JP5849862B2 - Judgment method of pesticide contamination - Google Patents

Judgment method of pesticide contamination Download PDF

Info

Publication number
JP5849862B2
JP5849862B2 JP2012130420A JP2012130420A JP5849862B2 JP 5849862 B2 JP5849862 B2 JP 5849862B2 JP 2012130420 A JP2012130420 A JP 2012130420A JP 2012130420 A JP2012130420 A JP 2012130420A JP 5849862 B2 JP5849862 B2 JP 5849862B2
Authority
JP
Japan
Prior art keywords
pesticide
article
contamination
infrared absorption
wiping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012130420A
Other languages
Japanese (ja)
Other versions
JP2013253893A (en
Inventor
正純 山下
正純 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012130420A priority Critical patent/JP5849862B2/en
Publication of JP2013253893A publication Critical patent/JP2013253893A/en
Application granted granted Critical
Publication of JP5849862B2 publication Critical patent/JP5849862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、農薬汚染の判定方法、特に、物品の農薬汚染を判定するための方法に関する。   The present invention relates to a method for determining agricultural chemical contamination, and more particularly to a method for determining agricultural chemical contamination of articles.

青果が残留農薬により汚染されているか否かを判定するための方法として、主に、青果の表面に農薬が付着しているか否かを直接的に判定する方法と、青果に付着した農薬を溶媒で抽出し、その抽出液を分析する方法とが知られている。   As a method for determining whether or not the fruits and vegetables are contaminated with residual pesticides, a method for directly determining whether or not the pesticides are attached to the surface of the fruits and vegetables and a pesticide adhering to the fruits and vegetables are solvent And a method for analyzing the extract.

前者の直接的に判定する方法として、例えば特許文献1には、青果の表面での赤外線の反射光から変換される測定スペクトルを測定し、当該測定スペクトルに基づいて青果の表面における残留農薬の有無や濃度を判定する方法が記載されている。しかし、この方法は、赤外線の反射光を利用することから、青果の表面状態によって反射光が不安定になり、判定結果の信頼性が損なわれることがある。例えば、レタスや白菜等の葉菜類や蜜柑等の柑橘類は、表面に葉脈や微妙な凹凸を有することから反射光が不安定になり、残留農薬の判定結果の信頼性を欠くことがある。   As a method for directly determining the former, for example, in Patent Document 1, a measurement spectrum converted from infrared reflected light on the surface of fruits and vegetables is measured, and the presence or absence of residual agricultural chemicals on the surface of fruits and vegetables is determined based on the measurement spectrum. And a method for determining concentration. However, since this method uses infrared reflected light, the reflected light becomes unstable depending on the surface state of the fruits and vegetables, and the reliability of the determination result may be impaired. For example, leaf vegetables such as lettuce and Chinese cabbage, and citrus fruits such as mandarin orange have a leaf vein and subtle irregularities on the surface, so that the reflected light becomes unstable, and the determination result of the residual pesticide may be unreliable.

一方、後者の溶媒で抽出する方法として、例えば特許文献2には、袋に青果と溶媒とを入れて攪拌する抽出操作をし、ガラス製フィルタを敷いた容器に溶媒を移して溶媒を揮散させた後、ガラス製フィルタの近赤外スペクトルを測定することで残留農薬の有無や濃度を判定する方法が記載されている。しかし、この方法は、抽出操作において青果自体の色素や各種の成分が同時に抽出されてしまうことがあるため、判定結果の信頼性が損なわれることがある。また、この方法は、操作が煩雑であって判定結果が得られるまでに数時間程度の長時間を要することから、青果の出荷時や輸入時などの判定が必要な時機での適用が困難である。   On the other hand, as a method of extracting with the latter solvent, for example, in Patent Document 2, for example, an extraction operation in which fruits and solvents are put in a bag and stirred, the solvent is transferred to a container with a glass filter, and the solvent is volatilized. After that, there is described a method for determining the presence and concentration of residual agricultural chemicals by measuring the near-infrared spectrum of a glass filter. However, in this method, since the pigment and various components of the fruits and vegetables themselves may be extracted at the same time in the extraction operation, the reliability of the determination result may be impaired. In addition, this method is complicated to operate, and it takes a long time of several hours until a determination result is obtained. Therefore, it is difficult to apply this method at a time when it is necessary to determine whether the fruits and vegetables are shipped or imported. is there.

特開2007−139639号公報JP 2007-139039 A 特開2007−263883号公報JP 2007-263883 A

本発明の目的は、青果等の物品の農薬汚染を簡単にかつ速やかに、高い信頼性で判定できるようにすることにある。   An object of the present invention is to enable easy and quick determination of agricultural chemical contamination of articles such as fruits and vegetables with high reliability.

本発明は、物品の農薬汚染を判定するための方法に関するものであり、この方法は、農薬を拭取り可能な採取体を物品の表面に適用することで物品の表面の少なくとも一部を拭う工程1と、物品に適用した採取体について農薬の付着を判定する工程2とを含み、採取体として常温常圧下で不揮発性の疎水性溶媒であるシリコンオイルまたは食用油を含むものを用いる。 The present invention relates to a method for determining an agricultural chemical contamination of an article, and this method includes a step of wiping at least a part of the surface of an article by applying a collection body capable of wiping off the agricultural chemical to the surface of the article. 1, seen including a step 2 determines pesticide attachment for collecting body that is applied to the article, used those containing silicone oil or edible oil is a non-volatile hydrophobic solvent under normal temperature and normal pressure as taken body.

この方法において用いられる採取体は、疎水性を有する材料からなるものが好ましい。 Collecting body used in this method is not preferable is made of a material having hydrophobicity.

この方法の工程2では、例えば、赤外分光計を用いた全反射法により採取体の赤外吸収スペクトルを測定し、その赤外吸収スペクトルの情報に基づいて農薬の付着を判定する。   In step 2 of this method, for example, the infrared absorption spectrum of the sample is measured by a total reflection method using an infrared spectrometer, and the adhesion of the pesticide is determined based on the information of the infrared absorption spectrum.

他の観点に係る本発明は、物品に付着した農薬を分離するための方法に関するものであり、この方法は、農薬を拭取り可能な採取体を物品の表面に適用することで物品の表面の少なくとも一部を拭う工程を含み、採取体として常温常圧下で不揮発性の疎水性溶媒であるシリコンオイルまたは食用油を含むものを用いる。 The present invention according to another aspect relates to a method for separating a pesticide attached to an article, and this method is applied to a surface of an article by applying a collection body capable of wiping off the agrochemical to the article surface. It includes a step of wiping at least a part, and a sample containing silicon oil or edible oil , which is a non-volatile hydrophobic solvent under normal temperature and normal pressure, is used.

本発明に係る農薬汚染の判定方法は、上述の工程1と工程2とを含むため、物品の農薬汚染を簡単にかつ速やかに、高い信頼性で判定することができる。   Since the determination method for agricultural chemical contamination according to the present invention includes the above-described Step 1 and Step 2, the agricultural chemical contamination of an article can be determined easily and quickly with high reliability.

本発明に係る農薬の分離方法は、特定の採取体を用いる上述の工程を含むため、物品に付着した農薬を簡単にかつ速やかに分離することができる。   Since the method for separating agricultural chemicals according to the present invention includes the above-described steps using a specific collected body, the agricultural chemicals attached to the article can be easily and quickly separated.

比較例についての、農薬製剤の換算付着量と換算付着量の算出値との関係を示すグラフ。The graph which shows the relationship between the conversion adhesion amount of an agrochemical formulation, and the calculated value of conversion adhesion amount about a comparative example. 実施例についての、農薬製剤の換算付着量と換算付着量の算出値との関係を示すグラフ。The graph which shows the relationship between the conversion adhesion amount of an agrochemical formulation, and the calculated value of conversion adhesion amount about an Example.

本発明は、物品の農薬汚染を判定するための方法に関するものである。本発明の方法の適用対象となる物品は、例えば、葉菜類や茎菜類等の各種の野菜および仁果類や柑橘類等の各種の果実など、種類が限定されない青果であって、例えば、出荷時のものや輸入時のもの等である。また、最近は、食品の安全への関心の高まりに従って農薬の使用を抑えた有機栽培が盛んである。有機栽培農場は、近隣の農場において散布等された農薬による作物や土壌の汚染の程度を判定するためにドリフトと呼ばれるシート状または板状の部材を配置し、その汚染を評価することがあるが、本発明の方法は、ドリフトの農薬汚染を判定するために用いることもできる。   The present invention relates to a method for determining the agrochemical contamination of an article. Articles to which the method of the present invention is applied are, for example, various vegetables such as leaf vegetables and stem vegetables and various fruits such as pears and citrus fruits, and the fruits are not limited, for example, at the time of shipment. Or imported products. In recent years, organic cultivation with reduced use of pesticides has become popular as food safety has increased. In organic farms, in order to determine the degree of contamination of crops and soil by agricultural chemicals sprayed on nearby farms, a sheet-like or plate-like member called drift may be placed to evaluate the pollution. The method of the present invention can also be used to determine drift pesticide contamination.

本発明の判定方法では、先ず、農薬汚染を判定する対象である物品に対し、付着している農薬を分離するための工程(工程1)を実行する。ここでは、農薬を拭取り可能な採取体を物品の表面に適用することで物品の表面を拭う。この際、物品の表面の全体を拭ってもよいし、一部のみを拭ってもよい。   In the determination method of the present invention, first, a step (step 1) for separating the adhering agricultural chemicals is performed on the article that is the target for determining agricultural chemical contamination. Here, the surface of the article is wiped by applying a collection body capable of wiping off the agrochemical to the surface of the article. At this time, the entire surface of the article may be wiped or only a part may be wiped.

この工程で用いられる採取体は、物品の表面から農薬を拭い取ることができるものであれば特に限定されるものではなく、例えば、セルロース繊維、ガラス繊維若しくはシリカ繊維等の材料からなるろ紙、綿等の天然繊維若しくはポリエステル繊維やポリアミド繊維等の化学繊維からなる布帛、ゴムまたはプラスチックなどの樹脂材料からなる成形品である。   The collected material used in this step is not particularly limited as long as it can wipe off agricultural chemicals from the surface of the article. For example, filter paper made of materials such as cellulose fiber, glass fiber or silica fiber, cotton Or the like, or a molded article made of a resin material such as rubber or plastic, or a fabric made of natural fiber such as polyester fiber or polyamide fiber.

但し、採取体は、物品の表面から農薬を拭き取りやすいことから、疎水性を有するものが好ましい。ここでいう疎水性とは、水に対する親和性が低い性質をいい、そのような疎水性を有する採取体は、例えば、分子内に疎水性官能基である炭化水素基、シラノール基、クロロアルキル基またはフルオロアルキル基等を有する材料からなるものが好ましい。このため、ろ紙の場合は、シリカ繊維からなるものが好ましく、布帛の場合は、例えばポリテトラフルオロエチレン樹脂繊維のような上述の疎水性官能基を有する合成樹脂繊維等の化学繊維からなるものが好ましい。また、セルロース繊維若しくはガラス繊維からなるろ紙や綿の布帛等のように、疎水性の弱い採取体を用いる場合、この採取体は、後記する疎水性溶媒を含浸させることで疎水性を付与するのが好ましい。   However, the collected body is preferably hydrophobic because it is easy to wipe off the agricultural chemical from the surface of the article. Hydrophobic here refers to the property of low affinity for water. Samples having such hydrophobicity are, for example, hydrocarbon groups, silanol groups, chloroalkyl groups that are hydrophobic functional groups in the molecule. Or what consists of material which has a fluoroalkyl group etc. is preferable. For this reason, in the case of filter paper, those made of silica fibers are preferable, and in the case of cloth, for example, those made of chemical fibers such as synthetic resin fibers having the above-mentioned hydrophobic functional groups such as polytetrafluoroethylene resin fibers. preferable. In addition, when using a sample with low hydrophobicity such as filter paper made of cellulose fiber or glass fiber, cotton fabric, etc., this sample is imparted with hydrophobicity by impregnation with a hydrophobic solvent described later. Is preferred.

採取体は、物品の表面から農薬を拭い取りやすい形状のもの、例えばシート状や球状のものが好ましい。また、後記する工程2において、赤外分光計を用いた全反射法により採取体の赤外吸収スペクトルを測定する場合においては、プリズム上に採取体をクランプ等を用いて固定する必要があることから、採取体は、プリズム上に密接しやすい柔軟性を有する形状のものが好ましい。採取体は、面積(物品に対して適用可能な面の面積であり、通常、シート状の場合は片面の面積、球状の場合は表面積である。)が大きくなる程に物品からの農薬の拭き取りムラを生じやすくなることから、通常、数平方センチメートル以下(例えば、4.0cm以下、好ましくは0.1〜1.0cm程度)の小さな面積のものを用いるのが好ましい。 The sampled body preferably has a shape that can easily wipe off the pesticide from the surface of the article, for example, a sheet or spherical shape. In step 2 described later, when measuring an infrared absorption spectrum of a sample by a total reflection method using an infrared spectrometer, it is necessary to fix the sample on the prism using a clamp or the like. Therefore, it is preferable that the sampled body has a shape having flexibility that allows easy contact with the prism. The collected body is an area of the surface applicable to the article, and usually wipes off the agricultural chemicals from the article as the area becomes larger. Since unevenness is likely to occur, it is usually preferable to use a material having a small area of several square centimeters or less (for example, 4.0 cm 2 or less, preferably about 0.1 to 1.0 cm 2 ).

採取体は、農薬の拭き取り残しを生じにくくできることから、疎水性溶媒を含むものが特に好ましい。疎水性溶媒は、農薬を溶解可能なものであれば各種のものを用いることができ、好ましくは20℃における水への溶解度が1g/100mL以下のものである。特に、常温常圧(20℃、1気圧)下で不揮発性のもの、例えば、沸点が120℃以上(好ましくは150℃以上)で蒸気圧(20℃)が1kPa以下(より好ましくは0.5kPa以下)の疎水性溶媒が好ましい。   A sample containing a hydrophobic solvent is particularly preferable because it is difficult to cause the pesticide residue to be left behind. As the hydrophobic solvent, various solvents can be used as long as they can dissolve agricultural chemicals, and those having a solubility in water at 20 ° C. of 1 g / 100 mL or less are preferable. In particular, it is nonvolatile at room temperature and normal pressure (20 ° C., 1 atm), for example, a boiling point of 120 ° C. or higher (preferably 150 ° C. or higher) and a vapor pressure (20 ° C.) of 1 kPa or lower (more preferably 0.5 kPa). The following hydrophobic solvents are preferred.

好ましい疎水性溶媒としては、例えば、ノナンやデカン等の炭素数が9以上のアルカン、クロロパラフィンやフルオロパラフィン等の流動パラフィン、シリコンオイル(例えば、ジメチルシリコンオイルやメチルフェニルシリコンオイル等)およびサラダ油やコーン油等の食用油を挙げることができる。   Preferred examples of the hydrophobic solvent include alkanes having 9 or more carbon atoms such as nonane and decane, liquid paraffin such as chloroparaffin and fluoroparaffin, silicon oil (for example, dimethyl silicone oil and methylphenyl silicone oil), salad oil, Listed are edible oils such as corn oil.

なお、採取体の材料または採取体に含める疎水性溶媒がベンゼン環、ナフタレン環およびアントラセン環等の芳香環を含むものである場合、この芳香環は赤外吸収ピークを発生する。このため、後記する工程2において赤外吸収スペクトルを測定する場合、採取体自体または疎水性溶媒自体の赤外吸収ピークが農薬による赤外吸収ピークに影響し、農薬の定量精度等を損なう可能性がある。したがって、採取体の材料および疎水性溶媒としては、芳香環を含まないものを用いるのが好ましい。例えば、採取体の材料としては、ガラス繊維やシリカ繊維のような無機系の繊維材料または脂肪族系の繊維材料若しくは樹脂材料を用いるのが好ましく、疎水性溶媒としては脂肪族系のもの(例えば、シリコンオイルの場合はジメチルシリコンオイル等)を用いるのが好ましい。   In addition, when the hydrophobic solvent contained in the material of a collection body or a collection body contains aromatic rings, such as a benzene ring, a naphthalene ring, and an anthracene ring, this aromatic ring generate | occur | produces an infrared absorption peak. For this reason, when measuring the infrared absorption spectrum in the step 2 described later, the infrared absorption peak of the sample itself or the hydrophobic solvent itself may affect the infrared absorption peak of the pesticide, which may impair the quantitative accuracy of the pesticide. There is. Therefore, it is preferable to use a material that does not contain an aromatic ring as the material of the harvested body and the hydrophobic solvent. For example, it is preferable to use an inorganic fiber material such as glass fiber or silica fiber, an aliphatic fiber material, or a resin material as the material of the harvested body, and an aliphatic material (for example, a hydrophobic solvent) In the case of silicone oil, dimethyl silicone oil or the like is preferably used.

また、後記する判定工程において赤外吸収スペクトルを測定する場合においては、赤外吸収ピークを発生する原因となる元素、例えば、農薬の構成原子として含まれることが多い硫黄やリンを含む材料を用いた採取体は、芳香環を含む材料と同じく農薬の赤外吸収ピークに影響する赤外吸収ピークを発生することから、同様の理由により、使用を回避するのが好ましい。   In addition, when measuring an infrared absorption spectrum in the determination step described later, an element that causes an infrared absorption peak, for example, a material containing sulfur or phosphorus that is often included as a constituent atom of an agricultural chemical is used. Since the collected body generates an infrared absorption peak that affects the infrared absorption peak of the agricultural chemical in the same manner as the material containing an aromatic ring, it is preferable to avoid the use for the same reason.

次に、物品に適用した採取体について、農薬の付着を判定するための工程(工程2)を実行する。この工程では、採取体からの抽出物に対して化学的な方法により農薬の有無や量を判定することもできるが、通常はより速やかな判定が可能な各種の光学的方法を採用するのが好ましい。   Next, the process (process 2) for determining adhesion of an agrochemical is performed about the collection body applied to the articles | goods. In this step, it is possible to determine the presence or amount of pesticides by chemical methods on the extract from the harvested body, but it is usually to employ various optical methods that can be more quickly determined. preferable.

光学的方法の一つとして、赤外分光計を用いた全反射法(ATR法)により採取体の赤外吸収スペクトルを測定し、測定した赤外吸収スペクトルの情報に基づいて農薬の付着を判定する方法が挙げられる。   As one of the optical methods, the infrared absorption spectrum of the sample is measured by the total reflection method (ATR method) using an infrared spectrometer, and the adhesion of pesticides is judged based on the measured infrared absorption spectrum information. The method of doing is mentioned.

ATR法は、プリズム表面に試料(本発明においては採取体)を固定することで試料表面の赤外吸収スペクトルを得る方法であり、反射回数が1回で一箇所に単反射させる単反射型と反射回数が複数回で複数箇所に複数回反射させる多重反射型とがある。多重反射型の場合、試料が大きくなるとプリズム表面に試料を均一に密着させることが難しく、また試料が特に大きい場合においては、試料とプリズムとの接触面積が大きくなることから試料の面積当たりの農薬の濃度が低くなり、結果として農薬の定量精度等を損なう可能性がある。したがって、ATR法は、単反射型を採用するのが好ましい。   The ATR method is a method for obtaining an infrared absorption spectrum of a sample surface by fixing the sample (collected body in the present invention) on the prism surface. There is a multiple reflection type in which the number of reflections is a plurality of times and the light is reflected multiple times at a plurality of locations. In the case of the multiple reflection type, when the sample is large, it is difficult to make the sample uniformly adhere to the prism surface, and when the sample is particularly large, the contact area between the sample and the prism becomes large, so the pesticide per sample area As a result, the quantitative accuracy of agricultural chemicals may be impaired. Therefore, the ATR method is preferably a single reflection type.

ATR法により測定した赤外吸収スペクトル情報の解析方法としては、予め用意した農薬成分用キャリブレーションモデルに赤外吸収スペクトルを適用し、農薬を検出する方法を採用することができる。このような解析方法は、例えば、特許文献2(特開2007−263883号公報)において知られており、農薬成分用キャリブレーションモデルとして、同文献に記載の重回帰またはPLS(部分最小二乗法)回帰などにより作成した定量用検量線または判別分析法若しくはSIMCA(Soft Independent Modeling of Class Analogy)法により作成された定性用キャリブレーションモデルを用いることができる。   As an analysis method of infrared absorption spectrum information measured by the ATR method, a method of detecting an agricultural chemical by applying an infrared absorption spectrum to a calibration model for agricultural chemical components prepared in advance can be employed. Such an analysis method is known, for example, in Patent Document 2 (Japanese Patent Laid-Open No. 2007-263883), and as a pesticide component calibration model, multiple regression or PLS (partial least square method) described in the same document. A quantitative calibration curve created by regression or the like, or a qualitative calibration model created by a discriminant analysis method or a SIMCA (Soft Independent Modeling of Class Analysis) method can be used.

この工程での光学的方法としては、ATR法以外の方法を採用することもできる。例えば、農薬成分と反応可能な発光物質を採取体に塗布するか含浸させ、農薬成分と発光物質との反応生成物の可視・紫外スペクトルを測定することで農薬の有無を判定したり、農薬を種類毎に定量したりすることができる。   As an optical method in this step, a method other than the ATR method can be employed. For example, a sample is coated or impregnated with a luminescent substance that can react with a pesticide component, and the presence or absence of the pesticide is determined by measuring the visible / ultraviolet spectrum of the reaction product of the pesticide component and the luminescent substance. It can be quantified for each type.

なお、物品に付着している農薬を定量する場合であって、工程1において採取体により物品の表面の一部を拭ったときは、この工程において、当該一部の表面の面積と物品の全表面積との関係から物品に付着している全農薬量を算出する必要がある。   In this case, when the amount of pesticide adhering to the article is quantified, and when a part of the surface of the article is wiped by the collected body in step 1, in this step, the surface area of the part and the entire article It is necessary to calculate the total amount of pesticide adhering to the article from the relationship with the surface area.

試験片の調製
蜜柑の果皮を1cm角の大きさで5枚切り取り、試験片A〜Eの5枚の試験片を得た。そして、5枚の試験片のうちの4枚に対し、表1に示す付着量(有効成分としての付着量)になるよう農薬製剤(シンジェンタジャパン株式会社の「スプラサイド乳剤40」:有効成分としてメチダチオンを40重量%含有)を塗布した。
Preparation of Test Pieces Five mandarin orange peels having a size of 1 cm square were cut out to obtain five test pieces A to E. And the agricultural chemical formulation (“Supracide Emulsion 40” of Syngenta Japan Co., Ltd.): as an active ingredient so that the adhesion amount (adhesion amount as an active ingredient) shown in Table 1 is applied to 4 out of 5 test pieces Methidathione 40 wt%) was applied.

Figure 0005849862
Figure 0005849862

表1および以下において、「換算付着量」は、平均的なLサイズの蜜柑(重量100g、表面積126cm)1kg当りの農薬製剤の付着量(有効成分としての付着量であり:単位はmg/kgである。)に換算したものである。 In Table 1 and below, the “equivalent adhesion amount” is the average L-size mandarin orange (weight 100 g, surface area 126 cm 2 ) adhesion amount of an agricultural chemical formulation per kg (adhesion amount as an active ingredient: unit is mg / kg) kg)).

各試験片を濡れたウエス上に置いてドラフト内に配置し、各試験片自体が干からびないように各試験片の表面(農薬製剤の塗布面)に気流を3時間流して農薬製剤を乾燥させた。そして、このように乾燥処理した各試験片を濡れたウエス上で24時間放置した。   Place each test piece on a wet cloth and place it in a fume hood, and dry the pesticide preparation by flowing air for 3 hours on the surface of each test piece (applied surface of the pesticide preparation) so that each test piece does not dry out. It was. Each test piece thus dried was left on a wet cloth for 24 hours.

比較例
ATR測定用のジンクセレンプリズムを備えたフーリエ変換赤外分光光度計(日本分光株式会社の型番「FT/IR−4100」)を用い、分解能4cm−1、積算回数36の条件で各試験片の表面(農薬製剤の塗布面)の赤外吸収スペクトルを単反射型のATR法により測定した。そして、得られた赤外吸収スペクトルについて、400〜4,000cm−1の領域のデータをPLS定量ソフト(日本分光株式会社のPLS定量ソフトプログラム「PLS−4000」)により処理し、各試験片における農薬製剤の付着量(有効成分としての付着量)を求めた。この付着量から換算付着量を算出した結果を表2に示す。また、表2に示した換算付着量(表1に示したものと同じ)と換算付着量の算出値とをグラフ化したものを図1に示す。
Comparative Example Each test was performed using a Fourier transform infrared spectrophotometer (model number “FT / IR-4100” manufactured by JASCO Corporation) equipped with a zinc selenium prism for ATR measurement under the conditions of a resolution of 4 cm −1 and an integration count of 36. The infrared absorption spectrum of the surface of the piece (application surface of the agricultural chemical preparation) was measured by a single reflection type ATR method. And about the obtained infrared absorption spectrum, the data of the area | region of 400-4,000 cm < -1 > were processed with PLS quantification software (the PLS quantification software program "PLS-4000" of JASCO Corporation), and in each test piece, The adhesion amount of the agricultural chemical preparation (adhesion amount as an active ingredient) was determined. Table 2 shows the result of calculating the converted adhesion amount from this adhesion amount. Further, FIG. 1 shows a graph of the converted adhesion amount shown in Table 2 (same as that shown in Table 1) and the calculated value of the converted adhesion amount.

Figure 0005849862
Figure 0005849862

実施例
シリコンオイルを含浸させたセルロース繊維ろ紙を1cm角に切り取った採取体を用いて各試験片の表面(農薬製剤の塗布面)全面を拭い、比較例と同様にして当該採取体の表面(試験片への適用面)の赤外吸収スペクトルを単反射型のATR法により測定した。そして、得られた赤外吸収スペクトルについて、400〜4,000cm−1の領域のデータを比較例で用いたものと同じPLS定量ソフトにより処理し、各試験片における農薬製剤の付着量(有効成分としての付着量)を求めた。この付着量から換算付着量を算出した結果を表3に示す。また、表3に示した換算付着量(表1に示したものと同じ)と換算付着量の算出値とをグラフ化したものを図2に示す。
Example The surface of each test piece (applied surface of an agrochemical formulation) was wiped with a collected body obtained by cutting cellulose fiber filter paper impregnated with silicon oil into 1 cm square, and the surface of the collected body ( The infrared absorption spectrum of the surface to be applied to the test piece was measured by a single reflection type ATR method. And about the obtained infrared absorption spectrum, the data of the area | region of 400-4,000 cm < -1 > were processed with the same PLS quantification software as what was used by the comparative example, and the adhesion amount (active ingredient) of each agricultural chemical formulation in each test piece. As an adhesion amount). Table 3 shows the result of calculating the converted adhesion amount from this adhesion amount. Further, FIG. 2 shows a graph of the converted adhesion amount shown in Table 3 (same as that shown in Table 1) and the calculated value of the converted adhesion amount.

Figure 0005849862
Figure 0005849862

図1と図2とを対比すると、実施例の換算付着量の算出値は、比較例の当該算出値に比べて低濃度領域を含む広い範囲で換算付着量との相関が高く、信頼性の高いことがわかる。   When FIG. 1 and FIG. 2 are compared, the calculated value of the converted adhesion amount of the example has a high correlation with the converted adhesion amount in a wide range including the low concentration region as compared with the calculated value of the comparative example. I understand that it is expensive.

Claims (4)

物品の農薬汚染を判定するための方法であって、
農薬を拭取り可能な採取体を前記物品の表面に適用することで前記表面の少なくとも一部を拭う工程1と、
前記物品に適用した前記採取体について農薬の付着を判定する工程2とを含み、
前記採取体として常温常圧下で不揮発性の疎水性溶媒であるシリコンオイルまたは食用油を含むものを用いる、
農薬汚染の判定方法。
A method for determining pesticide contamination of an article,
Step 1 of wiping at least a part of the surface by applying a collection body capable of wiping off the pesticide to the surface of the article;
And determining the adhesion of pesticides on the collected body applied to the article ,
Using the sampled body containing silicon oil or edible oil that is a non-volatile hydrophobic solvent at room temperature and normal pressure,
Judgment method of pesticide contamination.
前記採取体が疎水性を有する材料からなる、請求項1に記載の農薬汚染の判定方法。 The method for determining contamination of agricultural chemicals according to claim 1, wherein the harvested body is made of a hydrophobic material . 工程2において、赤外分光計を用いた全反射法により前記採取体の赤外吸収スペクトルを測定し、当該赤外吸収スペクトルの情報に基づいて農薬の付着を判定する、請求項1または2に記載の農薬汚染の判定方法。 In step 2, the infrared absorption spectrum of the collected body by total reflection method using an infrared spectrometer to measure, determine adherence of the pesticide based on the information of the infrared absorption spectrum, to claim 1 or 2 The determination method of the pesticide contamination described. 物品に付着した農薬を分離するための方法であって、
農薬を拭取り可能な採取体を前記物品の表面に適用することで前記表面の少なくとも一部を拭う工程を含み、
前記採取体として常温常圧下で不揮発性の疎水性溶媒であるシリコンオイルまたは食用油を含むものを用いる、
農薬の分離方法。
A method for separating pesticides adhering to an article,
Including a step of wiping at least a part of the surface by applying a collected body capable of wiping off the pesticide to the surface of the article,
Using the sampled body containing silicon oil or edible oil that is a non-volatile hydrophobic solvent at room temperature and normal pressure,
Pesticide separation method.
JP2012130420A 2012-06-08 2012-06-08 Judgment method of pesticide contamination Expired - Fee Related JP5849862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130420A JP5849862B2 (en) 2012-06-08 2012-06-08 Judgment method of pesticide contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130420A JP5849862B2 (en) 2012-06-08 2012-06-08 Judgment method of pesticide contamination

Publications (2)

Publication Number Publication Date
JP2013253893A JP2013253893A (en) 2013-12-19
JP5849862B2 true JP5849862B2 (en) 2016-02-03

Family

ID=49951503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130420A Expired - Fee Related JP5849862B2 (en) 2012-06-08 2012-06-08 Judgment method of pesticide contamination

Country Status (1)

Country Link
JP (1) JP5849862B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337451A (en) * 2020-03-26 2020-06-26 浙江大学 Device and method for detecting pesticide residue of leaf vegetables based on near-infrared characteristic spectrum

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315546B2 (en) * 1994-12-16 2002-08-19 社団法人長野県農村工業研究所 Pesticide residue analysis method
JP3481460B2 (en) * 1998-05-15 2003-12-22 オリジン電気株式会社 Sampling method and sample for infrared absorption analysis
JP2001296240A (en) * 2000-04-12 2001-10-26 Kansai Research Institute Sampling material, analysis method and analyzer for infrared/near-infrared spectroscopic analysis sample
JP2004275023A (en) * 2003-03-13 2004-10-07 Si Seiko Co Ltd System for removing pesticide residue
JP4168867B2 (en) * 2003-07-31 2008-10-22 三浦工業株式会社 Method for judging organic contamination
JP3857265B2 (en) * 2003-10-23 2006-12-13 島田理化工業株式会社 Slit shower unit
JP4449639B2 (en) * 2004-08-06 2010-04-14 株式会社日立製作所 Dangerous goods detection device and sampling device
JP2007139639A (en) * 2005-11-21 2007-06-07 Yanmar Co Ltd Judge device of residual agricultural chemicals
JP2007212167A (en) * 2006-02-07 2007-08-23 Hideki Toida Adhering material analyzer and analyzing method
JP2007263883A (en) * 2006-03-29 2007-10-11 National Agriculture & Food Research Organization Residual agricultural chemical detection method
JP4560012B2 (en) * 2006-06-14 2010-10-13 ヤンマー株式会社 Component analyzer
JP4648882B2 (en) * 2006-09-08 2011-03-09 ヤンマー株式会社 Pesticide application amount distribution judgment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337451A (en) * 2020-03-26 2020-06-26 浙江大学 Device and method for detecting pesticide residue of leaf vegetables based on near-infrared characteristic spectrum

Also Published As

Publication number Publication date
JP2013253893A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
Barber et al. Analysis of per-and polyfluorinated alkyl substances in air samples from Northwest Europe
Delegido et al. Brown and green LAI mapping through spectral indices
Kokaly et al. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm
He et al. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy
Senyuva et al. Profiling Turkish honeys to determine authenticity using physical and chemical characteristics
Jackels et al. GCMS investigation of volatile compounds in green coffee affected by potato taste defect and the Antestia bug
Serio et al. Array-based detection of persistent organic pollutants via cyclodextrin promoted energy transfer
Abdulra’uf et al. Applications of solid-phase microextraction for the analysis of pesticide residues in fruits and vegetables: A review
Geiselhardt et al. Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques
CN104749293A (en) Method for efficiently extracting carotenoids in yellow peach fruits and determining carotenoids in yellow peach fruits by liquid phase
JP5849862B2 (en) Judgment method of pesticide contamination
US20170160270A1 (en) Marker and sensing system using the same
Borg et al. Analysis of PFASs and TOF in products
Gandolfo et al. Fourier transform infra-red spectroscopy using an attenuated total reflection probe to distinguish between Japanese larch, pine and citrus plants in healthy and diseased states
Reitz et al. Analysis of chemical profiles of insect adhesion secretions by gas chromatography–mass spectrometry
Rao et al. Development and validation of a HPLC-UV method for simultaneous determination of strobilurin fungicide residues in tomato fruits followed by matrix solid-phase dispersion (MSPD)
Alborn et al. Sampling of volatiles in closed systems: a controlled comparison of three solventless volatile collection methods
CN201773068U (en) Multivariate test paper capable of testing pesticide residues of fruits and vegetables
Sánchez et al. First steps to predicting pulp colour in whole melons using near-infrared reflectance spectroscopy
Galvan et al. Scalable early detection of grapevine viral infection with airborne imaging spectroscopy
JP2007263883A (en) Residual agricultural chemical detection method
CN105136960A (en) Method for detecting and distinguishing odor components of donkey hide, horse hide or cattle hide as well as distinguishing standard thereof
Lehmann et al. Assessment of occupational exposure to pesticides with multi-class pesticide residues analysis in human hairs using a modified QuEChERS extraction method, case study of gardening areas in Burkina Faso
Qiu et al. Comparison of ATR/transmittance FTIR combined with Beer's law and PLS to determine fipronil in matrine formulation
CN101776664A (en) Method for testing melamine in raw milk and dairy products and preprocessing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5849862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees