JP5849264B2 - Piezoelectrically oriented ceramics and manufacturing method thereof - Google Patents

Piezoelectrically oriented ceramics and manufacturing method thereof Download PDF

Info

Publication number
JP5849264B2
JP5849264B2 JP2013549183A JP2013549183A JP5849264B2 JP 5849264 B2 JP5849264 B2 JP 5849264B2 JP 2013549183 A JP2013549183 A JP 2013549183A JP 2013549183 A JP2013549183 A JP 2013549183A JP 5849264 B2 JP5849264 B2 JP 5849264B2
Authority
JP
Japan
Prior art keywords
sample
piezoelectric
powder
oriented ceramic
piezoelectric oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013549183A
Other languages
Japanese (ja)
Other versions
JPWO2013088926A1 (en
Inventor
恭也 三輪
恭也 三輪
慎一郎 川田
慎一郎 川田
木村 雅彦
雅彦 木村
鈴木 達
達 鈴木
打越 哲郎
哲郎 打越
目 義雄
義雄 目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
National Institute for Materials Science
Original Assignee
Murata Manufacturing Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, National Institute for Materials Science filed Critical Murata Manufacturing Co Ltd
Priority to JP2013549183A priority Critical patent/JP5849264B2/en
Publication of JPWO2013088926A1 publication Critical patent/JPWO2013088926A1/en
Application granted granted Critical
Publication of JP5849264B2 publication Critical patent/JP5849264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5204Monocrystalline powders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Description

この発明は、三成分系PZT(Pb((Ti1-xZrx1-y)((MaaMbby)O3)化合物を主成分とする圧電配向セラミックスおよびその製造方法に関する。This invention relates to a piezoelectric oriented ceramics and a manufacturing method thereof mainly containing ternary PZT (Pb ((Ti 1- x Zr x) 1-y) ((Ma a Mb b) y) O 3) compound.

従来、誘電体材料や圧電体材料として、ペロブスカイト構造を有する圧電配向セラミックスが使用されている。これらのペロブスカイト構造を有する圧電配向セラミックスにおいては、その結晶を配向させることによって、圧電配向セラミックスの電気特性が向上することが知られている。   Conventionally, piezoelectric oriented ceramics having a perovskite structure have been used as dielectric materials and piezoelectric materials. In the piezoelectric oriented ceramics having these perovskite structures, it is known that the electrical characteristics of the piezoelectric oriented ceramics are improved by orienting the crystals.

ペロブスカイト構造を有する圧電配向セラミックスの製造方法として、例えば、特許文献1に記載の技術が提案されている。特許文献1に記載された技術は、ペロブスカイト構造を有する主成分100molに対して5mol以下(ただし0molを除く)の割合で含有される副成分とを含み、該副成分として、たとえば3d元素を含む仮焼粉末を溶媒と混合して作製したスラリーを磁場中で成形しようとする圧電配向セラミックスの製造方法である。   As a method for producing a piezoelectric oriented ceramic having a perovskite structure, for example, a technique described in Patent Document 1 has been proposed. The technique described in Patent Document 1 includes subcomponents contained in a ratio of 5 mol or less (excluding 0 mol) with respect to 100 mol of the main component having a perovskite structure, and includes, for example, a 3d element as the subcomponent. This is a method for producing a piezoelectric oriented ceramic in which a slurry prepared by mixing calcined powder with a solvent is formed in a magnetic field.

また、ペロブスカイト構造を有する圧電配向セラミックスの製造方法として、特許文献2に記載の技術が提案されている。特許文献2に記載された技術は、チタン酸ジルコン酸鉛系化合物を主成分とする圧電原料粉末を含むスラリーを磁場中で成形することを特徴とする圧電配向セラミックスの製造方法である。   In addition, as a method for producing a piezoelectric oriented ceramic having a perovskite structure, a technique described in Patent Document 2 has been proposed. The technique described in Patent Document 2 is a method for producing a piezoelectric oriented ceramic, characterized in that a slurry containing a piezoelectric raw material powder mainly composed of a lead zirconate titanate compound is formed in a magnetic field.

特開2008−037064号公報JP 2008-037064 A 特開2010−090021号公報JP 2010-090021 A

しかしながら、特許文献1に記載のペロブスカイト構造を有する主成分100molに対して副成分5molとした圧電配向セラミックスでは、配向した圧電配向セラミックスが得られるが、高い圧電d定数を得ることが困難であった。   However, in the piezoelectric oriented ceramic described in Patent Document 1 with the main component having a perovskite structure of 100 mol and the subcomponent being 5 mol, an oriented piezoelectric oriented ceramic can be obtained, but it is difficult to obtain a high piezoelectric d constant. .

また、特許文献2に記載の圧電配向セラミックスの製造方法において、圧電原料粉末の仮焼温度を高めると配向度は高くなるが、圧電d定数が大幅に低下することが明らかとなった。また、仮焼温度が低いと、配向度が低くなるという問題があった。   Further, in the method for producing a piezoelectric oriented ceramic described in Patent Document 2, it has been clarified that when the calcining temperature of the piezoelectric raw material powder is increased, the degree of orientation is increased, but the piezoelectric d constant is significantly reduced. Further, when the calcining temperature is low, there is a problem that the degree of orientation is low.

それゆえに、この発明の主たる目的は、三成分系PZT化合物において、結晶配向性が高く、かつ圧電d定数の高い圧電配向セラミックスおよびその製造方法を提供することである。   Therefore, a main object of the present invention is to provide a piezoelectric oriented ceramic having a high crystal orientation and a high piezoelectric d constant in a ternary PZT compound and a method for producing the same.

この発明にかかる圧電配向セラミックスは、組成式(Pb((Ti1-xZrx1-y)((MaaMbby)O3)を主成分とする圧電配向セラミックスであって、MaがNi、Mn、Cr、Mg、Sn、Fe、Co、Znの少なくとも1種であり、MbがNbであり、a+b=1を満たし、かつMaとMbとの合計量yが0.06≦y≦0.40で、かつTiとZrのモル比率(1−x)/xが1.0≦(1−x)/x≦2.0であり、結晶相が正方晶またはモルフォトロピック相境界であり、Lotgering法による配向度が50%以上であり、且つ、圧電d 33 定数が230pC/N以上であることを特徴とする、圧電配向セラミックスである。
またこの発明にかかる圧電配向セラミックスの製造方法は、組成式(Pb((Ti1-xZrx1-y)((MaaMbby)O3)を主成分とする組成物粉末を含むスラリーを磁場中で成形することを特徴とする圧電配向セラミックスの製造方法であって、組成物粉末は、MaがNi、Mn、Cr、Mg、Sn、Fe、Co、Znの少なくとも1種であり、MbがNbであり、a+b=1を満たし、かつMaとMbとの合計量yが0.06≦y≦0.40であり、かつTiとZrのモル比率(1−x)/xが1.0≦(1−x)/x≦2.0であり、前記組成式となるように調合された素原料粉末を含む、素原料混合スラリーを作製する工程と、素原料混合スラリーを乾燥したものを900℃以下の温度で仮焼して仮焼粉末を作製する工程と、仮焼粉末を、アルカリ金属のハロゲン塩をフラックスとするフラックス中で熱処理する工程と、を含むことを特徴とする、圧電配向セラミックスの製造方法である。
また、この発明にかかる圧電配向セラミックスの製造方法では、アルカリ金属のハロゲン塩が、KClまたはNaClの少なくとも一方であることが好ましい。
また、この発明にかかる圧電配向セラミックスの製造方法では、仮焼粉末を作製する工程において、800℃以上の温度で仮焼することが好ましい。
Piezoelectric oriented ceramic according to the present invention is the piezoelectric oriented ceramics mainly the composition formula (Pb ((Ti 1-x Zr x) 1-y) ((Ma a Mb b) y) O 3), Ma is at least one of Ni, Mn, Cr, Mg, Sn, Fe, Co, Zn, Mb is Nb, a + b = 1 is satisfied, and the total amount y of Ma and Mb is 0.06 ≦ y ≦ 0.40, the molar ratio of Ti to Zr (1-x) / x is 1.0 ≦ (1-x) /x≦2.0, and the crystal phase is a tetragonal or morphotropic phase boundary der is, it is the degree of orientation according Lotgering method 50% or more and a piezoelectric constant d 33 is characterized in der Rukoto more 230PC / N, a piezoelectric oriented ceramic.
The manufacturing method of the piezoelectric oriented ceramic according to the present invention, the composition formula (Pb ((Ti 1-x Zr x) 1-y) ((Ma a Mb b) y) O 3) composition powder based on A method for producing a piezoelectric oriented ceramic characterized in that a slurry containing s is formed in a magnetic field, wherein the composition powder has at least one of Ma, Ni, Mn, Cr, Mg, Sn, Fe, Co, and Zn. Mb is Nb, a + b = 1 is satisfied, and the total amount y of Ma and Mb is 0.06 ≦ y ≦ 0.40, and the molar ratio of Ti and Zr (1-x) / a step of preparing a raw material mixed slurry, wherein x is 1.0 ≦ (1-x) /x≦2.0, and the raw material mixed slurry includes the raw material powder prepared so as to have the composition formula; A step of preparing a calcined powder by calcining a dried product at a temperature of 900 ° C. or lower ; And a step of heat-treating the calcined powder in a flux using an alkali metal halide salt as a flux .
In the manufacturing method of the piezoelectric oriented ceramic according to the present invention, the halogen salt of A alkali metal is preferably at least one of KCl or NaCl.
In the method for producing a piezoelectric oriented ceramic according to the present invention, it is preferable to calcine at a temperature of 800 ° C. or higher in the step of producing the calcined powder.

この発明にかかる圧電配向セラミックスによれば、Lotgering法により算出した配向度が高く、かつ圧電d定数が高い圧電配向セラミックスを得ることができる。
また、この発明にかかる圧電配向セラミックスでは、圧電配向セラミックスを構成する粒子が、形状異方性の小さい球状であるので、クラックの発生や進展を生じさせにくくすることができる。
さらに、この発明にかかる圧電配向セラミックスの製造方法によれば、Lotgering法により算出した配向度が高い圧電配向セラミックスを得ることができる。
また、この発明にかかる圧電配向セラミックスの製造方法では、組成物粉末として、仮焼粉末をアルカリ金属のハロゲン塩をフラックスとするフラックス中で熱処理した粉末を用いることにより、磁場中成形による高い配向度と高い圧電d定数を得ることができる。
さらに、この発明にかかる圧電配向セラミックスの製造方法では、仮焼粉末を作製する工程において、900℃以下の温度で仮焼することにより、Lotgering法により算出した配向度が高く、さらに圧電d定数の高い圧電配向セラミックスを得ることができる。
According to the piezoelectric oriented ceramic according to the present invention, a piezoelectric oriented ceramic having a high degree of orientation calculated by the Lottgering method and a high piezoelectric d constant can be obtained.
Moreover, in the piezoelectric oriented ceramic according to the present invention, since the particles constituting the piezoelectric oriented ceramic are spherical with a small shape anisotropy, it is possible to make it difficult for cracks to be generated and propagated.
Furthermore, according to the method for producing a piezoelectric oriented ceramic according to the present invention, a piezoelectric oriented ceramic having a high degree of orientation calculated by the Lottgering method can be obtained.
Further, in the method for producing a piezoelectric oriented ceramic according to the present invention, a powder obtained by heat-treating a calcined powder in a flux using an alkali metal halogen salt as a flux is used as a composition powder, thereby achieving a high degree of orientation by molding in a magnetic field. A high piezoelectric d constant can be obtained.
Furthermore, in the method for producing a piezoelectric oriented ceramic according to the present invention, the degree of orientation calculated by the Rotgering method is high by calcining at a temperature of 900 ° C. or lower in the step of producing the calcined powder, and the piezoelectric d constant is further reduced. High piezoelectric oriented ceramics can be obtained.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。   The above-mentioned object, other objects, features and advantages of the present invention will become more apparent from the following description of embodiments for carrying out the invention with reference to the drawings.

得られた試料1ないし試料17の粉末のうち、代表的なもののSEM像であり、(a)は、試料1のSEM像であり、(b)は、試料3のSEM像であり、(c)は、試料4のSEM像であり、(d)は、試料6のSEM像であり、(e)は、試料7のSEM像であり、(f)は、試料8のSEM像である。Among the obtained powders of Sample 1 to Sample 17, are representative SEM images, (a) is an SEM image of Sample 1, (b) is an SEM image of Sample 3, and (c ) Is an SEM image of sample 4, (d) is an SEM image of sample 6, (e) is an SEM image of sample 7, and (f) is an SEM image of sample 8. 試料18ないし試料20のセラミック粉末のSEM像であり、(a)は、試料18のSEM像であり、(b)は、試料19のSEM像であり、(c)は、試料20のSEM像である。It is a SEM image of the ceramic powder of Sample 18 to Sample 20, (a) is an SEM image of Sample 18, (b) is an SEM image of Sample 19, and (c) is an SEM image of Sample 20. It is. 得られた試料1ないし試料17のうち、代表的なものの圧電配向セラミックスの焼結体の所定の断面におけるXRDチャートであり、(a)は、試料1、試料3、試料4、試料6および試料7のXRDチャートであり、(b)は、試料8のXRDチャートであり(c)は、試料9のXRDチャートである。It is the XRD chart in the predetermined cross section of the sintered body of the piezoelectric orientation ceramics of a representative thing among the obtained samples 1 thru | or 17, (a) is a sample 1, a sample 3, a sample 4, a sample 6, and a sample 7 is an XRD chart of the sample 9, (b) is an XRD chart of the sample 8, and (c) is an XRD chart of the sample 9. 得られた試料18ないし試料20の圧電配向セラミックスの焼結体の所定の断面におけるXRDチャートであり、(a)は、試料18のXRDチャートであり、(b)は、試料19のXRDチャートであり、(c)は、試料20のXRDチャートである。FIG. 6 is an XRD chart of a predetermined cross section of the obtained sintered body of piezoelectric oriented ceramics of Sample 18 to Sample 20, (a) is an XRD chart of Sample 18, and (b) is an XRD chart of Sample 19. FIG. And (c) is an XRD chart of the sample 20.

本発明にかかる圧電配向セラミックスおよびその製造方法の一実施の形態について説明する。   An embodiment of a piezoelectric oriented ceramic and a method for producing the same according to the present invention will be described.

(圧電配向セラミックス)
本発明にかかる圧電配向セラミックスは、複合ペロブスカイト構造を有する圧電配向セラミックスである。この圧電配向セラミックスを構成する粒子は、三成分系PZT化合物である組成式Pb((Ti1-xZrx1-y)((MaaMbby)O3を主成分とする粒子を含む。また、この圧電配向セラミックスを構成する粒子は球状である。
(Piezoelectric oriented ceramics)
The piezoelectric oriented ceramic according to the present invention is a piezoelectric oriented ceramic having a composite perovskite structure. The particles constituting the piezoelectric oriented ceramic are particles mainly composed of a compositional formula Pb ((Ti 1−x Zr x ) 1−y ) ((Ma a Mb b ) y ) O 3 which is a ternary PZT compound. including. Further, the particles constituting the piezoelectric oriented ceramic are spherical.

また、本発明にかかる圧電配向セラミックスは、組成式Pb((Ti1-xZrx1-y)((MaaMbby)O3を主成分とし、MaがNi、Mn、Cr、Mg、Sn、Fe、Co、Znの少なくとも1種であり、MbがNbであり、a+b=1を満たし、かつMaとMbとの合計量yが0.06≦y≦0.40であり、かつTiとZrのモル比率(1−x)/xが1.0≦(1−x)/x≦2.0である。Further, the piezoelectric oriented ceramic according to the present invention has a composition formula Pb ((Ti 1−x Zr x ) 1−y ) ((Ma a Mb b ) y ) O 3 as a main component, and Ma is Ni, Mn, Cr , Mg, Sn, Fe, Co, Zn, Mb is Nb, a + b = 1 is satisfied, and the total amount y of Ma and Mb is 0.06 ≦ y ≦ 0.40 And the molar ratio (1-x) / x of Ti and Zr is 1.0 ≦ (1-x) /x≦2.0.

また、本発明にかかる圧電配向セラミックスは、結晶相が正方晶またはモルフォトロピック相境界である。   In the piezoelectric oriented ceramic according to the present invention, the crystal phase is a tetragonal or morphotropic phase boundary.

本発明にかかる圧電配向セラミックスにおいて、組成式Pb((Ti1-xZrx1-y)((MaaMbby)O3の組成範囲を上記の範囲とすることで、結晶相が菱面体晶からモルフォトロピック相境界を介して正方晶となるため、磁場中成形による配向化が起こりやすくなると考えられる。また、Ma、Mbの量をこの発明にかかる圧電配向セラミックスの組成範囲とすることで、結晶方位ごとの磁化率の差が大きくなり、磁場中成形すると配向化しやすくなり、かつMa、Mbを加えることにより電気特性が向上すると考えられる。In the piezoelectric oriented ceramic according to the present invention, the composition range of the composition formula Pb ((Ti 1−x Zr x ) 1−y ) ((Ma a Mb b ) y ) O 3 is the above range, Since it becomes a tetragonal crystal from a rhombohedral crystal through a morphotropic phase boundary, it is considered that orientation by forming in a magnetic field is likely to occur. Further, by setting the amounts of Ma and Mb within the composition range of the piezoelectric oriented ceramic according to the present invention, the difference in magnetic susceptibility for each crystal orientation becomes large, and when formed in a magnetic field, orientation becomes easy, and Ma and Mb are added. This is thought to improve the electrical characteristics.

したがって、本発明にかかる圧電配向セラミックスによれば、この圧電配向セラミックスの所定の断面におけるX線回折(XRD)パターンに基づいて、Lotgering(ロットゲーリング)法により算出した配向度が高く、かつ圧電d定数が高い圧電配向セラミックスが得られる。   Therefore, according to the piezoelectric oriented ceramic according to the present invention, the degree of orientation calculated by the Lottgering method is high based on the X-ray diffraction (XRD) pattern in a predetermined cross section of the piezoelectric oriented ceramic, and the piezoelectric d Piezoelectric oriented ceramics with a high constant can be obtained.

(圧電配向セラミックスの製造方法)
次に、本発明にかかる圧電配向セラミックスの製造方法の一実施の形態について説明する。
(Method of manufacturing piezoelectric oriented ceramics)
Next, an embodiment of a method for producing a piezoelectric oriented ceramic according to the present invention will be described.

本発明にかかる圧電配向セラミックスを製造するため、複合ペロブスカイト構造を有している三成分系PZT化合物を含む組成物粉末を用意する。三成分系PZT化合物を含む組成物粉末を用意するため、例えば、酸化鉛、酸化チタン、酸化ジルコニウム、酸化ニッケルおよび酸化ニオブなどの素原料を組成式Pb((Ti1-xZrx1-y)((MaaMbby)O3となるように調合した上で湿式混合して素原料を混合したスラリーが得られる。このとき、Maは、Niであり、Mbは、Nbであり、a+b=1を満たし、かつ0.06≦y≦0.40である。また、組成式Pb((Ti1-xZrx1-y)((MaaMbby)O3は、TiとZrのモル比率(1−x)/xが1.0≦(1−x)/x≦2.0である。In order to produce the piezoelectric oriented ceramic according to the present invention, a composition powder containing a ternary PZT compound having a composite perovskite structure is prepared. In order to prepare a composition powder containing a ternary PZT compound, for example, raw materials such as lead oxide, titanium oxide, zirconium oxide, nickel oxide and niobium oxide are used as a composition formula Pb ((Ti 1-x Zr x ) 1- Y ) ((Ma a Mb b ) y ) O 3 is prepared, and then wet-mixed to obtain a slurry in which raw materials are mixed. At this time, Ma is Ni, Mb is Nb, satisfies a + b = 1, and satisfies 0.06 ≦ y ≦ 0.40. Further, the composition formula Pb ((Ti 1−x Zr x ) 1−y ) ((Ma a Mb b ) y ) O 3 indicates that the molar ratio of Ti to Zr (1-x) / x is 1.0 ≦ ( 1-x) /x≦2.0.

得られた素原料混合スラリーは、乾燥され、900℃以下で仮焼されて、三成分系PZT化合物の仮焼物が作製される。そして、この仮焼物を乾式粉砕して、組成物粉末として、仮焼粉末が作製される。続いて、この仮焼粉末をアルカリ金属のハロゲン塩をフラックスとするフラックス中で熱処理を行い、三成分系PZT化合物をフラックス中で熱処理した粉末が用意される。なお、本発明にかかる圧電配向セラミックスを製造するための組成物粉末としては、フラックス中で熱処理した粉末を用いることが好ましい。なお、高配向の圧電配向セラミックスを得るため、仮焼物を作製する際の仮焼温度は、700℃以上1100℃以下が好ましいが、さらに、高い圧電d定数の圧電配向セラミックスを得るためには、800℃以上900℃以下が好ましい。   The obtained raw material mixed slurry is dried and calcined at 900 ° C. or lower to prepare a calcined product of a ternary PZT compound. Then, this calcined product is dry-pulverized to produce a calcined powder as a composition powder. Subsequently, the calcined powder is heat-treated in a flux using a halogen salt of an alkali metal as a flux, and a powder obtained by heat-treating a ternary PZT compound in the flux is prepared. In addition, it is preferable to use the powder heat-processed in the flux as a composition powder for manufacturing the piezoelectric orientation ceramics concerning this invention. In order to obtain a highly oriented piezoelectric oriented ceramic, the calcining temperature at the time of producing the calcined product is preferably 700 ° C. or higher and 1100 ° C. or lower. Further, in order to obtain a piezoelectric oriented ceramic having a high piezoelectric d constant, 800 degreeC or more and 900 degrees C or less are preferable.

ここで、アルカリ金属のハロゲン塩をフラックスとする熱処理は、例えば、KClおよびNaClの少なくとも一方が有利に用いられるが、KClが特に好ましい。   Here, in the heat treatment using a halogen salt of an alkali metal as a flux, for example, at least one of KCl and NaCl is advantageously used, and KCl is particularly preferable.

また、三成分系PZT化合物の組成物粉末を用意するため、Maの材料のために酸化ニッケルを準備したが、Maのための材料としては、酸化マンガン、酸化クロム、酸化マグネシウム、酸化スズ、酸化鉄、酸化コバルト、酸化亜鉛の少なくとも1種でもよい。また、前記組成範囲になるように調合する範囲においては、素原料として前記酸化物の一部または全部を、複合酸化物や炭酸塩や水酸化物で置き換えても良い。   In addition, in order to prepare a composition powder of a ternary PZT compound, nickel oxide was prepared for the Ma material, but as the material for Ma, manganese oxide, chromium oxide, magnesium oxide, tin oxide, oxidation It may be at least one of iron, cobalt oxide, and zinc oxide. Moreover, in the range prepared so that it may become the said composition range, you may substitute a part or all of the said oxide as a raw material with complex oxide, carbonate, and a hydroxide.

続いて、上記の方法により用意された三成分系PZT化合物の組成物粉末を含む組成物粉末スラリーが作製される。そして、作製された組成物粉末スラリーを使用して磁場中で成形することによって成形体が得られる。このように、作製された組成物粉末スラリーを磁場中で成形することによって、成形体に含まれる結晶の結晶軸が、付与された磁場に従って、所定の方向に配向される。   Subsequently, a composition powder slurry containing the composition powder of the ternary PZT compound prepared by the above method is prepared. And a molded object is obtained by shape | molding in a magnetic field using the produced composition powder slurry. Thus, by shaping the prepared composition powder slurry in a magnetic field, the crystal axes of the crystals contained in the compact are oriented in a predetermined direction according to the applied magnetic field.

次に、上記方法により製造された成形体を焼成して、圧電配向セラミックスが得られる。   Next, the molded body manufactured by the above method is fired to obtain a piezoelectric oriented ceramic.

本発明にかかる圧電配向セラミックの製造方法によれば、圧電配向セラミックスにおいて、組成式(Pb((Ti1-xZrx1-y)((MaaMbby)O3)を主成分とする組成物粉末の組成範囲を、MaがNi、Mn、Cr、Mg、Sn、Fe、Co、Znの少なくとも1種であり、MbがNbであり、a+b=1を満たし、かつMaとMbとの合計量yが0.06≦y≦0.40で、かつTiとZrのモル比率(1−x)/xが1.0≦(1−x)/x≦2.0とすることで、Lotgering(ロットゲーリング)法により算出した配向度が高く、また、圧電d定数の高い圧電配向セラミックスを得ることができる。According to the method for manufacturing a piezoelectric oriented ceramic according to the present invention, the compositional formula (Pb ((Ti 1−x Zr x ) 1−y ) ((Ma a Mb b ) y ) O 3 ) is mainly used in the piezoelectric oriented ceramic. The composition range of the composition powder as a component is such that Ma is at least one of Ni, Mn, Cr, Mg, Sn, Fe, Co, and Zn, Mb is Nb, a + b = 1 is satisfied, and Ma The total amount y with Mb is 0.06 ≦ y ≦ 0.40, and the molar ratio of Ti and Zr (1-x) / x is 1.0 ≦ (1-x) /x≦2.0. Thus, a piezoelectric oriented ceramic having a high degree of orientation calculated by the Lottgering method and a high piezoelectric d constant can be obtained.

また、本発明にかかる圧電配向セラミックスの製造方法によれば、仮焼粉末からフラックス中で熱処理した粉末を作製する工程において、仮焼粉末に対して、アルカリ金属のハロゲン塩をフラックスとする熱処理を行った組成物粉末を用いることにより、Lotgering法により算出した配向度が高い圧電配向セラミックスを得ることができる。さらに、仮焼粉末を作製する工程において、900℃以下の温度で仮焼することで、圧電d定数の高い圧電配向セラミックスを得ることができる。   Further, according to the method for manufacturing a piezoelectric oriented ceramic according to the present invention, in the step of producing a powder heat-treated in the flux from the calcined powder, the calcined powder is subjected to a heat treatment using an alkali metal halogen salt as a flux. By using the performed composition powder, a piezoelectric oriented ceramic with a high degree of orientation calculated by the Lottgering method can be obtained. Furthermore, in the step of producing the calcined powder, by performing calcining at a temperature of 900 ° C. or lower, a piezoelectric oriented ceramic having a high piezoelectric d constant can be obtained.

次に、本発明に係る圧電配向セラミックスの製造方法およびその製造方法により作製された圧電配向セラミックスの効果を確認するために行った実験例について以下に説明する。   Next, a method for manufacturing a piezoelectric oriented ceramic according to the present invention and an experimental example performed for confirming the effect of the piezoelectric oriented ceramic produced by the manufacturing method will be described below.

1.試料の作製
(試料1〜試料17)
試料1ないし試料17は、以下に記載の作製方法により作製された。試料1ないし試料17は、組成式Pb((Ti1-xZrx1-y)((MaaMbby)O3を主成分とする組成物粉末において、Ti/Zrのモル比率、MaMb量およびMaの材料を変化させたものである。
1. Sample preparation (Sample 1 to Sample 17)
Samples 1 to 17 were manufactured by the manufacturing method described below. Samples 1 to 17 are the composition powders having the composition formula Pb ((Ti 1−x Zr x ) 1−y ) ((Ma a Mb b ) y ) O 3 as the main component, and the molar ratio of Ti / Zr. The amount of MaMb and the material of Ma are changed.

試料1〜試料10は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化ニッケルおよび酸化ニオブが、組成として組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3となるように調合された。なお、aは1/3であり、bは2/3であるので、a+b=1である。Samples 1 to 10 are composed of lead oxide, titanium oxide, zirconium oxide, nickel oxide and niobium oxide as raw materials, and a composition formula Pb ((Ti 1-x Zr x ) 1-y (Ma 1/3 Mb 2 / 3 ) y ) O 3 . Since a is 1/3 and b is 2/3, a + b = 1.

また、試料11は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化マンガンおよび酸化ニオブが、組成として組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3となるように調合され、試料12は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化クロムおよび酸化ニオブが、組成として組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3となるように調合され、試料13は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化マグネシウムおよび酸化ニオブが、組成として組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3となるように調合され、試料14は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化スズおよび酸化ニオブが、組成としてPb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3となるように調合された。
さらに、試料15は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化鉄および酸化ニオブが、組成として組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3となるように調合され、試料16は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化コバルトおよび酸化ニオブが、組成として組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3となるように調合され、試料17は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化亜鉛および酸化ニオブが、組成として組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3となるように調合された。
Sample 11 is composed of lead oxide, titanium oxide, zirconium oxide, manganese oxide and niobium oxide as raw materials, and a composition formula Pb ((Ti 1-x Zr x ) 1-y (Ma 1/3 Mb 2 / 3 ) y ) Prepared to be O 3, and sample 12 is composed of lead oxide, titanium oxide, zirconium oxide, chromium oxide and niobium oxide as raw materials, and a composition formula Pb ((Ti 1-x Zr x ) as a composition. 1-y (Ma 1/3 Mb 2/3 ) y ) O 3, and sample 13 is composed of lead oxide, titanium oxide, zirconium oxide, magnesium oxide and niobium oxide as the composition as raw materials. Formula 14 is prepared so as to be Pb ((Ti 1−x Zr x ) 1−y (Ma 1/3 Mb 2/3 ) y ) O 3. Sample 14 is composed of lead oxide, titanium oxide, zirconium oxide as raw materials. , Tin oxide and niobium oxide have the composition Pb (Ti 1-x Zr x) formulated such that 1-y (Ma 1/3 Mb 2/3 ) y) O 3.
Further, sample 15 is composed of lead oxide, titanium oxide, zirconium oxide, iron oxide and niobium oxide as raw materials, and a composition formula Pb ((Ti 1-x Zr x ) 1-y (Ma 1/3 Mb 2 / 3 ) y ) prepared so as to be O 3 , sample 16 is composed of lead oxide, titanium oxide, zirconium oxide, cobalt oxide and niobium oxide as raw materials, and compositional formula Pb ((Ti 1-x Zr x ) as composition 1-y (Ma 1/3 Mb 2/3 ) y ) O 3 was prepared, and sample 17 was composed of lead oxide, titanium oxide, zirconium oxide, zinc oxide and niobium oxide as a raw material. formulated such that the formula Pb ((Ti 1-x Zr x) 1-y (Ma 1/3 Mb 2/3) y) O 3.

ここで、試料1〜試料17の各試料に対する組成として組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3におけるTiとZrのモル比率(Ti/Zr比)を表1に示す。また、試料1〜試料17の各試料に対する組成として組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3におけるMaMb量であるyの値も表1に示す。Here, the composition ratio of Ti to Zr in the composition formula Pb ((Ti 1-x Zr x ) 1-y (Ma 1/3 Mb 2/3 ) y ) O 3 as the composition of each of the samples 1 to 17 (Ti / Zr ratio) is shown in Table 1. The value of y is MaMb amount in the composition formula Pb ((Ti 1-x Zr x) 1-y (Ma 1/3 Mb 2/3) y) O 3 as a composition for each sample of samples 1 17 Are also shown in Table 1.

次に、上記の記載のとおり調合されたものは、水を溶媒としてボールミルにより混合撹拌され、素原料混合スラリーが得られた。得られた素原料混合スラリーを乾燥したものは、900℃で仮焼され、仮焼粉末が得られた。続いて、得られた仮焼粉末とKClとは、重量比で1:1となるように混合され、アルミナるつぼ中で1000℃、12時間熱処理して室温まで冷却した後、KClを水洗除去して、組成物粉末として、組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3y)O3のフラックス中で熱処理した粉末が得られた。Next, what was prepared as described above was mixed and stirred by a ball mill using water as a solvent to obtain a raw material mixed slurry. What dried the obtained raw material mixing slurry was calcined at 900 ° C. to obtain a calcined powder. Subsequently, the obtained calcined powder and KCl were mixed at a weight ratio of 1: 1, heat-treated in an alumina crucible at 1000 ° C. for 12 hours and cooled to room temperature, and then KCl was removed by washing with water. Te, as a composition powder the composition formula Pb ((Ti 1-x Zr x) 1-y (Ma 1/3 Mb 2/3) y) powder heat-treated at O 3 in the flux was obtained.

ここで、得られた試料1ないし試料17のフラックス中で熱処理した粉末のうち、代表的なもののSEM像が、図1に示される。図1(a)は、試料1のSEM像であり、図1(b)は、試料3のSEM像であり、図1(c)は、試料4のSEM像であり、図1(d)は、試料6のSEM像であり、図1(e)は、試料7のSEM像であり、図1(f)は、試料8のSEM像である。図1によると、いずれのフラックス中で熱処理した粉末も球状であることがわかる。すなわち、図1に示される各試料に係るフラックス中で熱処理した粉末は、結晶粒が等方的に成長しており、形状異方性の小さいことがわかる。   Here, an SEM image of a representative one of the powders heat-treated in the fluxes of the obtained samples 1 to 17 is shown in FIG. 1A is an SEM image of the sample 1, FIG. 1B is an SEM image of the sample 3, FIG. 1C is an SEM image of the sample 4, and FIG. Is an SEM image of sample 6, FIG. 1 (e) is an SEM image of sample 7, and FIG. 1 (f) is an SEM image of sample 8. According to FIG. 1, it can be seen that the powder heat-treated in any flux is spherical. That is, it can be seen that the powder heat-treated in the flux according to each sample shown in FIG. 1 has crystal grains growing isotropically and has a small shape anisotropy.

次に、得られたフラックス中で熱処理した粉末を25g取り出し、このフラックス中で熱処理した粉末100重量部に対し、分散剤1.5重量部、純水40重量部を加えて8時間ボールミル混合することにより、組成物粉末スラリーが得られた。   Next, 25 g of the powder heat-treated in the obtained flux was taken out, and 1.5 parts by weight of a dispersant and 40 parts by weight of pure water were added to 100 parts by weight of the powder heat-treated in the flux, followed by ball mill mixing for 8 hours. Thus, a composition powder slurry was obtained.

次に、得られた組成物粉末スラリーは、12Tの磁場中で鋳込み成形することにより、成形体が得られた。得られた成形体は、焼成温度1150℃、トップ温度での保持時間3時間の条件で焼成され、試料1ないし試料17の焼結体が得られた。   Next, the obtained composition powder slurry was cast and molded in a 12 T magnetic field to obtain a molded body. The obtained molded body was fired under conditions of a firing temperature of 1150 ° C. and a holding time of 3 hours at the top temperature, and sintered bodies of Sample 1 to Sample 17 were obtained.

続いて、試料18ないし試料20の作製において、仮焼粉末を得るための仮焼温度を変化させ、さらに仮焼粉末に対するフラックス中での熱処理の有無の効果についての実験例が示される。   Subsequently, in the production of Sample 18 to Sample 20, an experimental example is shown regarding the effect of the presence or absence of heat treatment in the flux for the calcined powder by changing the calcining temperature for obtaining the calcined powder.

(試料18)
試料18は、以下に記載の作製方法により作製された。なお、試料18は、900℃で仮焼された仮焼粉末をKClフラックス中で熱処理した組成物粉末を用いた試料である。
試料18は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化ニッケル、酸化ニオブが、組成として組成式Pb(Ti0.40Zr0.33(Ni1/3Nb2/30.27)O3となるように調合された。そして、調合されたものは、水を溶媒としてボールミルにより混合撹拌され、素原料混合スラリーが得られた。得られた素原料混合スラリーを乾燥したものは、900℃で仮焼され、仮焼粉末が得られた。得られた仮焼粉末とKClとは、重量比で1:1となるように混合され、アルミナるつぼ中で1000℃、12時間熱処理して室温まで冷却した後、KClを水洗除去して、組成物粉末として、組成式Pb(Ti0.40Zr0.33(Ni1/3Nb2/30.27)O3のフラックス中で熱処理した粉末が得られた。ここで、得られたフラックス中で熱処理した粉末のSEM像は、図2(a)に示される。図2(a)によると、フラックス中で熱処理した粉末は球状であることがわかる。すなわち、図2(a)に示される各試料に係るフラックス中で熱処理した粉末は、結晶粒が等方的に成長しており、形状異方性が小さいことがわかる。
(Sample 18)
Sample 18 was produced by the production method described below. In addition, the sample 18 is a sample using the composition powder which heat-processed the calcining powder calcined at 900 degreeC in KCl flux.
In the sample 18, lead oxide, titanium oxide, zirconium oxide, nickel oxide, and niobium oxide are used as raw materials, and the composition is the composition formula Pb (Ti 0.40 Zr 0.33 (Ni 1/3 Nb 2/3 ) 0.27 ) O 3. Was formulated. The prepared mixture was mixed and stirred by a ball mill using water as a solvent to obtain a raw material mixed slurry. What dried the obtained raw material mixing slurry was calcined at 900 ° C. to obtain a calcined powder. The obtained calcined powder and KCl were mixed at a weight ratio of 1: 1, heat-treated in an alumina crucible at 1000 ° C. for 12 hours and cooled to room temperature, and then KCl was washed away with water to obtain a composition. As a product powder, a powder heat-treated in a flux of composition formula Pb (Ti 0.40 Zr 0.33 (Ni 1/3 Nb 2/3 ) 0.27 ) O 3 was obtained. Here, the SEM image of the powder heat-processed in the obtained flux is shown by Fig.2 (a). According to FIG. 2A, it can be seen that the powder heat-treated in the flux is spherical. That is, it can be seen that the powder heat-treated in the flux according to each sample shown in FIG. 2A has isotropic crystal growth and small shape anisotropy.

次に、得られたフラックス中で熱処理した粉末を25g取り出し、このフラックス中で熱処理した粉末100重量部に対し、分散剤1.5重量部、純水40重量部を加えて8時間ボールミル混合することにより、組成物粉末スラリーが得られた。   Next, 25 g of the powder heat-treated in the obtained flux was taken out, and 1.5 parts by weight of a dispersant and 40 parts by weight of pure water were added to 100 parts by weight of the powder heat-treated in the flux, followed by ball mill mixing for 8 hours. Thus, a composition powder slurry was obtained.

次に、得られた組成物粉末スラリーは、12Tの磁場中で鋳込み成形することにより、成形体が得られた。得られた成形体は、焼成温度1150℃、トップ温度での保持時間3時間の条件で焼成され、試料18の焼結体が得られた。   Next, the obtained composition powder slurry was cast and molded in a 12 T magnetic field to obtain a molded body. The obtained compact was fired under the conditions of a firing temperature of 1150 ° C. and a holding time of 3 hours at the top temperature, and a sintered body of Sample 18 was obtained.

(試料19)
試料19は、以下に記載の作製方法により作製された。なお、試料19は、仮焼粉末をKClフラックス中で熱処理されていない組成物粉末を用いた試料である。
(Sample 19)
Sample 19 was produced by the production method described below. Sample 19 is a sample using a composition powder that is not heat-treated in a KCl flux.

試料19は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化ニッケル、酸化ニオブが、組成として組成式Pb(Ti0.40Zr0.33(Ni1/3Nb2/30.27)O3となるように調合された。そして、調合されたものは、水を溶媒としてボールミルにより混合撹拌され、素原料混合スラリーが得られた。得られた素原料混合スラリーを乾燥したものは、900℃で仮焼され、組成物粉末として、仮焼粉末が得られた。得られた仮焼粉末のSEM像は、図2(b)に示される。図2(b)によると、仮焼粉末は球状粒子として成長していないことがわかる。In the sample 19, lead oxide, titanium oxide, zirconium oxide, nickel oxide, and niobium oxide are used as raw materials, and the composition is the composition formula Pb (Ti 0.40 Zr 0.33 (Ni 1/3 Nb 2/3 ) 0.27 ) O 3. Was formulated. The prepared mixture was mixed and stirred by a ball mill using water as a solvent to obtain a raw material mixed slurry. What dried the obtained raw material mixing slurry was calcined at 900 ° C., and a calcined powder was obtained as a composition powder. An SEM image of the obtained calcined powder is shown in FIG. As can be seen from FIG. 2B, the calcined powder does not grow as spherical particles.

次に、得られた仮焼粉末を25g取り出し、この仮焼粉末100重量部に対し、分散剤1.5重量部、純水40重量部を加えて8時間ボールミル混合され、組成物粉末スラリーが得られた。   Next, 25 g of the obtained calcined powder was taken out, and 1.5 parts by weight of a dispersant and 40 parts by weight of pure water were added to 100 parts by weight of the calcined powder, and ball mill mixing was performed for 8 hours. Obtained.

次に、得られた組成物粉末スラリーは、12Tの磁場中で鋳込み成形することにより、成形体が得られた。得られた成形体は、焼成温度1150℃、トップ温度での保持時間3時間の条件で焼成され、試料19の焼結体が得られた。   Next, the obtained composition powder slurry was cast and molded in a 12 T magnetic field to obtain a molded body. The obtained molded body was fired under the conditions of a firing temperature of 1150 ° C. and a holding time of 3 hours at the top temperature, and a sintered body of Sample 19 was obtained.

(試料20)
試料20は、以下に記載の作製方法により作製された。なお、試料20は、1100℃で仮焼された仮焼粉末をKClフラックス中で熱処理した組成物粉末を用いた試料である。
(Sample 20)
The sample 20 was produced by the production method described below. In addition, the sample 20 is a sample using the composition powder which heat-processed the calcining powder calcined at 1100 degreeC in KCl flux.

試料20は、素原料として酸化鉛、酸化チタン、酸化ジルコニウム、酸化ニッケル、酸化ニオブが、組成として組成式Pb(Ti0.40Zr0.33(Ni1/3Nb2/30.27)O3となるように調合された。そして、調合されたものは、水を溶媒としてボールミルにより混合撹拌され、素原料混合スラリーが得られた。得られた素原料混合スラリーを乾燥したものは、1100℃で仮焼され、仮焼粉末が得られた。得られた仮焼粉末とKClとは、重量比で1:1となるように混合されアルミナるつぼ中で1000℃、12時間熱処理し、室温まで冷却した後、KClを水洗除去して、組成物粉末として、組成式Pb(Ti0.40Zr0.33(Ni1/3Nb2/30.27)O3のフラックス中で熱処理した粉末が得られた。得られたセラミック粉末のSEM像は、図2(c)に示される。図2(c)によると、フラックス中で熱処理した粉末は球状粒子として成長していないことがわかる。In the sample 20, lead oxide, titanium oxide, zirconium oxide, nickel oxide, and niobium oxide are used as raw materials, and the composition is the composition formula Pb (Ti 0.40 Zr 0.33 (Ni 1/3 Nb 2/3 ) 0.27 ) O 3. Was formulated. The prepared mixture was mixed and stirred by a ball mill using water as a solvent to obtain a raw material mixed slurry. The dried raw material mixture slurry was calcined at 1100 ° C. to obtain a calcined powder. The obtained calcined powder and KCl were mixed at a weight ratio of 1: 1, heat-treated in an alumina crucible at 1000 ° C. for 12 hours, cooled to room temperature, KCl was washed away with water, As a powder, a powder heat-treated in a flux of composition formula Pb (Ti 0.40 Zr 0.33 (Ni 1/3 Nb 2/3 ) 0.27 ) O 3 was obtained. An SEM image of the obtained ceramic powder is shown in FIG. According to FIG.2 (c), it turns out that the powder heat-processed in the flux is not growing as a spherical particle.

次に、得られたフラックス中で熱処理した粉末を25g取り出し、このフラックス中で熱処理した粉末100重量部に対し、分散剤1.5重量部、純水40重量部を加えて8時間ボールミル混合され、組成物粉末スラリーが得られた。   Next, 25 g of the powder heat-treated in the obtained flux was taken out, and 100 parts by weight of the heat-treated powder in the flux was added with 1.5 parts by weight of a dispersant and 40 parts by weight of pure water, followed by ball mill mixing for 8 hours. A composition powder slurry was obtained.

次に、得られた組成物粉末スラリーは、12Tの磁場中で鋳込み成形することにより、成形体を得た。得られた成形体は、焼成温度1150℃、トップ温度での保持時間3時間の条件で焼成され、試料20の焼結体が得られた。   Next, the obtained composition powder slurry was cast and molded in a 12 T magnetic field to obtain a molded body. The obtained molded body was fired under the conditions of a firing temperature of 1150 ° C. and a holding time of 3 hours at the top temperature, and a sintered body of Sample 20 was obtained.

2.評価
次に、まず、上述の作製方法により得られた各試料に係る焼結体の結晶相について調べた。各試料に係る結晶相が、Tetragonal(正方晶)か、Rhombohedral(菱面体晶)のいずれかについては、X線回析法により解析した。
2. Evaluation Next, first, the crystal phase of the sintered body according to each sample obtained by the above-described production method was examined. Whether the crystal phase of each sample was tetragonal (tetragonal) or rhombohedral (rhombohedral) was analyzed by X-ray diffraction.

また、上述の作製方法により得られた各試料に係る焼結体の配向度は、Lotgering(ロットゲーリング)法により、以下の数式(1)から算出された。配向度の計算では、磁場を印加しない状態で成形した成形体を焼成することにより得られた組成式Pb(Ti0.40Zr0.33(Ni1/3Nb2/30.27)O3の焼結体を基準試料とした。In addition, the degree of orientation of the sintered body according to each sample obtained by the above-described production method was calculated from the following formula (1) by the Lottgering method. In the calculation of the degree of orientation, a sintered body of composition formula Pb (Ti 0.40 Zr 0.33 (Ni 1/3 Nb 2/3 ) 0.27 ) O 3 obtained by firing a molded body molded without applying a magnetic field. Was used as a reference sample.

Figure 0005849264
Figure 0005849264

ここで、ΣI(HKL)は評価対象の焼結体における特定の結晶面(HKL)のX線ピーク強度の総和であり、ΣI(hkl)は評価対象の焼結体の全結晶面(hkl)のX線ピーク強度の総和である。また、ΣI0(HKL)は基準試料における特定の結晶面(HKL)のX線ピーク強度の総和であり、ΣI0(hkl)は基準試料の全結晶面(hkl)のX線ピーク強度の総和である。Here, ΣI (HKL) is the sum of X-ray peak intensities of specific crystal planes (HKL) in the sintered body to be evaluated, and ΣI (hkl) is the total crystal plane (hkl) of the sintered body to be evaluated. Is the sum of the X-ray peak intensities. ΣI 0 (HKL) is the sum of X-ray peak intensities of a specific crystal plane (HKL) in the reference sample, and ΣI 0 (hkl) is the sum of X-ray peak intensities of all crystal planes (hkl) of the reference sample. It is.

また、測定条件は、2θ=20〜60degとした。また、全結晶面(hkl)のX線ピークの強度として、<100>、<110>、<111>、<200>、<210>および<211>の各強度を使用した。特定の結晶面(HKL)として、<100>および<200>の各強度を使用した。   The measurement conditions were 2θ = 20-60 deg. Moreover, each intensity | strength of <100>, <110>, <111>, <200>, <210>, and <211> was used as the intensity | strength of the X-ray peak of all the crystal planes (hkl). <100> and <200> intensities were used as specific crystal planes (HKL).

さらに、上述の作製方法により得られた各試料に係る焼結体について3kV/mmで分極した上で、圧電d33定数は、日本電子工業材料会標準規格「圧電セラミック振動子の電気的試験方法」EMAS−6100に準拠し、インピーダンスアナライザ(ヒューレット・パッカード社製)を使用して、矩形振動子の長辺方向振動について、共振・反共振法によって測定した。Furthermore, after the sintered body according to each sample obtained by the above-described manufacturing method is polarized at 3 kV / mm, the piezoelectric d 33 constant is determined by the Japan Electronic Industry Material Association Standard “Electric Test Method for Piezoelectric Ceramic Vibrators”. In accordance with EMAS-6100, the long-side vibration of the rectangular vibrator was measured by a resonance / anti-resonance method using an impedance analyzer (manufactured by Hewlett-Packard Company).

得られた試料1ないし試料17の焼結体の結晶系、配向度、および圧電d定数の測定結果が、表1に示される。また、得られた試料1ないし試料17のうち、代表的なものの圧電配向セラミックスの焼結体の所定の断面におけるXRDチャートが、図3に示される。図3(a)は、試料1、試料3、試料4、試料6および試料7のXRDチャートであり、図3(b)は、試料8のXRDチャートであり、図3(c)は、試料9のXRDチャートである。   Table 1 shows the measurement results of the crystal system, orientation degree, and piezoelectric d constant of the obtained sintered bodies of Sample 1 to Sample 17. In addition, an XRD chart in a predetermined cross section of a sintered body of a piezoelectric oriented ceramic of a representative one of the obtained samples 1 to 17 is shown in FIG. 3A is an XRD chart of Sample 1, Sample 3, Sample 4, Sample 6, and Sample 7, FIG. 3B is an XRD chart of Sample 8, and FIG. 3C is a sample. 9 is an XRD chart of 9;

Figure 0005849264
Figure 0005849264

表1における試料1ないし試料7は、Ti/Zrのモル比率を変化させ、MaMb量を0.27に固定した場合の各試料におけるLotgering法により算出した配向度および圧電d33定数の測定結果を示している。Samples 1 to 7 in Table 1 show the measurement results of the degree of orientation and the piezoelectric d 33 constant calculated by the Rotgering method in each sample when the Ti / Zr molar ratio is changed and the MaMb amount is fixed to 0.27. Show.

この結果によると、表1における試料1ないし試料5に示すような、Ti/Zrの比率を2.2から1.0の範囲内においては、Lotgering法により算出した配向度において、いずれも50%以上と高い配向度が得られた。これは、得られた各試料の結晶相が正方晶であることから、磁場中成形による配向化が起こりやすくなっているためであると考えられる。   According to this result, as shown in Sample 1 to Sample 5 in Table 1, when the Ti / Zr ratio is in the range of 2.2 to 1.0, the degree of orientation calculated by the Rotgering method is 50%. A high degree of orientation was obtained as described above. This is presumably because the crystal phase of each obtained sample is a tetragonal crystal, and orientation by forming in a magnetic field is likely to occur.

一方、試料6および試料7は、Lotgering法により算出した配向度は、いずれも0%であった。PZT化合物のようなペロブスカイト構造の結晶は、ビスマス層状化合物やタングステンブロンズ構造の結晶と比較して結晶の異方性が小さく、磁場による配向が難しい。また、正方晶のPZT化合物と比較して菱面体晶のPZT化合物は軸による磁化率の差が小さいと考えられる。このため、試料6および試料7の結晶相が菱面体晶のPZT化合物は、配向されないものと考えられる。   On the other hand, Sample 6 and Sample 7 both had an orientation degree calculated by the Lottgering method of 0%. Crystals having a perovskite structure such as a PZT compound have a smaller crystal anisotropy than a bismuth layered compound or a tungsten bronze structure, and are difficult to be oriented by a magnetic field. In addition, it is considered that the rhombohedral PZT compound has a smaller difference in magnetic susceptibility due to the axes than the tetragonal PZT compound. For this reason, it is considered that the rhombohedral PZT compounds of Sample 6 and Sample 7 are not oriented.

また、試料1では、Ti/Zrのモル比率が2.2の場合であるが、圧電d33定数は、215pC/Nであった。一方、試料2ないし試料5のように、Ti/Zrのモル比率を2.0から1.0の範囲内とすることで、いずれも230pC/N以上の高い圧電d33定数を有する焼結体が得られた。In Sample 1, the Ti / Zr molar ratio was 2.2, but the piezoelectric d 33 constant was 215 pC / N. On the other hand, as in Samples 2 to 5, by setting the molar ratio of Ti / Zr within the range of 2.0 to 1.0, all sintered bodies having a high piezoelectric d 33 constant of 230 pC / N or more was gotten.

次に、表1における試料8ないし試料10は、Ti/Zrのモル比率を1.2で固定し、MaMb量を0.40から0.05まで変化させた場合の各試料における配向度および圧電d33定数の測定結果を示している。Next, Sample 8 to Sample 10 in Table 1 have the Ti / Zr molar ratio fixed at 1.2 and the degree of orientation and piezoelectricity in each sample when the amount of MaMb is changed from 0.40 to 0.05. The measurement result of d33 constant is shown.

この結果によると、試料8および試料9では、MaMb量がそれぞれ0.40および0.07と高いことから、磁化率の異方性が高まる可能性があるため、その結果、高い配向度が得られた。一方、試料10は、MaMb量が0.05と低いため、Lotgering法により算出した配向度が50%より低くなった。   According to this result, in Sample 8 and Sample 9, since the MaMb amount is as high as 0.40 and 0.07, respectively, the anisotropy of the magnetic susceptibility may be increased. As a result, a high degree of orientation is obtained. It was. On the other hand, since the amount of MaMb of Sample 10 was as low as 0.05, the degree of orientation calculated by the Lottgering method was lower than 50%.

次に、表1における試料11ないし試料14は、それぞれMaの材料をNiではなくMn、Cr、MgおよびSnとし、MaMb量は0.06で固定した場合の各試料における配向度および圧電d33定数の測定結果を示している。なお、Ti/Zrのモル比率は、試料11および試料12は1.0とし、試料13および試料14は1.1であり、いずれの結晶相も正方晶としている。
また、表1における試料15ないし試料17は、Maの材料をNiではなく、Fe、CoおよびZnとし、MaMb量は0.20で固定した場合の各試料における配向度および圧電d33定数の測定結果を示している。なお、Ti/Zrのモル比率は、1.3とし、いずれの結晶相も正方晶としている。
Next, Sample 11 to Sample 14 in Table 1 are not limited to Ni but to Mn, Cr, Mg and Sn, respectively, and the degree of orientation and piezoelectric d 33 in each sample when the MaMb amount is fixed at 0.06. The constant measurement results are shown. The molar ratio of Ti / Zr is 1.0 for sample 11 and sample 12, and 1.1 for sample 13 and sample 14. Both crystal phases are tetragonal.
Samples 15 to 17 in Table 1 are measurement of orientation degree and piezoelectric d 33 constant in each sample when the material of Ma is not Ni but Fe, Co and Zn and the amount of MaMb is fixed at 0.20. Results are shown. The molar ratio of Ti / Zr is 1.3, and all crystal phases are tetragonal.

この結果によると、各試料におけるLotgering法により算出した配向度は、いずれも50%以上の高配向度が得られた。また、各試料における圧電d33定数は、いずれも230pC/N以上の高い圧電d33定数が得られた。According to this result, the orientation degree calculated by the Lottgering method for each sample was 50% or higher. Further, the piezoelectric d 33 constant of each sample was a high piezoelectric d 33 constant of 230 pC / N or more.

従って、以上の結果より、組成式Pb((Ti1-xZrx1-y(Ma1/3Mb2/3)y)O3を主成分とする圧電配向セラミックスは、MaがNi、Mn、Cr、Mg、Sn、Fe、Co、Znの少なくとも1種であり、MbがNbであり、a+b=1を満たし、かつMaとMbとの合計量yが0.06≦y≦0.40で、かつTiとZrのモル比率(1−x)/xが1.0≦(1−x)/x≦2.0とし、さらに、結晶相を正方晶とすることで、Lotgering法により算出した配向度および圧電d33定数が、いずれも高い焼結体を得られることが明らかとなった。Therefore, from the above results, the piezoelectric oriented ceramics whose main component is the composition formula Pb ((Ti 1−x Zr x ) 1−y (Ma 1/3 Mb 2/3 ) y) O 3 has Ma as Ni, It is at least one of Mn, Cr, Mg, Sn, Fe, Co, and Zn, Mb is Nb, a + b = 1 is satisfied, and the total amount y of Ma and Mb is 0.06 ≦ y ≦ 0. 40, and the molar ratio of Ti to Zr (1-x) / x is 1.0 ≦ (1-x) /x≦2.0, and the crystal phase is tetragonal. It was revealed that a sintered body having a high degree of orientation and piezoelectric d 33 constant can be obtained.

なお、以上の結果を得た理由としては、以下のように考えることができる。すなわち、正方晶は、結晶方位(<100>,<110>,<111>)ごとの磁化率の差が大きい可能性があり、このため磁場中成形で高い配向度が得られたと考えられる。これに対し、試料6および試料7のような菱面体晶では、結晶方位ごとの磁化率の差が小さいと考えられ、そのため圧電配向セラミックスが得られなかったと考えられる。また、Maは、チタン酸ジルコン酸鉛の結晶の磁化率の異方性を高めている可能性があり、このためMaMb量が多い場合に、高い配向度が得られたと考えられる。   The reason for obtaining the above results can be considered as follows. That is, tetragonal crystals may have a large difference in magnetic susceptibility for each crystal orientation (<100>, <110>, <111>), and it is considered that a high degree of orientation was obtained by molding in a magnetic field. On the other hand, in the rhombohedral crystals such as Sample 6 and Sample 7, it is considered that the difference in magnetic susceptibility for each crystal orientation is small, so that it is considered that a piezoelectric oriented ceramic could not be obtained. Further, Ma may increase the anisotropy of the magnetic susceptibility of the lead zirconate titanate crystal. Therefore, it is considered that a high degree of orientation was obtained when the amount of MaMb was large.

続いて、得られた試料18ないし試料20の焼結体の結晶相、配向度、および圧電d定数の測定結果が、表2に示される。得られた試料18ないし試料20の圧電配向セラミックスの焼結体の所定の断面におけるXRDチャートが、図4に示される。図4(a)は、試料18のXRDチャートであり、図4(b)は、試料19のXRDチャートであり、図4(c)は、試料20のXRDチャートである。   Subsequently, Table 2 shows the measurement results of the crystal phase, orientation degree, and piezoelectric d constant of the obtained sintered bodies of Sample 18 to Sample 20. FIG. 4 shows an XRD chart in a predetermined cross section of the obtained sintered body of the piezoelectric oriented ceramics of Sample 18 to Sample 20. 4A is an XRD chart of the sample 18, FIG. 4B is an XRD chart of the sample 19, and FIG. 4C is an XRD chart of the sample 20.

Figure 0005849264
Figure 0005849264

表2における試料18ないし試料20は、Ti/Zrのモル比率は1.2であり、MaMb量は0.27である。なお、試料18の作製工程においては、仮焼粉末を得るための仮焼温度を900℃とし、得られた仮焼粉末に対して、KClフラックス中での熱処理を行っている。また、試料19の作製工程においては、仮焼粉末を得るための仮焼温度を900℃としたが、その後得られた仮焼粉末に対しては、KClフラックス中での熱処理は行っていない。さらに、試料20の作製工程においては、仮焼粉末を得るための仮焼温度を1100℃とし、得られた仮焼粉末に対して、KClフラックス中での熱処理を行っている。   Sample 18 to Sample 20 in Table 2 have a Ti / Zr molar ratio of 1.2 and a MaMb content of 0.27. In the production process of the sample 18, the calcining temperature for obtaining the calcined powder was set to 900 ° C., and the obtained calcined powder was heat-treated in KCl flux. Moreover, in the preparation process of the sample 19, the calcining temperature for obtaining the calcined powder was set to 900 ° C., but the calcined powder obtained thereafter was not heat-treated in the KCl flux. Furthermore, in the manufacturing process of the sample 20, the calcining temperature for obtaining the calcined powder is set to 1100 ° C., and the obtained calcined powder is heat-treated in KCl flux.

この結果によると、試料18に対して、Lotgering法により算出した配向度は50%以上の高い配向度であり、圧電d33定数についても603pC/Nと高い結果が得られた。According to this result, the orientation degree calculated by the Lottgering method with respect to the sample 18 was a high orientation degree of 50% or more, and the piezoelectric d 33 constant was as high as 603 pC / N.

一方、試料19に対して、圧電d33定数は454pC/Nと高いものの、Lotgering法により算出した配向度は、0%であった。また、試料20に対して、Lotgering法により算出した配向度は50%以上と高いものの、圧電d33定数は141と低い結果が得られた。On the other hand, although the piezoelectric d 33 constant was as high as 454 pC / N with respect to Sample 19, the degree of orientation calculated by the Lottgering method was 0%. Further, although the degree of orientation calculated by the Lottgering method was as high as 50% or more with respect to the sample 20, the piezoelectric d 33 constant was as low as 141.

以上の表2における試料18ないし試料20の結果から、各試料の作製工程において、仮焼粉末を得るための仮焼温度を900℃とし、さらに、得られた仮焼粉末に対して、KClのフラックス中で熱処理を行うことで、配向度および圧電d33定数といずれも高い焼結体を得ることができることが明らかとなった。From the results of Sample 18 to Sample 20 in Table 2 above, in the preparation process of each sample, the calcining temperature for obtaining the calcined powder was set to 900 ° C. It has been clarified that a sintered body having a high degree of orientation and piezoelectric d 33 constant can be obtained by heat treatment in the flux.

なお、以上の結果を得た理由としては、以下のように考えることができる。すなわち、高い温度で仮焼した三成分系PZT化合物の仮焼粉末は、固相反応による粒成長が進んでおり、また、未反応の酸化鉛なども少なくなっているため、焼結性が低下し、圧電d定数が低下しているものと考えられる。一方、低い温度で仮焼した三成分系PZT化合物の仮焼粉末は、PbOなどの未反応成分が多く残っているため焼結性が高く、圧電d定数の低下は小さいが、粒子同士の凝集が強いため、磁場中成形しても配向化しなかったと考えられる。   The reason for obtaining the above results can be considered as follows. That is, the calcination powder of the ternary PZT compound calcined at a high temperature has progressed in grain growth due to a solid-phase reaction, and the amount of unreacted lead oxide is reduced, so that the sinterability is lowered. It is considered that the piezoelectric d constant is lowered. On the other hand, the calcination powder of the ternary PZT compound calcined at a low temperature has high sinterability because a large amount of unreacted components such as PbO remain, and the decrease in the piezoelectric d constant is small. Therefore, it is considered that the film was not oriented even when molded in a magnetic field.

また、低い温度で仮焼した後に、フラックス中で熱処理することにより得られたフラックス中で熱処理した粉末は、高い温度で熱処理を受けていないために焼結性が低下せず、他方、フラックス中で熱処理しているために、粒子同士が分散した状態で結晶性が高まり、このようにして得られたフラックス中で熱処理した粉末を使用することによって磁場中成形による高い配向度と高い圧電d定数が得られたものと考えられる。   In addition, the powder heat-treated in the flux obtained by heat-treating in the flux after calcining at a low temperature does not deteriorate the sinterability because it has not been heat-treated at a high temperature. Since the crystallinity is increased in a state where the particles are dispersed, the degree of orientation due to molding in a magnetic field and the high piezoelectric d constant are obtained by using the powder heat-treated in the flux thus obtained. Is considered to have been obtained.

この発明にかかる圧電配向セラミックスでは、組成式(Pb((Ti1-xZrx1-y)((MaaMbby)O3)を主成分とする組成物粉末の組成範囲を、MaがNi、Mn、Cr、Mg、Sn、Fe、Co、Znの少なくとも1種であり、MbがNbであり、a+b=1を満たし、かつMaとMbとの合計量yが0.06≦y≦0.40で、かつTiとZrのモル比率(1−x)/xが1.0≦(1−x)/x≦2.0とすることで、Lotgering法により算出した配向度が高く、また、圧電d定数の高い圧電配向セラミックスを得ることができる。In the piezoelectric oriented ceramics according to the present invention, the composition range of the composition powder whose main component is the composition formula (Pb ((Ti 1−x Zr x ) 1−y ) ((Ma a Mb b ) y ) O 3 ) , Ma is at least one of Ni, Mn, Cr, Mg, Sn, Fe, Co, Zn, Mb is Nb, a + b = 1 is satisfied, and the total amount y of Ma and Mb is 0.06 ≦ y ≦ 0.40 and the molar ratio (1-x) / x of Ti and Zr is 1.0 ≦ (1-x) /x≦2.0, and the degree of orientation calculated by the Rotgering method In addition, a piezoelectric oriented ceramic having a high piezoelectric d constant can be obtained.

本発明にかかる圧電配向セラミックスの製造方法によれば、仮焼粉末からフラックス中で熱処理した粉末を作製する工程において、仮焼粉末に対して、アルカリ金属のハロゲン塩をフラックスとする熱処理により、Lotgering法により算出した配向度が高い圧電配向セラミックスを得ることができる。また、この発明にかかる圧電配向セラミックスの製造方法によれば、組成物粉末として、仮焼粉末をアルカリ金属のハロゲン塩をフラックスとするフラックス中で熱処理した粉末を用いることにより、磁場中成形による高い配向度と高い圧電d定数を得ることができる。さらに、本発明にかかる圧電配向セラミックスの製造方法によれば、仮焼粉末を作製する工程において、仮焼温度を900℃以下の温度で仮焼することで、圧電d定数の高い圧電配向セラミックスを得ることができる。   According to the method for manufacturing a piezoelectric oriented ceramic according to the present invention, in the step of producing a powder heat-treated in a flux from a calcined powder, the calcined powder is subjected to a heat treatment using an alkali metal halide as a flux. Piezoelectric oriented ceramics having a high degree of orientation calculated by the method can be obtained. In addition, according to the method for producing a piezoelectric oriented ceramic according to the present invention, a powder obtained by heat-treating a calcined powder in a flux using a halogen salt of an alkali metal as a flux is used as a composition powder. An orientation degree and a high piezoelectric d constant can be obtained. Furthermore, according to the method for producing a piezoelectric oriented ceramic according to the present invention, in the step of producing the calcined powder, the calcined temperature is calcined at a temperature of 900 ° C. or lower to obtain a piezoelectric oriented ceramic having a high piezoelectric d constant. Can be obtained.

Claims (5)

組成式(Pb((Ti1-xZrx1-y)((MaaMbby)O3)を主成分とする圧電配向セラミックスであって、
MaがNi、Mn、Cr、Mg、Sn、Fe、Co、Znの少なくとも1種であり、MbがNbであり、a+b=1を満たし、かつMaとMbとの合計量yが0.06≦y≦0.40で、かつTiとZrのモル比率(1−x)/xが1.0≦(1−x)/x≦2.0であり、結晶相が正方晶またはモルフォトロピック相境界であり、Lotgering法による配向度が50%以上であり、且つ、圧電d 33 定数が230pC/N以上であることを特徴とする、圧電配向セラミックス。
A piezoelectric oriented ceramic whose main component is the composition formula (Pb ((Ti 1−x Zr x ) 1−y ) ((Ma a Mb b ) y ) O 3 ),
Ma is at least one of Ni, Mn, Cr, Mg, Sn, Fe, Co, Zn, Mb is Nb, a + b = 1 is satisfied, and the total amount y of Ma and Mb is 0.06 ≦ y ≦ 0.40, the molar ratio of Ti to Zr (1-x) / x is 1.0 ≦ (1-x) /x≦2.0, and the crystal phase is a tetragonal or morphotropic phase boundary der is, it is the degree of orientation according Lotgering method 50% or more and a piezoelectric constant d 33 is characterized in der Rukoto more 230PC / N, the piezoelectric oriented ceramics.
前記圧電配向セラミックスを構成する粒子が球状であることを特徴とする、請求項1に記載の圧電配向セラミックス。   2. The piezoelectric oriented ceramic according to claim 1, wherein the particles constituting the piezoelectric oriented ceramic are spherical. 組成式(Pb((Ti1-xZrx1-y)((MaaMbby)O3)を主成分とする組成物粉末を含むスラリーを磁場中で成形することを特徴とする圧電配向セラミックスの製造方法であって、
前記組成物粉末は、MaがNi、Mn、Cr、Mg、Sn、Fe、Co、Znの少なくとも1種であり、MbがNbであり、a+b=1を満たし、かつMaとMbとの合計量yが0.06≦y≦0.40であり、かつTiとZrのモル比率(1−x)/xが1.0≦(1−x)/x≦2.0であり、
前記組成式となるように調合された素原料粉末を含む、素原料混合スラリーを作製する工程と、
前記素原料混合スラリーを乾燥したものを900℃以下の温度で仮焼して仮焼粉末を作製する工程と、
前記仮焼粉末を、アルカリ金属のハロゲン塩をフラックスとするフラックス中で熱処理する工程と、
を含むことを特徴とする、圧電配向セラミックスの製造方法。
And characterized in that the molding composition formula (Pb ((Ti 1-x Zr x) 1-y) ((Ma a Mb b) y) O 3) slurry containing the composition powder based on in a magnetic field A method for producing a piezoelectric oriented ceramic comprising:
In the composition powder, Ma is at least one of Ni, Mn, Cr, Mg, Sn, Fe, Co, and Zn, Mb is Nb, a + b = 1 is satisfied, and the total amount of Ma and Mb y is 0.06 ≦ y ≦ 0.40, and the molar ratio of Ti and Zr (1-x) / x is 1.0 ≦ (1-x) /x≦2.0,
A step of preparing a raw material mixed slurry containing the raw material powder prepared so as to have the composition formula;
A step of calcining the dried raw material mixture slurry at a temperature of 900 ° C. or lower to produce a calcined powder;
Heat-treating the calcined powder in a flux using an alkali metal halogen salt as a flux;
A method for producing a piezoelectric oriented ceramic, comprising:
記アルカリ金属のハロゲン塩が、KClまたはNaClの少なくとも一方であることを特徴とする、請求項2に記載の圧電配向セラミックスの製造方法。 Before Kia alkali metal halide salts, characterized in that at least one of KCl or NaCl, the method for manufacturing the piezoelectric oriented ceramics according to claim 2. 前記仮焼粉末を作製する工程において、
800℃以上の温度で仮焼することを特徴とする、請求項3または請求項4に記載の圧電配向セラミックスの製造方法。
In the step of producing the calcined powder,
The method for producing a piezoelectric oriented ceramic according to claim 3 or 4 , wherein calcining is performed at a temperature of 800 ° C or higher .
JP2013549183A 2011-12-12 2012-11-21 Piezoelectrically oriented ceramics and manufacturing method thereof Active JP5849264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013549183A JP5849264B2 (en) 2011-12-12 2012-11-21 Piezoelectrically oriented ceramics and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011271624 2011-12-12
JP2011271624 2011-12-12
PCT/JP2012/080147 WO2013088926A1 (en) 2011-12-12 2012-11-21 Piezoelectric oriented ceramic and production method therefor
JP2013549183A JP5849264B2 (en) 2011-12-12 2012-11-21 Piezoelectrically oriented ceramics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2013088926A1 JPWO2013088926A1 (en) 2015-04-27
JP5849264B2 true JP5849264B2 (en) 2016-01-27

Family

ID=48612381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013549183A Active JP5849264B2 (en) 2011-12-12 2012-11-21 Piezoelectrically oriented ceramics and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5849264B2 (en)
WO (1) WO2013088926A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679910B1 (en) * 2013-08-01 2016-11-28 주식회사 엘지화학 Inorganic oxide powder and electrolyte comprising sintered body of the same
CN113716957B (en) * 2021-08-04 2023-03-21 深圳麦克韦尔科技有限公司 Ceramic, preparation method thereof, ceramic powder, piezoelectric ceramic and atomization device
CN116082027A (en) * 2023-01-17 2023-05-09 华中科技大学 PZT-based multiferroic semiconductor ceramic material, preparation method and application thereof
CN116332642A (en) * 2023-02-19 2023-06-27 哈尔滨工业大学 High Q m A kind of electronic device<111>Oriented quaternary texture ceramic and three-step sintering preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543021B2 (en) * 1984-12-17 1996-10-16 株式会社日本自動車部品総合研究所 Ceramic Piezoelectric Material for Actuator
JP2010090021A (en) * 2008-10-10 2010-04-22 Murata Mfg Co Ltd Method for producing sintered compact of compound with perovskite structure
JP5615591B2 (en) * 2009-07-16 2014-10-29 日本碍子株式会社 Method for producing crystal particles and method for producing crystal-oriented ceramics

Also Published As

Publication number Publication date
WO2013088926A1 (en) 2013-06-20
JPWO2013088926A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5557572B2 (en) Ceramics, piezoelectric element, and method for manufacturing piezoelectric element
KR100961082B1 (en) Piezoelectric ceramic composition
JP4943043B2 (en) Method for manufacturing piezoelectric ceramics
JP6531394B2 (en) Composite piezoelectric ceramic and piezoelectric element
JP4450636B2 (en) Method for manufacturing piezoelectric ceramics
KR20140040258A (en) Piezoelectric material
KR20120022990A (en) Tungsten bronze-type piezoelectric material and production method therefor
JP2010090021A (en) Method for producing sintered compact of compound with perovskite structure
JP5849264B2 (en) Piezoelectrically oriented ceramics and manufacturing method thereof
Xie et al. Comprehensive investigation of structural and electrical properties of (Bi, Na) CoZrO3-doped KNN ceramics
Shi et al. Full set of material constants of (Na0. 5K0. 5) NbO3–BaZrO3–(Bi0. 5Li0. 5) TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary
JP2020532485A (en) Polar Nano Region Engineered Relaxer-PbTiO3 Ferroelectric Crystal
JP4853477B2 (en) Anisotropic shaped ceramic particles and method for producing the same
JP6185441B2 (en) Piezoelectric single crystal and piezoelectric single crystal element
JP4534531B2 (en) Method for producing anisotropic shaped powder
WO2016031995A1 (en) Piezoelectric ceramic, manufacturing method therefor, and electronic component
JP5597368B2 (en) Multilayer electronic component and manufacturing method thereof
JP2021001098A (en) Niobium-based lead-free piezoelectric ceramic and producing method thereof
JP5853767B2 (en) Composite piezoelectric ceramic and piezoelectric element
JP5233778B2 (en) Method for producing anisotropically shaped powder and crystallographically oriented ceramics
Ohbayashi Piezoelectric Properties and Microstructure of (K, Na) NbO3–KTiNbO5 Composite Lead-Free Piezoelectric Ceramic
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
JP5799336B2 (en) Piezoelectrically oriented ceramics and manufacturing method thereof
JPWO2015093436A1 (en) Crystal-oriented piezoelectric ceramic, manufacturing method thereof, and piezoelectric element
KR101236893B1 (en) Single crystal and fabrication process of (Na,K)NbO3 based Pb-free piezoelectric materials using solid state synthesis

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5849264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250