JP5847281B2 - Vibration isolator - Google Patents

Vibration isolator Download PDF

Info

Publication number
JP5847281B2
JP5847281B2 JP2014238027A JP2014238027A JP5847281B2 JP 5847281 B2 JP5847281 B2 JP 5847281B2 JP 2014238027 A JP2014238027 A JP 2014238027A JP 2014238027 A JP2014238027 A JP 2014238027A JP 5847281 B2 JP5847281 B2 JP 5847281B2
Authority
JP
Japan
Prior art keywords
protrusion
watertight
serration
inner cylinder
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014238027A
Other languages
Japanese (ja)
Other versions
JP2015038383A (en
Inventor
石本 善隆
善隆 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2014238027A priority Critical patent/JP5847281B2/en
Publication of JP2015038383A publication Critical patent/JP2015038383A/en
Application granted granted Critical
Publication of JP5847281B2 publication Critical patent/JP5847281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

本発明は、防振装置に関し、特に、内筒部材の内部への水の浸入を防止すると共に締結力の低下を防止できる防振装置に関するものである。   The present invention relates to a vibration isolator, and more particularly to a vibration isolator capable of preventing water from entering the inside of an inner cylindrical member and preventing a decrease in fastening force.

筒状の内筒部材と、その内筒部材を外周側から取り囲む位置に配設される筒状の外筒部材と、それら内筒部材の外周面および外筒部材の内周面の間を連結すると共にゴム状弾性体から構成される防振基体とを備えた防振装置が、例えば、自動車のサスペンション装置に用いられる。   A cylindrical inner cylinder member, a cylindrical outer cylinder member disposed at a position surrounding the inner cylinder member from the outer peripheral side, and a connection between the outer peripheral surface of the inner cylindrical member and the inner peripheral surface of the outer cylindrical member are connected. In addition, an anti-vibration device including an anti-vibration base composed of a rubber-like elastic body is used, for example, in an automobile suspension device.

この防振装置は、ボルトを内筒部材に挿通し、その内筒部材を軸方向両側から相手部材で挟持して状態で、相手部材に締結固定されるが、内筒部材の軸方向端面が平滑であると、内筒部材と相手部材との間に相対的な滑りが生じるおそれがある。そのため、内筒部材の軸方向端面にセレーション状の突起(セレーション突起)を設け、その突起を相手部材に圧接することで、内筒部材と相手部材との間の相対的な滑りを防止する技術が知られている。   In this vibration isolator, a bolt is inserted into the inner cylinder member, and the inner cylinder member is clamped and fixed to the mating member while being clamped by the mating member from both sides in the axial direction, but the axial end surface of the inner cylinder member is If it is smooth, there is a risk of relative slippage between the inner cylinder member and the mating member. Therefore, a technique for preventing relative slip between the inner cylinder member and the counterpart member by providing a serration-like projection (serration projection) on the axial end surface of the inner cylinder member and pressing the projection against the counterpart member. It has been known.

一方、このようにセレーション状の突起を内筒部材の軸方向端面に設けた場合、突起を相手部材に完全に没入させることはできないので、突起間の谷部と相手部材との間に隙間が生じる。そのため、隙間から内筒部材の内部に侵入した水によりボルトに発錆が生じ、耐久性の低下を招く恐れがある。   On the other hand, when the serrated projection is provided on the axial end surface of the inner cylinder member in this way, the projection cannot be completely immersed in the mating member, so there is a gap between the trough between the projection and the mating member. Arise. For this reason, rusting occurs on the bolt due to water that has entered the inside of the inner cylinder member from the gap, and there is a risk that durability will be reduced.

そこで、特許文献1には、セレーション状の突起の間にシールゴムを充填する技術が開示される。これによれば、突起を相手部材に圧接させた状態で内筒部材を締結固定すると、突起間の谷部と相手部材との間に生じる隙間がシールゴムにより閉鎖され水密にシールされるので、内筒部材の内部への水の浸入を低減できる。その結果、ボルトの発錆を防止して、耐久性を確保できる。   Therefore, Patent Document 1 discloses a technique of filling a seal rubber between serrated projections. According to this, when the inner cylinder member is fastened and fixed in a state where the projection is pressed against the mating member, the gap formed between the valley between the projection and the mating member is closed by the seal rubber and sealed in a watertight manner. Water intrusion into the inside of the cylindrical member can be reduced. As a result, rusting of the bolt can be prevented and durability can be ensured.

特開2005−337473号公報(図1、段落[00224]など)Japanese Patent Laying-Open No. 2005-337473 (FIG. 1, paragraph [00224], etc.)

しかしながら、上述した防振装置のように、突起間の谷部と相手部材との間に生じる隙間を、突起間に充填されたシールゴムにより閉鎖する構成であると、経時や紫外線の影響などによるシールゴムの劣化に伴い、シール性が低下するため、水の浸入を十分に低減することができないという問題点があった。また、内筒部材の軸方向端面と相手部材との間にシールゴムが介在した状態でボルトにより締結されているため、そのシールゴムが劣化すると、締結力の低下を招くという問題点があった。   However, as in the above-described anti-vibration device, when the gap formed between the valley between the protrusions and the mating member is closed by the seal rubber filled between the protrusions, the seal rubber due to the influence of time or ultraviolet rays, etc. As the sealing property deteriorates, there is a problem in that the ingress of water cannot be sufficiently reduced because the sealing performance is lowered. Further, since the seal rubber is fastened with the bolt in a state where the seal rubber is interposed between the axial end surface of the inner cylinder member and the mating member, there is a problem that when the seal rubber is deteriorated, the fastening force is reduced.

本発明は上述した問題点を解決するためになされたものであり、内筒部材の内部への水の浸入を防止すると共に締結力の低下を防止できる防振装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a vibration isolator capable of preventing water from entering the inside of the inner cylindrical member and preventing a decrease in fastening force. .

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

請求項1記載の防振装置によれば、内筒部材の軸方向端面には、放射直線状に配置されるセレーション突起が突設されているので、内筒部材が軸方向両側から相手部材に挟持された状態で締結固定されると、セレーション突起が相手部材に圧接され、内筒部材と相手部材との間の相対的な滑りが防止される。   According to the vibration isolator of the first aspect, since the serration projections arranged in a radial straight line project from the axial end surface of the inner cylindrical member, the inner cylindrical member is opposed to the mating member from both axial sides. When fastened and fixed in the sandwiched state, the serration protrusion is pressed against the mating member, and relative slippage between the inner cylinder member and the mating member is prevented.

この場合、内筒部材は、軸方向端面から突設されると共に軸方向端面にセレーション突起と共に周方向に連続する壁を形成する水密突起を備えるので、内筒部材の内部を、周方向に連続する壁により、外部と遮断することができる。その結果、内筒部材の内部への水の侵入を防止できるという効果がある。 In this case, the inner cylindrical member Since comprises a watertight protrusion forming the walls continuous to the axial end face with serration projections in the circumferential direction while being projected from the axial end surface, the inside of the inner cylindrical member, the circumferential direction It can be isolated from the outside by a continuous wall. As a result, there is an effect that water can be prevented from entering the inside of the inner cylinder member.

ここで、水密突起は、内筒部材の軸方向端面から一体に突設されるので、経時や紫外線の影響などによる劣化を抑制できる。よって、水密突起の剛性を確保できるので、長期にわたって、内筒部材の内部への水の浸入を防止すると共に締結力の低下を防止できるという効果がある。
また、セレーション突起は、突設先端面が水密突起に近づくほど幅が狭くされ、水密突起との接続部分において最小の幅に形成されるので、内筒部材の軸方向端面における面密度の均一化を図ることができる。これにより、内筒部材の軸方向端面が取付板MPの間で挟持される際に、両突起等の突設先端面における面圧を全体に均一化して、これら両突起を取付板へ均一に没入させる(食い込ませる)ことができる。
Here, since the watertight projection is integrally projected from the axial end surface of the inner cylinder member, it is possible to suppress deterioration due to aging or the influence of ultraviolet rays. Therefore, since the rigidity of the watertight projection can be ensured, there is an effect that it is possible to prevent water from entering the inside of the inner cylinder member and prevent a decrease in fastening force over a long period of time.
In addition, the serration protrusion is narrowed as the protruding tip surface approaches the watertight protrusion, and is formed to have the smallest width at the connection portion with the watertight protrusion, so that the surface density on the axial end surface of the inner cylinder member is uniform. Can be achieved. As a result, when the axial end surface of the inner cylinder member is sandwiched between the mounting plates MP, the surface pressure at the projecting tip surface of both the projections and the like is made uniform, and these both projections are evenly applied to the mounting plate. It can be immersive.

請求項2記載の防振装置によれば、請求項1記載の防振装置の奏する効果に加え、水密突起は、セレーション突起の突設高さと同等または低い突設高さで軸方向端面から突設されるので、寸法公差で突設高さや相手部材の平面度などにばらつきが生じている場合でも、セレーション突起を相手部材に確実に圧接させて、内筒部材と相手部材との間の相対的な滑りを抑制することができるという効果がある。   According to the vibration isolator according to claim 2, in addition to the effect of the vibration isolator according to claim 1, the watertight protrusion protrudes from the end face in the axial direction with a protrusion height equal to or lower than the protrusion height of the serration protrusion. Therefore, even when there are variations in the projecting height or the flatness of the mating member due to dimensional tolerances, the serration protrusion is securely pressed against the mating member, and the relative relationship between the inner cylinder member and the mating member There is an effect that the general slip can be suppressed.

請求項3記載の防振装置によれば、請求項1又は2に記載の防振装置の奏する効果に加え、水密突起は、内筒部材の軸方向端面を軸方向視した状態において、セレーション突起と交差しつつ、楕円形状または軸に対して偏心して位置する円形状に配置される円状水密突起を備えるので、かかる円状水密突起を、水の侵入を防止するための壁としてだけではなく、内筒部材と相手部材との間で発生する滑りを防止するための部位としても機能させることができる。即ち、円状水密突起を設けることで、内筒部材の内部への水の侵入を防止するだけでなく、内筒部材と相手部材との間の滑りの防止効果を更に高めることもできる。   According to the vibration isolator of claim 3, in addition to the effect of the vibration isolator according to claim 1 or 2, the watertight protrusion is a serration protrusion in a state in which the axial end surface of the inner cylinder member is viewed in the axial direction. The circular watertight projections are arranged in an elliptical shape or a circular shape that is eccentric with respect to the axis while intersecting with the circular watertight projections, so that the circular watertight projections are not only used as walls for preventing water intrusion. Moreover, it can be made to function also as a site | part for preventing the slip generate | occur | produced between an inner cylinder member and a counterpart member. That is, by providing the circular watertight protrusions, not only can water be prevented from entering the inside of the inner cylinder member, but also the effect of preventing slippage between the inner cylinder member and the counterpart member can be further enhanced.

また、円状水密突起がセレーション突起と交差して設けられることで、これらセレーション突起および円状水密突起の両突起全体としての剛性を高めることができる。その結果、セレーション突起および円状水密突起の全体を相手部材に確実に圧接させることができるので、水の侵入と滑りの発生とをより確実に防止できる。   Further, since the circular watertight protrusions are provided so as to intersect with the serration protrusions, the rigidity of both the serration protrusions and the circular watertight protrusions as a whole can be increased. As a result, the entire serration projection and the circular watertight projection can be reliably brought into pressure contact with the mating member, so that water intrusion and slippage can be prevented more reliably.

請求項4記載の防振装置によれば、請求項1又は2に記載の防振装置の奏する効果に加え、水密突起は、周方向に断続しつつセレーション突起に接続される第1列と、第1列よりも外周側に位置し周方向に断続しつつセレーション突起に接続される第2列とが千鳥配置される千鳥状水密突起を備えるので、千鳥状水密突起を分散して配置できる。よって、これらセレーション突起および千鳥状水密突起の両突起を相手部材に圧接する際には、その圧接による相手部材の変形箇所を分散させることができる。その結果、これらセレーション突起および千鳥状水密突起の両突起の全体をそれぞれ確実に相手部材へ圧接させることができるので、水の侵入と滑りの発生とをより確実に防止できる。   According to the vibration isolator according to claim 4, in addition to the effect of the vibration isolator according to claim 1 or 2, the watertight protrusion is connected to the serration protrusion while being intermittent in the circumferential direction, and Since the staggered watertight protrusions arranged in a staggered manner are provided on the outer peripheral side of the first row and connected to the serration protrusions intermittently in the circumferential direction, the staggered watertight protrusions can be dispersed. Therefore, when both the serration protrusion and the staggered watertight protrusion are pressed against the mating member, the deformed portions of the mating member due to the press-contact can be dispersed. As a result, the entire protrusions of the serration protrusion and the staggered watertight protrusion can be reliably brought into pressure contact with the mating member, so that water intrusion and slippage can be prevented more reliably.

本発明の第1実施の形態における防振装置の装着状態を示す断面図である。It is sectional drawing which shows the mounting state of the vibration isolator in 1st Embodiment of this invention. (a)は、防振装置の上面図であり、(b)は、図2(a)のIIb−IIb線における防振装置の断面図である。(A) is a top view of a vibration isolator, (b) is sectional drawing of the vibration isolator in the IIb-IIb line | wire of Fig.2 (a). (a)は、軸方向から視た内筒部材における軸方向端面の上面図であり、(b)は、図3(a)に示す内筒部材の軸方向端面の一部を拡大して示す部分拡大上面図である。(A) is a top view of the axial end surface of the inner cylinder member as viewed from the axial direction, and (b) is an enlarged view of a part of the axial end surface of the inner cylinder member shown in FIG. It is a partial enlarged top view. (a)は、図3(b)のIVa−IVa線における内筒部材の断面図であり、(b)は、図3(b)のIVb−IVb線における内筒部材の断面図である。(A) is sectional drawing of the inner cylinder member in the IVa-IVa line of FIG.3 (b), (b) is sectional drawing of the inner cylinder member in the IVb-IVb line of FIG.3 (b). (a)は、第2実施の形態における内筒部材を軸方向から視た際の軸方向端面の上面図であり、(b)は、図5(a)に示す内筒部材0の軸方向端面の一部を拡大して示す部分拡大上面図である。(A) is a top view of the axial direction end surface when the inner cylinder member in 2nd Embodiment is seen from an axial direction, (b) is an axial direction of the inner cylinder member 0 shown to Fig.5 (a). It is a partial enlarged top view which expands and shows a part of end surface. (a)は、図5(b)のVIa−VIa線における内筒部材の断面図であり、(b)は、図5(b)のVIb−VIb線における内筒部材の断面図である。(A) is sectional drawing of the inner cylinder member in the VIa-VIa line of FIG.5 (b), (b) is sectional drawing of the inner cylinder member in the VIb-VIb line of FIG.5 (b). (a)は、第3実施の形態における内筒部材を軸方向から視た際の軸方向端面の上面図であり、(b)は、図7(a)に示す内筒部材の軸方向端面の一部を拡大して示す部分拡大上面図である。(A) is a top view of the axial direction end surface when the inner cylinder member in 3rd Embodiment is seen from an axial direction, (b) is an axial direction end surface of the inner cylinder member shown to Fig.7 (a). It is a partial enlarged top view which expands and shows a part of. (a)は、図7(b)のVIIIa−VIIIa線における内筒部材の断面図であり、(b)は、図7(b)のVIIIb−VIIIb線における内筒部材の断面図である。(A) is sectional drawing of the inner cylinder member in the VIIIa-VIIIa line | wire of FIG.7 (b), (b) is sectional drawing of the inner cylinder member in the VIIIb-VIIIb line | wire of FIG.7 (b). 第4実施の形態における内筒部材を軸方向から視た際の軸方向端面の上面図である。It is a top view of the axial direction end surface at the time of seeing the inner cylinder member in a 4th embodiment from the axial direction. (a)及び(b)は、第5実施の形態における内筒部材の断面図である。(A) And (b) is sectional drawing of the inner cylinder member in 5th Embodiment. (a)及び(b)は、第6実施の形態における内筒部材の断面図である。(A) And (b) is sectional drawing of the inner cylinder member in 6th Embodiment. (a)は、第7実施の形態における内筒部材の軸方向端面の一部を拡大して示す部分拡大上面図であり、(b)は、第8実施の形態における内筒部材の軸方向端面の一部を拡大して示す部分拡大上面図である。(A) is a partial expanded top view which expands and shows a part of axial direction end surface of the inner cylinder member in 7th Embodiment, (b) is an axial direction of the inner cylinder member in 8th Embodiment. It is a partial enlarged top view which expands and shows a part of end surface. (a)は、第9実施の形態における内筒部材の軸方向端面の一部を拡大して示す部分拡大上面図であり、(b)は、第10実施の形態における内筒部材の軸方向端面の一部を拡大して示す部分拡大上面図である。(A) is a partial enlarged top view which expands and shows a part of axial direction end surface of the inner cylinder member in 9th Embodiment, (b) is an axial direction of the inner cylinder member in 10th Embodiment. It is a partial enlarged top view which expands and shows a part of end surface.

以下、本発明の好ましい実施例について、添付図面を参照して説明する。図1は、本発明の第1実施の形態における防振装置1の装着状態を示す断面図である。また、図2(a)は、防振装置1の上面図であり、図2(b)は、図2(a)のIIb−IIb線における防振装置1の断面図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a mounted state of the vibration isolator 1 according to the first embodiment of the present invention. 2A is a top view of the vibration isolator 1, and FIG. 2B is a cross-sectional view of the vibration isolator 1 taken along line IIb-IIb in FIG. 2A.

図1及び図2に示すように、防振装置1は、自動車のサスペンション機構(懸架機構)に装着されるブッシュであり、鉄鋼材料から軸Oを有する筒状に形成される内筒部材10と、その内筒部材10と同心に配設されると共に鉄鋼材料から筒状に形成される外筒部材20と、それら内筒部材10の外周面および外筒部材20の内周面を連結すると共にゴム状弾性体からなる防振基体30とを備え、本実施の形態では、サスペンションアームSAと車体側の一対の取付板MPとの間に介在する。   As shown in FIGS. 1 and 2, the vibration isolator 1 is a bush attached to a suspension mechanism (suspension mechanism) of an automobile, and includes an inner cylinder member 10 formed in a cylindrical shape having an axis O from a steel material. The outer cylinder member 20 is disposed concentrically with the inner cylinder member 10 and is formed in a cylindrical shape from a steel material, and the outer peripheral surface of the inner cylinder member 10 and the inner peripheral surface of the outer cylinder member 20 are connected to each other. In this embodiment, the anti-vibration base 30 made of a rubber-like elastic body is interposed between the suspension arm SA and the pair of mounting plates MP on the vehicle body side.

即ち、防振装置1は、サスペンションアームSAの圧入部に外筒部材20を軸方向に圧入固定すると共に、一方の取付板MP(図1右側)の挿通孔から内筒部材10の内部にボルトBを挿通し、他方の取付板MP(図1左側)の挿通孔から突出されたボルトBのおねじ部にナットNを螺合させて締め付け、一対の取付板MP間に軸方向(図1左右方向)両側から挟持された状態で内筒部材10を締結固定することで、サスペンション機構に装着される。   That is, the vibration isolator 1 presses and fixes the outer cylinder member 20 in the press-fitting portion of the suspension arm SA in the axial direction, and bolts are inserted into the inner cylinder member 10 from the insertion hole of one mounting plate MP (right side in FIG. 1). B is inserted, and a nut N is screwed into a male screw portion of the bolt B protruding from the insertion hole of the other mounting plate MP (left side in FIG. 1) and tightened, and axially (see FIG. 1) between the pair of mounting plates MP. (Right and left direction) The inner cylinder member 10 is fastened and fixed while being clamped from both sides, so that it is mounted on the suspension mechanism.

ここで、防振装置1は、内筒部材10の軸方向端面からセレーション突起13及び水密突起14が突設されている(図3及び図4参照)。よって、内筒部材10が軸方向両側から一対の取付板MP間に挟持された状態で締結固定されると、セレーション突起13が取付板MPに圧接され、内筒部材10と取付板MPとの間に相対的な滑りが生じることを防止できる。   Here, the vibration isolator 1 has a serration protrusion 13 and a watertight protrusion 14 protruding from the axial end surface of the inner cylinder member 10 (see FIGS. 3 and 4). Therefore, when the inner cylinder member 10 is fastened and fixed in a state of being sandwiched between the pair of mounting plates MP from both sides in the axial direction, the serration protrusion 13 is pressed against the mounting plate MP, and the inner cylinder member 10 and the mounting plate MP are It is possible to prevent relative slippage between them.

また、この場合、本実施の形態では、水密突起14が取付板MPに圧接されると、内筒部材10の軸方向端面に周方向に連続する壁を形成して、内筒部材10の内部(ボルトBが挿通される空間)を外部から遮断する。これにより、方内筒部材10の軸方向端面と取付板MPとの間から内筒部材10の内部に水が侵入することを防止できる。その結果、ボルトBの発錆を防止して、耐久性を確保できる。   In this case, in this embodiment, when the watertight protrusion 14 is pressed against the mounting plate MP, a wall continuous in the circumferential direction is formed on the axial end surface of the inner cylinder member 10, and the interior of the inner cylinder member 10 is formed. (Space through which the bolt B is inserted) is blocked from the outside. Thereby, it can prevent that water penetrate | invades into the inside of the inner cylinder member 10 from between the axial direction end surface of the inner cylinder member 10, and the attachment board MP. As a result, rusting of the bolt B can be prevented and durability can be secured.

次いで、図3及び図4を参照して、内筒部材10の詳細構成について説明する。図3(a)は、軸O方向から視た内筒部材10における軸方向端面の上面図であり、図3(b)は、図3(a)に示す内筒部材10の軸方向端面の一部を拡大して示す部分拡大上面図である。また、図4(a)は、図3(b)のIVa−IVa線における内筒部材10の断面図であり、図4(b)は、図3(b)のIVb−IVb線における内筒部材10の断面図である。   Next, a detailed configuration of the inner cylinder member 10 will be described with reference to FIGS. 3 and 4. 3A is a top view of the axial end surface of the inner cylinder member 10 viewed from the direction of the axis O, and FIG. 3B is a top view of the axial end surface of the inner cylinder member 10 shown in FIG. It is a partial expanded top view which expands and shows a part. 4A is a cross-sectional view of the inner cylinder member 10 taken along line IVa-IVa in FIG. 3B, and FIG. 4B is an inner cylinder taken along line IVb-IVb in FIG. 3B. 3 is a cross-sectional view of a member 10. FIG.

なお、内筒部材10の軸方向端面における形状は両側とも同じ形状であるので、一側の軸方向端面の形状のみについて説明し、他側の軸方向端面の形状についてはその説明を省略する。   In addition, since the shape in the axial direction end surface of the inner cylinder member 10 is the same shape on both sides, only the shape of the axial end surface on one side will be described, and the description of the shape of the axial end surface on the other side will be omitted.

図3及び図4に示すように、内筒部材10は、内周側の角部および外周側の角部をそれぞれ面取りして形成される面取り部11,12と、軸方向端面にプレス加工を施して内筒部材10と一体に形成されるセレーション突起13及び水密突起14とを備える。   As shown in FIGS. 3 and 4, the inner cylinder member 10 is formed by chamfering chamfered portions 11 and 12 formed by chamfering a corner portion on the inner peripheral side and a corner portion on the outer peripheral side, and an axial end surface. And serration projections 13 and watertight projections 14 formed integrally with the inner cylinder member 10.

なお、内筒部材10は、内周側および外周側の角部のそれぞれに面取り部11,12を備えるので、セレーション突起13及び水密突起14を軸方向端面にプレス加工により突設させる際の成形性の向上を図ることができると共に、各突起13,14を取付板MP(図1参照)に圧接させた際の密着性を確実化することができる。   In addition, since the inner cylinder member 10 is provided with chamfered portions 11 and 12 at each of the corner portions on the inner peripheral side and the outer peripheral side, molding is performed when the serration protrusion 13 and the watertight protrusion 14 are protruded from the axial end surface by press working. It is possible to improve the property, and it is possible to ensure the adhesion when the protrusions 13 and 14 are brought into pressure contact with the mounting plate MP (see FIG. 1).

セレーション突起13は、図3に示すように、周方向等間隔に配置される(即ち、軸O方向視において、軸Oを中心として放射直線状に配置される)複数本(本実施の形態では36本)の突起群からなり、各突起は、図4(b)に示すように、基部側(図4(b)下側)から突設先端側(図4(b)上側)へ向けて先細となる断面略三角形状の突起として形成される。   As shown in FIG. 3, a plurality of serration protrusions 13 are arranged at equal intervals in the circumferential direction (that is, arranged in a radial straight line with the axis O as the center when viewed in the direction of the axis O) (in the present embodiment). As shown in FIG. 4B, each protrusion is directed from the base side (the lower side in FIG. 4B) to the projecting tip side (the upper side in FIG. 4B). It is formed as a protrusion having a substantially triangular shape in cross section.

なお、セレーション突起13を構成する各突起は、図4(a)に示すように、軸O側に位置する端面(図4(a)左側面)が面取り部12と同じ傾斜角で傾斜しつつ面取り部12に連なる。また、各突起は、図4(b)に示すように、突設先端面が幅t1を有し且つ軸Oに垂直な平坦面とされると共に、基部側から突設高さh1で突設される。   As shown in FIG. 4A, each of the protrusions constituting the serration protrusion 13 is inclined with the same inclination angle as that of the chamfered portion 12 at the end face located on the axis O side (the left side face in FIG. 4A). It continues to the chamfer 12. As shown in FIG. 4B, each protrusion has a protruding tip surface having a width t1 and a flat surface perpendicular to the axis O, and protruding from the base side at a protruding height h1. Is done.

水密突起14は、図3に示すように、軸O方向視において、軸Oを中心とする円形状に形成され、その円形状の内周側にセレーション突起13を構成する各突起の端部がそれぞれ接続される。また、水密突起14は、図4(a)に示すように、基部側(図4(a)下側)から突設先端側(図4(a)上側)へ向けて先細となる断面略三角形状の突起として形成される。   As shown in FIG. 3, the watertight protrusion 14 is formed in a circular shape centered on the axis O when viewed in the direction of the axis O, and ends of the protrusions constituting the serration protrusion 13 are formed on the inner peripheral side of the circular shape. Each is connected. Further, as shown in FIG. 4A, the watertight protrusion 14 has a substantially triangular cross section that tapers from the base side (lower side in FIG. 4A) toward the protruding tip side (upper side in FIG. 4A). It is formed as a shape protrusion.

なお、水密突起14は、図4(a)に示すように、軸Oに対し反対側(内筒部材10の外周側)に位置する側面(図4(a)右側面)が面取り部11と同じ傾斜角で傾斜しつつ面取り部11に連なる。また、水密突起14は、図4(a)に示すように、突設先端面が幅t2を有し且つ軸Oに垂直な平坦面とされると共に、基部側から突設高さh2で突設される。   As shown in FIG. 4A, the watertight protrusion 14 has a side surface (right side surface in FIG. 4A) located on the opposite side (the outer peripheral side of the inner cylinder member 10) with respect to the axis O and the chamfered portion 11. It continues to the chamfer 11 while inclining at the same inclination angle. In addition, as shown in FIG. 4A, the watertight protrusion 14 has a protruding tip surface having a width t2 and a flat surface perpendicular to the axis O, and protruding from the base side at a protruding height h2. Established.

ここで、本実施の形態では、水密突起14の突設高さh2が、セレーション突起13の突設高さh1と同じ寸法とされる(h1=h2)。よって、水密突起14の突設先端面は、セレーション突起13を構成する各突起の先端面を含む平面に一致する。また、水密突起14の突設先端面の幅t2が、セレーション突起13の突設先端面の幅t1と同じ寸法とされる(t1=t2)。よって、両突起13,14を取付板MPに均等に没入させる(食い込ませる)ことができる。   Here, in the present embodiment, the protruding height h2 of the watertight protrusion 14 is the same as the protruding height h1 of the serration protrusion 13 (h1 = h2). Therefore, the projecting tip surface of the watertight projection 14 coincides with a plane including the tip surface of each projection constituting the serration projection 13. Further, the width t2 of the projecting tip surface of the watertight projection 14 is the same as the width t1 of the projecting tip surface of the serration projection 13 (t1 = t2). Therefore, both the protrusions 13 and 14 can be immersed into the mounting plate MP evenly.

以上のように、本実施の形態における防振装置1によれば、内筒部材10の軸方向端面に、軸Oに対して放射直線状に配置されるセレーション突起13を突設したので、セレーション突起13の各突起が取付板MPに圧接されると(図1参照)、各突起の突設先端部分が取付板MPに没入される(食い込む)ことで、内筒部材10と取付板MPとの間の相対的な滑りを防止することができる。   As described above, according to the vibration isolator 1 in the present embodiment, the serration protrusions 13 that are arranged in a radial straight line with respect to the axis O are provided on the end surface in the axial direction of the inner cylinder member 10. When each protrusion of the protrusion 13 is in pressure contact with the mounting plate MP (see FIG. 1), the projecting tip portion of each protrusion is immersed in the mounting plate MP, so that the inner cylinder member 10 and the mounting plate MP Relative slippage between the two can be prevented.

この場合、内筒部材10の軸方向端面には、軸O方向視において、円形に形成される水密突起14も突設されている。よって、水密突起14が取付板MPに圧接されると(図1参照)、水密突起14の突設先端部分が取付板MPに没入される(食い込む)ことで、内筒部材10の軸方向端面と取付板MPとの間に、周方向に連続する壁を形成することができる。   In this case, a watertight protrusion 14 that is formed in a circular shape as viewed in the direction of the axis O is also provided on the axial end surface of the inner cylinder member 10. Therefore, when the watertight projection 14 is pressed against the mounting plate MP (see FIG. 1), the projecting tip portion of the watertight projection 14 is immersed into the mounting plate MP, so that the axial end surface of the inner cylinder member 10 is reached. A wall continuous in the circumferential direction can be formed between the mounting plate MP and the mounting plate MP.

この壁により、内筒部材10の内部を外部から遮断することができるので、内筒部材10の内部への水の侵入を低減することができ、その結果、ボルトB(図1参照)の軸部の発錆を抑制して、耐久性の向上を図ることができる。   Since the inside of the inner cylinder member 10 can be blocked from the outside by this wall, the intrusion of water into the inner cylinder member 10 can be reduced. As a result, the shaft of the bolt B (see FIG. 1) The rusting of the part can be suppressed and the durability can be improved.

ここで、例えば、突起間に充填したシールゴムにより隙間を閉鎖して、内筒部材の内部への水の侵入を防止するものでは、経時や紫外線の影響などによりシールゴムが劣化すると、水の侵入や締結力の低下を招く。これに対し、防振装置1では、水密突起14が内筒部材10の軸方向端面に一体に形成される、即ち、鉄鋼材料から形成されるので、経時や紫外線の影響による劣化を回避して、水密突起14の剛性を確保できるので、長期にわたって、内筒部材10の内部への水の浸入を防止すると共にボルトB(図1参照)による締結力の低下を防止できる。   Here, for example, in a case where the gap is closed with a seal rubber filled between the protrusions to prevent the intrusion of water into the inner cylindrical member, if the seal rubber deteriorates due to the influence of time or ultraviolet rays, The fastening force is reduced. On the other hand, in the vibration isolator 1, the watertight protrusion 14 is integrally formed on the axial end surface of the inner cylinder member 10, that is, formed of a steel material, so that deterioration due to the influence of time or ultraviolet rays is avoided. Since the rigidity of the watertight protrusion 14 can be secured, it is possible to prevent water from entering the inner cylinder member 10 and prevent a decrease in fastening force due to the bolt B (see FIG. 1) over a long period of time.

また、水密突起14の突設高さh2は、セレーション突起13の突設高さh1と同等の寸法とされるので、寸法公差で突設高さh1,h2や取付板MP(図1参照)の平面度などにばらつきが生じている場合でも、内筒部材10の軸方向端面が取付板MPの間に挟持された際に、セレーション突起13の各突起の突設先端部分を取付板MPに確実に没入させ(食い込ませ)、内筒部材10と取付板MPとの間の相対的な滑りを抑制する効果の確実化を図ることができる。   Further, the projecting height h2 of the watertight projection 14 is the same size as the projecting height h1 of the serration projection 13, so the projecting heights h1 and h2 and the mounting plate MP (see FIG. 1) due to dimensional tolerances. Even when there is a variation in the flatness of the inner cylindrical member 10, when the axial end surface of the inner cylinder member 10 is sandwiched between the mounting plates MP, the projecting tip portions of the projections of the serration projections 13 are attached to the mounting plate MP. It is possible to ensure the effect of suppressing the relative slip between the inner cylinder member 10 and the mounting plate MP by reliably immersing (biting in).

更に、水密突起14には、セレーション突起13を構成する各突起の端部が接続されているので、これら水密突起14及びセレーション突起13の両突起全体としての剛性を高めることができる。その結果、セレーション突起13及び水密突起14が取付板MPに圧接される際には、その突設先端部分を取付板MPに確実に没入させる(食い込ませる)ことができ、水の侵入と滑りの発生とをより確実に防止できる。   Further, since the end portions of the protrusions constituting the serration protrusion 13 are connected to the watertight protrusion 14, the rigidity of both the watertight protrusion 14 and the serration protrusion 13 as a whole can be increased. As a result, when the serration protrusion 13 and the watertight protrusion 14 are pressed against the mounting plate MP, the protruding tip portion can be surely immersed (bite in) the mounting plate MP. Occurrence can be prevented more reliably.

次いで、図5及び図6を参照して、第2実施の形態における内筒部材210について説明する。第1実施の形態では、内筒部材10の軸方向端面に水密突起14が円形に配置される場合を説明したが、第2実施の形態における内筒部材210には、千鳥状水密突起214が周方向に沿って千鳥状に配置される。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, the inner cylinder member 210 in the second embodiment will be described with reference to FIGS. 5 and 6. In the first embodiment, the case where the watertight protrusions 14 are arranged in a circular shape on the axial end surface of the inner cylinder member 10 has been described. However, the inner cylinder member 210 in the second embodiment has staggered watertight protrusions 214. Arranged in a staggered pattern along the circumferential direction. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

図5(a)は、第2実施の形態における内筒部材210を軸O方向から視た際の軸方向端面の上面図であり、図5(b)は、図5(a)に示す内筒部材210の軸方向端面の一部を拡大して示す部分拡大上面図である。また、図6(a)は、図5(b)のVIa−VIa線における内筒部材210の断面図であり、図6(b)は、図5(b)のVIb−VIb線における内筒部材210の断面図である。   FIG. 5A is a top view of an axial end surface when the inner cylinder member 210 in the second embodiment is viewed from the direction of the axis O, and FIG. 5B is an inner view shown in FIG. FIG. 4 is a partially enlarged top view showing a part of an axial end surface of a cylindrical member 210 in an enlarged manner. 6A is a cross-sectional view of the inner cylinder member 210 taken along line VIa-VIa in FIG. 5B, and FIG. 6B is an inner cylinder taken along line VIb-VIb in FIG. 5B. 4 is a cross-sectional view of a member 210. FIG.

なお、内筒部材210の軸方向端面における形状は両側とも同じ形状であるので、一側の軸方向端面の形状のみについて説明し、他側の軸方向端面の形状についてはその説明を省略する。   In addition, since the shape in the axial direction end surface of the inner cylinder member 210 is the same shape on both sides, only the shape of the axial end surface on one side will be described, and the description of the shape of the axial end surface on the other side will be omitted.

図5及び図6に示すように、内筒部材210は、軸方向端面にプレス加工を施して内筒部材210と一体に形成されるセレーション突起13及び千鳥状水密突起214とを備える。なお、セレーション突起13は、千鳥状水密突起214が接続(交差)される箇所が異なる点を除き第1実施の形態の場合と同様であるのでその説明は省略する。   As shown in FIGS. 5 and 6, the inner cylinder member 210 includes serration protrusions 13 and staggered watertight protrusions 214 that are formed integrally with the inner cylinder member 210 by pressing the end face in the axial direction. The serration protrusions 13 are the same as those in the first embodiment except that the staggered watertight protrusions 214 are connected (intersected) to each other, and the description thereof is omitted.

千鳥状水密突起214は、内周側に配置される突起群からなる内周側突起列214aと、その内周側突起列214aよりも外周側に配置される突起群からなる外周側突起列214bとを備え、これら両突起列214a,214bから、軸O方向視において、千鳥状に形成される。   The staggered watertight projection 214 includes an inner circumferential projection row 214a composed of a projection group disposed on the inner circumferential side, and an outer circumferential projection row 214b composed of a projection group disposed closer to the outer circumferential side than the inner circumferential projection row 214a. These two protrusion rows 214a and 214b are formed in a staggered pattern when viewed in the direction of the axis O.

具体的には、内周側突起列214aの各突起は、軸O方向視において、周方向等間隔に配置されるセレーション突起13の各突起の間に1箇所おきに配置され、外周側突起列214bは、内周側突起列214aの配置箇所とは1箇所分だけ周方向に位相をずらしつつ、セレーション突起13の各突起の間に1箇所おきに配置される。   Specifically, the protrusions of the inner peripheral protrusion row 214a are arranged at every other position between the protrusions of the serration protrusions 13 arranged at equal intervals in the circumferential direction when viewed in the direction of the axis O. 214b is disposed at every other position between the protrusions of the serration protrusion 13 while shifting the phase in the circumferential direction by one position from the position where the inner peripheral protrusion row 214a is disposed.

即ち、セレーション突起13を構成する各突起の間には、内周側において、内周側突起列214aの突起が配置される箇所と配置されない箇所とが周方向に交互に存在すると共に、同様に、外周側においても、外周側突起列214bの突起が配置される箇所と配置されない箇所とが周方向に交互に存在し、かつ、内周側突起列214aの突起が配置される箇所(セレーション突起13の各突起の間)には、外周側突起列214bの突起が配置されず、内周側突起列214aの突起が配置されない箇所には、外周側突起列214bの突起が配置される。   That is, between the protrusions constituting the serration protrusion 13, there are alternately the places where the protrusions of the inner peripheral protrusion row 214 a are arranged and the places where they are not arranged on the inner circumference side. Also on the outer peripheral side, locations where the projections of the outer peripheral projection row 214b are arranged and locations where the projections are not arranged alternately exist in the circumferential direction, and locations where the projections of the inner peripheral projection row 214a are arranged (serration projections) 13 between the protrusions 13), the protrusions of the outer peripheral protrusion row 214b are not disposed, and the protrusions of the outer peripheral protrusion row 214b are disposed at positions where the protrusions of the inner peripheral protrusion row 214a are not disposed.

なお、内周側突起列214aの突起および外周側突起列214bの突起は、図5に示すように、その長手方向両端が、セレーション突起13を構成する各突起の端部(内周側の端部または外周側の端部)に接続される。よって、これら両突起13,214は、閉じた形状を形成する。即ち、内筒部材210の軸方向端面には、セレーション突起13と千鳥状水密突起214とにより周方向に連続する壁が形成される。   As shown in FIG. 5, the protrusions of the inner peripheral protrusion row 214a and the protrusions of the outer peripheral protrusion row 214b are end portions of the protrusions constituting the serration protrusion 13 (ends on the inner peripheral side). Or an end on the outer peripheral side). Therefore, both the protrusions 13 and 214 form a closed shape. That is, on the end surface in the axial direction of the inner cylinder member 210, a wall continuous in the circumferential direction is formed by the serration protrusion 13 and the staggered watertight protrusion 214.

千鳥状水密突起214は、内周側突起列214aの突起および外周側突起列214bの突起が、図6(a)に示すように、基部側(図6(a)下側)から突設先端側(図6(a)上側)へ向けて先細となる断面略三角形状の突起として形成される。   As shown in FIG. 6A, the staggered watertight protrusion 214 has protrusions protruding from the base side (lower side in FIG. 6A) such that the protrusions in the inner peripheral protrusion line 214a and the protrusions in the outer peripheral protrusion line 214b protrude from the base side. It is formed as a protrusion having a substantially triangular cross section that tapers toward the side (upper side in FIG. 6A).

内周側突起列214aの突起は、図6(a)に示すように、軸O側(内筒部材210の内周側)に位置する側面(図6(a)左側面)が面取り部12と同じ傾斜角で傾斜しつつ面取り部12に連なり、外周側突起列214bの突起は、軸Oに対し反対側(内筒部材210の外周側)に位置する側面(図6(a)右側面)が面取り部11と同じ傾斜角で傾斜しつつ面取り部11に連なる。   As shown in FIG. 6A, the protrusion on the inner peripheral protrusion row 214a has a side surface (left side surface in FIG. 6A) located on the axis O side (the inner peripheral side of the inner cylinder member 210) as the chamfered portion 12. The protrusions of the outer peripheral protrusion row 214b are inclined at the same inclination angle as that of the outer peripheral side protrusion row 214b, and the protrusions on the side opposite to the axis O (the outer peripheral side of the inner cylindrical member 210) are shown in FIG. ) Continues to the chamfered portion 11 while being inclined at the same inclination angle as the chamfered portion 11.

また、内周側突起列214aの突起は、図6(a)に示すように、突設先端面が幅t21を有し且つ軸Oに垂直な平坦面とされると共に、基部側から突設高さh21で突設され、外周側突起列214bの突起は、突設先端面が幅t22を有し且つ軸Oに垂直な平坦面とされると共に、基部側から突設高さh22で突設される。   Further, as shown in FIG. 6A, the protrusions of the inner peripheral protrusion row 214a have a protruding tip surface having a width t21 and a flat surface perpendicular to the axis O, and protruding from the base side. The protrusion on the outer peripheral side protrusion row 214b protrudes at a height h21 and has a protrusion tip surface having a width t22 and a flat surface perpendicular to the axis O, and protrudes from the base side at a protrusion height h22. Established.

ここで、本実施の形態では、内周側突起列214aの突起および外周側突起列214bの突起の突設高さh21,h22が、セレーション突起13の突設高さh1と同じ寸法とされる(h1=h21=h22)。よって、千鳥状水密突起214(内周側突起列214aの突起および外周側突起列214bの突起)の突設先端面は、セレーション突起13を構成する各突起の先端面を含む平面に一致する。   Here, in the present embodiment, the protrusion heights h21 and h22 of the protrusions of the inner peripheral protrusion row 214a and the protrusions of the outer peripheral protrusion row 214b are the same as the protrusion height h1 of the serration protrusion 13. (H1 = h21 = h22). Therefore, the projecting tip surfaces of the staggered watertight projections 214 (the projections of the inner circumferential projection row 214a and the projections of the outer circumferential projection row 214b) coincide with the plane including the tip surfaces of the projections constituting the serration projection 13.

また、内周側突起列214aの突起の突設先端面の幅t21及び外周側突起列214bの突起の突設先端面の幅t22が、セレーション突起13の突設先端面の幅t1と同じ寸法とされる(t1=t21=t22)。よって、各突起13,214a,214bを取付板MPに均等に没入させる(食い込ませる)ことができる。   Further, the width t21 of the protruding tip surface of the protrusion on the inner peripheral projection row 214a and the width t22 of the protruding tip surface of the protrusion on the outer peripheral projection row 214b are the same dimensions as the width t1 of the protruding tip surface of the serration projection 13. (T1 = t21 = t22). Therefore, each protrusion 13, 214a, 214b can be evenly immersed (bite in) into the mounting plate MP.

以上のように、本実施の形態における防振装置によれば、第1実施の形態の場合と同様に、セレーション突起13の各突起により、内筒部材10と取付板MP(図1参照)との間の相対的な滑りを防止することができる。   As described above, according to the vibration isolator of the present embodiment, the inner cylinder member 10 and the mounting plate MP (see FIG. 1) are caused by the protrusions of the serration protrusion 13 as in the case of the first embodiment. Relative slippage between the two can be prevented.

この場合、内筒部材210の軸方向端面には、千鳥状水密突起214が突設されており、千鳥状水密突起214は、セレーション突起13と共に、閉じた形状(周方向に連続する壁)を形成する。よって、これらセレーション突起13及び千鳥状水密突起214が取付板MPに圧接され(図1参照)、両突起13,214の突設先端部分が取付板MPに没入される(食い込む)と、内筒部材210の軸方向端面と取付板MPとの間に、周方向に連続する壁を形成することができる。   In this case, a staggered watertight protrusion 214 is provided on the end surface of the inner cylinder member 210 in the axial direction. The staggered watertight protrusion 214 has a closed shape (a wall continuous in the circumferential direction) together with the serration protrusion 13. Form. Therefore, when the serration protrusions 13 and the staggered watertight protrusions 214 are pressed against the mounting plate MP (see FIG. 1), and the protruding tip portions of both the protrusions 13 and 214 are immersed in the mounting plate MP (intrusion), the inner cylinder A wall continuous in the circumferential direction can be formed between the axial end surface of the member 210 and the mounting plate MP.

この壁により、内筒部材210の内部を外部から遮断することができるので、内筒部材210の内部への水の侵入を低減することができ、その結果、ボルトB(図1参照)の軸部の発錆を抑制して、耐久性の向上を図ることができる。   Since this wall can block the inside of the inner cylinder member 210 from the outside, it is possible to reduce the intrusion of water into the inside of the inner cylinder member 210. As a result, the shaft of the bolt B (see FIG. 1) The rusting of the part can be suppressed and the durability can be improved.

ここで、千鳥状水密突起214は、内筒部材210の軸方向端面に一体に形成される、即ち、鉄鋼材料から形成されるので、経時や紫外線の影響による劣化を回避して、剛性が確保される。よって、第1実施の形態の場合と同様に、長期にわたって、内筒部材210の内部への水の浸入を防止すると共にボルトB(図1参照)による締結力の低下を防止できる。   Here, the staggered watertight protrusion 214 is integrally formed on the axial end surface of the inner cylindrical member 210, that is, formed of a steel material, so that deterioration due to the influence of time or ultraviolet rays is avoided and rigidity is ensured. Is done. Therefore, as in the case of the first embodiment, it is possible to prevent water from entering the inside of the inner cylinder member 210 and prevent a decrease in fastening force due to the bolt B (see FIG. 1) over a long period of time.

また、千鳥状水密突起214の突設高さh21,h22は、セレーション突起13の突設高さh1と同等の寸法とされるので、第1実施の形態の場合と同様に、寸法ばらつきが生じている場合でも、セレーション突起13を構成する各突起の突設先端部分を取付板MPに確実に没入させ(食い込ませ)、内筒部材210と取付板MPとの間の相対的な滑りを抑制する効果の確実化を図ることができる。   Further, the projecting heights h21 and h22 of the staggered watertight projection 214 are the same size as the projecting height h1 of the serration projection 13, so that the dimensional variation occurs as in the case of the first embodiment. Even if it is, the protrusion tip part of each protrusion which comprises the serration protrusion 13 is surely immersed in the attachment board MP (it bites in), and the relative slip between the inner cylinder member 210 and the attachment board MP is suppressed. The certainty of the effect can be achieved.

また、千鳥状水密突起214(内周側突起列214aの突起および外周側突起列214bの突起)は、その両端部がセレーション突起13を構成する各突起にそれぞれ接続されているので、これら千鳥状水密突起214及びセレーション突起13の両突起全体としての剛性を高めることができる。よって、第1実施の形態の場合と同様に、セレーション突起13及び千鳥状水密突起214の突設先端部分を取付板MPに確実に没入させる(食い込ませる)ことができ、水の侵入と滑りの発生とをより確実に防止できる。   Further, the staggered watertight projections 214 (the projections of the inner circumferential projection row 214a and the projections of the outer circumferential projection row 214b) are connected to the projections constituting the serration projection 13 at both ends, respectively. The rigidity of both the watertight projection 214 and the serration projection 13 as a whole can be increased. Therefore, as in the case of the first embodiment, the protruding tip portions of the serration protrusion 13 and the staggered watertight protrusion 214 can be surely immersed (bite in) the mounting plate MP, and water intrusion and slippage can be prevented. Occurrence can be prevented more reliably.

ここで、本実施の形態における千鳥状水密突起214は、周方向に断続しつつセレーション突起13に接続される内周側突起列214aと、その内周側突起列214aよりも外周側に位置し周方向に断続しつつセレーション突起13に接続される外周側突起列214bとから千鳥状に配置されるので、千鳥状水密突起214を構成する各突起を分散して配置できる。   Here, the staggered watertight protrusion 214 in the present embodiment is located on the outer peripheral side with respect to the inner peripheral protrusion row 214a connected to the serration protrusion 13 while being intermittently connected in the circumferential direction, and to the inner peripheral protrusion row 214a. Since they are arranged in a zigzag manner from the outer peripheral projection row 214b connected to the serration projection 13 while being intermittent in the circumferential direction, the projections constituting the zigzag watertight projection 214 can be dispersedly arranged.

よって、これらセレーション突起13及び千鳥状水密突起214を相手部材に圧接する際には、その圧接による取付板MP(図1参照)の変形箇所を分散させることができるので、これらセレーション突起13及び千鳥状水密突起214を構成する各突起のそれぞれを取付板MPへ確実に没入させる(食い込ませる)ことができるので、内筒部材210の内部への水の侵入と、内筒部材210と取付板MPとの間の滑りの発生とをより確実に防止できる。   Therefore, when the serration protrusions 13 and the staggered watertight protrusions 214 are pressed against the mating member, the deformed portions of the mounting plate MP (see FIG. 1) due to the pressure contact can be dispersed. Since each of the protrusions constituting the watertight protrusion 214 can be surely immersed in (inserted into) the mounting plate MP, water can enter the inner cylindrical member 210, and the inner cylindrical member 210 and the mounting plate MP. Can be more reliably prevented from occurring.

次いで、図7及び図8を参照して、第3実施の形態における内筒部材310について説明する。第1実施の形態では、内筒部材10の軸方向端面に水密突起14が円形に配置される場合を説明したが、第3実施の形態における内筒部材310には、その軸方向端面に楕円水密突起314が楕円形状に配置される。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, the inner cylinder member 310 according to the third embodiment will be described with reference to FIGS. In the first embodiment, the case where the watertight protrusion 14 is circularly arranged on the axial end surface of the inner cylinder member 10 has been described. However, the inner cylinder member 310 in the third embodiment has an elliptical shape on the axial end surface thereof. Watertight protrusions 314 are arranged in an elliptical shape. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

図7(a)は、第3実施の形態における内筒部材310を軸O方向から視た際の軸方向端面の上面図であり、図7(b)は、図7(a)に示す内筒部材310の軸方向端面の一部を拡大して示す部分拡大上面図である。また、図8(a)は、図7(b)のVIIIa−VIIIa線における内筒部材310の断面図であり、図8(b)は、図7(b)のVIIIb−VIIIb線における内筒部材310の断面図である。   FIG. 7A is a top view of an axial end face when the inner cylinder member 310 in the third embodiment is viewed from the direction of the axis O, and FIG. 7B is an inner view shown in FIG. FIG. 4 is a partially enlarged top view showing a part of an axial end surface of a cylindrical member 310 in an enlarged manner. 8A is a cross-sectional view of the inner cylinder member 310 taken along line VIIIa-VIIIa in FIG. 7B, and FIG. 8B is an inner cylinder taken along line VIIIb-VIIIb in FIG. 7B. 3 is a cross-sectional view of a member 310. FIG.

なお、内筒部材310の軸方向端面における形状は両側とも同じ形状であるので、一側の軸方向端面の形状のみについて説明し、他側の軸方向端面の形状についてはその説明を省略する。   In addition, since the shape in the axial direction end surface of the inner cylinder member 310 is the same shape on both sides, only the shape of the axial end surface on one side will be described, and the description of the shape of the axial end surface on the other side will be omitted.

図7及び図8に示すように、内筒部材310は、軸方向端面にプレス加工を施して内筒部材310と一体に形成されるセレーション突起13及び楕円水密突起314とを備える。なお、セレーション突起13は、楕円水密突起314が接続(交差)される箇所が異なる点を除き第1実施の形態における場合と同様であるのでその説明は省略する。   As shown in FIGS. 7 and 8, the inner cylinder member 310 includes serration protrusions 13 and elliptical watertight protrusions 314 that are formed integrally with the inner cylinder member 310 by pressing the end surface in the axial direction. The serration protrusions 13 are the same as those in the first embodiment except that the portions where the elliptical watertight protrusions 314 are connected (intersected) are different, and the description thereof is omitted.

楕円水密突起314は、図7に示すように、軸O方向視において、楕円形状に形成される。この楕円形状は、長軸と短軸との交点が軸O上に位置すると共に、長径がセレーション突起13の外周径に一致し、かつ、短径がセレーション突起13の内周径に一致する大きさとされる。   As shown in FIG. 7, the elliptical watertight protrusion 314 is formed in an elliptical shape when viewed in the direction of the axis O. This elliptical shape is such that the intersection of the major axis and the minor axis is located on the axis O, the major axis coincides with the outer peripheral diameter of the serration protrusion 13, and the minor axis coincides with the inner peripheral diameter of the serration protrusion 13. It is assumed.

このように、楕円水密突起314は、図7に示すように、セレーション突起13を構成する各突起に交差(接続)されつつ周方向に連続する。よって、これら両突起13,314は、閉じた形状を形成する。即ち、内筒部材310の軸方向端面には、セレーション突起13と楕円水密突起314とにより周方向に連続する壁が形成される。   As described above, the elliptical watertight protrusion 314 continues in the circumferential direction while intersecting (connecting) with each protrusion constituting the serration protrusion 13 as shown in FIG. Accordingly, both the protrusions 13 and 314 form a closed shape. That is, on the end surface in the axial direction of the inner cylinder member 310, a wall continuous in the circumferential direction is formed by the serration protrusion 13 and the elliptical watertight protrusion 314.

ここで、楕円水密突起314は、図8(a)に示すように、基部側(図8(a)下側)から突設先端側(図8(a)上側)へ向けて先細となる断面略三角形状の突起として形成される。   Here, as shown in FIG. 8A, the elliptical watertight projection 314 has a cross section that tapers from the base side (lower side in FIG. 8A) toward the projecting tip side (upper side in FIG. 8A). It is formed as a substantially triangular protrusion.

なお、楕円水密突起314は、図7(a)に示すように、長軸上に位置する部分(図8(a)左側及び右側部分)の軸Oに対し反対側(内筒部材310の外周側)に位置する側面が面取り部11と同じ傾斜角で傾斜しつつ面取り部11に連なると共に、短軸上に位置する部分(図8(a)上側及び下側部分)の軸O側(内筒部材310の内周側)に位置する側面が面取り部12と同じ傾斜角で傾斜しつつ面取り部12に連なる。   As shown in FIG. 7A, the elliptical watertight projection 314 is formed on the opposite side (the outer periphery of the inner cylinder member 310) with respect to the axis O of the portion located on the long axis (the left and right portions in FIG. 8A). The side surface located on the side) is connected to the chamfered portion 11 while being inclined at the same inclination angle as that of the chamfered portion 11, and the portion on the short axis (the upper and lower portions in FIG. 8A) on the axis O side (inside A side surface located on the inner peripheral side of the cylindrical member 310 is connected to the chamfered portion 12 while being inclined at the same inclination angle as the chamfered portion 12.

また、楕円水密突起314は、図8(a)に示すように、突設先端面が幅t3を有し且つ軸Oに垂直な平坦面とされると共に、基部側から突設高さh3で突設される。本実施の形態では、楕円水密突起314の突設高さh3が、セレーション突起13の突設高さh1と同じ寸法とされる(h1=h3)。よって、楕円水密突起314の突設先端面は、セレーション突起13を構成する各突起の先端面を含む平面に一致する。   Further, as shown in FIG. 8A, the elliptical watertight protrusion 314 has a protruding tip surface having a width t3 and a flat surface perpendicular to the axis O, and has a protruding height h3 from the base side. Projected. In the present embodiment, the protruding height h3 of the elliptical watertight protrusion 314 is the same as the protruding height h1 of the serration protrusion 13 (h1 = h3). Therefore, the protruding front end surface of the elliptical watertight protrusion 314 coincides with a plane including the front end surface of each protrusion constituting the serration protrusion 13.

また、楕円水密突起314の突設先端面の幅t3が、セレーション突起13の突設先端面の幅t1と同じ寸法とされる(t1=t3)。よって、両突起13,314を取付板MPに均等に没入させる(食い込ませる)ことができる。   Further, the width t3 of the projecting tip surface of the elliptical watertight projection 314 is the same as the width t1 of the projecting tip surface of the serration projection 13 (t1 = t3). Therefore, both the protrusions 13 and 314 can be evenly immersed in the mounting plate MP.

以上のように、本実施の形態における防振装置によれば、第1実施の形態の場合と同様に、セレーション突起13の各突起により、内筒部材310と取付板MP(図1参照)との間の相対的な滑りを防止することができる。   As described above, according to the vibration isolator of the present embodiment, the inner cylinder member 310 and the mounting plate MP (see FIG. 1) are formed by the protrusions of the serration protrusion 13 as in the case of the first embodiment. Relative slippage between the two can be prevented.

この場合、内筒部材310の軸方向端面には、楕円水密突起214が突設されており、楕円水密突起314は、セレーション突起13と共に、閉じた形状(周方向に連続する壁)を形成する。よって、これらセレーション突起13及び楕円水密突起314が取付板MPに圧接され(図1参照)、両突起13,314の突設先端部分が取付板MPに没入される(食い込む)と、内筒部材310の軸方向端面と取付板MPとの間に、周方向に連続する壁を形成することができる。   In this case, an elliptical watertight protrusion 214 protrudes from the axial end surface of the inner cylinder member 310, and the elliptical watertight protrusion 314 forms a closed shape (a wall continuous in the circumferential direction) together with the serration protrusion 13. . Therefore, when the serration protrusion 13 and the elliptical watertight protrusion 314 are pressed against the mounting plate MP (see FIG. 1), and the projecting tip portions of both the protrusions 13 and 314 are immersed into the mounting plate MP (intrusion), the inner cylinder member A wall continuous in the circumferential direction can be formed between the axial end surface of 310 and the mounting plate MP.

この壁により、内筒部材310の内部を外部から遮断することができるので、内筒部材310の内部への水の侵入を低減することができ、その結果、ボルトB(図1参照)の軸部の発錆を抑制して、耐久性の向上を図ることができる。   Since this wall can block the inside of the inner cylinder member 310 from the outside, it is possible to reduce the intrusion of water into the inside of the inner cylinder member 310. As a result, the shaft of the bolt B (see FIG. 1) The rusting of the part can be suppressed and the durability can be improved.

ここで、楕円水密突起314は、内筒部材310の軸方向端面に一体に形成される、即ち、鉄鋼材料から形成されるので、経時や紫外線の影響による劣化を回避して、剛性が確保される。よって、第1実施の形態の場合と同様に、長期にわたって、内筒部材310の内部への水の浸入を防止すると共にボルトB(図1参照)による締結力の低下を防止できる。   Here, the elliptical watertight protrusion 314 is integrally formed on the axial end surface of the inner cylinder member 310, that is, formed of a steel material, so that deterioration due to the influence of time or ultraviolet rays is avoided, and rigidity is ensured. The Therefore, as in the case of the first embodiment, it is possible to prevent water from entering the inside of the inner cylinder member 310 and prevent a decrease in fastening force due to the bolt B (see FIG. 1) over a long period of time.

また、楕円水密突起314の突設高さh3は、セレーション突起13の突設高さh1と同等の寸法とされるので、第1実施の形態の場合と同様に、寸法ばらつきが生じている場合でも、セレーション突起13を構成する各突起の突設先端部分を取付板MPに確実に没入させ(食い込ませ)、内筒部材310と取付板MPとの間の相対的な滑りを抑制する効果の確実化を図ることができる。   In addition, since the protruding height h3 of the elliptical watertight protrusion 314 has the same dimension as the protruding height h1 of the serration protrusion 13, when the dimension variation occurs as in the case of the first embodiment. However, the projecting tip portion of each protrusion constituting the serration protrusion 13 is surely immersed (bited in) into the mounting plate MP, and the effect of suppressing the relative slip between the inner cylinder member 310 and the mounting plate MP. Certainty can be achieved.

また、楕円水密突起314は、セレーション突起13を構成する各突起にそれぞれ交差(接続)されているので、これら楕円水密突起214及びセレーション突起13の両突起全体としての剛性を高めることができる。よって、第1実施の形態の場合と同様に、セレーション突起13及び楕円水密突起314の突設先端部分を取付板MPに確実に没入させる(食い込ませる)ことができ、水の侵入と滑りの発生とをより確実に防止できる。   In addition, since the elliptical watertight protrusion 314 intersects (connects) with each of the protrusions constituting the serration protrusion 13, the rigidity of both the elliptical watertight protrusion 214 and the serration protrusion 13 as a whole can be increased. Therefore, as in the case of the first embodiment, the protruding tip portions of the serration protrusion 13 and the elliptical watertight protrusion 314 can be reliably immersed (bite into) the mounting plate MP, and water intrusion and slippage can occur. Can be more reliably prevented.

ここで、本実施の形態における楕円水密突起314は、楕円形状に形成されるので、かかる楕円水密突起314を、水の侵入を防止するための壁としてだけではなく、内筒部材310と取付板MPとの間で発生する滑りを防止するための部位としても機能させることができる。即ち、楕円水密突起314を設けることで、内筒部材310の内部への水の侵入を防止するだけでなく、内筒部材310と取付板MPとの間の滑りの防止効果を更に高めることもできる。   Here, since the elliptical watertight protrusion 314 in the present embodiment is formed in an elliptical shape, the elliptical watertight protrusion 314 is not only used as a wall for preventing water from entering, but also the inner cylinder member 310 and the mounting plate. It can function also as a part for preventing the slip generated between MP. That is, the provision of the elliptical watertight projection 314 not only prevents water from entering the inside of the inner cylinder member 310 but also further enhances the effect of preventing slippage between the inner cylinder member 310 and the mounting plate MP. it can.

次いで、図9を参照して、第4実施の形態における内筒部材410について説明する。第1実施の形態では、軸O方向視において、円形の水密突起14が内筒部材10に対して同心に配置される場合を説明したが、第4実施の形態における内筒部材410には、円形水密突起414が内筒部材410に対して偏心して配置される。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, the inner cylinder member 410 according to the fourth embodiment will be described with reference to FIG. In the first embodiment, the case where the circular watertight protrusions 14 are arranged concentrically with respect to the inner cylinder member 10 when viewed in the direction of the axis O has been described. In the inner cylinder member 410 according to the fourth embodiment, The circular watertight protrusion 414 is arranged eccentrically with respect to the inner cylinder member 410. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

図9は、第4実施の形態における内筒部材410を軸O方向から視た際の軸方向端面の上面図である。なお、内筒部材410の軸方向端面における形状は両側とも同じ形状であるので、一側の軸方向端面の形状のみについて説明し、他側の軸方向端面の形状についてはその説明を省略する。   FIG. 9 is a top view of an axial end face when the inner cylinder member 410 according to the fourth embodiment is viewed from the axis O direction. In addition, since the shape in the axial direction end surface of the inner cylinder member 410 is the same shape on both sides, only the shape of the axial end surface on one side will be described, and the description of the shape of the axial end surface on the other side will be omitted.

図9に示すように、内筒部材410は、軸方向端面にプレス加工を施して内筒部材410と一体に形成されるセレーション突起13及び円形水密突起414とを備える。なお、セレーション突起13は、円形水密突起414が接続(交差)される箇所が異なる点を除き第1実施の形態における場合と同様であるのでその説明は省略する。   As shown in FIG. 9, the inner cylinder member 410 includes serration protrusions 13 and circular watertight protrusions 414 that are formed integrally with the inner cylinder member 410 by pressing the end face in the axial direction. The serration protrusions 13 are the same as those in the first embodiment except that the circular watertight protrusions 414 are connected (intersected) at different points, and the description thereof is omitted.

円形水密突起414は、図9に示すように、軸O方向視において、真円形状に形成される。この真円形状は、内筒部材410の軸Oに対して偏心して位置すると共に、一側(図9右側)がセレーション突起13の外周部に接し、かつ、他側(図9左側)にセレーション突起13の内周部に接する大きさとされる。   As shown in FIG. 9, the circular watertight protrusion 414 is formed in a perfect circle shape when viewed in the direction of the axis O. This perfect circular shape is eccentrically positioned with respect to the axis O of the inner cylinder member 410, and one side (right side in FIG. 9) is in contact with the outer peripheral portion of the serration protrusion 13, and the other side (left side in FIG. 9) is serrated. The size is in contact with the inner periphery of the protrusion 13.

なお、円形水密突起414は、軸O方向視における形状が異なる点を除き、その断面形状(突設先端面の幅や突設高さ)は第3実施の形態における楕円水密突起314と同じ構成であるので、その説明は省略する。   The circular watertight protrusion 414 has the same configuration as that of the elliptical watertight protrusion 314 in the third embodiment except for the point that the shape of the circular watertight protrusion 414 is different when viewed in the direction of the axis O. Therefore, the description thereof is omitted.

本実施の形態における防振装置においても、第1実施の形態における防振装置1と同様の効果を奏することができる。この場合、円形の円形水密突起414が偏心して配置されるので、かかる円形水密突起414を、水の侵入を防止するための壁としてだけではなく、内筒部材410と取付板MPとの間で発生する滑りを防止するための部位としても機能させることができる。即ち、円形水密突起414を設けることで、内筒部材410の内部への水の侵入を防止するだけでなく、内筒部材410と取付板MPとの間の滑りの防止効果を更に高めることもできる。   Also in the vibration isolator in this Embodiment, there can exist an effect similar to the vibration isolator 1 in 1st Embodiment. In this case, since the circular circular watertight protrusion 414 is arranged eccentrically, the circular watertight protrusion 414 is not only used as a wall for preventing water from entering, but also between the inner cylinder member 410 and the mounting plate MP. It can be made to function also as a part for preventing the generated slip. That is, the provision of the circular watertight protrusion 414 not only prevents water from entering the inside of the inner cylinder member 410 but also further enhances the effect of preventing slippage between the inner cylinder member 410 and the mounting plate MP. it can.

次いで、図10及び図11を参照して、第5実施の形態および第6実施の形態における内筒部材510,610について説明する。第1実施の形態では、セレーション突起13と水密突起14とが同じ突設高さに形成される場合を説明したが、第5実施の形態および第6実施の形態における水密突起14は、セレーション突起と異なる突設高さに形成される。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, with reference to FIGS. 10 and 11, inner cylinder members 510 and 610 in the fifth embodiment and the sixth embodiment will be described. In the first embodiment, the case where the serration protrusion 13 and the watertight protrusion 14 are formed at the same protrusion height has been described, but the watertight protrusion 14 in the fifth and sixth embodiments is the serration protrusion. It is formed with different projecting height. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

図10(a)及び図10(b)は、第5実施の形態における内筒部材510の断面図であり、図11(a)及び図11(b)は、第6実施の形態における内筒部材610の断面図である。なお、図10(a)及び図11(a)は、図4(a)に対応し、図10(b)及び図11(b)は、図4(b)に対応する。   FIGS. 10A and 10B are cross-sectional views of the inner cylinder member 510 in the fifth embodiment, and FIGS. 11A and 11B are inner cylinders in the sixth embodiment. 6 is a cross-sectional view of a member 610. FIG. 10 (a) and 11 (a) correspond to FIG. 4 (a), and FIGS. 10 (b) and 11 (b) correspond to FIG. 4 (b).

図10及び図11に示すように、第5実施の形態における内筒部材510は、セレーション突起13と水密突起514とを備え、第6実施の形態における内筒部材610は、セレーション突起13と水密突起614とを備える。なお、これら水密突起514,516は、その断面形状を除き、第1実施の形態における水密突起14と同一の構成であるので、その説明は省略する。   As shown in FIGS. 10 and 11, the inner cylinder member 510 in the fifth embodiment includes serration protrusions 13 and watertight protrusions 514, and the inner cylinder member 610 in the sixth embodiment includes serration protrusions 13 and watertightness. And a protrusion 614. Since these watertight protrusions 514 and 516 have the same configuration as the watertight protrusion 14 in the first embodiment except for the cross-sectional shape thereof, description thereof will be omitted.

第5実施の形態における水密突起514は、突設先端面の幅t5が、セレーション突起13の突設先端面の幅t1と同じ寸法とされる一方(t1=t5)、突設高さh5が、セレーション突起13の突設高さh1よりも小さな寸法とされる(h5<h1)。即ち、第5実施の形態における水密突起514の断面形状は、軸Oに対し反対側(内筒部材510の外周側)に位置する側面(図10(a)右側面)が面取り部11と同じ傾斜角で連なる状態を維持しつつ、図4(a)に示す水密突起14の断面形状を下方(図10(a)下側)へ向けて後退させた形状とされる。   In the watertight protrusion 514 in the fifth embodiment, the width t5 of the protruding tip surface is the same as the width t1 of the protruding tip surface of the serration protrusion 13 (t1 = t5), while the protruding height h5 is The height of the serration protrusion 13 is smaller than the height h1 (h5 <h1). That is, the cross-sectional shape of the watertight projection 514 in the fifth embodiment is the same as the chamfered portion 11 on the side surface (the right side surface in FIG. 10A) located on the opposite side (the outer peripheral side of the inner cylinder member 510) with respect to the axis O. The cross-sectional shape of the watertight projection 14 shown in FIG. 4A is set to be retreated downward (downward in FIG. 10A) while maintaining a state where the tilt angles are continuous.

また、第6実施の形態における水密突起614は、突設先端面の幅t6が、セレーション突起13の突設先端面の幅t1よりも大きな寸法とされると共に(t1<t6)、突設高さh6が、セレーション突起13の突設高さh1よりも小さな寸法とされる(h6<h1)。即ち、第6実施の形態における水密突起614の断面形状は、図4(a)に示す水密突起14の断面形状の先端面部分を軸Oに垂直に山払い(切除)した形状とされる。   Further, in the watertight protrusion 614 in the sixth embodiment, the width t6 of the protruding tip surface is larger than the width t1 of the protruding tip surface of the serration protrusion 13 (t1 <t6), and the protruding height The length h6 is set to be smaller than the protruding height h1 of the serration protrusion 13 (h6 <h1). That is, the cross-sectional shape of the watertight protrusion 614 in the sixth embodiment is a shape in which the tip surface portion of the cross-sectional shape of the watertight protrusion 14 shown in FIG.

以上のように、第5実施の形態および第6実施の形態では、水密突起514,614の突設高さh5,h6が、セレーション突起13の突設高さh1よりも小さな寸法とされるので、寸法公差で突設高さh1,h5,h6や取付板MP(図1参照)の平面度などにばらつきが生じている場合でも、内筒部材510,610の軸方向端面が取付板MP(図1参照)に挟持される際に、セレーション突起13の各突起の突設先端部分を取付板MPに確実に没入させる(食い込ませる)ことができる。よって、内筒部材510,610と取付板MPとの間の相対的な滑りを抑制する効果の確実化を図ることができる。   As described above, in the fifth embodiment and the sixth embodiment, the projecting heights h5 and h6 of the watertight projections 514 and 614 are smaller than the projecting height h1 of the serration projection 13. Even when the projecting heights h1, h5, h6 and the flatness of the mounting plate MP (see FIG. 1) vary due to dimensional tolerances, the axial end surfaces of the inner cylindrical members 510, 610 are attached to the mounting plate MP ( When sandwiched between the protrusions 13 (see FIG. 1), the protruding tip portions of the protrusions of the serration protrusions 13 can be surely immersed (bite into) the mounting plate MP. Therefore, it is possible to ensure the effect of suppressing the relative slip between the inner cylinder members 510 and 610 and the mounting plate MP.

なお、この場合、セレーション突起13と水密突起との間の突設高さの寸法差を比較的小さく設定する場合には、第5実施の形態のように、水密突起514の突設先端面における幅t5を、セレーション突起13の突設先端面における幅t1と同じ寸法とするか、又は、セレーション突起13の突設先端面における幅t1よりも小さな寸法とすることが好ましい。突設高さの寸法差が比較的小さいと、水密突起514の突設先端部分を取付板MP(図1参照)に没入させる(食い込ませる)必要が生じる場合が想定され、この場合に、没入しやすく(食い込みやすく)できるからである。   In this case, when the dimensional difference in the protruding height between the serration protrusion 13 and the watertight protrusion is set to be relatively small, as in the fifth embodiment, on the protruding tip surface of the watertight protrusion 514. The width t5 is preferably set to the same dimension as the width t1 on the protruding tip surface of the serration protrusion 13, or smaller than the width t1 on the protruding tip surface of the serration protrusion 13. If the dimensional difference between the projecting heights is relatively small, it is assumed that the projecting tip portion of the watertight projection 514 needs to be immersed in the mounting plate MP (see FIG. 1). It is because it is easy to do (easy to bite in).

一方、セレーション突起13と水密突起との間の突設高さの寸法差を比較的大きく設定する場合には、第6実施の形態のように、水密突起614の突設先端面における幅t6を、セレーション突起13の突設先端面における幅t1よりも大きな寸法とすることが好ましい。突設高さの寸法差が比較的大きいと、水密突起514の突設先端部分を取付板MP(図1参照)に十分に没入させる(食い込ませる)ことができない場合が想定され、この場合に、突設先端面と取付板MPとの間の密着面積を大きくして水密を確保できるからである。   On the other hand, when the dimensional difference in the protruding height between the serration protrusion 13 and the watertight protrusion is set to be relatively large, the width t6 at the protruding tip end surface of the watertight protrusion 614 is set as in the sixth embodiment. It is preferable that the dimension is larger than the width t1 of the protruding tip surface of the serration protrusion 13. When the dimensional difference in the projecting height is relatively large, it is assumed that the projecting tip portion of the watertight projection 514 cannot be sufficiently immersed in the mounting plate MP (see FIG. 1). This is because the watertightness can be ensured by increasing the contact area between the protruding front end surface and the mounting plate MP.

次いで、図12を参照して、第7実施の形態および第8実施の形態における内筒部材710,810について説明する。第1実施の形態では、セレーション突起13及び水密突起14の突設先端面がその延設方向(長手方向)に沿って一定幅(幅t1,t2)で形成される場合を説明したが、第7実施の形態および第8実施の形態におけるセレーション突起713,813及び水密突起714,814は、少なくとも両突起713,714等の接続部分において部分的に突設先端面の幅が狭くなるように形成される。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, with reference to FIG. 12, inner cylinder members 710 and 810 in the seventh embodiment and the eighth embodiment will be described. In the first embodiment, the case where the projecting tip surfaces of the serration protrusion 13 and the watertight protrusion 14 are formed with a constant width (width t1, t2) along the extending direction (longitudinal direction) has been described. The serration projections 713, 813 and the watertight projections 714, 814 in the seventh and eighth embodiments are formed so that the width of the projecting tip end surface is partially narrowed at least at the connection portion of both the projections 713, 714, etc. Is done. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

図12(a)は、第7実施の形態における内筒部材710の軸方向端面の一部を拡大して示す部分拡大上面図であり、図12(b)は、第8実施の形態における内筒部材810の軸方向端面の一部を拡大して示す部分拡大上面図である。なお、図12(a)及び図12(b)は、図3(b)に対応する。   FIG. 12A is a partially enlarged top view showing a part of the axial end surface of the inner cylindrical member 710 in the seventh embodiment in an enlarged manner, and FIG. 12B is an inner view in the eighth embodiment. FIG. 6 is a partially enlarged top view showing a part of an axial end surface of a cylindrical member 810 in an enlarged manner. FIGS. 12A and 12B correspond to FIG. 3B.

なお、内筒部材710,810の軸方向端面における形状は両側とも同じ形状であるので、一側の軸方向端面の形状のみについて説明し、他側の軸方向端面の形状についてはその説明を省略する。   In addition, since the shape in the axial direction end surface of the inner cylinder members 710 and 810 is the same shape on both sides, only the shape of the axial end surface on one side will be described, and the description of the shape of the axial end surface on the other side will be omitted. To do.

第7実施の形態における内筒部材710は、セレーション突起713と水密突起714とを備え、第8実施の形態における内筒部材810は、セレーション突起813と水密突起14とを備える。   The inner cylinder member 710 in the seventh embodiment includes serration protrusions 713 and watertight protrusions 714, and the inner cylinder member 810 in the eighth embodiment includes serration protrusions 813 and watertight protrusions 14.

この場合、第7実施の形態におけるセレーション突起713及び水密突起714は、凹欠部715を備える点を除き、第1実施の形態におけるセレーション突起13及び水密突起14とそれぞれ同一の構成であり、また、第8実施の形態におけるセレーション突起813は、突設先端面の幅が長手方向に沿って変化する点を除き、第1実施の形態におけるセレーション突起13と同一の構成である。よって、本実施の形態では、これらの詳細構成についての説明を省略する。   In this case, the serration protrusion 713 and the watertight protrusion 714 in the seventh embodiment have the same configuration as the serration protrusion 13 and the watertight protrusion 14 in the first embodiment, respectively, except that the recess 715 is provided. The serration protrusion 813 in the eighth embodiment has the same configuration as the serration protrusion 13 in the first embodiment except that the width of the protruding tip surface changes along the longitudinal direction. Therefore, in the present embodiment, description of these detailed configurations is omitted.

図12(a)に示すように、第7実施の形態における内筒部材710は、セレーション突起713と水密突起714との接続部分を凹欠する一対の凹欠部715を備える。凹欠部715は、両突起713,714の接続部分の両側に設けられ、それぞれの内角側から内方へ向けて凹設されることで、両突起713,714の一部を部分的に凹欠する。この凹欠により、セレーション突起713及び水密突起714の両者において、その突設先端面の幅が部分的に狭くされる。なお、凹欠部715は、軸O方向視において、円弧状に湾曲する形状に形成される。   As shown in FIG. 12A, the inner cylinder member 710 according to the seventh embodiment includes a pair of recessed portions 715 that have a recessed connection portion between the serration protrusion 713 and the watertight protrusion 714. The concave notches 715 are provided on both sides of the connecting portion of the two protrusions 713 and 714, and are recessed from the respective inner corners to the inside, thereby partially denting both the protrusions 713 and 714. Missing. By this recess, the width of the projecting tip surface is partially narrowed in both the serration projection 713 and the watertight projection 714. The recess 715 is formed in a shape that is curved in an arc shape when viewed in the direction of the axis O.

図12(b)に示すように、第8実施の形態における内筒部材810は、セレーション突起813の突設先端面が、内筒部材810の内周側となる長手方向一端側(図12(b)左側)で最大の幅taに形成されると共に、水密突起814に近づくほど幅が狭くされ、水密突起814との接続部分において最小の幅tbに形成される(tb<ta)。なお、セレーション突起813の突設先端面は、両側(図12(b)上側および下側)が直線状に形成される。   As shown in FIG. 12B, the inner cylinder member 810 according to the eighth embodiment has one end side in the longitudinal direction in which the protruding front end surface of the serration protrusion 813 is the inner peripheral side of the inner cylinder member 810 (FIG. b) In the left side, the width is formed to the maximum width ta, and the width is narrowed toward the watertight protrusion 814, and the minimum width tb is formed at the connection portion with the watertight protrusion 814 (tb <ta). In addition, as for the protrusion front end surface of the serration protrusion 813, both sides (FIG.12 (b) upper side and lower side) are formed in linear form.

以上のように、第7実施の形態では、内筒部材710の軸方向端面を軸O方向から視た場合に、両突起713,714の突設先端面の面密度が高くなる部分(両突起713,714の接続部分)に凹欠部715を凹欠することで、内筒部材710の軸方向端面における両突起713,714の突設先端面の面密度を全体として均一化することができる。また、第8実施の形態においても、セレーション突起813の突設先端面の幅を、水密突起814との接続部分(即ち、面密度が高くなる部分)側で狭くすることで、内筒部材810の軸方向端面における面密度の均一化を図ることができる。これにより、内筒部材710,810の軸方向端面が取付板MPの間で挟持される際に(図1参照)、両突起713,714等の突設先端面における面圧を全体に均一化して、これら両突起713,714を取付板MPへ均一に没入させる(食い込ませる)ことができる。   As described above, in the seventh embodiment, when the axial end surface of the inner cylindrical member 710 is viewed from the direction of the axis O, the portion where the surface density of the projecting tip surfaces of both the protrusions 713 and 714 increases (both protrusions By recessing the recessed portion 715 in the connecting portion of 713, 714), the surface density of the projecting tip surfaces of the protrusions 713, 714 on the axial end surface of the inner cylinder member 710 can be made uniform as a whole. . Also in the eighth embodiment, the inner cylindrical member 810 is narrowed by narrowing the width of the projecting tip surface of the serration projection 813 on the side of the connection portion with the watertight projection 814 (that is, the portion where the surface density is increased). It is possible to make the surface density uniform in the axial end face. As a result, when the axial end surfaces of the inner cylinder members 710 and 810 are sandwiched between the mounting plates MP (see FIG. 1), the surface pressure on the projecting tip surfaces of both the protrusions 713 and 714 and the like is made uniform as a whole. Thus, both the protrusions 713 and 714 can be uniformly immersed in the mounting plate MP.

次いで、図13を参照して、第9実施の形態および第10実施の形態における内筒部材910,1010について説明する。上述した第7実施の形態および第8実施の形態の場合と同様に、第9実施の形態および第10実施の形態におけるセレーション突起913,1013及び楕円水密突起914,1014は、少なくとも両突起913,914等の接続部分において部分的に突設先端面の幅が狭くなるように形成される。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, with reference to FIG. 13, inner cylinder members 910 and 1010 in the ninth embodiment and the tenth embodiment will be described. As in the case of the seventh embodiment and the eighth embodiment described above, the serration protrusions 913, 1013 and the elliptical watertight protrusions 914, 1014 in the ninth embodiment and the tenth embodiment have at least both protrusions 913, It is formed so that the width of the projecting tip surface is partially narrowed at the connecting portion such as 914. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

図13(a)は、第9実施の形態における内筒部材910の軸方向端面の一部を拡大して示す部分拡大上面図であり、図13(b)は、第10実施の形態における内筒部材1010の軸方向端面の一部を拡大して示す部分拡大上面図である。なお、図13(a)及び図13(b)は、図3(b)に対応する。   FIG. 13A is a partially enlarged top view showing an enlarged part of the axial end surface of the inner cylinder member 910 in the ninth embodiment, and FIG. 13B is an inner view in the tenth embodiment. FIG. 6 is a partially enlarged top view showing a part of an axial end surface of a cylindrical member 1010 in an enlarged manner. 13A and 13B correspond to FIG. 3B.

なお、内筒部材910,1010の軸方向端面における形状は両側とも同じ形状であるので、一側の軸方向端面の形状のみについて説明し、他側の軸方向端面の形状についてはその説明を省略する。   In addition, since the shape in the axial direction end surface of the inner cylinder members 910 and 1010 is the same shape on both sides, only the shape of the axial end surface on one side will be described, and the description of the shape of the axial end surface on the other side will be omitted. To do.

第9実施の形態における内筒部材910は、セレーション突起913と楕円水密突起914とを備え、第8実施の形態における内筒部材1010は、セレーション突起1013と楕円水密突起314とを備える。   The inner cylinder member 910 in the ninth embodiment includes a serration protrusion 913 and an elliptical watertight protrusion 914, and the inner cylinder member 1010 in the eighth embodiment includes a serration protrusion 1013 and an elliptical watertight protrusion 314.

この場合、第9実施の形態におけるセレーション突起913及び楕円水密突起914は、凹欠部915を備える点を除き、第3実施の形態におけるセレーション突起13及び楕円水密突起314とそれぞれ同一の構成であり、また、第10実施の形態におけるセレーション突起1013は、突設先端面の幅が長手方向に沿って変化する点を除き、第1実施の形態(第3実施の形態)におけるセレーション突起13と同一の構成である。よって、本実施の形態では、これらの詳細構成についての説明を省略する。   In this case, the serration projection 913 and the elliptical watertight projection 914 in the ninth embodiment have the same configuration as the serration projection 13 and the elliptical watertight projection 314 in the third embodiment, respectively, except that the concave portion 915 is provided. In addition, the serration protrusion 1013 in the tenth embodiment is the same as the serration protrusion 13 in the first embodiment (third embodiment) except that the width of the protruding tip surface changes along the longitudinal direction. It is the composition. Therefore, in the present embodiment, description of these detailed configurations is omitted.

図13(a)に示すように、第9実施の形態における内筒部材910は、セレーション突起913と楕円水密突起914との接続部分の4箇所を凹欠する凹欠部915を備える。凹欠部915は、両突起913,914の接続部分(交差部分)の4箇所に設けられ、それぞれの内角側から内方へ向けて凹設されることで、両突起913,914の一部を部分的に凹欠する。この凹欠により、セレーション突起913及び楕円水密突起914の両者において、その突設先端面の幅が部分的に狭くされる。   As shown in FIG. 13A, the inner cylinder member 910 according to the ninth embodiment includes concave notches 915 that are notched at four locations where the serration projection 913 and the elliptical watertight projection 914 are connected. The concave notches 915 are provided at four locations of the connecting portions (intersections) of the two protrusions 913 and 914, and are recessed from the respective inner corners to the inside, so that a part of both the protrusions 913 and 914 is provided. Is partially recessed. Due to this recess, the width of the projecting tip surface is partially narrowed in both the serration projection 913 and the elliptical watertight projection 914.

なお、凹欠部915は、軸O方向視において、円弧状に湾曲する形状に形成される。また、両突起913,914の突設先端面の幅であって、凹欠部915により凹欠された部分の幅は、4箇所それぞれ同じ寸法に設定される。これにより、内筒部材910の軸方向端面に両突起913,914を成形するためのプレス金型が部分的に磨耗する(即ち、突起の幅が狭い部分を成形する型部分の磨耗が先行する)ことを抑制して、その寿命の向上を図ることができる。   The recess 915 is formed in a shape that is curved in an arc shape when viewed in the direction of the axis O. Further, the widths of the projecting leading end surfaces of both the protrusions 913 and 914 and the widths of the portions notched by the notched portions 915 are set to the same size at each of the four locations. As a result, the press mold for forming both protrusions 913 and 914 partially wears on the axial end surface of the inner cylinder member 910 (that is, wear of the mold part that forms a portion with a narrow width of the protrusion precedes). ) Can be suppressed and the lifetime can be improved.

図13(b)に示すように、第10実施の形態における内筒部材1010は、セレーション突起1013の突設先端面が、内筒部材1010の内周側となる長手方向一端側(図13(b)左下側)及び内筒部材1010の外周側となる長手方向他端側(図13(b)右上側)で最大の幅tcに形成されると共に、楕円水密突起314に近づくほど幅が狭くされ、楕円水密突起314との接続部分において最小の幅tdに形成される(td<tc)。なお、図13(b)では楕円水密突起314に分断されたセレーション突起1013の他端側のみに寸法を図示する。また、セレーション突起1013の突設先端面は、両側が直線状に形成される。   As shown in FIG. 13B, the inner cylinder member 1010 according to the tenth embodiment has one end side in the longitudinal direction in which the protruding tip surface of the serration protrusion 1013 is the inner peripheral side of the inner cylinder member 1010 (FIG. 13 ( b) is formed at the maximum width tc at the other end side in the longitudinal direction (the upper right side in FIG. 13B) which is the outer peripheral side of the inner cylinder member 1010, and the width becomes narrower as it approaches the elliptical watertight projection 314. Thus, a minimum width td is formed at the connection portion with the elliptical watertight protrusion 314 (td <tc). In FIG. 13B, the dimensions are shown only on the other end side of the serration protrusion 1013 divided by the elliptical watertight protrusion 314. Moreover, both sides of the protruding tip end surface of the serration protrusion 1013 are linearly formed.

以上のように、第9実施の形態および第10実施の形態においても、第7実施の形態および第8実施の形態の場合と同様に、突設先端面の面密度を全体として均一化することができる。よって、内筒部材910,1010の軸方向端面が取付板MPの間で挟持される際に(図1参照)、両突起913,914等の突設先端面における面圧を全体に均一化して、これら両突起913,914を取付板MPへ均一に没入させる(食い込ませる)ことができる。   As described above, also in the ninth embodiment and the tenth embodiment, the surface density of the projecting tip surface is made uniform as a whole, as in the seventh embodiment and the eighth embodiment. Can do. Therefore, when the axial end surfaces of the inner cylinder members 910 and 1010 are sandwiched between the mounting plates MP (see FIG. 1), the surface pressure on the projecting tip surfaces of both the protrusions 913 and 914 and the like is made uniform throughout. These protrusions 913 and 914 can be uniformly immersed (bite into) the mounting plate MP.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

上記各実施の形態で説明した数値は一例であり、他の数値を採用することは当然可能である。例えば、セレーション突起13の形成本数は一例であり、上記例示した36本から増減して設定することは当然可能である。また、例えば、セレーション突起13の幅t1及び水密突起14の幅t2の寸法値は0であっても良い。これらのことは上記各実施の形態の各突起に適用される。   The numerical values described in the above embodiments are merely examples, and other numerical values can naturally be adopted. For example, the number of serration protrusions 13 formed is an example, and it is naturally possible to set the number of serration protrusions 13 to be increased or decreased from the 36 exemplified above. For example, the dimension value of the width t1 of the serration protrusion 13 and the width t2 of the watertight protrusion 14 may be zero. These apply to each protrusion of each of the above embodiments.

上記各実施の形態で説明した各構成の大小関係は一例であり、他の関係を採用することは当然可能である。例えば、セレーション突起13の幅t1と水密突起14の幅t2とを同じ寸法に設定する場合を説明したが、いずれか一方の幅が他方の幅よりも大きい寸法であっても良い。また、例えば、セレーション突起13を構成する各突起の一部の突起の幅が他の突起の幅と異なる寸法であっても良い。これらのことは上記各実施の形態の各突起に適用される。   The magnitude relationship between the components described in the above embodiments is merely an example, and other relationships can naturally be adopted. For example, although the case where the width t1 of the serration protrusion 13 and the width t2 of the watertight protrusion 14 are set to the same dimension has been described, one of the widths may be larger than the other width. Further, for example, the width of some of the protrusions constituting the serration protrusion 13 may be different from the width of other protrusions. These apply to each protrusion of each of the above embodiments.

上記各実施の形態では、内筒部材10〜1010の軸方向端面における形状が両側とも同じ形状とされる場合を説明したが、必ずしもこれに限られるものではなく、軸方向端面における形状を一方および他方でそれぞれ異なる形状(異なる実施の形態における形状)とすることは当然可能である。また、一方の軸方向端面のみに上記各実施の形態で説明した各突起を設ける一方、他方の軸方向端面には突起を設けず、平坦面として形成して良い。   In each of the above-described embodiments, the case where the shapes of the inner cylindrical members 10 to 1010 on the axial end surface are the same on both sides has been described. However, the shape is not necessarily limited to this, and the shape on the axial end surface is one and On the other hand, it is naturally possible to have different shapes (shapes in different embodiments). The projections described in the above embodiments may be provided only on one axial end surface, while the other axial end surface may be formed as a flat surface without providing a projection.

上記各実施の形態では、内筒部材10〜1010の内周側および外周側の角部に面取り部11,12を形成する場合を説明したが、必ずしもこれに限られるものではなく、面取り部11,12の一方または両方を省略しても良い。   Although each said embodiment demonstrated the case where the chamfering parts 11 and 12 were formed in the corner | angular part of the inner peripheral side and outer peripheral side of the inner cylinder members 10-1010, it is not necessarily restricted to this, The chamfering part 11 , 12 may be omitted.

上記第1実施の形態では、水密突起14がセレーション突起13の最外周側の端部に接続される場合を説明したが、必ずしもこれに限られるものではなく、最内周側の端部に接続されても良く、或いは、それらの間に接続(即ち、セレーション突起13に交差する形で水密突起14が配置)されても良い。   In the first embodiment, the case where the watertight projection 14 is connected to the outermost peripheral end portion of the serration projection 13 has been described. However, the present invention is not necessarily limited to this, and is connected to the innermost peripheral end portion. Or they may be connected between them (that is, the watertight protrusion 14 is arranged so as to intersect the serration protrusion 13).

上記第1実施の形態では、水密突起14がセレーション突起13に接続される場合を説明したが、必ずしもこれに限られるものではなく、水密突起14がセレーション突起13に接続されていなくても良い。即ち、水密突起14のみで周方向に連続する形状を形成していれば、セレーション突起13の外周側の端部(又は内周側の端部)と水密突起14の内周側の側面(又は外周側の側面)との間に隙間が設けられていても良い。   In the first embodiment, the case where the watertight protrusion 14 is connected to the serration protrusion 13 has been described. However, the present invention is not necessarily limited to this, and the watertight protrusion 14 may not be connected to the serration protrusion 13. That is, if only the watertight projection 14 forms a circumferentially continuous shape, the outer peripheral end (or inner peripheral end) of the serration projection 13 and the inner peripheral side surface of the watertight projection 14 (or A gap may be provided between the outer peripheral side surface and the outer peripheral side surface.

上記第2実施の形態では、千鳥状水密突起214の内周側突起列214a及び外周側突起列214bを構成する各突起が軸Oを中心とする円弧状に湾曲して形成される場合を説明したが、必ずしもこれに限られるものではなく、これら各突起の一部または全部を直線状に形成することは当然可能である。なお、各突起を直線状とすることは、他の実施の形態における各突起についても適用可能である。   In the second embodiment, the case where the protrusions constituting the inner peripheral protrusion row 214a and the outer peripheral protrusion row 214b of the staggered watertight protrusion 214 are curved in an arc shape centering on the axis O is described. However, the present invention is not necessarily limited to this, and it is naturally possible to form a part or all of these protrusions in a straight line. In addition, making each protrusion into a straight line shape is applicable to each protrusion in other embodiments.

上記第2実施の形態では、千鳥状水密突起214の内周側突起列214a及び外周側突起列214bを構成する各突起が、セレーション突起13の各突起の間に1箇所おきに配置される場合を説明したが、必ずしもこれに限られるものではなく、一部または全部が2箇所おきに配置されても良く、或いは、3箇所以上おきに配置されても良い。即ち、千鳥状水密突起214の各突起とセレーション突起13の各突起とにより周方向に連続する形状(閉じた形状)が形成されていれば良い。   In the second embodiment, the projections constituting the inner circumferential projection row 214a and the outer circumferential projection row 214b of the staggered watertight projection 214 are arranged at every other position between the projections of the serration projection 13. However, the present invention is not necessarily limited to this, and some or all of them may be arranged every two places, or may be arranged every three or more places. That is, it is only necessary to form a continuous shape (closed shape) in the circumferential direction by the protrusions of the staggered watertight protrusion 214 and the protrusions of the serration protrusion 13.

上記第2実施の形態では、千鳥状水密突起214の内周側突起列214aがセレーション突起13の最内周側の端部に接続されると共に外周側突起列214bがセレーション突起13の最外周側の端部に接続される場合を説明したが、必ずしもこれに限られるものではなく、両突起列214a,214bがセレーション突起13の最内周または最外周の端部から離間した位置に接続されていても良い。   In the second embodiment, the inner circumferential projection row 214 a of the staggered watertight projection 214 is connected to the innermost circumferential end of the serration projection 13 and the outer circumferential projection row 214 b is the outermost circumference side of the serration projection 13. However, the present invention is not necessarily limited to this, and both the protrusion rows 214a and 214b are connected to the innermost periphery of the serration protrusion 13 or a position separated from the outermost end. May be.

上記第3実施の形態では、楕円水密突起314が楕円形状に形成される場合を説明したが、必ずしもこれに限られるものではなく、例えば、長円形状であっても良い。この形状であっても、取付板MPとの間の相対的な滑りの補強効果を得ることができる。   In the third embodiment, the case where the elliptical watertight protrusion 314 is formed in an elliptical shape has been described. However, the present invention is not necessarily limited to this, and may be in an elliptical shape, for example. Even if it is this shape, the reinforcement effect of the relative slip between attachment plate MP can be acquired.

上記第4実施の形態では、真円形状に形成される円形水密突起414が偏心配置される場合を説明したが、必ずしもこれに限られるものではなく、例えば、長円形状や楕円形状を偏心配置しても良い。この形状であっても、取付板MPとの間の相対的な滑りの補強効果を得ることができる。   In the fourth embodiment, the case where the circular watertight protrusions 414 formed in a perfect circle shape are eccentrically arranged is not limited to this. For example, an ellipse shape or an elliptical shape is eccentrically arranged. You may do it. Even if it is this shape, the reinforcement effect of the relative slip between attachment plate MP can be acquired.

上記第5実施の形態および第6実施の形態では第1実施の形態を例に水密突起14の突設高さh2を変更する場合を説明したが、ここで説明した技術思想を他の上記各実施の形態に適用することは当然可能である。即ち、この場合には、セレーション突起13と水密突起514,614との関係を、第2実施の形態では、セレーション突起13と千鳥状水密突起214との関係に、第3実施の形態では、セレーション突起13と楕円水密突起314との関係に、第4実施の形態では、セレーション突起13と円形水密突起414との関係に、第7及び第8実施の形態では、セレーション突起713,813と水密突起714,14との関係に、第8及び第9実施の形態では、セレーション突起913,1013と楕円水密突起914,314との関係に、それぞれ置き換えて適用する。   In the fifth embodiment and the sixth embodiment, the case where the projecting height h2 of the watertight projection 14 is changed has been described by taking the first embodiment as an example. It is naturally possible to apply to the embodiment. That is, in this case, the relationship between the serration protrusion 13 and the watertight protrusions 514 and 614 is the same as that between the serration protrusion 13 and the staggered watertight protrusion 214 in the second embodiment, and the serration in the third embodiment. The relationship between the projection 13 and the elliptical watertight projection 314, the relationship between the serration projection 13 and the circular watertight projection 414 in the fourth embodiment, and the serration projection 713, 813 and the watertight projection in the seventh and eighth embodiments. In the eighth and ninth embodiments, the relationship between the serration projections 913 and 1013 and the elliptical watertight projections 914 and 314 is respectively applied to the relationship with 714 and 14.

上記第8実施の形態および第9実施の形態では、セレーション突起813,1013の突設先端面の両側を直線状に形成する場合を説明したが、必ずしもこれに限られるのものではなく、セレーション突起813,1013の突設先端面の両側の一部または全部を曲線形状とすることは当然可能である。
<その他>
<手段>
技術的思想1の防振装置は、軸方向端面から一体に突設され放射直線状に配置されるセレーション突起を有する筒状に形成される内筒部材と、筒状に形成され前記内筒部材の外周側を取り囲む位置に配設される外筒部材と、前記内筒部材の外周面および外筒部材の内周面の間を連結すると共にゴム状弾性体から構成される防振基体と、を備え、前記内筒部材が軸方向両側から相手部材に挟持され、前記セレーション突起を相手部材に圧接させた状態で締結固定されるものであり、前記内筒部材は、前記軸方向端面から一体に突設されると共に前記軸方向端面に単独で又は前記セレーション突起と共に周方向に連続する壁を形成する水密突起を備える。
技術的思想2の防振装置は、技術的思想1の防振装置において、前記水密突起は、前記セレーション突起の突設高さと同等または低い突設高さで前記軸方向端面から突設される。
技術的思想3の防振装置は、技術的思想1又は2の防振装置において、前記水密突起は、前記内筒部材の軸方向端面を軸方向視した状態において、前記セレーション突起と交差しつつ楕円形状または軸に対して偏心して位置する円形状に配置される円状水密突起を備える。
技術的思想4の防振装置は、技術的思想1又は2の防振装置において、前記水密突起は、周方向に断続しつつ前記セレーション突起に接続される第1列と、前記第1列よりも外周側に位置し周方向に断続しつつ前記セレーション突起に接続される第2列とが千鳥状に配置される千鳥状水密突起を備える。
<効果>
技術的思想1記載の防振装置によれば、内筒部材の軸方向端面には、放射直線状に配置されるセレーション突起が突設されているので、内筒部材が軸方向両側から相手部材に挟持された状態で締結固定されると、セレーション突起が相手部材に圧接され、内筒部材と相手部材との間の相対的な滑りが防止される。
この場合、内筒部材は、軸方向端面から突設されると共に軸方向端面に単独で又はセレーション突起と共に周方向に連続する壁を形成する水密突起を備えるので、内筒部材の内部を、周方向に連続する壁により、外部と遮断することができる。その結果、内筒部材の内部への水の侵入を防止できるという効果がある。
ここで、水密突起は、内筒部材の軸方向端面から一体に突設されるので、経時や紫外線の影響などによる劣化を抑制できる。よって、水密突起の剛性を確保できるので、長期にわたって、内筒部材の内部への水の浸入を防止すると共に締結力の低下を防止できるという効果がある。
技術的思想2記載の防振装置によれば、技術的思想1記載の防振装置の奏する効果に加え、水密突起は、セレーション突起の突設高さと同等または低い突設高さで軸方向端面から突設されるので、寸法公差で突設高さや相手部材の平面度などにばらつきが生じている場合でも、セレーション突起を相手部材に確実に圧接させて、内筒部材と相手部材との間の相対的な滑りを抑制することができるという効果がある。
技術的思想3記載の防振装置によれば、技術的思想1又は2に記載の防振装置の奏する効果に加え、水密突起は、内筒部材の軸方向端面を軸方向視した状態において、セレーション突起と交差しつつ、楕円形状または軸に対して偏心して位置する円形状に配置される円状水密突起を備えるので、かかる円状水密突起を、水の侵入を防止するための壁としてだけではなく、内筒部材と相手部材との間で発生する滑りを防止するための部位としても機能させることができる。即ち、円状水密突起を設けることで、内筒部材の内部への水の侵入を防止するだけでなく、内筒部材と相手部材との間の滑りの防止効果を更に高めることもできる。
また、円状水密突起がセレーション突起と交差して設けられることで、これらセレーション突起および円状水密突起の両突起全体としての剛性を高めることができる。その結果、セレーション突起および円状水密突起の全体を相手部材に確実に圧接させることができるので、水の侵入と滑りの発生とをより確実に防止できる。
技術的思想4記載の防振装置によれば、技術的思想1又は2に記載の防振装置の奏する効果に加え、水密突起は、周方向に断続しつつセレーション突起に接続される第1列と、第1列よりも外周側に位置し周方向に断続しつつセレーション突起に接続される第2列とが千鳥配置される千鳥状水密突起を備えるので、千鳥状水密突起を分散して配置できる。よって、これらセレーション突起および千鳥状水密突起の両突起を相手部材に圧接する際には、その圧接による相手部材の変形箇所を分散させることができる。その結果、これらセレーション突起および千鳥状水密突起の両突起の全体をそれぞれ確実に相手部材へ圧接させることができるので、水の侵入と滑りの発生とをより確実に防止できる。
In the eighth embodiment and the ninth embodiment, the case where both sides of the projecting tip surfaces of the serration protrusions 813 and 1013 are formed in a straight line has been described. However, the present invention is not limited to this. Of course, it is possible to make a part or all of the both sides of the projecting tip face of 813, 1013 into a curved shape.
<Others>
<Means>
The vibration isolator of the technical idea 1 includes an inner cylinder member formed in a cylindrical shape having serration protrusions that are integrally projected from an axial end surface and arranged in a radial straight line, and the inner cylinder member formed in a cylindrical shape. An outer cylindrical member disposed at a position surrounding the outer peripheral side of the inner cylindrical member; The inner cylinder member is clamped to the mating member from both sides in the axial direction, and is fastened and fixed in a state where the serration protrusion is pressed against the mating member, and the inner cylinder member is integrated from the axial end surface. And a watertight protrusion which forms a wall continuous in the circumferential direction alone or together with the serration protrusion on the axial end face.
The anti-vibration device of the technical idea 2 is the anti-vibration device of the technical idea 1, wherein the watertight protrusion is protruded from the end surface in the axial direction with a protrusion height equal to or lower than the protrusion height of the serration protrusion. .
The vibration isolator of the technical idea 3 is the vibration isolator of the technical idea 1 or 2, wherein the watertight protrusion intersects the serration protrusion in a state where the axial end surface of the inner cylinder member is viewed in the axial direction. A circular watertight projection is provided which is arranged in an elliptical shape or a circular shape which is eccentric with respect to the axis.
The vibration isolator of the technical idea 4 is the vibration isolator of the technical idea 1 or 2, wherein the watertight protrusion is connected to the serration protrusion while being intermittently connected in the circumferential direction, and from the first row Are also provided on the outer peripheral side and provided with staggered watertight protrusions arranged in a staggered manner with the second row connected to the serration protrusions intermittently in the circumferential direction.
<Effect>
According to the vibration isolator described in the technical idea 1, since the serration protrusions arranged in a radial straight line project from the axial end surface of the inner cylindrical member, the inner cylindrical member is opposed to the counterpart member from both axial sides. When fastened and fixed in a state of being sandwiched between the two, the serration protrusion is pressed against the mating member, and relative sliding between the inner cylinder member and the mating member is prevented.
In this case, the inner cylindrical member is provided with a watertight protrusion that protrudes from the axial end face and forms a wall that is continuous with the serration protrusion alone or in the circumferential direction on the axial end face. A wall continuous in the direction can be cut off from the outside. As a result, there is an effect that water can be prevented from entering the inside of the inner cylinder member.
Here, since the watertight projection is integrally projected from the axial end surface of the inner cylinder member, it is possible to suppress deterioration due to aging or the influence of ultraviolet rays. Therefore, since the rigidity of the watertight projection can be ensured, there is an effect that it is possible to prevent water from entering the inside of the inner cylinder member and prevent a decrease in fastening force over a long period of time.
According to the vibration isolator described in the technical idea 2, in addition to the effect exhibited by the vibration isolator described in the technical idea 1, the watertight protrusion has an axial end face with a protruding height equal to or lower than the protruding height of the serration protrusion. Therefore, even if there are variations in the projecting height, flatness of the mating member, etc. due to dimensional tolerances, the serration protrusion is securely pressed against the mating member, so that there is no gap between the inner cylinder member and the mating member. There is an effect that it is possible to suppress the relative slippage.
According to the vibration isolator described in the technical idea 3, in addition to the effect exhibited by the vibration isolator described in the technical idea 1 or 2, the watertight projection is in a state where the axial end surface of the inner cylindrical member is viewed in the axial direction. Since it has a circular watertight protrusion arranged in an elliptical shape or a circular shape that is eccentric with respect to the axis while intersecting with the serration protrusion, the circular watertight protrusion is only used as a wall for preventing water from entering. Instead, it can also function as a portion for preventing slippage between the inner cylinder member and the counterpart member. That is, by providing the circular watertight protrusions, not only can water be prevented from entering the inside of the inner cylinder member, but also the effect of preventing slippage between the inner cylinder member and the counterpart member can be further enhanced.
Further, since the circular watertight protrusions are provided so as to intersect with the serration protrusions, the rigidity of both the serration protrusions and the circular watertight protrusions as a whole can be increased. As a result, the entire serration projection and the circular watertight projection can be reliably brought into pressure contact with the mating member, so that water intrusion and slippage can be prevented more reliably.
According to the vibration isolator described in the technical idea 4, in addition to the effect exhibited by the vibration isolator described in the technical idea 1 or 2, the watertight protrusion is connected to the serration protrusion while being intermittent in the circumferential direction. And staggered watertight protrusions arranged in a staggered manner on the outer peripheral side of the first row and connected to the serration protrusions while being intermittently connected in the circumferential direction. it can. Therefore, when both the serration protrusion and the staggered watertight protrusion are pressed against the mating member, the deformed portions of the mating member due to the press-contact can be dispersed. As a result, the entire protrusions of the serration protrusion and the staggered watertight protrusion can be reliably brought into pressure contact with the mating member, so that water intrusion and slippage can be prevented more reliably.

1 防振装置
10,210,310,410,510、610,710,810,910,1010 内筒部材
13、713,813,913,1013 セレーション突起
O 軸
20 外筒部材
30 防振基体
MP 取付板(相手部材)
14,514,614,714 水密突起
314,914 楕円水密突起(円状水密突起、水密突起)
414 円形水密突起(円状水密突起、水密突起)
214 千鳥状水密突起(水密突起)
214a 内周側突起列(千鳥状水密突起の第1列)
214b 外周側突起列(千鳥状水密突起の第2列)
h1 セレーション突起の突設高さ
h2,h5,h6 水密突起の突設高さ
h21 内周側突起列の突設高さ
h22 外周側突起列の突設高さ
h3 楕円水密突起の突設高さ
t1 セレーション突起の突設先端面の幅
t2,t5,t6 水密突起の突設先端面の幅
t21 内周側突起列の突設先端面の幅
t22 外周側突起列の突設先端面の幅
t3 楕円水密突起の突設先端面の幅
DESCRIPTION OF SYMBOLS 1 Anti-vibration apparatus 10,210,310,410,510,610,710,810,910,1010 Inner cylinder member 13,713,813,913,1013 Serration protrusion O Axis 20 Outer cylinder member 30 Anti-vibration base MP Mounting plate (Parts)
14,514,614,714 Watertight protrusion 314,914 Elliptic watertight protrusion (circular watertight protrusion, watertight protrusion)
414 Circular watertight protrusion (circular watertight protrusion, watertight protrusion)
214 Staggered watertight protrusion (watertight protrusion)
214a Inner circumferential projection row (first row of staggered watertight projections)
214b Outer peripheral projection row (second row of staggered watertight projections)
h1 Projection height of serration projections h2, h5, h6 Projection height of watertight projections h21 Projection height of inner circumferential projection rows h22 Projection height of outer circumferential projection rows h3 Projection height of elliptical watertight projections t1 Width of projected tip surface of serration projection t2, t5, t6 Width of projected tip surface of watertight projection t21 Width of projected tip surface of inner circumferential projection row t22 Width of projected tip surface of outer circumferential projection row t3 Width of protruding tip surface of elliptical watertight protrusion

Claims (4)

軸方向端面から一体に突設され放射直線状に配置されるセレーション突起を有する筒状に形成される内筒部材と、筒状に形成され前記内筒部材の外周側を取り囲む位置に配設される外筒部材と、前記内筒部材の外周面および外筒部材の内周面の間を連結すると共にゴム状弾性体から構成される防振基体と、を備え、前記内筒部材が軸方向両側から相手部材に挟持され、前記セレーション突起を相手部材に圧接させた状態で締結固定される防振装置において、
前記内筒部材は、前記軸方向端面から一体に突設されると共に前記軸方向端面に前記セレーション突起と共に周方向に連続する壁を形成する水密突起を備え、
前記セレーション突起は、突設先端面が前記水密突起に近づくほど幅が狭くされ、前記水密突起との接続部分において最小の幅に形成されることを特徴とする防振装置。
An inner cylinder member formed in a cylindrical shape having serration protrusions that are integrally projected from an axial end surface and arranged in a radial straight line, and a position that is formed in a cylindrical shape and surrounds the outer peripheral side of the inner cylinder member. And an anti-vibration base that connects between the outer peripheral surface of the inner cylindrical member and the inner peripheral surface of the outer cylindrical member, and is formed of a rubber-like elastic body. In the vibration isolator which is clamped and fixed in a state where the serration protrusion is pressed against the mating member while being clamped by the mating member from both sides,
The inner cylinder member is provided with a watertight protrusion forming the axial end face wall circumferentially continuous with prior Symbol serration protrusion on the axial end face while being integrally projecting from,
The anti-vibration device according to claim 1, wherein the serration protrusion is formed to have a minimum width at a connecting portion with the water-tight protrusion, and the width of the serrated protrusion is reduced as the protruding front end surface approaches the water-tight protrusion.
前記水密突起は、前記セレーション突起の突設高さと同等または低い突設高さで前記軸方向端面から突設されることを特徴とする請求項1記載の防振装置。   The anti-vibration device according to claim 1, wherein the watertight protrusion protrudes from the axial end surface at a protrusion height equal to or lower than a protrusion height of the serration protrusion. 前記水密突起は、前記内筒部材の軸方向端面を軸方向視した状態において、前記セレーション突起と交差しつつ楕円形状または軸に対して偏心して位置する円形状に配置される円状水密突起を備えることを特徴とする請求項1又は2に記載の防振装置。   The watertight protrusion is a circular watertight protrusion disposed in an elliptical shape or a circular shape positioned eccentric to the axis while intersecting with the serration protrusion in a state where the axial end surface of the inner cylindrical member is viewed in the axial direction. The vibration isolator according to claim 1 or 2, further comprising: 前記水密突起は、周方向に断続しつつ前記セレーション突起に接続される第1列と、前記第1列よりも外周側に位置し周方向に断続しつつ前記セレーション突起に接続される第2列とが千鳥状に配置される千鳥状水密突起を備えることを特徴とする請求項1又は2に記載の防振装置。
The watertight protrusions are connected to the serration protrusions while being intermittent in the circumferential direction, and the second lines are located on the outer peripheral side of the first row and connected to the serration protrusions while being intermittent in the circumferential direction. The anti-vibration device according to claim 1, further comprising staggered watertight protrusions arranged in a staggered manner.
JP2014238027A 2014-11-25 2014-11-25 Vibration isolator Expired - Fee Related JP5847281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238027A JP5847281B2 (en) 2014-11-25 2014-11-25 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238027A JP5847281B2 (en) 2014-11-25 2014-11-25 Vibration isolator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011065000A Division JP5739202B2 (en) 2011-03-23 2011-03-23 Vibration isolator

Publications (2)

Publication Number Publication Date
JP2015038383A JP2015038383A (en) 2015-02-26
JP5847281B2 true JP5847281B2 (en) 2016-01-20

Family

ID=52631549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238027A Expired - Fee Related JP5847281B2 (en) 2014-11-25 2014-11-25 Vibration isolator

Country Status (1)

Country Link
JP (1) JP5847281B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114138U (en) * 1984-12-28 1986-07-18
JP4027346B2 (en) * 2004-05-31 2007-12-26 東海ゴム工業株式会社 Anti-vibration rubber bush
JP2010242911A (en) * 2009-04-08 2010-10-28 Toyota Motor Corp Vehicular rubber bush
JP5401701B2 (en) * 2009-06-29 2014-01-29 東海ゴム工業株式会社 Method for manufacturing cylindrical metal fittings and method for manufacturing anti-vibration rubber bushes using the cylindrical metal fittings
JP4741694B2 (en) * 2009-06-29 2011-08-03 東海ゴム工業株式会社 Anti-vibration rubber bush
JP5401702B2 (en) * 2009-08-28 2014-01-29 東海ゴム工業株式会社 ROLLING MOLD AND METHOD OF MANUFACTURING CYLINDRICAL FITTING USING THE SAME

Also Published As

Publication number Publication date
JP2015038383A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
US8783694B2 (en) Sealing structure
WO2007007611A1 (en) Gasket
KR102241679B1 (en) clamp
JP5847281B2 (en) Vibration isolator
US9403430B2 (en) Insulator
JP5739202B2 (en) Vibration isolator
US10280826B2 (en) Insulator
US10458580B2 (en) Hose clip
JP7141041B2 (en) gasket
US20190143800A1 (en) Vibration isolator
JP6948911B2 (en) gasket
CN106195456B (en) Elastomeric seal and seal assembly
WO2011013433A1 (en) Boot for universal joint
JP6395491B2 (en) gasket
JP6224053B2 (en) Seal structure and sealing method
JP6239301B2 (en) Resin parts mounting structure
JP6855506B2 (en) Metal gasket
JP7015672B2 (en) gasket
JP2011075031A (en) Attachment structure of elastic seal material
JP2008121846A (en) Backup ring
JP2020101251A (en) Annular seal member
JP4453279B2 (en) gasket
US9228657B2 (en) Sealing element
JP2006002894A (en) Seal washer
KR20190012539A (en) Hose clamp

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5847281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees