JP5846821B2 - Discharge lamp lighting device and lighting method - Google Patents

Discharge lamp lighting device and lighting method Download PDF

Info

Publication number
JP5846821B2
JP5846821B2 JP2011206860A JP2011206860A JP5846821B2 JP 5846821 B2 JP5846821 B2 JP 5846821B2 JP 2011206860 A JP2011206860 A JP 2011206860A JP 2011206860 A JP2011206860 A JP 2011206860A JP 5846821 B2 JP5846821 B2 JP 5846821B2
Authority
JP
Japan
Prior art keywords
current value
current
lamp
discharge lamp
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011206860A
Other languages
Japanese (ja)
Other versions
JP2013069516A (en
Inventor
栄彦 石鍋
栄彦 石鍋
金井 信夫
信夫 金井
昭芳 藤森
昭芳 藤森
芹澤 和泉
和泉 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2011206860A priority Critical patent/JP5846821B2/en
Priority to TW101120070A priority patent/TWI547212B/en
Priority to PCT/JP2012/073994 priority patent/WO2013042704A1/en
Publication of JP2013069516A publication Critical patent/JP2013069516A/en
Application granted granted Critical
Publication of JP5846821B2 publication Critical patent/JP5846821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter
    • H05B41/2883Load circuits; Control thereof the control resulting from an action on the static converter the controlled element being a DC/AC converter in the final stage, e.g. by harmonic mode starting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2928Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

本発明は、露光装置等に使用される放電ランプの点灯装置に関し、特に、高圧放電ランプに用いられる低周波矩形波点灯方式に関する。   The present invention relates to a discharge lamp lighting device used for an exposure apparatus or the like, and more particularly to a low-frequency rectangular wave lighting method used for a high-pressure discharge lamp.

高圧放電ランプの点灯方式として、低周波数(数十〜百Hz)の交流ランプ電流を供給し、点灯極性を切り替えて交流作動させる低周波矩形波点灯方式が知られている。この点灯方式では、極性が陰極に切り替わる度にアーク放電の起点(アークスポット)が定まらないと、ゆらぎが生じてしまう。これを抑えるため、ランプ電流の極性が切り替わる直前に電流パルスを重畳させる(特許文献1参照)。   As a lighting system for a high-pressure discharge lamp, a low-frequency rectangular wave lighting system in which an AC lamp current of a low frequency (several tens to hundreds of Hz) is supplied and an AC operation is performed by switching the lighting polarity is known. In this lighting method, if the starting point (arc spot) of the arc discharge is not determined every time the polarity is switched to the cathode, fluctuation occurs. In order to suppress this, a current pulse is superimposed immediately before the lamp current polarity is switched (see Patent Document 1).

電流パルスを重畳させることによって、極性の切り替わり直前に電流量が増加し、電極温度がその瞬間著しく上昇する。その結果、陰極フェーズにおいて、アーク放電の起点が常に電極先端部の同一箇所に生じ、ゆらぎ発生を防ぐ。   By superimposing the current pulse, the amount of current increases immediately before the polarity is switched, and the electrode temperature rises significantly at that moment. As a result, in the cathode phase, the starting point of arc discharge always occurs at the same location on the tip of the electrode, preventing the occurrence of fluctuations.

一方、電流パルスを重畳する代わりに、高周波矩形波電流を低周波矩形電流に印加する点灯方式が知られている(特許文献2参照)。そこでは、低周波矩形波電流の極性変化直後に、異なる極性から始まる高周波矩形波電流を1周期(サイクル)印加する。これによって、ゆらぎの発生を防ぐ。   On the other hand, a lighting method is known in which a high-frequency rectangular wave current is applied to a low-frequency rectangular current instead of superimposing a current pulse (see Patent Document 2). Here, immediately after the polarity change of the low-frequency rectangular wave current, a high-frequency rectangular wave current starting from a different polarity is applied for one period (cycle). This prevents fluctuations from occurring.

また、プロジェクターなどの投影装置においては、電流パルスの増加による光出力の急激な変化が、画像にちらつきを生じさせる。この明るさ変化を抑えるため、極性反転終了前に電流量を増加させず、極性反転直後に最大値をもつ低周波矩形波電流を供給する点灯方法が知られている(特許文献3参照)。   In a projection device such as a projector, a sudden change in light output due to an increase in current pulses causes flickering in an image. In order to suppress this brightness change, a lighting method is known that supplies a low-frequency rectangular wave current having a maximum value immediately after polarity inversion without increasing the amount of current before the end of polarity inversion (see Patent Document 3).

特許第3741727号公報Japanese Patent No. 3714727 特許第3844046号公報Japanese Patent No. 3844046 特許第4426132号公報Japanese Patent No. 4426132

プロジェクターなど高圧放電ランプが使用される装置では、一般的に定電力点灯が行なわれるため、放電ランプへ供給される電力は一定である。しかしながら、露光装置等では、定期的に照度測定を行い、入力電力を調整して定照度点灯を行なっている。   In an apparatus using a high-pressure discharge lamp such as a projector, since constant power lighting is generally performed, the power supplied to the discharge lamp is constant. However, in an exposure apparatus or the like, the illuminance is periodically measured, and the constant illuminance lighting is performed by adjusting the input power.

上述した点灯方式の場合、点灯中の電極温度を常に適正な範囲に維持することができない。そのため、電極温度が適正範囲でない状況において、ノイズが支配的な照度変動が生じやすい。例えば、g線(436nm)、h線(405nm)、i線(365nm)の輝線を含むスペクトル光を発光する放電ランプの場合、輝線付近の放射スペクトルだけが変動する。   In the case of the lighting method described above, the electrode temperature during lighting cannot always be maintained in an appropriate range. For this reason, in a situation where the electrode temperature is not within the proper range, the illuminance fluctuation in which noise is dominant is likely to occur. For example, in the case of a discharge lamp that emits spectrum light including emission lines of g-line (436 nm), h-line (405 nm), and i-line (365 nm), only the emission spectrum near the emission line varies.

このようなノイズの支配的な照度変動の影響により、露光装置等において、誤った照度計測に基づいて入力電力を調整する状況が生じる。その結果、不必要な電力変動が頻繁に行なわれ、生産性を低下させるとともに、ランプ寿命に影響を与える。   Due to the influence of the illuminance fluctuation that is dominant due to such noise, a situation occurs in the exposure apparatus or the like in which the input power is adjusted based on erroneous illuminance measurement. As a result, unnecessary power fluctuations occur frequently, reducing productivity and affecting lamp life.

一方、電極温度が適正範囲から外れることを防ぐため、入力電力の単位時間当たりの変動量を小さくすると、電力調整に時間がかかり、生産性を低下させる。   On the other hand, if the fluctuation amount of input power per unit time is reduced in order to prevent the electrode temperature from deviating from the appropriate range, it takes time to adjust the power and decreases productivity.

したがって、高圧放電ランプ等の放電ランプに対し定照度点灯を行なう間、電力変動に対して電極温度を適正な範囲に維持することが可能な点灯方式が必要とされる。   Therefore, there is a need for a lighting system that can maintain the electrode temperature in an appropriate range against power fluctuations while performing constant illumination on a discharge lamp such as a high-pressure discharge lamp.

本発明の放電ランプ点灯方法は、交流ランプ電流を放電ランプに供給する放電ランプ点灯方法であって、放電ランプを点灯させる放電ランプ点灯装置、高圧放電ランプを備えた露光装置等に適用可能である。   The discharge lamp lighting method of the present invention is a discharge lamp lighting method for supplying an AC lamp current to a discharge lamp, and can be applied to a discharge lamp lighting device for lighting a discharge lamp, an exposure device equipped with a high-pressure discharge lamp, and the like. .

本発明の放電ランプ点灯方法は、電流パルスを発生、重畳させることなく、低周波矩形波電流に基づく交流ランプ電流の波形を、該交流ランプ電流よりも1周期が短い反転型の補正用信号に基づいて補正する。この波形補正において、該交流ランプ電流の半周期終了直前に最大電流値をもつ波形部分と、該最大電流値となる直前に最小電流値をもつ波形部分と、該半周期開始直後に該最大電流値よりも小さい極大電流値をもつ波形部分とを、交流ランプ電流に形成する。例えば、補正用信号として矩形波信号を適用することができる。   According to the discharge lamp lighting method of the present invention, an AC lamp current waveform based on a low-frequency rectangular wave current is converted into an inversion type correction signal having a shorter cycle than the AC lamp current without generating and superimposing current pulses. Correct based on. In this waveform correction, the waveform portion having the maximum current value immediately before the end of the half cycle of the AC lamp current, the waveform portion having the minimum current value immediately before reaching the maximum current value, and the maximum current immediately after the half cycle starts. A waveform portion having a maximum current value smaller than the value is formed in the AC lamp current. For example, a rectangular wave signal can be applied as the correction signal.

極大電流値、最小電流値、最大電流値をもつ波形電流を交流ランプ電流として生成することにより、再点弧の容易性、アーク放電位置の起点の矯正、そして、電極同一箇所を起点とするアーク放電発生が実現される。これは、アーク放電起点箇所の適正な電極温度の維持をもたらす。   By generating a waveform current with maximum current value, minimum current value, and maximum current value as an AC lamp current, it is easy to re-ignite, correct the starting point of the arc discharge position, and arc starting from the same electrode Discharge generation is realized. This leads to maintenance of the proper electrode temperature at the arc discharge starting point.

極大電流値の波形部分、最大電流値の波形部分を効果的に生成することを考慮すると、該補正用信号の1周期後半部分の信号によって、該最大電流値および該極大電流値をもつ波形部分を該交流ランプ電流に形成することが可能である。また、該補正用信号の1周期前半部分の信号によって、該最小電流値をもつ波形部分を該交流ランプ電流に形成することも可能である。   In consideration of effectively generating the waveform portion of the maximum current value and the waveform portion of the maximum current value, the waveform portion having the maximum current value and the maximum current value by the signal in the latter half of one cycle of the correction signal. Can be formed into the alternating lamp current. Further, it is possible to form a waveform portion having the minimum current value in the AC lamp current by a signal in the first half of one cycle of the correction signal.

また、アンダーシュート効果によって、該交流ランプ電流が、該極大電流値の直後に該最小電流値よりも大きい極小電流値をもつようにすることもできる。   In addition, due to the undershoot effect, the AC lamp current can have a minimum current value larger than the minimum current value immediately after the maximum current value.

アーク放電起点箇所の温度上昇と起点周囲の冷却を確実に行なうことを考慮すれば、該補正用信号の1周期前半部分の信号部分、すなわち、該最小電流値をもつ波形部分の期間(幅)は、該補正用信号の1周期後半部分の該最大電流値をもつ波形部分の期間よりも短くするのがよい。   Considering that the temperature rise at the arc discharge starting point and the cooling around the starting point are surely performed, the period (width) of the signal portion of the first half of one cycle of the correction signal, that is, the waveform portion having the minimum current value Is preferably shorter than the period of the waveform portion having the maximum current value in the latter half of one cycle of the correction signal.

本発明の他の局面における放電ランプ点灯装置は、直流電圧を所定の電圧値に変換する直流電圧変換手段と、低周波矩形波電流に基づいて、直流電圧の直流電流を交流ランプ電流に変換する直流/交流変換手段と、直流電圧変換手段において、直流/交流変換手段に送られる直流電圧の直流電流を、PWM制御によって調整し、交流ランプ電流の波形を補正する交流ランプ電流補正手段とを備え、交流ランプ電流補正手段が、該交流ランプ電流よりも1周期が短い反転型の補正用信号に基づき、該交流ランプ電流の半周期終了直前に最大電流値をもち、該最大電流値の直前に最小電流値をもち、そして、該半周期開始直後に該最大電流値よりも小さい極大電流値をもつように、デューティー比を定めることを特徴とする。   A discharge lamp lighting device according to another aspect of the present invention converts a direct current of a direct current voltage into an alternating current lamp current based on a direct current voltage conversion means for converting a direct current voltage into a predetermined voltage value and a low-frequency rectangular wave current. DC / AC converting means, and DC voltage converting means, comprising: AC lamp current correcting means for adjusting the direct current of the DC voltage sent to the DC / AC converting means by PWM control and correcting the waveform of the AC lamp current. The AC lamp current correcting means has a maximum current value immediately before the end of the half cycle of the AC lamp current based on an inversion type correction signal having one cycle shorter than the AC lamp current, and immediately before the maximum current value. The duty ratio is determined so as to have a minimum current value and to have a maximum current value smaller than the maximum current value immediately after the start of the half cycle.

本発明によれば、放電ランプに対し、適切な照度測定に基づいて安定した定照度点灯を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, stable constant illumination lighting can be implement | achieved based on appropriate illumination intensity measurement with respect to a discharge lamp.

本実施形態である露光装置の概略的ブロック図である。It is a schematic block diagram of the exposure apparatus which is this embodiment. ランプ点灯部の概略的ブロック図である。It is a schematic block diagram of a lamp lighting part. ランプ点灯部の各回路における信号波形を示した図である。It is the figure which showed the signal waveform in each circuit of a lamp lighting part. 放電ランプに供給される交流ランプ電流を示した概略的波形図である。It is the schematic waveform diagram which showed the alternating lamp current supplied to a discharge lamp.

以下では、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態である露光装置の概略的ブロック図である。   FIG. 1 is a schematic block diagram of an exposure apparatus according to this embodiment.

露光装置10は、フォトレジストなどの感光体を表面に形成した基板SWに直接パターンを形成するマスクレス露光装置であって、放電ランプ20、DMD(Digital Micro-mirror Device)22を備えている。放電ランプ20からの照明光をパターン光として基板SWに照射する。   The exposure apparatus 10 is a maskless exposure apparatus that directly forms a pattern on a substrate SW having a photosensitive member such as a photoresist formed thereon, and includes a discharge lamp 20 and a DMD (Digital Micro-mirror Device) 22. The substrate SW is irradiated with illumination light from the discharge lamp 20 as pattern light.

放電ランプ20は、ここでは高圧/超高圧水銀ランプなどの高圧放電ランプによって構成されており、ランプ点灯部21によって点灯駆動される。放電ランプ20から放射された光は、照明光学系(図示せず)によって平行光に修正された後、DMD22に導かれる。DMD22は、数μm〜数十μmの微小矩形状マイクロミラーをマトリクス状に2次元配列させた光変調素子アレイ(例えば、1024×1280)であり、DMD駆動回路24によって駆動される。  Here, the discharge lamp 20 is constituted by a high-pressure discharge lamp such as a high-pressure / ultra-high-pressure mercury lamp, and is lit by a lamp lighting unit 21. The light emitted from the discharge lamp 20 is corrected to parallel light by an illumination optical system (not shown) and then guided to the DMD 22. The DMD 22 is a light modulation element array (for example, 1024 × 1280) in which micro rectangular micromirrors of several μm to several tens μm are two-dimensionally arranged in a matrix, and is driven by the DMD driving circuit 24.

図示しないワークステーションから送信されてくるCAD/CAMデータなどのベクタデータは、ラスタ変換回路26において2次元ドットパターンのラスタデータに変換される。そして、DMD駆動回路24は、ラスタデータに応じて露光データをDMD22へ送信する。   Vector data such as CAD / CAM data transmitted from a workstation (not shown) is converted into raster data of a two-dimensional dot pattern by the raster conversion circuit 26. Then, the DMD drive circuit 24 transmits exposure data to the DMD 22 according to the raster data.

DMD22では、DMD駆動回路24から送られてくる露光データに基づいて、各マイクロミラーがそれぞれ選択的にON/OFF制御される。ON状態のマイクロミラーにおいて反射した光は、投影光学系(図示せず)を経て、パターン像の光として基板SWに照射される。   In the DMD 22, each micromirror is selectively ON / OFF controlled based on the exposure data sent from the DMD drive circuit 24. The light reflected by the micromirror in the ON state passes through a projection optical system (not shown) and is irradiated onto the substrate SW as light of a pattern image.

テーブル12に搭載された基板SWは、ステージ駆動機構14によって走査方向に移動する。基板SWの移動に伴って露光対象エリアが相対移動する間、所定の露光ピッチで露光動作が実行される。露光対象エリアが基板SW全体を移動することによって、パターンが基板全体に形成される。基板SWの位置は、位置検出センサ15によって検出される。   The substrate SW mounted on the table 12 is moved in the scanning direction by the stage driving mechanism 14. While the exposure target area relatively moves with the movement of the substrate SW, the exposure operation is executed at a predetermined exposure pitch. A pattern is formed on the entire substrate by moving the exposure target area over the entire substrate SW. The position of the substrate SW is detected by the position detection sensor 15.

コントローラ30は、ランプ点灯部21等に制御信号を出力し、露光動作全体を制御する。露光動作の制御プログラムは、コントローラ30内のROM(図示せず)に格納されている。   The controller 30 outputs a control signal to the lamp lighting unit 21 and the like to control the entire exposure operation. A control program for the exposure operation is stored in a ROM (not shown) in the controller 30.

露光装置10は、定期的に照度測定を行なうため、放電ランプ20の照度を測定する測光装置34を備えており、測光装置34は、測光駆動部35によって位置制御される。照度測定の間、測光駆動部35は、測光装置34を光路上に配置し、測定が終了すると測光装置34を退避位置へ移動させる。   The exposure apparatus 10 includes a photometric device 34 that measures the illuminance of the discharge lamp 20 in order to periodically measure the illuminance. The position of the photometric device 34 is controlled by a photometric drive unit 35. During the illuminance measurement, the photometric drive unit 35 places the photometric device 34 on the optical path, and moves the photometric device 34 to the retracted position when the measurement is completed.

コントローラ30は、測定された照度に基づき、基板SWに照射する光の光量を調整する。具体的には、放電ランプ20への入力電力を調整することによって、定照度点灯制御が行われる。   The controller 30 adjusts the amount of light irradiated to the substrate SW based on the measured illuminance. Specifically, constant illuminance lighting control is performed by adjusting the input power to the discharge lamp 20.

図2は、ランプ点灯部の概略的ブロック図である。   FIG. 2 is a schematic block diagram of the lamp lighting unit.

ランプ点灯部21は、DC/DCコンバータ54、フルブリッジ回路56を備え、放電ランプ20に対し、交流ランプ電流に基づくランプ入力電圧を供給する。DC/DCコンバータ54は、スイッチング素子、コンデンサ、ダイオード、チョークコイル、駆動回路等を備えた直流電圧変換回路であり、直流電源電圧52によって入力される直流電圧値を、放電ランプ20に供給する電圧値に変換する。なお、DC/DCコンバータの代わりにチョッパ回路を設けることも可能である。   The lamp lighting unit 21 includes a DC / DC converter 54 and a full bridge circuit 56, and supplies a lamp input voltage based on an AC lamp current to the discharge lamp 20. The DC / DC converter 54 is a DC voltage conversion circuit including a switching element, a capacitor, a diode, a choke coil, a drive circuit, and the like, and a voltage for supplying a DC voltage value input by the DC power supply voltage 52 to the discharge lamp 20. Convert to value. Note that a chopper circuit may be provided instead of the DC / DC converter.

フルブリッジ回路56は、DC/DCコンバータ54から供給される直流電流を交流電流に変換する直流−交流変換回路であり、始動用のイグナイタ回路、および2組のトランジスタ対を備える。安定点灯下において、低周波矩形波生成回路60から送られてくる低周波矩形波信号に基づき、2組のトランジスタ対を交互に導通させ、直流電流の極性を交互に反転させる。これにより、極性が半周期ごとに反転する矩形波の交流ランプ電流が生成される。   The full bridge circuit 56 is a DC-AC conversion circuit that converts a DC current supplied from the DC / DC converter 54 into an AC current, and includes a starting igniter circuit and two transistor pairs. Under stable lighting, based on the low-frequency rectangular wave signal sent from the low-frequency rectangular wave generation circuit 60, the two transistor pairs are alternately turned on to alternately invert the polarity of the direct current. Thus, a rectangular wave AC lamp current whose polarity is inverted every half cycle is generated.

さらにランプ点灯部21は、電流設定用直流信号出力回路62、波形合成回路64、波形補正信号出力回路66、PWM制御回路58を備える。PWM制御回路58は、DC/DCコンバータ54からフルブリッジ回路56へ送られる直流電流量を調整可能であり、放電ランプ20に供給する電圧レベルを調整するとともに、電流量を変化させることによって交流ランプ電流の波形を補正、変更する。以下、交流ランプ電流の波形補正について説明する。   Further, the lamp lighting unit 21 includes a current setting DC signal output circuit 62, a waveform synthesis circuit 64, a waveform correction signal output circuit 66, and a PWM control circuit 58. The PWM control circuit 58 can adjust the amount of direct current sent from the DC / DC converter 54 to the full bridge circuit 56, adjust the voltage level supplied to the discharge lamp 20, and change the amount of current to change the AC lamp current. Correct or change the waveform. Hereinafter, correction of the AC lamp current waveform will be described.

図3は、ランプ点灯部の各回路における信号波形を示した図である。図4は、放電ランプに供給される交流ランプ電流を示した概略的波形図である。   FIG. 3 is a diagram showing signal waveforms in each circuit of the lamp lighting unit. FIG. 4 is a schematic waveform diagram showing an AC lamp current supplied to the discharge lamp.

低周波矩形波信号L1は、交流ランプ電流と同一周波数の矩形波信号であり、数十〜数百Hzの低周波数に従い、低周波矩形波生成回路60から出力される。フルブリッジ回路56は、この矩形波信号に基づいて、極性が半周期ごとに交互に切り替わる交流ランプ電流を出力する。   The low-frequency rectangular wave signal L1 is a rectangular wave signal having the same frequency as the AC lamp current, and is output from the low-frequency rectangular wave generation circuit 60 according to a low frequency of several tens to several hundreds of Hz. Based on this rectangular wave signal, the full bridge circuit 56 outputs an AC lamp current whose polarity is alternately switched every half cycle.

一方、波形補正信号C1は、低周波矩形波信号の数倍〜数十倍の周波数をもつ高周波矩形波信号について、その1周期分を間欠的に抽出した信号である。波形補正信号C1の発生間隔は、低周波矩形波信号L1の周波数、すなわち、交流ランプ電流の周波数に対応している。   On the other hand, the waveform correction signal C1 is a signal obtained by intermittently extracting one period of a high-frequency rectangular wave signal having a frequency several times to several tens of times that of the low-frequency rectangular wave signal. The generation interval of the waveform correction signal C1 corresponds to the frequency of the low-frequency rectangular wave signal L1, that is, the frequency of the AC lamp current.

波形補正信号C1は、1周期の極性切換えが反転しており、1周期の最初の半周期となる前半部分は立下りで開始される波形であって、次の半周期となる後半部分は立ち上がりで始まる波形となっている(ここでは、このような波形を反転型と呼ぶ)。また、波形補正信号C1は、前半部分の波形となっている期間(幅)が後半部分の波形となっている期間よりも短い。   In the waveform correction signal C1, the polarity switching in one cycle is inverted, the first half of the first half cycle is a waveform that starts at the falling edge, and the second half of the next half cycle is the rising edge. (Here, such a waveform is called an inverted type). Further, the waveform correction signal C1 has a shorter period (width) in the first half of the waveform than in a period of the second half of the waveform.

そして、波形補正信号C1に対して電流設定用直流信号出力回路62から出力される一定値の直流信号B1を加算することにより、波形補正信号C1と同様な反転型の合成波形信号D1(補正用信号)が得られる。生成された合成波形信号D1は、PWM制御回路58へ送られる。   Then, by adding the constant value DC signal B1 output from the current setting DC signal output circuit 62 to the waveform correction signal C1, an inverted composite waveform signal D1 (correction signal) similar to the waveform correction signal C1 is obtained. Signal). The generated combined waveform signal D1 is sent to the PWM control circuit 58.

PWMパルス信号E1は、DC/DCコンバータ54の直流電流量を制御するパルス信号であり、デューティー比に基づいてDC/DCコンバータ54のスイッチング素子のON/OFF時間を調整する。図3には、PWMパルス信号が同一パルス幅のパルス信号として表されているが、PWMパルス信号E1の一部を拡大した部分波形に示すように、実際には、合成波形信号D1に従ってパルス幅が変調されている。   The PWM pulse signal E1 is a pulse signal for controlling the direct current amount of the DC / DC converter 54, and adjusts the ON / OFF time of the switching element of the DC / DC converter 54 based on the duty ratio. In FIG. 3, the PWM pulse signal is represented as a pulse signal having the same pulse width. However, as shown in the enlarged partial waveform of the PWM pulse signal E1, the pulse width is actually in accordance with the composite waveform signal D1. Is modulated.

詳述すると、合成波形信号D1の出力期間以外は、一定パルス幅の波形であって、合成波形信号D1の最初の半周期となる前半部分DNに応じてパルス幅ENが一定パルス幅よりも短くなり、次の半周期となる後半部分DMに応じてパルス幅EMが一定パルス幅よりも大きくなる。すなわち、前半部分DNに合わせてデューティー比が小さくなり、後半部分DMに合わせてデューティー比が大きくなる。   More specifically, the waveform has a constant pulse width except for the output period of the composite waveform signal D1, and the pulse width EN is shorter than the constant pulse width according to the first half portion DN that is the first half cycle of the composite waveform signal D1. Thus, the pulse width EM becomes larger than the constant pulse width in accordance with the latter half portion DM which is the next half cycle. That is, the duty ratio decreases in accordance with the first half portion DN, and the duty ratio increases in accordance with the second half portion DM.

その結果、デューティー比が小さい期間において、DC/DCコンバータ54からフルブリッジ回路56へ供給される直流電流の電流量が減少し、デューティー比が大きい期間において電流量が増加する。これにより、合成波形信号D1(波形補正信号C1)に対応する波形部分を形成した交流ランプ電流が生成される。   As a result, the amount of direct current supplied from the DC / DC converter 54 to the full bridge circuit 56 decreases during a period when the duty ratio is small, and the amount of current increases when the duty ratio is large. As a result, an alternating lamp current that forms a waveform portion corresponding to the combined waveform signal D1 (waveform correction signal C1) is generated.

図4に示す交流ランプ電流Pは、その半周期後半部分において、最大値KM、最小値KNを有する。合成波形信号D1は、その1周期終了タイミングが低周波矩形波信号L1の立下りに対応している。   The AC lamp current P shown in FIG. 4 has a maximum value KM and a minimum value KN in the latter half of the half cycle. The synthesized waveform signal D1 has one cycle end timing corresponding to the falling edge of the low-frequency rectangular wave signal L1.

そのため、合成波形信号D1の波形に対応した波形部分が形成されることになり、交流ランプ電流Pの半周期終了直前に、絶対値として最大となる電流値KMが得られ、また、最大電流値KMの直前には、絶対値として最小となる電流値KNが得られる。最小電流値KNの得られる期間は、最大電流値KMの得られる期間よりも短い。   Therefore, a waveform portion corresponding to the waveform of the composite waveform signal D1 is formed, and the current value KM that is the maximum as an absolute value is obtained immediately before the end of the half cycle of the AC lamp current P, and the maximum current value Immediately before KM, a current value KN that is the minimum in absolute value is obtained. The period during which the minimum current value KN is obtained is shorter than the period during which the maximum current value KM is obtained.

その一方、合成波形信号D1の周期は、低周波矩形波信号L1の周期と同じであるが、低周波矩形波信号L1に対して位相がわずかに遅れている。その結果、合成波形信号D1の1周期終了タイミングは、低周波矩形波信号L1の立下りタイミングからずれている。   On the other hand, the cycle of the composite waveform signal D1 is the same as the cycle of the low-frequency rectangular wave signal L1, but the phase is slightly delayed with respect to the low-frequency rectangular wave signal L1. As a result, the end timing of one cycle of the synthesized waveform signal D1 is shifted from the falling timing of the low-frequency rectangular wave signal L1.

合成波形信号D1の後半部分DMの一部は、デューティー比の大きいパルス幅EMにより、極性反転後の交流ランプ電流の波形に影響を与える。これにより、反転直後の電流量が増加する。このときの絶対値としての電流値PMは、最大電流値KMより小さい(ここでは、極大電流値という)。   Part of the latter half DM of the combined waveform signal D1 affects the waveform of the AC lamp current after polarity inversion due to the pulse width EM having a large duty ratio. Thereby, the amount of current immediately after inversion increases. The current value PM as an absolute value at this time is smaller than the maximum current value KM (here, referred to as a maximum current value).

一方で、交流ランプ電流Pが極性反転直後に極大電流値PMを持つと、その直後の電流値が小さくなる。これは、アンダーシュート効果に起因する。絶対値としての電流値PNは、最小電流値KNより大きい(ここでは、極小電流値という)。   On the other hand, if the AC lamp current P has a maximum current value PM immediately after polarity inversion, the current value immediately after that decreases. This is due to the undershoot effect. The current value PN as an absolute value is larger than the minimum current value KN (here, referred to as a minimum current value).

このような交流ランプ電流波形Pによってランプ点灯が行なわれることにより、電極温度が常に適正な範囲に維持される。まず、陰極フェーズに切り替わることによってアーク放電の起点を設けるとき、極大電流値PMが流れることによって瞬間的に電極が加熱されることになり、再点弧を容易にする。   When the lamp is lit by such an AC lamp current waveform P, the electrode temperature is always maintained in an appropriate range. First, when the starting point of arc discharge is provided by switching to the cathode phase, the electrode is instantaneously heated when the maximum current value PM flows, thereby facilitating re-ignition.

そして、電極の瞬間的加熱直後に極小電流値PNが生じることにより、アーク放電の起点となる電極先端部以外が冷却されることになり、アーク放電の起点の位置が適正な位置に矯正され、陰極フェーズの間、安定化する。   Then, by generating a minimal current value PN immediately after the instantaneous heating of the electrode, the part other than the electrode tip that is the starting point of the arc discharge is cooled, the position of the starting point of the arc discharge is corrected to an appropriate position, It stabilizes during the cathode phase.

さらに、陰極フェーズから陽極フェーズへ切り替わる交流ランプ電流Pの半周期終了前には、最小電流値KN、最大電流値KMが続けて得られることなり、最大電流値KMを得た直後に交流ランプ電流Pの極性が反転する。   Further, before the end of the half cycle of the AC lamp current P switching from the cathode phase to the anode phase, the minimum current value KN and the maximum current value KM are continuously obtained. Immediately after the maximum current value KM is obtained, the AC lamp current The polarity of P is reversed.

アーク放電の起点となっている電極先端部以外を一度冷却することで、アーク放電の起点の位置が適正な位置に矯正された後、電極先端部のみが瞬間的に高温化する。これにより、次の陰極フェーズにおいてアーク放電の起点が電極先端部の同一箇所で生じることになる。特に、最大電流値KMの期間が最小電流値KNの期間よりも長いため、アーク放電起点周囲の冷却と起点部分の温度上昇が確実に実現される。   By once cooling the portions other than the electrode tip that is the starting point of the arc discharge, after the position of the starting point of the arc discharge is corrected to an appropriate position, only the electrode tip is instantaneously heated. As a result, in the next cathode phase, the starting point of arc discharge occurs at the same location on the tip of the electrode. In particular, since the period of the maximum current value KM is longer than the period of the minimum current value KN, the cooling around the arc discharge starting point and the temperature rise at the starting point part are reliably realized.

その結果、定照度点灯のため電力変動させた場合でも、電極全体としての温度がアーク放電を安定化させる適正範囲となり、短時間で素早く安定点灯状態に移行することで放電が安定する。特に、g線(436nm)、h線(405nm)、i線(365nm)の輝線を含むスペクトル光を発光する放電ランプにおいて、輝線付近の放射スペクトルだけが変動する場合にその効果が顕著である。   As a result, even when the power is changed for lighting at a constant illuminance, the temperature of the entire electrode falls within an appropriate range for stabilizing the arc discharge, and the discharge is stabilized by quickly shifting to the stable lighting state in a short time. In particular, in a discharge lamp that emits spectrum light including emission lines of g-line (436 nm), h-line (405 nm), and i-line (365 nm), the effect is remarkable when only the emission spectrum near the emission line varies.

このような電極温度の維持は、交流ランプ電流Pの全期間に渡る。したがって、定照度点灯制御を行う場合、ノイズの支配する照度変動が抑制され、入力電力の調整に従って放射照度が正確に検出されることになる。その結果、無駄な電力調整を行なうことなく、安定した定照度点灯を実現できる。   Such an electrode temperature is maintained over the entire period of the AC lamp current P. Therefore, when performing constant illuminance lighting control, fluctuations in illuminance dominated by noise are suppressed, and irradiance is accurately detected according to adjustment of input power. As a result, stable constant illuminance lighting can be realized without wasteful power adjustment.

また、合成波形信号D1によって、最大電流値KM、極大電流値PMをもつ波形部分を形成することにより、効果的に交流ランプ電流Pの半周期開始、終了時の波形部分を同時に修正、変更している。   In addition, the waveform portion having the maximum current value KM and the maximum current value PM is formed by the composite waveform signal D1, thereby effectively correcting and changing the waveform portion at the start and end of the half cycle of the AC lamp current P at the same time. ing.

なお、定照度点灯において電力を増加させる場合、最小電流値KNを定電力時よりも小さくするか、その期間を長く設定してもよい。逆に、電力を減少させる場合には、最小電流値KNを定電力時よりも大きくするか、または、その期間を短く設定するのがよい。   In addition, when increasing electric power in constant illumination lighting, you may make the minimum electric current value KN smaller than the time of constant electric power, or may set the period long. On the contrary, when the power is decreased, it is preferable to set the minimum current value KN to be larger than that at the constant power or to set the period shorter.

実際、水銀0.2mg/mm以上が放電管内に封入された高圧放電ランプを用いて定照度点灯制御を行なったところ、上記交流ランプ電流を供給したときの電力調整頻度、およびそのときの調整電力振幅が、従来のパルス放電ランプ電流を供給した場合の電力調整頻度および調整電力振幅に比べ、著しく小さく、電力調整にかかる時間を短縮することができた。 Actually, when constant illumination illumination control was performed using a high pressure discharge lamp in which 0.2 mg / mm 3 or more of mercury was sealed in a discharge tube, the power adjustment frequency when the AC lamp current was supplied, and the adjustment at that time The power amplitude is significantly smaller than the power adjustment frequency and the adjusted power amplitude when a conventional pulse discharge lamp current is supplied, and the time required for power adjustment can be shortened.

このように本実施形態によれば、ランプ点灯部21が、低周波矩形波点灯方式に従って交流ランプ電流を放電ランプ20に供給し、放電ランプ20を交流作動させる。そして、反転型の合成波形信号D1(波形補正信号C1)に基づき、DC/DCコンバータ54からフルブリッジ回路56へ送られる直流電流量をPWM制御によって調整する。その結果、半周期開始直後に極大電流値PM、その直後に極小電流値PNをもち、半周期終了直前に最小電流値KN、そして最大電流値KMをもつ交流ランプ電流Pが生成される。   As described above, according to the present embodiment, the lamp lighting unit 21 supplies the AC lamp current to the discharge lamp 20 in accordance with the low-frequency rectangular wave lighting method, and causes the discharge lamp 20 to be AC-operated. The amount of direct current sent from the DC / DC converter 54 to the full bridge circuit 56 is adjusted by PWM control based on the inverted composite waveform signal D1 (waveform correction signal C1). As a result, an AC lamp current P having a maximum current value PM immediately after the start of the half cycle, a minimum current value PN immediately after that, and a minimum current value KN and a maximum current value KM immediately before the end of the half cycle is generated.

なお、小電流時などにおいて、アンダーシュート効果が働かないため極小電流値の波形部分が生じない、あるいは意図的に極小電流値を交流ランプ電流に持たせなくても、アーク放電の再点弧が電極同一箇所で生じているので、電極温度は十分適正な範囲で維持される。また、極大電流値をもつ波形部分については、合成波形信号以外の信号によって形成する構成にすることも可能である。   Note that when the current is small, the undershoot effect does not work, so the waveform portion of the minimum current value does not occur, or even if the AC lamp current is not intentionally given to the AC lamp current, the arc discharge can be re-ignited. Since it occurs at the same location of the electrode, the electrode temperature is maintained in a sufficiently appropriate range. In addition, the waveform portion having the maximum current value can be formed by a signal other than the synthesized waveform signal.

さらに、補正信号としては、矩形波以外の波形による信号を適用することも可能である。   Further, a signal having a waveform other than a rectangular wave can be applied as the correction signal.

20 放電ランプ
21 ランプ点灯部
54 DC/DCコンバータ(直流電圧変換手段)
56 フルブリッジ回路(直流/交流変換手段)
58 PWM制御回路
60 低周波矩形波生成回路
62 電流設定用直流信号出力回路
64 波形合成回路
66 波形補正信号出力回路
C1 波形補正信号
D1 合成波形信号
E1 PWMパルス信号
L1 低周波矩形波信号
P 交流ランプ電流
20 discharge lamp 21 lamp lighting unit 54 DC / DC converter (DC voltage conversion means)
56 Full bridge circuit (DC / AC conversion means)
58 PWM control circuit 60 Low frequency rectangular wave generation circuit 62 DC signal output circuit for current setting 64 Waveform synthesis circuit 66 Waveform correction signal output circuit C1 Waveform correction signal D1 Composite waveform signal E1 PWM pulse signal L1 Low frequency rectangular wave signal P AC lamp Current

Claims (9)

交流ランプ電流を放電ランプに供給する放電ランプ点灯方法であって、
電流パルスを発生、重畳させることなく、低周波矩形波電流に基づく交流ランプ電流の波形を、該交流ランプ電流よりも1周期が短い反転型の補正用信号に基づいて補正し、
該交流ランプ電流の半周期終了直前に最大電流値をもつ波形部分と、該最大電流値となる直前に最小電流値をもつ波形部分と、該半周期開始直後に該最大電流値よりも小さい極大電流値をもつ波形部分とを、交流ランプ電流に形成する放電ランプ点灯方法であって、
該半周期後半部分において該最小電流値および該最大電流値をもつように、交流ランプ電流の波形を補正し、
該交流ランプ電流が、該極大電流値の直後に該最小電流値よりも大きい極小電流値をもつことを特徴とする放電ランプ点灯方法。
A discharge lamp lighting method for supplying an AC lamp current to a discharge lamp,
Without generating or superimposing current pulses, the waveform of the AC lamp current based on the low-frequency rectangular wave current is corrected based on an inversion type correction signal having a shorter period than the AC lamp current,
A waveform portion having a maximum current value immediately before the end of the half cycle of the AC lamp current, a waveform portion having a minimum current value immediately before reaching the maximum current value, and a maximum smaller than the maximum current value immediately after the start of the half cycle A discharge lamp lighting method for forming a waveform portion having a current value into an alternating lamp current,
Correct the waveform of the AC lamp current to have the minimum current value and the maximum current value in the latter half of the half cycle ;
The discharge lamp lighting method characterized in that the AC lamp current has a minimum current value larger than the minimum current value immediately after the maximum current value .
該補正用信号の1周期後半部分の信号によって、該最大電流値および該極大電流値をもつ波形部分を該交流ランプ電流に形成することを特徴とする請求項1に記載の放電ランプ点灯方法。   2. The discharge lamp lighting method according to claim 1, wherein a waveform portion having the maximum current value and the maximum current value is formed in the AC lamp current by a signal in the latter half of one period of the correction signal. 該補正用信号の1周期前半部分の信号によって、該最小電流値をもつ波形部分を該交流ランプ電流に形成することを特徴とする請求項1乃至2のいずれかに記載の放電ランプ点灯方法。   3. The discharge lamp lighting method according to claim 1, wherein a waveform portion having the minimum current value is formed in the AC lamp current by a signal in the first half of one cycle of the correction signal. 交流ランプ電流を放電ランプに供給する放電ランプ点灯方法であって、
電流パルスを発生、重畳させることなく、低周波矩形波電流に基づく交流ランプ電流の波形を、該交流ランプ電流よりも1周期が短い反転型の補正用信号に基づいて補正し、
該交流ランプ電流の半周期終了直前に最大電流値をもつ波形部分と、該最大電流値となる直前に最小電流値をもつ波形部分と、該半周期開始直後に該最大電流値よりも小さい極大電流値をもつ波形部分とを、交流ランプ電流に形成し、
該交流ランプ電流が、該極大電流値の直後に該最小電流値よりも大きい極小電流値をもつことを特徴とする放電ランプ点灯方法。
A discharge lamp lighting method for supplying an AC lamp current to a discharge lamp,
Without generating or superimposing current pulses, the waveform of the AC lamp current based on the low-frequency rectangular wave current is corrected based on an inversion type correction signal having a shorter period than the AC lamp current,
A waveform portion having a maximum current value immediately before the end of the half cycle of the AC lamp current, a waveform portion having a minimum current value immediately before reaching the maximum current value, and a maximum smaller than the maximum current value immediately after the start of the half cycle A waveform portion having a current value is formed into an AC lamp current,
The discharge lamp lighting method characterized in that the AC lamp current has a minimum current value larger than the minimum current value immediately after the maximum current value.
該補正用信号の1周期前半部分の信号によって形成される該最小電流値をもつ波形部分の期間は、該補正用信号の1周期後半部分の信号によって形成される該最大電流値をもつ波形部分の期間よりも短いことを特徴とする請求項2乃至4のいずれかに記載の放電ランプ点灯方法。   The period of the waveform portion having the minimum current value formed by the signal in the first half of one cycle of the correction signal is the waveform portion having the maximum current value formed by the signal in the second half of the correction signal. The discharge lamp lighting method according to any one of claims 2 to 4, wherein the discharge lamp lighting method is shorter than the period. 請求項1乃至5のいずれかに記載された点灯方法によって放電ランプを点灯させる放電ランプ点灯装置。   A discharge lamp lighting device for lighting a discharge lamp by the lighting method according to any one of claims 1 to 5. 高圧放電ランプと、
請求項1乃至5のいずれかに記載された点灯方法によって、前記高圧放電ランプを点灯させる放電ランプ点灯装置と
を備えた露光装置。
A high pressure discharge lamp,
An exposure apparatus comprising: a discharge lamp lighting device that lights the high-pressure discharge lamp by the lighting method according to any one of claims 1 to 5.
直流電圧を所定の電圧値に変換する直流電圧変換手段と、
低周波矩形波電流に基づいて、直流電圧の直流電流を交流ランプ電流に変換する直流/交流変換手段と、
前記直流電圧変換手段において、前記直流/交流変換手段に送られる直流電圧の直流電流を、PWM制御によって調整し、交流ランプ電流の波形を補正する交流ランプ電流補正手段とを備え、
前記交流ランプ電流補正手段が、該交流ランプ電流よりも1周期が短い反転型の補正用信号に基づき、該交流ランプ電流の半周期終了直前に最大電流値をもち、該最大電流値の直前に最小電流値をもち、そして、該半周期開始直後に該最大電流値よりも小さい極大電流値をもつとともに、該半周期後半部分において該最小電流値および該最大電流値をもち、さらに、該極大電流値の直後に該最小電流値よりも大きい極小電流値をもつように、デューティー比を定めることを特徴とする放電ランプ点灯装置。
DC voltage conversion means for converting a DC voltage into a predetermined voltage value;
DC / AC conversion means for converting a DC current of a DC voltage into an AC lamp current based on the low-frequency rectangular wave current;
The DC voltage conversion means includes an AC lamp current correction means that adjusts the direct current of the DC voltage sent to the DC / AC conversion means by PWM control and corrects the waveform of the AC lamp current,
The AC lamp current correcting means has a maximum current value immediately before the end of a half cycle of the AC lamp current based on an inversion type correction signal having a cycle shorter than the AC lamp current, and immediately before the maximum current value. has a minimum current value, and, together with the smaller maximum current than said maximum current value immediately after the semi cycle starts, Chi also said minimum current value and said maximum current value in the half period the latter part, further, the A discharge lamp lighting device, wherein a duty ratio is determined so that a minimum current value larger than the minimum current value is immediately after a maximum current value .
高圧放電ランプと、
請求項8に記載された、前記高圧放電ランプを点灯させる放電ランプ点灯装置と
を備えたことを特徴とする露光装置。
A high pressure discharge lamp,
An exposure apparatus comprising: a discharge lamp lighting device for lighting the high-pressure discharge lamp according to claim 8.
JP2011206860A 2011-09-22 2011-09-22 Discharge lamp lighting device and lighting method Active JP5846821B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011206860A JP5846821B2 (en) 2011-09-22 2011-09-22 Discharge lamp lighting device and lighting method
TW101120070A TWI547212B (en) 2011-09-22 2012-06-05 Discharge lamp lighting device and lighting method
PCT/JP2012/073994 WO2013042704A1 (en) 2011-09-22 2012-09-20 Discharge lamp lighting device and lighting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011206860A JP5846821B2 (en) 2011-09-22 2011-09-22 Discharge lamp lighting device and lighting method

Publications (2)

Publication Number Publication Date
JP2013069516A JP2013069516A (en) 2013-04-18
JP5846821B2 true JP5846821B2 (en) 2016-01-20

Family

ID=47914466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206860A Active JP5846821B2 (en) 2011-09-22 2011-09-22 Discharge lamp lighting device and lighting method

Country Status (3)

Country Link
JP (1) JP5846821B2 (en)
TW (1) TWI547212B (en)
WO (1) WO2013042704A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220058A (en) * 2014-05-16 2015-12-07 ウシオ電機株式会社 Discharge lamp lighting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844046B2 (en) * 2000-02-29 2006-11-08 岩崎電気株式会社 High pressure discharge lamp lighting device
JP4426132B2 (en) * 2000-07-26 2010-03-03 ハリソン東芝ライティング株式会社 High pressure discharge lamp lighting method, high pressure discharge lamp lighting device, and illumination device
JP2008123910A (en) * 2006-11-14 2008-05-29 Matsushita Electric Works Ltd Discharge lamp lighting apparatus, projector and projection television

Also Published As

Publication number Publication date
WO2013042704A1 (en) 2013-03-28
TW201315291A (en) 2013-04-01
TWI547212B (en) 2016-08-21
JP2013069516A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
US8264170B2 (en) Discharge lamp lighting device, method of driving discharge lamp, and projector
JP5247889B2 (en) Light source driving device, light source driving method and image display device
JP4876677B2 (en) High pressure discharge lamp lighting device
US8120282B2 (en) Discharge lamp lighting device, control method for the same, and projector
US20090237624A1 (en) Discharge lamp lighting device, control method for the same, and projector
JP2012516010A (en) Electronic driving apparatus and method for driving gas discharge lamp and projector
US9563111B2 (en) Discharge lamp driving device, projector, and discharge lamp driving method
JP5846821B2 (en) Discharge lamp lighting device and lighting method
JP4089627B2 (en) Discharge lamp lighting device
JP2010097848A (en) High-pressure discharge lamp lighting device, light source device, and method for lighting high-pressure discharge lamp
JP2007250236A (en) Discharge lamp lighting device, and projector
JP5536218B2 (en) Projection type display device and control method thereof
US9439274B2 (en) Discharge lamp driving device, projector, and discharge lamp driving method
JP5461734B1 (en) High pressure discharge lamp lighting circuit and lighting method thereof
JP5930230B2 (en) Discharge lamp lighting device, light source device, image forming device
JP6476991B2 (en) Discharge lamp driving device, light source device, projector, and discharge lamp driving method
US8344645B2 (en) Method of driving discharge lamp, driving device, and projector
JP2009205889A (en) Driving method of discharge lamp, driving device, and projector
JP6536113B2 (en) Discharge lamp driving device, light source device, projector, and discharge lamp driving method
JP2008295167A (en) Power supply device for switching constant-current and light source apparatus
JP2006220679A (en) Flicker detection system, lamp control system, and dlp projector provided with them
JP2008166219A (en) Light source driving device, and projector device
JP2008123890A (en) Discharge lamp lighting device, and projector
JP2010102202A (en) High-pressure discharge lamp lighting device and image display apparatus
JP2018045927A (en) Discharge lamp driving device, light source device, projector, and method for controlling discharge lamp driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5846821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250