JP5849617B2 - Mold current transformer - Google Patents

Mold current transformer Download PDF

Info

Publication number
JP5849617B2
JP5849617B2 JP2011240202A JP2011240202A JP5849617B2 JP 5849617 B2 JP5849617 B2 JP 5849617B2 JP 2011240202 A JP2011240202 A JP 2011240202A JP 2011240202 A JP2011240202 A JP 2011240202A JP 5849617 B2 JP5849617 B2 JP 5849617B2
Authority
JP
Japan
Prior art keywords
conductor
iron core
diameter
solid insulator
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011240202A
Other languages
Japanese (ja)
Other versions
JP2013099129A (en
Inventor
望 長綱
望 長綱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2011240202A priority Critical patent/JP5849617B2/en
Publication of JP2013099129A publication Critical patent/JP2013099129A/en
Application granted granted Critical
Publication of JP5849617B2 publication Critical patent/JP5849617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス絶縁開閉装置内に装着するモールド変流器に関する。   The present invention relates to a mold current transformer mounted in a gas insulated switchgear.

従来のモールド変流器(特許文献1)の構成を図4に示す。6は主回路導体であり、この主回路導体6を円周方向に囲むように変流器本体9が配置されている。変流器本体9にはシールド電極8が設けられている。さらに、主回路導体6とシールド電極8の間を絶縁物14で固定した構成となっている。ここで、高圧側となる主回路導体6と低圧側となるシールド電極8の間の絶縁を確保するため、絶縁物14は軸方向に十分な絶縁距離をとった大きさに形成されている。   The configuration of a conventional mold current transformer (Patent Document 1) is shown in FIG. Reference numeral 6 denotes a main circuit conductor, and a current transformer body 9 is arranged so as to surround the main circuit conductor 6 in the circumferential direction. The current transformer main body 9 is provided with a shield electrode 8. Further, the main circuit conductor 6 and the shield electrode 8 are fixed with an insulator 14. Here, in order to ensure insulation between the main circuit conductor 6 on the high voltage side and the shield electrode 8 on the low voltage side, the insulator 14 is formed in a size having a sufficient insulation distance in the axial direction.

特開平9−232170JP 9-232170 A

上述の特許文献1のような変流器においては、絶縁性ガスと主回路導体6と固体絶縁物14の接点部よりなる三重点及び、絶縁性ガスと電界シールド8と固体絶縁物14の接点部よりなる三重点ができ、三重点が2箇所において発生していた。このため、2箇所の三重点が絶縁上の弱点となるので、絶縁物14を軸方向又は径方向に大きく形成する必要があり、機器の縮小化の妨げとなっていた。   In the current transformer as in the above-mentioned Patent Document 1, the triple point formed by the contact portion of the insulating gas, the main circuit conductor 6 and the solid insulator 14 and the contact point of the insulating gas, the electric field shield 8 and the solid insulator 14 are used. The triple point which consists of a part was made and the triple point generate | occur | produced in two places. For this reason, two triple points become weak points on insulation, so it is necessary to make the insulator 14 large in the axial direction or radial direction, which hinders downsizing of the device.

また、絶縁性の低いガス、例えば乾燥空気を用いた開閉装置内に装着する場合、絶縁物上の沿面距離を長くするためには、更に絶縁物を軸方向又は径方向に大きくする必要があり、変流器全体が大型化してしまうという問題があった。   In addition, when installing in a switchgear that uses a gas with low insulation, for example, dry air, it is necessary to further increase the insulation in the axial direction or radial direction in order to increase the creepage distance on the insulation. There was a problem that the entire current transformer would be enlarged.

上記課題を解決するために、本発明にかかるモールド変流器は、絶縁性ガスを密閉した接地タンク内に配置される導体と、前記導体の同心円状に巻装された鉄心と、前記鉄心に巻装される巻線を有し、前記導体と前記鉄心と前記巻線間に固体絶縁物が介在するモールド変流器において、前記固体絶縁物は、少なくとも前記導体と前記鉄心と前記巻線の全体を被覆し、且つ前記導体の両端部が外部に突出するように形成すると共に、前記導体と前記固体絶縁物と前記絶縁性ガスよりなる三重点から前記鉄心に至るまでの沿面を凸状に形成したことを特徴とする。   In order to solve the above-described problems, a mold current transformer according to the present invention includes a conductor disposed in a ground tank in which an insulating gas is sealed, an iron core wound concentrically on the conductor, and the iron core. In a mold current transformer having a winding to be wound, and a solid insulator interposed between the conductor, the iron core, and the winding, the solid insulator includes at least the conductor, the iron core, and the winding. Covering the entire surface and forming both ends of the conductor to protrude outward, and the creeping surface from the triple point consisting of the conductor, the solid insulator and the insulating gas to the iron core is convex. It is formed.

前記導体は、少なくとも前記鉄心と対向する部分の第一の径と、前記導体の両端部の第二の径を有し、前記第一の径は前記第二の径よりも小さく形成し、更に前記第一の径と第二の径の境界部は曲面状に形成したことを特徴とする。   The conductor has at least a first diameter of a portion facing the iron core and a second diameter of both ends of the conductor, and the first diameter is smaller than the second diameter, The boundary between the first diameter and the second diameter is formed in a curved surface.

更に好ましくは、前記鉄心の前記導体と対向する側の角部を段状に形成したことを特徴とする。   More preferably, the corner of the iron core facing the conductor is formed in a step shape.

鉄心全体を固体絶縁物で被覆したことで、従来存在した2箇所の三重点のうち、絶縁性ガスと固体絶縁物と鉄心より成る三重点の電界を考慮する必要がなくなる。このため、1箇所のみとなった三重点、即ち導体と固体絶縁物と絶縁性ガスからなる三重点から鉄心までの絶縁距離を縮小することが出来る。更に、導体と固体絶縁物と絶縁性ガスよりなる三重点から鉄心に至るまでの固体絶縁物の沿面を凸状に形成し、沿面距離を十分に確保したので、絶縁性を保った上で変流器の軸方向及び径方向の寸法縮小が可能となる。   By covering the entire iron core with the solid insulator, it is not necessary to consider the electric field of the triple point composed of the insulating gas, the solid insulator and the iron core among the two existing triple points. For this reason, the insulation distance from the triple point which became only one place, ie, the triple point which consists of a conductor, a solid insulator, and insulating gas, and an iron core can be reduced. Furthermore, the creeping surface of the solid insulator from the triple point consisting of the conductor, the solid insulator, and the insulating gas to the iron core is formed in a convex shape to ensure a sufficient creepage distance. The axial and radial dimensions of the flow device can be reduced.

また、絶縁性ガス中よりも絶縁性能の高い固体絶縁物中において、導体と鉄心間の絶縁を確保しつつ、鉄心と対向する部分の導体の導体径を導体の両端部の径より小さく形成して鉄心を導体側に近づけて配置したので、変流器の径方向寸法の縮小を図ることができる。また、導体径を異ならせることで発生する導体の境界部を曲面状に形成すると共に固体絶縁物内部に配置することで、絶縁性能が確保でき、寸法拡大を防止できる。   Also, in a solid insulator with higher insulation performance than in insulating gas, while ensuring insulation between the conductor and the iron core, the conductor diameter of the conductor facing the iron core is made smaller than the diameter of both ends of the conductor. Since the iron core is disposed close to the conductor side, the radial dimension of the current transformer can be reduced. In addition, by forming the boundary portion of the conductor generated by changing the conductor diameter into a curved surface and arranging the conductor inside the solid insulator, the insulation performance can be ensured and the size expansion can be prevented.

更には、導体と対向する側の鉄心の角部を段状に形成し、鉄心角部の被覆箇所の曲率半径を大きくすることで、導体と鉄心間の電界が緩和され、径方向の寸法拡大を防ぐことができる。このような構成により、変流器の径方向及び軸方向の縮小化が図れるので、絶縁性の低いガス、例えば乾燥空気を絶縁媒体として用いた場合であっても、変流器全体の大型化を抑制することが可能となる。    Furthermore, by forming the corners of the iron core on the side facing the conductor in a stepped manner and increasing the radius of curvature of the coated portion of the core corners, the electric field between the conductor and the iron core is relaxed, and the radial dimension is expanded. Can be prevented. With such a configuration, the radial direction and the axial direction of the current transformer can be reduced, so that even when a gas having low insulation properties, for example, dry air, is used as an insulating medium, the size of the current transformer is increased. Can be suppressed.

本発明に係る変流器の側断面図Side sectional view of a current transformer according to the present invention 図1のA−A方向から見た断面図Sectional view seen from the AA direction of FIG. 図1の要部拡大図1 is an enlarged view of the main part of FIG. 従来の変流器の側断面図Side sectional view of a conventional current transformer

以下、本発明を適用した実施例につき適宜図面を用いて説明する。図1、図2に示すように、本実施例の変流器は導体1と、固体絶縁物2と、鉄心3と、巻線7により概略構成されている。導体1と、鉄心3と、鉄心3に巻装される巻線7は、エポキシ樹脂等から成る固体絶縁物2によって全体を被覆され、一体にモールド形成されている。   Hereinafter, embodiments to which the present invention is applied will be described with reference to the accompanying drawings. As shown in FIGS. 1 and 2, the current transformer according to the present embodiment is roughly constituted by a conductor 1, a solid insulator 2, an iron core 3, and a winding 7. The conductor 1, the iron core 3, and the winding 7 wound around the iron core 3 are entirely covered with a solid insulator 2 made of epoxy resin or the like, and are integrally molded.

変流器のモールド方法としては、まず固体絶縁物2と同様の部材からなる架台を作成する。ここでは、固体絶縁物2として熱硬化性樹脂のエポキシ樹脂を使用する。架台には、例えば円筒状の部材を用いることができる。この円筒状部材に鉄心3及び巻線7を固定し位置決めを行う。次に、後述する本実施例の固体絶縁物2のモールド形状を成した注形用の型の中に、位置決めした鉄心3及び巻線7を配置する。その後、固体絶縁物2を型に流し込み、加熱処理を行うことで、注入した固体絶縁物2と、固体絶縁物2から成る円筒部材が一体化される。こうすることで、導体1と鉄心3と巻線7の全体を固体絶縁物2によって被覆し、一体にモールドすることができる。   As a method of molding a current transformer, first, a gantry made of the same member as the solid insulator 2 is created. Here, a thermosetting epoxy resin is used as the solid insulator 2. For the gantry, for example, a cylindrical member can be used. The iron core 3 and the winding 7 are fixed to the cylindrical member for positioning. Next, the positioned iron core 3 and the winding 7 are placed in a casting mold having a mold shape of the solid insulator 2 of the present embodiment described later. Thereafter, the solid insulator 2 is poured into a mold and heat treatment is performed, so that the injected solid insulator 2 and the cylindrical member made of the solid insulator 2 are integrated. By carrying out like this, the conductor 1, the iron core 3, and the coil | winding 7 whole can be coat | covered with the solid insulator 2, and it can mold integrally.

本発明における変流器は、絶縁性ガス4が密封された接地タンク(図示せず)内に配置されている。なお絶縁性ガス4には、例えば乾燥空気、SFガス等を用いることが出来る。しかしながら、SFガスについては絶縁性は高いものの地球温暖化係数が高く環境負荷が大きいという問題がある。このため本実施例においては、絶縁性はSFガスの1/3程度と低くなるが、環境負荷を大幅に小さくできる乾燥空気を採用している。 The current transformer in this invention is arrange | positioned in the earthing tank (not shown) in which the insulating gas 4 was sealed. For the insulating gas 4, for example, dry air, SF 6 gas, or the like can be used. However, although SF 6 gas has high insulation, there is a problem that the global warming potential is high and the environmental load is large. For this reason, in this embodiment, the insulation is as low as about 1/3 of SF 6 gas, but dry air that can significantly reduce the environmental load is employed.

導体1は図1に示すように、場所によって径が異なって形成されている。導体1であって絶縁性ガス4雰囲気中に配置される部分、即ち導体1の両端部付近においては、径D1を形成している。   As shown in FIG. 1, the conductor 1 has a different diameter depending on the location. In the portion of the conductor 1 that is disposed in the atmosphere of the insulating gas 4, that is, in the vicinity of both ends of the conductor 1, a diameter D <b> 1 is formed.

ここで、導体1は固体絶縁物2によってモールドされた後に、接地タンク内へと配置される。導体1は接地タンク内の他の導体(図示せず)とは別体で作られ、接地タンク内に導体1を収納した後に他の導体と接続される。このため、導体1の両端部付近には導体1及び他の導体を接続するボルト等をはめ込むための一定の寸法を確保した径D1が必要となる。   Here, after the conductor 1 is molded by the solid insulator 2, it is disposed in the ground tank. The conductor 1 is made separately from other conductors (not shown) in the ground tank, and is connected to other conductors after the conductor 1 is stored in the ground tank. For this reason, the diameter D1 which secured the fixed dimension for fitting the bolt etc. which connect the conductor 1 and another conductor to the vicinity of the both ends of the conductor 1 is required.

更に、導体1の両端部は絶縁性ガス4と接することとなるため、固体絶縁物2でモールドされた箇所に比べて電界が厳しくなる。導体径を小さくしすぎると円筒状である導体1周辺の電界が高くなり、導体1と接地タンク間における絶縁が保てなくなるという問題も生じる。このように導体1の両端部付近の径D1は作業性上、絶縁性能上の要求から一定の径寸法を確保する必要がある。   Furthermore, since both ends of the conductor 1 are in contact with the insulating gas 4, the electric field is stricter than the portion molded with the solid insulator 2. If the conductor diameter is too small, the electric field around the cylindrical conductor 1 becomes high, and there is a problem that insulation between the conductor 1 and the ground tank cannot be maintained. As described above, the diameter D1 in the vicinity of both ends of the conductor 1 needs to ensure a certain diameter from the viewpoint of workability and insulation performance.

一方、導体1であって、固体絶縁物2で被覆された箇所においては、上述の導体1の両端部のような作業上の要求がない。また、絶縁性能についても絶縁性ガス4と接する箇所のように接地タンク間との絶縁を考慮する必要がない。更には、図3において後述するように、固体絶縁物2は三重点10Bと鉄心3との絶縁距離が十分に確保できるように凸形状となっている。   On the other hand, in the part which is the conductor 1 and was covered with the solid insulator 2, there is no work requirement like the both ends of the conductor 1 described above. Also, with respect to the insulation performance, it is not necessary to consider the insulation between the ground tanks as in the places where the insulating gas 4 is in contact. Furthermore, as will be described later with reference to FIG. 3, the solid insulator 2 has a convex shape so as to ensure a sufficient insulation distance between the triple point 10B and the iron core 3.

これらの要因により、導体1を固体絶縁物2で被覆した箇所においては、導体径をD1よりも小さいD2に形成し、鉄心3を導体1方向に近づけて配置することが可能となる。即ち、導体径を小さくすることで導体1と鉄心3間の絶縁距離を確保しつつ、且つ三重点10Bと鉄心3間の絶縁距離についても固体絶縁物2の沿面距離により確保された状態で鉄心3を導体1方向に近づけて配置することが可能となる。   Due to these factors, at the portion where the conductor 1 is covered with the solid insulator 2, the conductor diameter is formed to be D2 smaller than D1, and the iron core 3 can be disposed close to the conductor 1 direction. That is, the iron core is secured in a state where the insulation distance between the conductor 1 and the iron core 3 is ensured by reducing the conductor diameter and the insulation distance between the triple point 10B and the iron core 3 is secured by the creeping distance of the solid insulator 2. 3 can be disposed close to the conductor 1 direction.

なお、本実施例では、導体1の少なくとも鉄心3と対向する部分において径D2を形成している。こうすることで、導体1が鉄心3で囲まれた部分の変流器の径D3の寸法を縮小することができる。   In the present embodiment, the diameter D2 is formed in at least a portion of the conductor 1 facing the iron core 3. By carrying out like this, the dimension of the diameter D3 of the current transformer of the part in which the conductor 1 was surrounded by the iron core 3 can be reduced.

また、径D1から径D2に至る境界部1Aは滑らかな曲面状に形成されている。こうすることで、2つの異なる径の境界部分で電界集中が発生することを防ぎ、固体絶縁物2内での電界緩和を図っている。   Further, the boundary portion 1A from the diameter D1 to the diameter D2 is formed in a smooth curved surface. In this way, electric field concentration is prevented from occurring at the boundary between two different diameters, and electric field relaxation in the solid insulator 2 is achieved.

次に、固体絶縁物2の形状につき説明する。図1、図2に示すように、固体絶縁物2は、導体1と鉄心3と巻線7の全体を被覆するように形成されている。鉄心3及び巻線
7についても全体を被覆したため、従来絶縁上の弱点となっていた2箇所の三重点のうち、絶縁性ガスと固体絶縁物と鉄心より成る三重点の電界については考慮しなくてよい構成となっている。また、前述のように導体1は接地タンク内の他の導体と接続を行うため、導体1の両端部が固体絶縁物2から外部に突出するように形成されている。
Next, the shape of the solid insulator 2 will be described. As shown in FIGS. 1 and 2, the solid insulator 2 is formed so as to cover the conductor 1, the iron core 3, and the winding 7. Since the entire core 3 and the winding 7 are also covered, the electric field at the triple point composed of the insulating gas, the solid insulator, and the iron core is not considered among the two triple points that were weak points in the conventional insulation. It is a good configuration. Further, as described above, since the conductor 1 is connected to other conductors in the ground tank, both ends of the conductor 1 are formed so as to protrude from the solid insulator 2 to the outside.

図3において、導体1と固体絶縁物2と絶縁性ガス4より成る三重点10Bから、鉄心3の被覆材5までの軸方向寸法をhとする。この軸方向寸法hは三重点10Bと鉄心3間の絶縁が十分確保できる長さとする。   In FIG. 3, the axial dimension from the triple point 10 </ b> B composed of the conductor 1, the solid insulator 2, and the insulating gas 4 to the covering material 5 of the iron core 3 is assumed to be h. The axial dimension h is set to a length that can sufficiently secure insulation between the triple point 10 </ b> B and the iron core 3.

更に、三重点10Bから鉄心3に至る、固体絶縁物2の沿面上の長さをL1とする。本実施例においては、1箇所のみ三重点10Bが発生するものの、固体絶縁物2を凸状に形成してL1の距離を長くとることで、三重点10Bから鉄心3間の絶縁沿面距離を保ちながら、軸方向寸法hを縮小することができる。   Furthermore, the length on the creeping surface of the solid insulator 2 from the triple point 10B to the iron core 3 is defined as L1. In this embodiment, the triple point 10B is generated only at one location, but the insulation creepage distance between the triple point 10B and the iron core 3 is maintained by forming the solid insulator 2 in a convex shape and increasing the distance L1. However, the axial dimension h can be reduced.

次に鉄心3周辺部の構造を図3を用いて説明する、鉄心3は複数の珪素鋼板3aが積層されて構成されており、導体1の同軸円状に巻装されている。鉄心3の外周には、巻線7が巻装されている。更に、巻線7の外周には導電性の被覆材5が設けられている。   Next, the structure around the iron core 3 will be described with reference to FIG. 3. The iron core 3 is formed by laminating a plurality of silicon steel plates 3 a and is wound around the conductor 1 in a coaxial circle. A winding 7 is wound around the outer periphery of the iron core 3. Further, a conductive coating material 5 is provided on the outer periphery of the winding 7.

図示を省略しているが、巻線7の周囲にはクッション材が設けられており、巻線7と鉄心3の接触による損傷防止や、巻線7による凹凸部の発生を防止し、電界集中を抑える役割を果たしている。   Although not shown, a cushioning material is provided around the winding 7 to prevent damage due to contact between the winding 7 and the iron core 3, and to prevent the occurrence of uneven portions due to the winding 7, thereby concentrating the electric field. It plays a role to suppress.

巻線7には、同じく図示を省略した信号線が接続されている。導体1に電流が流れると導体1の電磁力によって巻線7に誘起された電流が、この信号線によって2次回路へと伝達される。   Similarly, a signal line (not shown) is connected to the winding 7. When a current flows through the conductor 1, the current induced in the winding 7 by the electromagnetic force of the conductor 1 is transmitted to the secondary circuit through this signal line.

また、本実施例においては、電界の厳しくなる鉄心3の導体1と対向する側の角部3bを段状に形成している。こうすることで、鉄心角部3bを被覆する箇所の被覆材5の曲率半径を大きくすることができ、導体1と鉄心3間の電界緩和を図ることができる。   Further, in the present embodiment, the corner 3b on the side facing the conductor 1 of the iron core 3 where the electric field becomes severe is formed in a step shape. By doing so, the radius of curvature of the covering material 5 at the portion covering the core corner 3b can be increased, and the electric field between the conductor 1 and the iron core 3 can be relaxed.

以上述べたように本実施例に係るモールド変流器においては、鉄心3全体を固体絶縁物2で被覆したことで、従来存在した2箇所の三重点のうち、絶縁性ガスと固体絶縁物と鉄心より成る三重点の電界を考慮する必要がなくなる。このため、1箇所のみとなった三重点、即ち導体1と固体絶縁物2と絶縁性ガス4からなる三重点10Bから鉄心3までの絶縁距離を縮小することが出来る。更に、導体1と固体絶縁物2と絶縁性ガス4よりなる三重点10Bから鉄心3に至るまでの固体絶縁物2の沿面を凸状に形成し、沿面距離を十分に確保したので、絶縁性を保った上で変流器の軸方向及び径方向の寸法縮小が可能となる。   As described above, in the mold current transformer according to the present embodiment, the entire iron core 3 is covered with the solid insulator 2, so that the insulating gas and the solid insulator among the two existing triple points exist. There is no need to consider the electric field at the triple point consisting of the iron core. For this reason, the insulation distance from the triple point which became only one place, ie, the triple point 10B which consists of the conductor 1, the solid insulator 2, and the insulating gas 4, and the iron core 3 can be reduced. Furthermore, the creeping surface of the solid insulator 2 from the triple point 10B consisting of the conductor 1, the solid insulator 2 and the insulating gas 4 to the iron core 3 is formed in a convex shape, and the creeping distance is sufficiently secured. The axial dimension and the radial dimension of the current transformer can be reduced while maintaining

また、絶縁性ガス4中よりも絶縁性能の高い固体絶縁物2中において、導体1と鉄心3間並びに三重点10Bと鉄心3間の絶縁を確保しつつ、鉄心3と対向する部分の導体1の導体径D2を導体1の両端部の径D1より小さく形成して鉄心3を導体1側に近づけて配置したので、変流器の径方向寸法の縮小を図ることができる。また、導体径を異ならせることで発生する導体1の境界部1Aを曲面状に形成すると共に固体絶縁物2内部に配置することで、絶縁性能が確保でき、寸法拡大を防止できる。   Further, in the solid insulator 2 having a higher insulation performance than in the insulating gas 4, a portion of the conductor 1 facing the iron core 3 is secured while ensuring insulation between the conductor 1 and the iron core 3 and between the triple point 10 </ b> B and the iron core 3. The conductor diameter D2 is formed smaller than the diameter D1 at both ends of the conductor 1 and the iron core 3 is disposed close to the conductor 1 side. Therefore, the radial dimension of the current transformer can be reduced. In addition, by forming the boundary portion 1A of the conductor 1 generated by changing the conductor diameter into a curved surface and disposing it inside the solid insulator 2, it is possible to ensure insulation performance and prevent size expansion.

更には、導体1と対向する側の鉄心3の角部3bを段状に形成し、鉄心角部3bを被覆する箇所の被覆材5の曲率半径を大きくすることで導体1と鉄心3間の電界が緩和され、径方向の寸法拡大を防ぐことが出来る。このような構成により、変流器の径方向及び軸方向の縮小化が図れるので、絶縁性の低いガス、例えば乾燥空気を絶縁媒体として用いた場合であっても、変流器全体の大型化を抑制することが可能となる。   Further, the corner 3b of the iron core 3 on the side facing the conductor 1 is formed in a stepped shape, and the radius of curvature of the covering material 5 at the portion covering the iron core corner 3b is increased so that the gap between the conductor 1 and the iron core 3 is increased. The electric field is alleviated and the dimensional expansion in the radial direction can be prevented. With such a configuration, the radial direction and the axial direction of the current transformer can be reduced, so that even when a gas having low insulation properties, for example, dry air, is used as an insulating medium, the size of the current transformer is increased. Can be suppressed.

なお、本実施例では、接地タンク内の絶縁媒体として乾燥空気等の絶縁性の低いガスを用いることを想定しているが、SF等の絶縁性の高いガスを用いた場合には、変流器の更なる小型化を図ることができることは自明である。 In this embodiment, it is assumed that a low insulating gas such as dry air is used as the insulating medium in the ground tank. However, when a highly insulating gas such as SF 6 is used, the gas is changed. It is obvious that further reduction in the size of the flow device can be achieved.

1 導体
1A 境界部
2 固体絶縁物
3 鉄心
4 絶縁性ガス
5 被覆材
7 巻線
10B 三重点
1 conductor 1A boundary
2 Solid Insulator 3 Iron Core 4 Insulating Gas 5 Covering Material 7 Winding 10B Triple Point

Claims (2)

絶縁性ガスを密閉した接地タンク内に配置される導体と、前記導体の同心円状に巻装された鉄心と、前記鉄心に巻装される巻線を有し、
前記導体と前記鉄心と前記巻線間に固体絶縁物が介在するモールド変流器において、
前記固体絶縁物は、少なくとも前記導体と前記鉄心と前記巻線の全体を被覆し、且つ前記導体の両端部が外部に突出するように形成すると共に、
前記導体と前記固体絶縁物と前記絶縁性ガスよりなる三重点から前記鉄心に至るまでの沿面を凸状に形成し
前記導体は、少なくとも前記鉄心と対向する部分の第一の径と、前記導体の両端部の第二の径を有し、
前記第一の径は前記第二の径よりも小さく形成し、
更に前記第一の径と第二の径の境界部は曲面状に形成したことを特徴とするモールド変流器。
A conductor disposed in a grounded tank in which an insulating gas is sealed, an iron core wound concentrically on the conductor, and a winding wound around the iron core;
In a mold current transformer in which a solid insulator is interposed between the conductor, the iron core, and the winding,
The solid insulator covers at least the conductor, the iron core, and the entire winding, and is formed so that both end portions of the conductor protrude to the outside.
Forming a creeping surface from the triple point consisting of the conductor, the solid insulator and the insulating gas to the iron core ,
The conductor has at least a first diameter of a portion facing the iron core and a second diameter of both ends of the conductor;
The first diameter is smaller than the second diameter,
Further , the mold current transformer is characterized in that the boundary between the first diameter and the second diameter is formed in a curved surface shape .
前記鉄心の前記導体と対向する側の角部を段状に形成したことを特徴とする請求項に記載のモールド変流器。 The mold current transformer according to claim 1 , wherein a corner of the iron core facing the conductor is formed in a step shape.
JP2011240202A 2011-11-01 2011-11-01 Mold current transformer Active JP5849617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011240202A JP5849617B2 (en) 2011-11-01 2011-11-01 Mold current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011240202A JP5849617B2 (en) 2011-11-01 2011-11-01 Mold current transformer

Publications (2)

Publication Number Publication Date
JP2013099129A JP2013099129A (en) 2013-05-20
JP5849617B2 true JP5849617B2 (en) 2016-01-27

Family

ID=48620506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240202A Active JP5849617B2 (en) 2011-11-01 2011-11-01 Mold current transformer

Country Status (1)

Country Link
JP (1) JP5849617B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653340A (en) * 2016-12-16 2017-05-10 北京瑞奇恩互感器设备有限公司 Pole-mounted current sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102492518B1 (en) 2021-04-30 2023-01-30 가부시끼가이샤 도꼬 다까오까 instrument transformer
WO2022230245A1 (en) * 2021-04-30 2022-11-03 株式会社東光高岳 Measurement instrument transformer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56591Y2 (en) * 1975-10-30 1981-01-09
JPS52160635U (en) * 1976-05-31 1977-12-06
JPS5791228U (en) * 1980-11-21 1982-06-04
DE4008421C2 (en) * 1990-03-16 1993-10-07 Asea Brown Boveri execution
JP2001223125A (en) * 2000-02-09 2001-08-17 Mitsubishi Electric Corp Electrostatic shielding body and electrostatic shielding device of induction equipment
DE112009004685B4 (en) * 2009-04-24 2020-04-02 Mitsubishi Electric Corporation Head of a high voltage electrical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653340A (en) * 2016-12-16 2017-05-10 北京瑞奇恩互感器设备有限公司 Pole-mounted current sensor
CN106653340B (en) * 2016-12-16 2019-02-19 北京瑞奇恩互感器设备有限公司 Current sensor on column

Also Published As

Publication number Publication date
JP2013099129A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
US10283255B2 (en) Reactor
EP2586044B1 (en) Coil and electric shielding arrangement, transformer comprising the arrangement and a method of manufacturing the arrangement.
JP4794999B2 (en) Lightning proof type low voltage insulation transformer
KR970001379B1 (en) Static conductor type electric apparatus
JP5849617B2 (en) Mold current transformer
JP4977563B2 (en) Three-phase dry transformer
US9837202B2 (en) Stationary induction apparatus
CN103594950B (en) The pole moved end shielding construction of solid insulation switch
JP2016033861A (en) Capacitor bushing and method for producing the same
JP2007129851A (en) Connecting structure of gas insulated switchgear and oil-immersed transformer
KR101547419B1 (en) High voltage arrangement comprising an insulating structure
JP5697918B2 (en) Cable connection
JP2011134873A (en) Resin mold coil
JP7123705B2 (en) dry transformer
JP2010251543A (en) Resin molded coil
CN113488321B (en) Dry-type transformer and winding method thereof
EP4181160A1 (en) Transformer and power equipment
JPH11111539A (en) Stationary induction electrical apparatus
JP2007149944A (en) Mold coil
KR102660314B1 (en) Lead module
JPWO2015033434A1 (en) Insulation support for power switchgear
EP3629348B1 (en) Transfomer with a casting embedding a winding arrangement and method of manufacturing a winding arrangement for a transformer
JP5228071B2 (en) Molded transformer
JP2795971B2 (en) Stationary induction electrical equipment
JP2010283061A (en) Transformer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5849617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150