the first body part 25XT. Therefore, the shrinkage separator body 20C is more first than the interposed part 22XT included in the first body part 25XT. In the heat shrink part 26XT, the retainability of the electrolyte solution 50 is low.

また、第2セパレータ20Yの第2セパレータ内周部20YTは、セパレータ本体20A及び耐熱層20Bからなる第2本体部25YTと、この第2本体部25YTの軸線方向他方側DX2に位置し、耐熱層20B及び収縮セパレータ本体20Cからなる第2熱収縮部26YTとからなる(図9参照)。第2熱収縮部26YTをなす収縮セパレータ本体20Cも、第2本体部25YTのセパレータ本体20Aよりも空孔率が低くなっているため、例えば、前述した第2セパレータ中間部20YUの介在部22YUなど、セパレータ本体20Aを有する第2セパレータ20Yの部位よりも、第2熱収縮部26YTでは電解液50の保持性が低くなっている。   The second separator inner peripheral portion 20YT of the second separator 20Y is positioned on the second main body portion 25YT composed of the separator main body 20A and the heat-resistant layer 20B, and on the other axial side DX2 of the second main body portion 25YT. 20B and the 2nd heat contraction part 26YT which consists of shrinkable separator main body 20C (refer FIG. 9). Since the shrinkage separator body 20C forming the second heat shrink part 26YT also has a lower porosity than the separator body 20A of the second body part 25YT, for example, the interposition part 22YU of the second separator intermediate part 20YU described above, etc. In addition, the retention of the electrolytic solution 50 is lower in the second heat contraction portion 26YT than in the portion of the second separator 20Y having the separator body 20A.

なお、図9に示すように、第1セパレータ内周部20XTの第1熱収縮部26XTと、第2セパレータ内周部20YTの第2熱収縮部26YTとは、負極内周部40Tの内周部端面40TPよりも他方側DX2で互いに接合している。具体的には、第1熱収縮部26XTをなす収縮セパレータ本体20Cと、第2熱収縮部26YTをなす収縮セパレータ本体20Cとは、熱収縮すると共に互いに溶着している。これにより、内周部端面40TPは、第1セパレータ内周部20XTの第1熱収縮部26XT、及び、第2セパレータ内周部20YTの第2熱収縮部26YTで覆われている。   As shown in FIG. 9, the first heat contraction portion 26XT of the first separator inner peripheral portion 20XT and the second heat contraction portion 26YT of the second separator inner peripheral portion 20YT are the inner periphery of the negative electrode inner peripheral portion 40T. They are joined to each other on the other side DX2 with respect to the part end face 40TP. Specifically, the shrink separator body 20C forming the first heat shrink portion 26XT and the shrink separator body 20C forming the second heat shrink portion 26YT are thermally contracted and welded to each other. Thereby, the inner peripheral end face 40TP is covered with the first heat shrinking part 26XT of the first separator inner peripheral part 20XT and the second heat shrinking part 26YT of the second separator inner peripheral part 20YT.

なお、本実施形態の電池1では、負極内周部40Tの内周部端面40TPのみならず、負極内周部40Tのうち他方側DX2の端部も、第1熱収縮部26XT及び第2熱収縮部26YTで覆われている(図9参照)。
但し、第1熱収縮部26XT及び第2熱収縮部26YTの形態としては、負極内周部40Tの内周部端面40TPのみを覆う形態としても良い。また、内周部端面40TPのほか第1内周活物質層41THの他方側非対向部44TH全体を第1熱収縮部26XTで覆う形態としても良い。
In the battery 1 of the present embodiment, not only the inner peripheral end face 40TP of the negative electrode inner peripheral portion 40T but also the end portion on the other side DX2 of the negative electrode inner peripheral portion 40T is not limited to the first heat contraction portion 26XT and the second heat. It is covered with the contraction portion 26YT (see FIG. 9).
However, as a form of the 1st heat contraction part 26XT and the 2nd heat contraction part 26YT, it is good also as a form which covers only the inner peripheral part end surface 40TP of the negative electrode inner peripheral part 40T. Further, in addition to the inner peripheral end face 40TP, the entire other side non-facing portion 44TH of the first inner peripheral active material layer 41TH may be covered with the first thermal contraction portion 26XT.

ところで、本実施形態(実施例1とする)にかかる電池1(n=10)について、高温エージング下での微小短絡の発生の有無を確認するため、以下に示す試験を行った。
具体的には、製造後直ちに初期充電及び高温エージングを行った電池1を用いて、自己放電調査を行った。
まず、上述の初期充電として、25℃の温度環境下で、電池の端子間電圧が所定の充電終止電圧の値(=4.4V)になるまで0.2Cの定電流で充電を行った(定電流充電)。そして、上述の高温エージングとして、図示しない恒温槽内に電池1を投入し、80℃の温度環境下で2日間静置した。
高温エージング後の電池1について、電池1の端子間電圧を測定して、端子間電圧が4.1V以下のものをNGと判定した。n=10のうち、NGの数(NG数)を表1に記す。
By the way, the battery 1 (n = 10) according to the present embodiment (referred to as Example 1) was subjected to the following tests in order to confirm the presence or absence of the occurrence of a micro short circuit under high temperature aging.
Specifically, self-discharge investigation was performed using the battery 1 which was subjected to initial charging and high-temperature aging immediately after production.
First, as the above-described initial charging, charging was performed at a constant current of 0.2 C under a temperature environment of 25 ° C. until the voltage between the terminals of the battery reached a predetermined charging end voltage value (= 4.4 V) ( Constant current charging). And as above-mentioned high temperature aging, the battery 1 was thrown into the thermostat which is not shown in figure, and left still for 2 days in a 80 degreeC temperature environment.
About the battery 1 after high temperature aging, the voltage between the terminals of the battery 1 was measured, and the battery having an inter-terminal voltage of 4.1 V or less was determined to be NG. Table 1 shows the number of NG (number of NG) out of n = 10.

Figure 0005849927
Figure 0005849927

また、実施例2〜4及び比較例1の各電池をそれぞれ用意した。このうち、実施例2の電池は、負極板の他方側端面のうち、負極外周部の外周部端面のみをセパレータの熱収縮部で覆った点で、実施例3の電池は、負極板の他方側端面のうち、負極内周部の内周部端面のみをセパレータの熱収縮部で覆った点で、実施例1の電池1と異なる。また、実施例4の電池は、負極板全体の他方側端面をセパレータの熱収縮部で覆った点で、実施例1と異なる。
一方、比較例1の電池は、負極板の他方側端面をセパレータの熱収縮部で覆わなかった点で、実施例1と異なる。
これら実施例2〜4及び比較例1の各電池についても、上述した実施例1の電池1と同様にして、高温エージング下での短絡の発生の有無を調べた(n=10)。各電池の結果についても、表1に記す。
Moreover, each battery of Examples 2-4 and Comparative Example 1 was prepared. Of these, the battery of Example 2 is the same as the battery of Example 3 in that only the outer peripheral end surface of the negative electrode outer peripheral portion of the other end surface of the negative electrode plate is covered with the thermal contraction portion of the separator. It differs from the battery 1 of Example 1 in that, of the side end surfaces, only the inner peripheral end surface of the negative electrode inner peripheral portion is covered with the thermal contraction portion of the separator. Further, the battery of Example 4 differs from Example 1 in that the other end face of the entire negative electrode plate is covered with the heat shrinkage part of the separator.
On the other hand, the battery of Comparative Example 1 differs from Example 1 in that the other side end face of the negative electrode plate was not covered with the heat shrink portion of the separator.
For each of the batteries of Examples 2 to 4 and Comparative Example 1, whether or not a short circuit occurred under high temperature aging was examined in the same manner as the battery 1 of Example 1 described above (n = 10). The results for each battery are also shown in Table 1.

表1によれば、比較例1の電池ではNG数が6個であったのに対し、実施例1〜4の各電池におけるNG数は0〜3個であり、NGと判定された数が少ない。このことから、負極板の他方側端面がセパレータの熱収縮部に覆われない比較例1の電池では、充電の際、正極最外周部や正極最内周部で正極活物質粒子から金属イオンが溶出しやすく、高温エージング下で負極活物質層上にその金属イオンが析出して、正負極間の短絡を引き起こしていると考えられる。一方、負極板の他方側端面のうち、少なくとも外周部端面及び内周部端面のいずれかが、セパレータの熱収縮部で覆われた実施例1〜4の電池では、比較例1の電池よりも、正極最外周部及び正極最内周部の少なくともいずれかにおいて、金属イオンの溶出を防いで、短絡の発生を抑えることができることが判る。   According to Table 1, while the number of NG in the battery of Comparative Example 1 was 6, the number of NG in each battery of Examples 1 to 4 was 0 to 3, and the number determined as NG was Few. Therefore, in the battery of Comparative Example 1 in which the other end surface of the negative electrode plate is not covered with the heat shrinkage portion of the separator, metal ions are extracted from the positive electrode active material particles at the positive electrode outermost periphery and the positive electrode innermost periphery during charging. It is considered that the metal ions are easily eluted and the metal ions are deposited on the negative electrode active material layer under high temperature aging, thereby causing a short circuit between the positive and negative electrodes. On the other hand, in the batteries of Examples 1 to 4 in which at least one of the outer peripheral end face and the inner peripheral end face is covered with the thermal contraction part of the separator among the other side end faces of the negative electrode plate, the battery of Comparative Example 1 is used. It can be seen that, in at least one of the positive electrode outermost peripheral portion and the positive electrode innermost peripheral portion, elution of metal ions can be prevented and occurrence of a short circuit can be suppressed.

さらに、実施例2,3の各電池ではNG数が2個及び3個であったのに対し、実施例1,4の各電池ではNG数がいずれも0個であった。他方側端面のうち、外周部端面または内周部端面の一方のみをセパレータの熱収縮部で覆った電池(実施例2,3)では、外周部端面及び内周部端面のうち、熱収縮部で覆っていない端面において、充電時に負極活物質層同士の液絡が生じる。そして、この液絡によって、正極活物質層と対向していない側の負極活物質層にまでリチウムイオンが拡散移動して、正極活物質粒子からの金属イオンの溶出が生じてしまったと考えられる。
これに対し、外周部端面及び内周部端面のいずれをも熱収縮部で覆った電池(実施例1,4)では、外周部端面及び内周部端面において、負極活物質層同士の液絡に寄与する電解液の量を少なくして、正極活物質層と対向していない側の負極活物質層へのリチウムイオンの拡散移動を抑えることができ、短絡の発生を抑えることができたことが判る。
Furthermore, in each battery of Examples 2 and 3, the number of NGs was 2 and 3, whereas in each battery of Examples 1 and 4, the number of NGs was 0. In the battery (Examples 2 and 3) in which only one of the outer peripheral end face and the inner peripheral end face is covered with the thermal contraction part of the separator among the other end faces, the thermal contraction part among the outer peripheral end face and the inner peripheral end face. On the end surface not covered with, a liquid junction occurs between the negative electrode active material layers during charging. Then, it is considered that lithium ions diffused and moved to the negative electrode active material layer on the side not facing the positive electrode active material layer due to this liquid junction, and elution of metal ions from the positive electrode active material particles occurred.
On the other hand, in the batteries (Examples 1 and 4) in which both the outer peripheral end face and the inner peripheral end face are covered with the heat shrinkage part, the liquid junction between the negative electrode active material layers is formed on the outer peripheral end face and the inner peripheral end face. The amount of the electrolyte solution that contributes to the negative electrode active material layer can be reduced, lithium ion diffusion movement to the negative electrode active material layer on the side not facing the positive electrode active material layer can be suppressed, and the occurrence of short circuits has been suppressed. I understand.

なお、実施例1〜4の各電池では、セパレータの熱収縮部で負極板の他方側端面を覆うため、熱収縮部を設けない比較例1の電池に比べて、電極体の他方側DX2から負極活物質層に電解液50を含浸させ難くなる。特に、実施例1〜4の各電池のうち、負極板全体に熱収縮部が他方側端面を覆った形態である実施例4の電池の場合には、他方側端面を通じて負極活物質層に電解液50を含浸できない。このため、この実施例4の電池は、一部の他方側端面が熱収縮部に覆われずに、電極体の他方側DX2に露出している電池(実施例1〜3)に比べて、負極活物質層全体に電解液50を含浸させるのに長い時間を要する。また、負極活物質層において、軸線方向DXに電解液50の含浸状態にムラが生じ易いと考えられる。   In addition, in each battery of Examples 1-4, since the other side end surface of a negative electrode plate is covered with the heat contraction part of a separator, from the other side DX2 of the electrode body compared with the battery of the comparative example 1 which does not provide a heat contraction part. It becomes difficult to impregnate the negative electrode active material layer with the electrolytic solution 50. In particular, among the batteries of Examples 1 to 4, in the case of the battery of Example 4 in which the thermal contraction portion covers the other side end face of the entire negative electrode plate, the negative electrode active material layer is electrolyzed through the other side end face. The liquid 50 cannot be impregnated. For this reason, the battery of Example 4 is not covered with the heat shrinkage part of the other side end surface, and compared with the battery exposed to the other side DX2 of the electrode body (Examples 1 to 3), It takes a long time to impregnate the entire negative electrode active material layer with the electrolytic solution 50. In addition, in the negative electrode active material layer, it is considered that unevenness easily occurs in the impregnated state of the electrolytic solution 50 in the axial direction DX.

本実施形態にかかる実施例1〜4の各電池(電池1)では、負極板40の他方側端面40Pのうち、少なくとも外周部端面40SP及び内周部端面40TPのいずれかが、セパレータ20X,20Yの液保持性低下部である熱収縮部26XS,26XT,26YS,26YTで覆われている。熱収縮部26XS,26XT,26YS,26YTでは電解液50の保持性が低いので、これに覆われない従来の他方側端面に比して、熱収縮部26XS,26XT,26YS,26YTに覆われた外周部端面40SPあるいは内周部端面40TPにおいて、2つの負極活物質層同士(第1外周活物質層41SH及び第2外周活物質層41SJ同士や、第1内周活物質層41TH及び第2内周活物質層41TJ同士)の液絡に寄与する電解液50の量を少なくできる。これにより、液絡によって正極活物質層31と対向していない側の負極活物質層(第2外周活物質層41SJや第2内周活物質層41TJ)にまでリチウムイオンが拡散移動するのを抑えることができる。
かくして、少なくとも正極最外周部30S及び正極最内周部30Tのいずれかにおいて、正極活物質層31の正極活物質粒子から金属イオンが溶出するのを抑制することができ、高温下での負極活物質層41上への金属の析出による短絡の発生を抑制した電池1とすることができる。
In each battery (battery 1) of Examples 1 to 4 according to the present embodiment, at least one of the outer peripheral end surface 40SP and the inner peripheral end surface 40TP is the separators 20X and 20Y among the other end surface 40P of the negative electrode plate 40. Are covered with heat shrinkage portions 26XS, 26XT, 26YS, and 26YT. The heat-shrinkable portions 26XS, 26XT, 26YS, and 26YT are covered with the heat-shrinkable portions 26XS, 26XT, 26YS, and 26YT, as compared with the conventional other end face that is not covered with the electrolyte solution 50 because the electrolyte solution 50 has low retainability. In the outer peripheral end face 40SP or the inner peripheral end face 40TP, the two negative electrode active material layers (the first outer peripheral active material layer 41SH and the second outer peripheral active material layer 41SJ, the first inner peripheral active material layer 41TH, and the second inner active material layer 41TH) The amount of the electrolytic solution 50 that contributes to the liquid junction between the circumferential active material layers 41TJ) can be reduced. As a result, lithium ions diffuse and move to the negative electrode active material layer (second outer peripheral active material layer 41SJ and second inner peripheral active material layer 41TJ) on the side not facing the positive electrode active material layer 31 due to the liquid junction. Can be suppressed.
Thus, at least in any one of the positive electrode outermost peripheral portion 30S and the positive electrode innermost peripheral portion 30T, the elution of metal ions from the positive electrode active material particles of the positive electrode active material layer 31 can be suppressed, and the negative electrode active at a high temperature can be suppressed. It can be set as the battery 1 which suppressed generation | occurrence | production of the short circuit by deposition of the metal on the material layer 41. FIG.

また、本実施形態のうち実施例1,4の各電池(電池1)では、負極外周部40S及び負極内周部40Tにそれぞれ属する外周部端面40SP及び内周部端面40TPが、熱収縮部26XS,26XT,26YS,26YTで覆われている。このため、負極外周部40S及び負極内周部40Tのいずれにおいても液絡によって、2つの負極活物質層41のうちセパレータを介して正極活物質層31と対向していない側の負極活物質層(第2外周活物質層41SJ及び第2内周活物質層41TJ)にまで、リチウムイオンが拡散移動するのを確実に抑えることができる。従って、正極最外周部30S及び正極最内周部30Tにおいて、正極活物質層31の正極活物質粒子から金属イオンが溶出するのを確実に抑制することができる。   Moreover, in each battery (battery 1) of Examples 1 and 4 in the present embodiment, the outer peripheral end face 40SP and the inner peripheral end face 40TP belonging to the negative electrode outer peripheral portion 40S and the negative electrode inner peripheral portion 40T, respectively, are heat-shrinkable portions 26XS. , 26XT, 26YS, and 26YT. For this reason, the negative electrode active material layer on the side of the two negative electrode active material layers 41 that is not opposed to the positive electrode active material layer 31 via the separator in both the negative electrode outer peripheral portion 40S and the negative electrode inner peripheral portion 40T due to liquid junction. Lithium ions can be reliably prevented from diffusing and moving to (second outer peripheral active material layer 41SJ and second inner peripheral active material layer 41TJ). Therefore, the elution of metal ions from the positive electrode active material particles of the positive electrode active material layer 31 can be reliably suppressed in the positive electrode outermost peripheral portion 30S and the positive electrode innermost peripheral portion 30T.

また、実施例1の電池1では、他方側端面40Pのうち、外周部端面40SP及び内周部端面40TPが熱収縮部26XS,26XT,26YS,26YTで覆われているものの、負極中間部40Uに属する中間部端面40UPが電極体10の他方側DX2に露出している。このため、正極最外周部30S及び正極最内周部30Tで金属イオンの溶出を確実に抑制できる一方で、負極板40のうちの負極中間部40Uにおいて、他方側DX2からも電極体10に電解液50を含浸させることできる。従って、負極活物質層41における、軸線方向DXについての電解液50の含浸状態のムラを抑制することができる。   Further, in the battery 1 of Example 1, the outer peripheral end surface 40SP and the inner peripheral end surface 40TP of the other side end surface 40P are covered with the heat shrink portions 26XS, 26XT, 26YS, and 26YT, but the negative electrode intermediate portion 40U. The intermediate end face 40UP to which it belongs is exposed on the other side DX2 of the electrode body 10. For this reason, while elution of metal ions can be reliably suppressed at the positive electrode outermost peripheral portion 30S and the positive electrode innermost peripheral portion 30T, in the negative electrode intermediate portion 40U of the negative electrode plate 40, the electrode body 10 is also electrolyzed from the other side DX2. Liquid 50 can be impregnated. Therefore, unevenness of the impregnation state of the electrolytic solution 50 in the axial direction DX in the negative electrode active material layer 41 can be suppressed.

また、本実施形態にかかる実施例1〜4の各電池(電池1)では、セパレータ20X,20Yが上述のセパレータ本体20Aと耐熱層20Bとを有するため、電池1内の温度が上昇してセパレータ本体20Aが溶融しても、耐熱層20Bにより正極板30と負極板40との接触を防ぐことができる。
また、セパレータ20X,20Yは、電極体10において、セパレータ本体20Aが負極活物質層41側となる形態に配置されてなるため、加熱によりセパレータ本体20Aを熱収縮させると、セパレータ20X,20Y全体がセパレータ本体20A側に曲がるので、負極板40の他方側端面40Pを覆う熱収縮部26XS,26XT,26YS,26YTを容易かつ確実に形成できる。かくして、介在部22(22XU,22XT,22YS,22YU)よりもセパレータ本体20Aの空孔率を低下させた収縮セパレータ本体20Cを有する熱収縮部26XS,26XT,26YS,26YTで負極板40の他方側端面40Pを確実に覆った電池1とすることができる。
Moreover, in each battery (battery 1) of Examples 1 to 4 according to this embodiment, since the separators 20X and 20Y have the separator body 20A and the heat-resistant layer 20B, the temperature in the battery 1 rises and the separator Even if the main body 20A is melted, the contact between the positive electrode plate 30 and the negative electrode plate 40 can be prevented by the heat-resistant layer 20B.
The separators 20X and 20Y are arranged in the electrode body 10 so that the separator body 20A is on the negative electrode active material layer 41 side. Therefore, when the separator body 20A is thermally contracted by heating, the separators 20X and 20Y are entirely Since it bends to the separator body 20A side, the heat-shrinkable portions 26XS, 26XT, 26YS, and 26YT that cover the other end surface 40P of the negative electrode plate 40 can be easily and reliably formed. Thus, the other side of the negative electrode plate 40 at the heat-shrinkable portion 26XS, 26XT, 26YS, 26YT having the shrinkable separator body 20C in which the porosity of the separator body 20A is lower than the interposition portion 22 (22XU, 22XT, 22YS, 22YU). It can be set as the battery 1 which covered the end surface 40P reliably.

次いで、本実施形態(実施例1)の電池1の製造方法について説明する。
まず、電極体10をなす正極板30及び負極板40を公知の手法でそれぞれ作製した(図5,6参照)。
一方、電極体10をなす前述した第1セパレータ20X及び第2セパレータ20Yにおける熱収縮部26XS,26XT,26YS,26YTを形成する前の第1形成前セパレータ20XB及び第2形成前セパレータ20YBをそれぞれ作製する。具体的には、多孔質の樹脂からなる帯状シートのセパレータ本体20Aの片方の主面20AF上に、既知の塗工装置を用いて、アルミナからなる無機粒子と結着材とを溶媒中に混合したペースト(図示しない)を塗布し、セパレータ本体20A上で乾燥させて、前述の耐熱層20Bとした。かくして、帯状の第1形成前セパレータ20XB及び第2形成前セパレータ20YBを作製した(図10参照)。
Next, a method for manufacturing the battery 1 of this embodiment (Example 1) will be described.
First, the positive electrode plate 30 and the negative electrode plate 40 constituting the electrode body 10 were respectively produced by known methods (see FIGS. 5 and 6).
On the other hand, the first pre-formation separator 20XB and the second pre-formation separator 20YB before forming the heat shrink portions 26XS, 26XT, 26YS, and 26YT in the first separator 20X and the second separator 20Y that form the electrode body 10 are respectively produced. To do. Specifically, inorganic particles made of alumina and a binder are mixed in a solvent using a known coating device on one main surface 20AF of the separator main body 20A of a strip-like sheet made of porous resin. The paste (not shown) was applied and dried on the separator body 20A to obtain the heat-resistant layer 20B. Thus, strip-shaped first pre-formation separator 20XB and second pre-formation separator 20YB were produced (see FIG. 10).

次いで、電極体作製工程について説明する。正極板30及び負極板40を、上述のように作製した、2枚の形成前セパレータ20XB,20YBと共に円筒状に捲回した。このとき、第2形成前セパレータ20YB、負極板40、第1形成前セパレータ20XB及び正極板30の順に重ねて捲回した。このため、正極板30の内側には第1形成前セパレータ20XB、第1形成前セパレータ20XBの内側には負極板40、負極板40の内側には第2形成前セパレータ20YBが配置される(図11参照)。一方、正極板30の外側には第2形成前セパレータ20YB、第2形成前セパレータ20YBの外側には負極板40、負極板40の外側には第1形成前セパレータ20XBが配置される。
また、正極リード部39が軸線AXに平行な軸線方向DXの一方側DX1(図11中、下方)に位置するように、また、負極リード部49が軸線方向DXの他方側DX2(図11中、上方)に位置するように、正極板30及び負極板40をそれぞれ配置した。さらに、第1形成前セパレータ20XBのセパレータ本体20A、及び、第2形成前セパレータ20YBのセパレータ本体20Aが、負極板40の負極活物質層41側となる形態に配置した。
捲回後、円筒面を両側から押し潰して、横断面が扁平な長円形状で扁平捲回型の電極体10を作製した。
Next, the electrode body manufacturing process will be described. The positive electrode plate 30 and the negative electrode plate 40 were wound in a cylindrical shape together with the two pre-formation separators 20XB and 20YB prepared as described above. At this time, the second pre-formation separator 20YB, the negative electrode plate 40, the first pre-formation separator 20XB, and the positive electrode plate 30 were stacked in order and wound. Therefore, the first pre-formation separator 20XB is arranged inside the positive electrode plate 30, the negative electrode plate 40 is arranged inside the first pre-formation separator 20XB, and the second pre-formation separator 20YB is arranged inside the negative electrode plate 40 (FIG. 11). On the other hand, the second pre-formation separator 20YB is disposed outside the positive electrode plate 30, the negative electrode plate 40 is disposed outside the second pre-formation separator 20YB, and the first pre-formation separator 20XB is disposed outside the negative electrode plate 40.
Further, the positive electrode lead portion 39 is positioned on one side DX1 (downward in FIG. 11) in the axial direction DX parallel to the axis line AX, and the negative electrode lead portion 49 is positioned on the other side DX2 in the axial direction DX (in FIG. 11). The positive electrode plate 30 and the negative electrode plate 40 are arranged so as to be located on the upper side. Furthermore, the separator main body 20A of the first pre-formation separator 20XB and the separator main body 20A of the second pre-formation separator 20YB are arranged in a form that is on the negative electrode active material layer 41 side of the negative electrode plate 40.
After winding, the cylindrical surface was crushed from both sides, and a flat wound electrode body 10 having an oblong shape with a flat cross section was produced.

次いで、電極体10をなして捲回された形成前セパレータ20XB,20YBに、熱収縮部26XS,26XT,26YS,26YTを形成する低下部形成工程について説明する。
この低下部形成工程では、平板状の2枚の金属板MB,MBを用いる(図12参照)。これら2枚の金属板MB,MBは、いずれも加熱されて高温状態(200℃程度)となっている。このため、これら金属板MB,MBが電極体10の形成前セパレータ20XB,20YBに接触すると、この接触部位及びこの付近の部位のセパレータ本体20Aが熱収縮する。
Next, a description will be given of a lowered portion forming step for forming the heat shrinkage portions 26XS, 26XT, 26YS, and 26YT on the pre-formation separators 20XB and 20YB wound around the electrode body 10.
In this lowered portion forming step, two flat metal plates MB, MB are used (see FIG. 12). These two metal plates MB, MB are both heated and in a high temperature state (about 200 ° C.). For this reason, when these metal plates MB and MB come into contact with the separators 20XB and 20YB before the electrode body 10 is formed, the separator main body 20A at the contact portion and the vicinity thereof is thermally contracted.

低下部形成工程では、上述した金属板MBを用いて、形成前セパレータ20XB,20YBのうち、負極板40の他方側端面40Pよりも、軸線方向DXの他方側DX2に突出する突出部26XB,26YBを加熱する。
なお、本実施例1では、2枚の金属板MB,MBの一方を、第1形成前セパレータ20XBのうち、前述した負極外周部40Sの径方向外側DR1に位置する部位の突出部26XBに、径方向外側DR1から当接させて、突出部26XBを加熱する(図12,13参照)。これにより、この突出部26XB及び付近の部位のセパレータ本体20Aが熱収縮する。なお、第1形成前セパレータ20XBをなすセパレータ本体20Aと耐熱層20Bのうち、セパレータ本体20Aの方が大きく熱収縮するため、突出部26XB及び付近の部位は、セパレータ本体20A側、つまり負極外周部40S側に曲がる。
これと同時に、もう一方の金属板MBを、第2形成前セパレータ20YBのうち、負極外周部40Sの径方向内側DR2に位置する部位の突出部26YBに、径方向内側DR2から当接させて、この突出部26YBを加熱する(図12,13参照)。これにより、この突出部26YB及び付近の部位のセパレータ本体20Aが熱収縮する。なお、第2形成前セパレータ20XBでもセパレータ本体20Aが大きく熱収縮するため、突出部26YB及びその付近の部位も、負極外周部40S側に曲がる。
In the lowered portion forming step, the protruding portions 26XB and 26YB protruding from the other side end face 40P of the negative electrode plate 40 to the other side DX2 of the negative electrode plate 40 among the pre-formation separators 20XB and 20YB using the metal plate MB described above. Heat.
In the first embodiment, one of the two metal plates MB, MB is placed on the protruding portion 26XB of the portion of the first pre-formation separator 20XB located on the radially outer side DR1 of the negative electrode outer peripheral portion 40S described above. The protrusion 26XB is heated from the radially outer side DR1 (see FIGS. 12 and 13). As a result, the protrusion 26XB and the separator body 20A in the vicinity are thermally contracted. Of the separator main body 20A and the heat-resistant layer 20B forming the first pre-formation separator 20XB, the separator main body 20A is more thermally contracted, and therefore the protrusion 26XB and the vicinity thereof are on the separator main body 20A side, that is, the negative electrode outer peripheral portion. Turn to the 40S side.
At the same time, the other metal plate MB is brought into contact with the protruding portion 26YB located at the radially inner side DR2 of the negative electrode outer peripheral portion 40S in the second pre-formation separator 20YB from the radially inner side DR2, The protrusion 26YB is heated (see FIGS. 12 and 13). As a result, the protrusion 26YB and the separator body 20A in the vicinity are thermally contracted. In the second pre-formation separator 20XB, the separator body 20A is largely thermally contracted, so that the protruding portion 26YB and the vicinity thereof are also bent toward the negative electrode outer peripheral portion 40S.

さらに、2枚の金属板MB,MBを径方向DRに互いに近づけて、第1形成前セパレータ20XBの突出部26XBと、第2形成前セパレータ20YBの突出部26YBとを挟む(図13参照)。これにより、第1形成前セパレータ20XBの突出部26XBのセパレータ本体20Aと、第2形成前セパレータ20YBの突出部26YBのセパレータ本体20Aとが、熱収縮すると共に溶着する。かくして、第1形成前セパレータ20XBには前述した第1熱収縮部26XSが、また、第2形成前セパレータ20YBには前述した第2熱収縮部26YSが形成される(図8参照)。
また、前述した負極内周部40Tにおける形成前セパレータ20XB,20YBについても、同様にして、第1形成前セパレータ20XBに前述した第1熱収縮部26XTを、また、第2形成前セパレータ20YBに前述した第2熱収縮部26YTをそれぞれ形成する。
Further, the two metal plates MB, MB are brought close to each other in the radial direction DR, and the protrusion 26XB of the first pre-formation separator 20XB and the protrusion 26YB of the second pre-formation separator 20YB are sandwiched (see FIG. 13). Thereby, the separator main body 20A of the protrusion 26XB of the first pre-formation separator 20XB and the separator main body 20A of the protrusion 26YB of the second pre-formation separator 20YB are thermally contracted and welded. Thus, the first heat shrinkage part 26XS described above is formed in the first pre-formation separator 20XB, and the second heat shrinkage part 26YS described above is formed in the second pre-formation separator 20YB (see FIG. 8).
Similarly, for the pre-formation separators 20XB and 20YB in the negative electrode inner peripheral portion 40T described above, the first heat-shrink part 26XT described above is applied to the first pre-formation separator 20XB and the second pre-formation separator 20YB is described above. The second heat contraction part 26YT thus formed is formed.

その後、電極体10をなす正極板30の正極リード部39に正極集電部材91を、負極板40の負極リード部49に負極集電部材92をそれぞれ溶接する。そして、電極体10を電池ケース本体81に収容し、電解液50を注液した後、電池ケース本体81を封口蓋82で封口して、電池1を完成させた(図4参照)。   Thereafter, the positive electrode current collecting member 91 is welded to the positive electrode lead portion 39 of the positive electrode plate 30 constituting the electrode body 10, and the negative electrode current collecting member 92 is welded to the negative electrode lead portion 49 of the negative electrode plate 40. And after accommodating the electrode body 10 in the battery case main body 81 and injecting the electrolyte solution 50, the battery case main body 81 was sealed with the sealing lid 82, and the battery 1 was completed (refer FIG. 4).

本実施形態にかかる電池1の製造方法は、前述の電極体作製工程と低下部形成工程とを備える。このため、負極板40の他方側端面40Pのうち、少なくとも外周部端面40SP及び内周部端面40TPのいずれかがセパレータ20X,20Yの熱収縮部26XS,26XT,26YS,26YTで覆われた電池1を製造することができる。従って、少なくとも正極最外周部30S及び正極最内周部30Tのいずれかにおいて、正極活物質層31の正極活物質粒子から金属イオンが溶出するのを抑制することができ、高温下での負極活物質層41上への金属の析出による短絡の発生を抑制した電池1を製造することができる。   The manufacturing method of the battery 1 according to the present embodiment includes the above-described electrode body manufacturing step and the lowered portion forming step. Therefore, the battery 1 in which at least one of the outer peripheral end surface 40SP and the inner peripheral end surface 40TP among the other end surface 40P of the negative electrode plate 40 is covered with the heat shrink portions 26XS, 26XT, 26YS, and 26YT of the separators 20X and 20Y. Can be manufactured. Accordingly, it is possible to suppress the elution of metal ions from the positive electrode active material particles of the positive electrode active material layer 31 at least in any one of the positive electrode outermost peripheral portion 30S and the positive electrode innermost peripheral portion 30T. The battery 1 in which the occurrence of a short circuit due to metal deposition on the material layer 41 is suppressed can be manufactured.

また、低下部形成工程では、電極体10をなして捲回された形成前セパレータ20XB,20YBのうち、他方側端面40Pよりも、他方側DX2に突出する突出部26XB,26YBを加熱して、セパレータ本体20Aを熱収縮させて熱収縮部26XS,26XT,26YS,26YTを形成する。なお、セパレータ本体20Aと耐熱層20Bとを有する形成前セパレータ20XB,20YBを加熱すると、セパレータ本体20Aが大きく熱収縮するため、セパレータ本体20A側に曲がり、他方側端面40Pを覆う形態の熱収縮部26XS,26XT,26YS,26YTを容易に形成することができる。   Further, in the lowered portion forming step, among the pre-formation separators 20XB and 20YB wound around the electrode body 10, the protruding portions 26XB and 26YB protruding from the other side end face 40P to the other side DX2 are heated. The separator main body 20A is thermally contracted to form the thermal contraction portions 26XS, 26XT, 26YS, and 26YT. When the pre-formation separators 20XB and 20YB having the separator main body 20A and the heat-resistant layer 20B are heated, the separator main body 20A is largely heat-shrinked. 26XS, 26XT, 26YS, and 26YT can be easily formed.

以上において、本発明を実施形態(実施例1〜4)に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、前述の実施形態では、セパレータの液保持性低下部として、多孔性樹脂からなるセパレータの該当部位を加熱により熱収縮させて介在部よりも空孔率を低下させたものを例示した。しかし、セパレータの液保持性低下部として、そのほかに、該当部位に樹脂等を塗布して介在部よりも空孔率を低下させたものや、該当部位に電解液に濡れずにこれをはじく特性を付与したものを用いることもできる。
さらに、実施形態では、多孔質の樹脂からなるセパレータ本体と耐熱層とを有するセパレータを備える電池を示したが、セパレータ本体のみからなるセパレータを備える電池でも良い。
In the above, the present invention has been described with reference to the embodiments (Examples 1 to 4). However, the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say, you can.
For example, in the above-described embodiment, the liquid retention lowering portion of the separator is exemplified by a portion where the corresponding portion of the separator made of porous resin is thermally contracted by heating to lower the porosity than the interposition portion. However, as the liquid retention lowering part of the separator, in addition to this, the resin is applied to the corresponding part to lower the porosity than the intervening part, and the characteristic part repels without getting wet with the electrolyte solution Those provided with can also be used.
Furthermore, although the battery provided with the separator which has the separator main body which consists of porous resin, and a heat-resistant layer was shown in embodiment, the battery provided with the separator which consists only of a separator main body may be sufficient.

また、実施形態では、低下部形成工程として、2枚の金属板MB,MBを用いて、形成前セパレータ20XB,20YBの突出部26XB,26YBを加熱し、熱収縮させて熱収縮部26XS,26XT,26YS,26YTを形成する工程を例示した。しかし、低下部形成工程として、例えば、ヒータ等の加熱装置を、電極体の他方側DX2から正極リード部(正極箔)の端部に接触させて、この端部から正極リード部を加熱する。そして、他方側DX2から徐々に加熱された正極リード部によって、正極リード部同士間に位置するセパレータの突出部を間接的に加熱し、熱収縮させて液保持性低下部を形成する手法も挙げられる。また、ヒータ等の加熱装置で、正極リード部を挟んで正極リード部を加熱して突出部を間接的に加熱し、熱収縮させて液保持性低下部を形成する手法も挙げられる。さらに、負極外周部の外周部端面を覆う液保持性低下部を形成する場合には、電極体の径方向外側から加熱装置をセパレータの突出部に当接させて、この突出部を加熱し熱収縮させて液保持性低下部を形成する手法が挙げられる。   Further, in the embodiment, as the lowered portion forming step, the protrusions 26XB and 26YB of the pre-formation separators 20XB and 20YB are heated and thermally contracted by using the two metal plates MB and MB, and the heat contracted portions 26XS and 26XT are formed. , 26YS, 26YT are exemplified. However, as the lowered portion forming step, for example, a heating device such as a heater is brought into contact with the end portion of the positive electrode lead portion (positive electrode foil) from the other side DX2 of the electrode body, and the positive electrode lead portion is heated from this end portion. And the method of forming the liquid-retention reduced portion by indirectly heating the protrusions of the separator located between the positive electrode lead portions by the positive electrode lead portion gradually heated from the other side DX2 and causing thermal contraction. It is done. In addition, a method of heating the positive electrode lead portion with the positive electrode lead portion sandwiched therebetween by a heating device such as a heater to indirectly heat the projecting portion and causing thermal contraction to form a liquid retention lowering portion is also mentioned. Further, in the case of forming a liquid retention reduced portion that covers the outer peripheral end face of the negative electrode outer peripheral portion, a heating device is brought into contact with the protruding portion of the separator from the radially outer side of the electrode body, and the protruding portion is heated and heated. A method of forming the liquid retention lowering portion by contraction is exemplified.

1 電池(リチウムイオン二次電池)
10 電極体
20A セパレータ本体
20AF 本体主面((セパレータ本体の)主面)
20B 耐熱層
20X 第1セパレータ(セパレータ)
20XB 第1形成前セパレータ(液保持性低下部を有さないセパレータ)
20Y 第2セパレータ(セパレータ)
20YB 第2形成前セパレータ(液保持性低下部を有さないセパレータ)
22XT,22XU,22YS,22YU 介在部
26XB,26YB 突出部
26XS,26XT 第1熱収縮部(液保持性低下部)
26YS,26YT 第2熱収縮部(液保持性低下部)
30 正極板
30S 正極最外周部
30T 正極最内周部
31 正極活物質層
38 正極箔
38F (正極箔の)主面
40 負極板
40P 他方側端面
40S 負極外周部
40SP 外周部端面
40T 負極内周部
40TP 内周部端面
40U 負極中間部
40UP 中間部端面
41 負極活物質層
42,42SH,42TH 対向部
44,44SH,44TH 他方側非対向部
48 負極箔
48F (負極箔の)主面
50 電解液
AX 捲回軸
DR 径方向
DR1 (径方向の)外側
DR2 (径方向の)内側
DX 軸線方向
DX1 (軸線方向の)一方側
DX2 (軸線方向の)他方側
1 Battery (Lithium ion secondary battery)
10 Electrode body 20A Separator body 20AF Main body main surface (main surface of separator body)
20B Heat-resistant layer 20X First separator (separator)
20XB first pre-formation separator (separator not having a liquid retention reduction part)
20Y Second separator (separator)
20YB Second pre-formation separator (separator not having a liquid retention lowering portion)
22XT, 22XU, 22YS, 22YU Interposition part 26XB, 26YB Protrusion part 26XS, 26XT First heat contraction part (liquid retention lowering part)
26YS, 26YT second heat shrinkage part (liquid retention lowering part)
30 positive electrode plate 30S positive electrode outermost peripheral part 30T positive electrode innermost peripheral part 31 positive electrode active material layer 38 positive electrode foil 38F main surface 40 (negative electrode foil) main surface 40 negative electrode plate 40P other side end face 40S negative electrode outer peripheral part 40SP outer peripheral part end face 40T negative electrode inner peripheral part 40TP inner peripheral end face 40U negative electrode intermediate part 40UP intermediate end face 41 negative electrode active material layer 42, 42SH, 42TH facing part 44, 44SH, 44TH other side non-facing part 48 negative foil 48F (negative electrode foil) main surface 50 electrolyte AX Winding axis DR radial direction DR1 (radial) outer DR2 (radial) inner DX axial direction DX1 (axial) one side DX2 (axial) other side

Claims (4)

帯状の正極板と帯状の負極板とを帯状のセパレータを介して捲回してなる電極体、及び、上記セパレータに含浸された電解液を備え、
上記負極板は、
捲回された上記正極板のうち最外周に位置する正極最外周部に、上記セパレータを介して径方向外側から対向する負極外周部、及び、上記正極板のうち最内周に位置する正極最内周部に、上記セパレータを介して上記径方向内側から対向する負極内周部、を有する
リチウムイオン二次電池であって、
上記正極板は、
帯状の正極箔及びこの正極箔の両主面上で、捲回軸に沿う軸線方向の一方側に位置する正極活物質層を有し、
上記負極板は、
帯状の負極箔及びこの負極箔の両主面上で上記軸線方向の他方側に位置する負極活物質層を有し、
前記負極外周部と前記負極内周部との間に位置する負極中間部を有し、
上記負極箔及び2つの上記負極活物質層は、上記他方側の端縁で共通の他方側端面をなし、
上記負極活物質層は、
上記セパレータを介して上記正極活物質層に対向する対向部と、この対向部の上記他方側に隣在し上記正極活物質層に対向しない他方側非対向部とを含み、
上記セパレータは、
上記正極活物質層とこれに対向する上記負極活物質層の上記対向部との間に介在する介在部及び上記介在部よりも上記電解液の保持性を低下させた液保持性低下部を有し、
上記負極板の上記他方側端面のうち、上記負極外周部に属する外周部端面及び上記負極内周部に属する内周部端面は
上記セパレータの上記液保持性低下部で覆われてなり、
上記他方側端面のうち、上記負極中間部に属する中間部端面は、
前記電極体の前記他方側に露出してなる
リチウムイオン二次電池。
An electrode body formed by winding a belt-like positive electrode plate and a belt-like negative electrode plate through a belt-like separator, and an electrolyte impregnated in the separator,
The negative electrode plate is
Of the wound positive electrode plate, the positive electrode outermost peripheral portion positioned on the outermost periphery of the positive electrode, the negative electrode outer peripheral portion facing from the radially outer side through the separator, and the positive electrode outermost portion positioned on the innermost periphery of the positive electrode plate A lithium ion secondary battery having a negative electrode inner peripheral portion facing from the radially inner side through the separator on an inner peripheral portion,
The positive plate is
On both main surfaces of the strip-like positive electrode foil and the positive electrode foil, a positive electrode active material layer located on one side in the axial direction along the winding axis,
The negative electrode plate is
It has a negative electrode active material layer located on the other side in the axial direction on both main surfaces of the strip-shaped negative electrode foil and the negative electrode foil,
A negative electrode intermediate portion located between the negative electrode outer peripheral portion and the negative electrode inner peripheral portion;
The negative electrode foil and the two negative electrode active material layers form a common other side end face at the other side edge,
The negative electrode active material layer is
Including a facing portion that faces the positive electrode active material layer via the separator, and a non-facing portion on the other side that is adjacent to the other side of the facing portion and does not face the positive electrode active material layer,
The separator is
An interposition part interposed between the positive electrode active material layer and the facing part of the negative electrode active material layer opposite to the positive electrode active material layer, and a liquid retainability lowering part that lowers the electrolyte retention than the interposition part. And
Among the other end surface of the negative electrode plate, the inner peripheral end surface belonging to the outer peripheral end surface and the negative in-electrode peripheral portion belonging to the negative electrode outer peripheral portion,
Ri Na covered with the liquid-retaining property deterioration of the separator,
Of the other side end surfaces, the intermediate end surface belonging to the negative electrode intermediate portion is:
A lithium ion secondary battery exposed on the other side of the electrode body .
請求項1に記載のリチウムイオン二次電池であって、
前記セパレータは、
多孔質の樹脂からなるセパレータ本体と、
上記セパレータ本体の片方の主面上に形成され、無機粒子を含む耐熱層と、を有し、
前記電極体において、上記セパレータ本体が前記負極活物質層側となる形態に配置されてなり、
前記液保持性低下部は、
記セパレータ本体熱収縮した部位である
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 1 ,
The separator is
A separator body made of porous resin;
Formed on one main surface of the separator body, and having a heat-resistant layer containing inorganic particles,
In the electrode body, the separator body is disposed in a form that is on the negative electrode active material layer side,
The liquid retention lowering part is
<br/> lithium ion secondary battery above Symbol separator body is a portion which is heat-shrinkable.
帯状の正極板と帯状の負極板とを帯状のセパレータを介して捲回してなる電極体、及び、上記セパレータに含浸された電解液を備え、
上記負極板は、
捲回された上記正極板のうち最外周に位置する正極最外周部に、上記セパレータを介して径方向外側から対向する負極外周部、及び、上記正極板のうち最内周に位置する正極最内周部に、上記セパレータを介して上記径方向内側から対向する負極内周部、を有し、
上記正極板は、
帯状の正極箔及びこの正極箔の両主面上で、捲回軸に沿う軸線方向の一方側に位置する正極活物質層を有し、
上記負極板は、
帯状の負極箔及びこの負極箔の両主面上で上記軸線方向の他方側に位置する負極活物質層を有し、
前記負極外周部と前記負極内周部との間に位置する負極中間部を有し、
上記負極箔及び2つの上記負極活物質層は、上記他方側の端縁で共通の他方側端面をなし、
上記負極活物質層は、
上記セパレータを介して上記正極活物質層に対向する対向部と、この対向部の上記他方側に隣在し上記正極活物質層に対向しない他方側非対向部とを含み、
上記セパレータは、
上記正極活物質層とこれに対向する上記負極活物質層の上記対向部との間に介在する介在部及び上記介在部よりも上記電解液の保持性を低下させた液保持性低下部を有し、
上記負極板の上記他方側端面のうち、上記負極外周部に属する外周部端面及び上記負極内周部に属する内周部端面は
上記セパレータの上記液保持性低下部で覆われてなり、
上記他方側端面のうち、上記負極中間部に属する中間部端面は、
前記電極体の前記他方側に露出してなる
リチウムイオン二次電池の製造方法であって、
帯状の上記正極板と帯状の上記負極板とを帯状で上記液保持性低下部を有さないセパレータを介して捲回して、電極体を作製する電極体作製工程と、
上記電極体をなして捲回された上記セパレータに、上記液保持性低下部を形成する低下部形成工程と、を備える
リチウムイオン二次電池の製造方法。
An electrode body formed by winding a belt-like positive electrode plate and a belt-like negative electrode plate through a belt-like separator, and an electrolyte impregnated in the separator,
The negative electrode plate is
Of the wound positive electrode plate, the positive electrode outermost peripheral portion positioned on the outermost periphery of the positive electrode, the negative electrode outer peripheral portion facing from the radially outer side through the separator, and the positive electrode outermost portion positioned on the innermost periphery of the positive electrode plate An inner peripheral portion having a negative electrode inner peripheral portion facing from the radially inner side via the separator,
The positive plate is
On both main surfaces of the strip-like positive electrode foil and the positive electrode foil, a positive electrode active material layer located on one side in the axial direction along the winding axis,
The negative electrode plate is
It has a negative electrode active material layer located on the other side in the axial direction on both main surfaces of the strip-shaped negative electrode foil and the negative electrode foil,
A negative electrode intermediate portion located between the negative electrode outer peripheral portion and the negative electrode inner peripheral portion;
The negative electrode foil and the two negative electrode active material layers form a common other side end face at the other side edge,
The negative electrode active material layer is
Including a facing portion that faces the positive electrode active material layer via the separator, and a non-facing portion on the other side that is adjacent to the other side of the facing portion and does not face the positive electrode active material layer,
The separator is
An interposition part interposed between the positive electrode active material layer and the facing part of the negative electrode active material layer opposite to the positive electrode active material layer, and a liquid retainability lowering part that lowers the electrolyte retention than the interposition part. And
Among the other end surface of the negative electrode plate, the inner peripheral end surface belonging to the outer peripheral end surface and the negative in-electrode peripheral portion belonging to the negative electrode outer peripheral portion,
Ri Na covered with the liquid-retaining property deterioration of the separator,
Of the other side end surfaces, the intermediate end surface belonging to the negative electrode intermediate portion is:
A method of manufacturing a lithium ion secondary battery, which is exposed on the other side of the electrode body ,
An electrode body production step of producing an electrode body by winding the belt-like positive electrode plate and the belt-like negative electrode plate through a belt-like separator having no liquid retention lowering portion;
The manufacturing method of a lithium ion secondary battery provided with the reduced part formation process which forms the said liquid retention reduced part in the said separator wound by making the said electrode body.
請求項に記載のリチウムイオン二次電池の製造方法であって、
前記セパレータは、
多孔質の樹脂からなるセパレータ本体と、
上記セパレータ本体の片方の主面上に形成され、無機粒子を含む耐熱層と、を有し、
前記電極体において、上記セパレータ本体が前記負極活物質層側となる形態に配置されてなり、
前記液保持性低下部は、加熱により上記セパレータ本体を熱収縮させてなり、
前記低下部形成工程は、
前記電極体をなして捲回された前記液保持性低下部を有さないセパレータのうち、前記他方側端面よりも、他方側に突出する突出部を加熱し、上記セパレータ本体を熱収縮させて上記液保持性低下部を形成する
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery according to claim 3 ,
The separator is
A separator body made of porous resin;
Formed on one main surface of the separator body, and having a heat-resistant layer containing inorganic particles,
In the electrode body, the separator body is disposed in a form that is on the negative electrode active material layer side,
The liquid retention lowering portion is formed by thermally shrinking the separator body by heating,
The lowered portion forming step includes
Of the separator that does not have the liquid retainability lowered portion wound around the electrode body, the protruding portion protruding to the other side of the other side end surface is heated, and the separator main body is thermally contracted. The manufacturing method of the lithium ion secondary battery which forms the said liquid retainability fall part.
JP2012234742A 2012-10-24 2012-10-24 Lithium ion secondary battery and method for producing lithium ion secondary battery Active JP5849927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234742A JP5849927B2 (en) 2012-10-24 2012-10-24 Lithium ion secondary battery and method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234742A JP5849927B2 (en) 2012-10-24 2012-10-24 Lithium ion secondary battery and method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014086293A JP2014086293A (en) 2014-05-12
JP5849927B2 true JP5849927B2 (en) 2016-02-03

Family

ID=50789156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234742A Active JP5849927B2 (en) 2012-10-24 2012-10-24 Lithium ion secondary battery and method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5849927B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318887B2 (en) * 2014-06-10 2018-05-09 株式会社Gsユアサ Electricity storage element
JP6847357B2 (en) 2015-07-01 2021-03-24 株式会社エンビジョンAescジャパン Method for manufacturing lithium-ion secondary battery and method for evaluating lithium-ion secondary battery
JP6958004B2 (en) * 2017-06-13 2021-11-02 三洋電機株式会社 Rechargeable battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343808B2 (en) * 2009-10-13 2013-11-13 トヨタ自動車株式会社 Lithium ion secondary battery, vehicle and battery-equipped equipment
JP5456542B2 (en) * 2010-04-01 2014-04-02 日立ビークルエナジー株式会社 Rectangular secondary battery and method for manufacturing prismatic secondary battery
US20140023908A1 (en) * 2011-03-28 2014-01-23 Tomoyoshi Ueki Lithium-ion secondary battery

Also Published As

Publication number Publication date
JP2014086293A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
US9837651B2 (en) Electric core for thin film battery
US8663831B2 (en) Rechargeable battery and its fabrication method
US8986871B2 (en) Electrode assembly and secondary battery having the same
KR102025033B1 (en) Batteries utilizing anode coating directly on nanoporous separators
US7674559B2 (en) Lithium secondary battery including a separator
JP5398266B2 (en) Battery assembly for use with a sealed upper separator and secondary battery having the assembly
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
US8372544B2 (en) Non-aqueous electrolyte secondary battery
KR20120086270A (en) Cylindrical-type secondary battery
US8349482B2 (en) Electrode assembly and secondary battery with the same
KR101724620B1 (en) Pouch for Secondary Battery and Flexible Secondary Battery using The Same
KR20180107461A (en) Process of Manufacturing Battery Cell Having Auxiliary Sealing Part for Preventing Crack of Battery Case
US6727021B1 (en) Lithium ion secondary battery
JP2012059396A (en) Negative electrode for power storage device and power storage device, and method of manufacturing them
US8535822B2 (en) Electrode assembly and secondary battery having the same
JP5849927B2 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
KR102188429B1 (en) Jelly-Roll Type Electrode Having Uncoated Part of Electrode Active Material
JP2006019199A (en) Electrode plate for secondary battery, its manufacturing method and secondary battery using electrode plate
KR102486134B1 (en) Cylindrical-type Battery Comprising Gasket- Washer for High-effective Sealing
JP2016178053A (en) Square secondary battery
JP6959718B2 (en) Rechargeable battery
KR101629498B1 (en) Electrode assembly and secondary battery comprising the same
KR20160142589A (en) Cylindrical Secondary Battery
JP2020035641A (en) Secondary battery
JP2004253270A (en) Battery electrode plate provided with ptc element and battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R151 Written notification of patent or utility model registration

Ref document number: 5849927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250