JP5845731B2 - Axle bearing device - Google Patents

Axle bearing device Download PDF

Info

Publication number
JP5845731B2
JP5845731B2 JP2011188083A JP2011188083A JP5845731B2 JP 5845731 B2 JP5845731 B2 JP 5845731B2 JP 2011188083 A JP2011188083 A JP 2011188083A JP 2011188083 A JP2011188083 A JP 2011188083A JP 5845731 B2 JP5845731 B2 JP 5845731B2
Authority
JP
Japan
Prior art keywords
bearing device
load
outer ring
hub
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011188083A
Other languages
Japanese (ja)
Other versions
JP2013050160A (en
Inventor
瀬尾 信之
信之 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011188083A priority Critical patent/JP5845731B2/en
Priority to CN2012204388421U priority patent/CN202851663U/en
Publication of JP2013050160A publication Critical patent/JP2013050160A/en
Application granted granted Critical
Publication of JP5845731B2 publication Critical patent/JP5845731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は自動車等の車輪を支持する車軸用軸受装置に関する。   The present invention relates to an axle bearing device that supports wheels of an automobile or the like.

従来、自動車等の車両の車輪を支持する車軸用軸受装置においては、過大荷重が作用しても、短寿命になるか、変位が大きくなるだけで、ハブ軸が折損するような荷重は想定されていない。また、一般道路においては、事故を除いて、ハブ軸が折損するような運転時の荷重はありえなかった。さらに、上記の短寿命や変位の拡大の場合、決定的な損傷が生じる前に運転者が感知でき、車を安全に停止させることができた。   Conventionally, in an axle bearing device that supports the wheel of a vehicle such as an automobile, even if an excessive load is applied, a load that would cause the hub shaft to break with only a short life or increased displacement is assumed. Not. On general roads, except for accidents, there was no load during operation that would break the hub axle. Furthermore, in the case of the above-mentioned short lifespan and increased displacement, the driver can sense before decisive damage occurs and the car can be stopped safely.

しかし、自動車普及の後進国においては、路面の陥没等の劣悪な道路状況に加え、過積載や、乱暴な運転による想定を超える異常荷重も考えられる。万一このような想定を超える異常荷重が作用したら、極端な場合、ハブ軸の折損という決定的な損傷によって車両用軸受装置のハブ軸と内輪が分離することもありえる。
運転者が異常感知し停車させることにより上述の決定的な損傷を回避するために、異常荷重によって生じる転動体の接触位置の変化によって振動が発生する車軸用軸受装置がある。(特許文献1参照)
However, in developing countries where automobiles are popular, in addition to poor road conditions such as road surface depression, overloading and abnormal loads exceeding the assumptions caused by rough driving are also possible. If an abnormal load exceeding such an assumption is applied, in an extreme case, the hub shaft and the inner ring of the vehicle bearing device may be separated due to decisive damage such as breakage of the hub shaft.
There is an axle bearing device in which vibration is generated by a change in a contact position of a rolling element caused by an abnormal load in order to avoid the above-described critical damage by a driver detecting an abnormality and stopping the vehicle. (See Patent Document 1)

特開2007―247826号公報JP 2007-247826 A

しかしながら、上記の転動体の接触位置の変化で振動が発生する車軸用軸受装置は、内輪と軸部材の結合部が塑性変形し、緩みが発生した後回転する場合に振動が発生するもので、軸が折損するような異常荷重に対しては、負荷を緩和することはできず、運転者が異常を感知する前に決定的な損傷が生じる場合がある。   However, the axle bearing device in which the vibration is generated by the change in the contact position of the rolling element described above is generated when the coupling portion between the inner ring and the shaft member is plastically deformed and rotates after being loosened. For an abnormal load that causes the shaft to break, the load cannot be relaxed, and critical damage may occur before the driver senses the abnormality.

この発明の目的は、劣悪な道路状況や、過積載や、乱暴な運転による想定を超える異常荷重が作用しても、車軸用軸受装置の最弱部の応力を緩和すると同時に、車両の運転者が異常な音や振動を感知し車を停止させることにより、ハブ軸の折損という決定的な損傷を回避することができる車軸用軸受装置を提供することにある。   The object of the present invention is to reduce the stress at the weakest part of the axle bearing device even when the road condition is poor, overloading, or an abnormal load exceeding the assumption due to rough driving, and at the same time, the driver of the vehicle It is an object of the present invention to provide an axle bearing device capable of avoiding decisive damage such as breakage of a hub shaft by detecting abnormal sound and vibration and stopping the vehicle.

上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、内周部に2列の外輪軌道が形成された外輪と、軸方向一方側端部に半径方向外方に拡径して延在するハブフランジ、他方端部に縮径して軸方向に延在する内輪嵌合部、前記ハブフランジと前記内輪嵌合部の中間の中央外周部に内輪軌道が形成されたハブ軸と、外周面の軸方向中央に内輪軌道が形成され、前記ハブ軸の前記内輪嵌合部に外嵌装着された内輪と、前記外輪の一方の外輪軌道と前記ハブ軸の内輪軌道の間、および、前記外輪の他方の外輪軌道と前記内輪の内輪軌道の間で転動する2列の複数の転動体とを有する車輪用軸受装置であって、前記外輪の一部に形成された固定側特定部位と、前記内輪または前記ハブ軸に前記固定側特定部位と対峙して形成された回転側特定部位とで規制用間隙を構成し、前記規制用間隙の間隔は前記車輪用軸受装置の設計時想定の最大荷重より大きく前記ハブ軸が破断にいたる荷重より小さい所定の荷重における前記固定側特定部位と前記回転側特定部位の相対接近量に等しいことである。   In order to solve the above problems, the structural feature of the invention according to claim 1 is that the outer ring in which two rows of outer ring raceways are formed on the inner peripheral portion and the radially outer side at one end in the axial direction are expanded. A hub flange extending in diameter, an inner ring fitting portion extending in the axial direction by reducing the diameter to the other end portion, and an inner ring raceway formed at a central outer peripheral portion between the hub flange and the inner ring fitting portion. An inner ring raceway is formed in the axial center of the outer peripheral surface of the hub axle, an inner ring that is externally fitted to the inner ring fitting portion of the hub axle, one outer ring raceway of the outer ring, and an inner ring raceway of the hub axle. And a plurality of rolling elements in two rows that roll between the other outer ring raceway of the outer ring and the inner ring raceway of the inner ring, and are formed on a part of the outer ring. The fixed side specific part and the rotation formed on the inner ring or the hub shaft so as to face the fixed side specific part A restriction gap is formed with a specific portion, and the gap between the restriction gaps is larger than the maximum load assumed at the time of designing the wheel bearing device and the fixed side identification at a predetermined load smaller than the load at which the hub axle breaks. It is equal to the relative approaching amount of the part and the rotation side specific part.

車軸用軸受装置の負荷はタイヤ接地点に入力される垂直方向の荷重と軸方向荷重によって発生する前記両特定部位の相対変位によって、前記規制間隙の間隔が変化し、接近、離反するが、前記車輪用軸受装置の設計時想定の最大荷重においてはその間隔は保たれ、前記固定側特定部位と前記回転側特定部位が接触することはない。所定の荷重を超える異常荷重が作用すると、前記規制用間隙の間隔と前記固定側特定部位と前記回転側特定部位の相対接近量が等しくなり、前記規制間隙が0となり前記固定側特定部位と前記回転側特定部位が接触する。前記所定の荷重は前記ハブ軸の破断時の荷重より小さいため、前記ハブ軸が破断することはない。   The load of the axle bearing device is changed according to the vertical load input to the tire contact point and the relative displacement of the two specific parts caused by the axial load, and the distance between the restriction gaps changes and approaches and separates. In the maximum load assumed at the time of designing the wheel bearing device, the distance is maintained, and the fixed side specific part and the rotating side specific part do not contact each other. When an abnormal load exceeding a predetermined load is applied, the distance between the restriction gaps and the relative approach amount between the fixed side specific part and the rotation side specific part become equal, the restriction gap becomes zero, and the fixed side specific part and the The specific part on the rotation side contacts Since the predetermined load is smaller than the load when the hub shaft is broken, the hub shaft is not broken.

この状態でハブ軸が回転すると、前記固定側特定部位と前記回転側特定部位の接触回転による振動が発生する。運転者はこの接触回転による振動を感知し、決定的な損傷に至る前に車を停止させることができる。さらに、前記所定の荷重をこえる荷重がハブ軸に作用すると、前記外輪に対する前記ハブ軸の支持点として前記複数の転動体との接触点に加え、前記固定側特定部位と前記回転側特定部位の接触点が追加されるため、前記ハブ軸に作用する負荷は分散され、ハブ軸の最弱部の応力は緩和される。   When the hub shaft rotates in this state, vibration is generated due to contact rotation between the fixed side specific portion and the rotation side specific portion. The driver can sense the vibrations caused by this contact rotation and stop the car before reaching critical damage. Furthermore, when a load exceeding the predetermined load acts on the hub axle, in addition to contact points with the plurality of rolling elements as support points of the hub axle with respect to the outer ring, the fixed side specific part and the rotation side specific part Since the contact point is added, the load acting on the hub shaft is distributed, and the stress at the weakest portion of the hub shaft is relieved.

上記の課題を解決するため、請求項2に係る発明の構成上の特徴は、前記固定側特定部位が前記外輪の前記ハブフランジ側端面であり、前記回転側特定部位が前記ハブフランジの前記外輪側側面であることである。   In order to solve the above-mentioned problem, the structural feature of the invention according to claim 2 is that the fixed side specific portion is the hub flange side end surface of the outer ring, and the rotating side specific portion is the outer ring of the hub flange. It is a side surface.

上記構成によると前記外輪の前記ハブフランジ側端面と、前記ハブフランジの前記外輪側側面の間で前記規制間隙が構成される。タイヤ接地点に荷重が入力された場合の前記外輪と前記ハブ軸の対峙する部位の相対変位量は通常前記外輪の前記ハブフランジ側端面と、前記ハブフランジの前記外輪側側面の間が最も大きい。すなわち所定の荷重における前記固定側特定部位と前記回転側特定部位の相対接近量が大きく、前記規制間隙の間隔も広げることができる。この結果、加工精度の影響を受けにくくなり、設定通りに所定の荷重で前記固定側特定部位と前記回転側特定部位を接触させることができる。   According to the above configuration, the restriction gap is formed between the end surface on the hub flange side of the outer ring and the side surface on the outer ring side of the hub flange. When the load is input to the tire contact point, the relative displacement amount of the portion where the outer ring and the hub axle face each other is usually the largest between the end surface on the hub flange side of the outer ring and the side surface on the outer ring side of the hub flange. . That is, the relative approach amount between the fixed side specific part and the rotation side specific part at a predetermined load is large, and the interval of the regulation gap can be widened. As a result, it becomes difficult to be influenced by machining accuracy, and the fixed side specific part and the rotation side specific part can be brought into contact with each other with a predetermined load as set.

本発明によれば、自動車後進国における劣悪な道路事情や、過積載や、乱暴な運転による想定を超える異常荷重が作用しても、最弱部の応力を緩和すると同時に、車両の運転者が異常な振動を感知し車を停止させることにより、ハブ軸の折損という決定的な損傷を回避することができる車軸用軸受装置を提供することができる。   According to the present invention, even if an abnormal load exceeding the assumption due to poor road conditions, overloading or rough driving in an automobile backward country acts, the stress of the weakest part is relieved and the driver of the vehicle is By detecting abnormal vibration and stopping the vehicle, it is possible to provide an axle bearing device that can avoid decisive damage such as breakage of the hub shaft.

本発明の第1の実施形態の車軸用軸受装置の軸方向の断面図である。1 is an axial sectional view of an axle bearing device according to a first embodiment of the present invention. 本発明の第1の実施形態の車軸用軸受装置と荷重との位置関係を説明する説明図である。FIG. 3 is an explanatory diagram for explaining the positional relationship between the axle bearing device and the load according to the first embodiment of the present invention. 本発明の第1の実施形態の車軸用軸受装置の荷重と相対接近量との関係を説明する説明図である。FIG. 5 is an explanatory diagram for explaining a relationship between a load and a relative approach amount of the axle bearing device according to the first embodiment of the present invention. 本発明の第1の実施形態の車軸用軸受装置の荷重と最弱部の応力との関係を説明する説明図である。FIG. 5 is an explanatory diagram for explaining the relationship between the load and the stress at the weakest portion of the axle bearing device according to the first embodiment of the present invention. 本発明の第2の実施形態の車軸用軸受装置の軸方向の断面図である。It is sectional drawing of the axial direction of the axle bearing apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の車軸用軸受装置と荷重との位置関係を説明する説明図である。It is explanatory drawing explaining the positional relationship of the axle bearing apparatus of the 2nd Embodiment of this invention, and a load. 本発明の第2の実施形態の車軸用軸受装置の荷重と相対接近量との関係を説明する説明図である。It is explanatory drawing explaining the relationship between the load and relative approach amount of the axle bearing device of the 2nd Embodiment of this invention. 本発明の第2の実施形態の車軸用軸受装置の荷重と最弱部の応力との関係を説明する説明図である。It is explanatory drawing explaining the relationship between the load of the axle bearing apparatus of the 2nd Embodiment of this invention, and the stress of the weakest part.

この発明の実施の形態を、以下図面を参照して説明する。図1、図2、図5において左側はインボード側、右側はアウトボード側を示す。   Embodiments of the present invention will be described below with reference to the drawings. 1, 2, and 5, the left side indicates the inboard side, and the right side indicates the outboard side.

(第1の実施形態)
図1は、本発明の第1の実施形態の車軸用軸受装置の軸方向の断面図である。
図1における車軸用軸受装置1は外輪11と、ハブ軸13と、内輪12と、転動体としての2列の複数の玉14と、2個の保持器15を有する。
(First embodiment)
FIG. 1 is an axial sectional view of an axle bearing device according to a first embodiment of the present invention.
The axle bearing device 1 in FIG. 1 includes an outer ring 11, a hub shaft 13, an inner ring 12, a plurality of balls 14 in two rows as rolling elements, and two cages 15.

外輪11は環状でインボ−ド側端部に半径方向外方に拡径して、車軸用軸受装置1を車体18に取付けるための固定フランジ11cを有し、固定フランジ11cには固定用ボルト18aが貫通する複数の通し穴11dが設けられている。外輪11のインボード側の内周部には、インボード側外輪軌道11a、アウトボード側の内周部にはアウトボード側外輪軌道11bが形成されている。外輪11の外周部のアウトボード側(ハブフランジ側)端部から直径方向内方に内周部のアウトボード側端部まで、固定側特定部位としての外輪11のハブフランジ側端面11eが延在する。   The outer ring 11 is annular and has a radially outwardly expanding diameter at the inboard side end portion, and has a fixing flange 11c for mounting the axle bearing device 1 to the vehicle body 18, and the fixing flange 11c has a fixing bolt 18a. A plurality of through-holes 11d are provided. An inboard side outer ring raceway 11a is formed on the inner peripheral part of the outer ring 11 on the inboard side, and an outboard side outer ring raceway 11b is formed on the inner peripheral part on the outboard side. The hub flange side end surface 11e of the outer ring 11 as the fixed side specific portion extends from the outer side end part (hub flange side) end part of the outer ring 11 to the outboard side end part of the inner peripheral part inward in the diameter direction. To do.

ハブ軸13は軸方向中央の外周部にアウトボード側内輪軌道13a、アウトボード側端部の外周面に半径方向外方に拡径して、車輪17が取付けられるハブフランジ13bを有し、ハブフランジ13bには車輪17を固定する複数のハブボルト17aが埋め込まれている。ハブ軸13のアウトボード側内輪軌道13aからインボード側の外周面にはハブ軸外径面13eが形成されている。ハブ軸外径面13eのインボード側の端部から径方向に縮径する内輪嵌合部側面13k、内輪嵌合部側面13kの内径隅部13gからインボード側に延在する内輪嵌合部13cが形成されている。   The hub shaft 13 has an outboard side inner ring raceway 13a at the outer peripheral portion at the center in the axial direction, and a hub flange 13b to which a wheel 17 is attached to the outer peripheral surface of the end portion at the outboard side, the diameter of which is increased radially outward. A plurality of hub bolts 17a for fixing the wheel 17 are embedded in the flange 13b. A hub shaft outer diameter surface 13e is formed on the outer surface of the hub shaft 13 from the outboard side inner ring raceway 13a to the inboard side. Inner ring fitting portion side surface 13k radially reducing from the inboard side end of hub shaft outer diameter surface 13e, and inner ring fitting portion extending from the inner diameter corner portion 13g of inner ring fitting portion side surface 13k to the inboard side. 13c is formed.

ハブフランジ13bのインボード側の側面のハブボルト埋め込み面より直径方向内方に、外径寸法が外輪11の外周部の直径より小さく、内径寸法が外輪11の内周部端部の直径より大きな回転側特定部位としての外輪側側面13lが延在する。   Rotating inwardly in the diameter direction from the hub bolt embedding surface on the inboard side of the hub flange 13b, the outer diameter is smaller than the diameter of the outer peripheral portion of the outer ring 11, and the inner diameter is larger than the diameter of the inner peripheral end of the outer ring 11. An outer ring side surface 13l as a side specific portion extends.

内輪12は環状で、軸方向中央の外周部にインボード側内輪軌道12a、インボード側の外周部に大外径部12c、アウトボード側の外周部に小外径部12dが形成され、内周部に内輪軌道12aと同心の内径面12bを有している。また、小外径部12dのアウトボード側の端部から直径方向内方に向けて小端面12eが延在している。さらに、大外径部12cのインボード側の端部から直径方向内方に内径面12bに向けて大端面12fが延在している。   The inner ring 12 is annular, and an inboard side inner ring raceway 12a is formed on the outer peripheral part in the axial center, a large outer diameter part 12c is formed on the outer peripheral part on the inboard side, and a small outer diameter part 12d is formed on the outer peripheral part on the outboard side. It has an inner diameter surface 12b concentric with the inner ring raceway 12a on the periphery. Further, a small end surface 12e extends inward in the diameter direction from the end portion on the outboard side of the small outer diameter portion 12d. Furthermore, a large end surface 12f extends from the end on the inboard side of the large outer diameter portion 12c toward the inner diameter surface 12b inward in the diameter direction.

内輪12は小端面12eをハブ軸13の嵌合部側面13kに当接してハブ軸13の内輪嵌合部13cに外嵌装着されている。さらに、ハブ軸13の端部には筒状の端部を直径方向外方に屈曲変形させて内輪12の大端面12fに押し付け、内輪12の抜け止めを行うかしめ部13dが形成されている。   The inner ring 12 is externally fitted to the inner ring fitting portion 13 c of the hub shaft 13 with the small end surface 12 e abutting against the fitting portion side surface 13 k of the hub shaft 13. Further, the end portion of the hub shaft 13 is formed with a caulking portion 13d that prevents the inner ring 12 from coming off by bending and deforming the cylindrical end portion radially outward and pressing the large end surface 12f of the inner ring 12.

2列の複数の転動体としての玉14はそれぞれ保持器15に円周方向に所定の間隔に保持されて、前記外輪11のインボード側外輪軌道11aと前記内輪12のインボード側内輪軌道12aの間、および、前記外輪11のアウトボード側外輪軌道11bと前記ハブ軸13のアウトボード側内輪軌道13aの間を転動する。
また、外輪11のハブフランジ側端面11eとハブフランジ13bの外輪側側面13lは対峙して、間隔がΔAの規制用間隙Aを構成している。
The balls 14 as a plurality of rolling elements in two rows are respectively held by the cage 15 at a predetermined interval in the circumferential direction, and the inboard side outer ring raceway 11a of the outer ring 11 and the inboard side inner ring raceway 12a of the inner ring 12 are arranged. And between the outboard side outer ring raceway 11b of the outer ring 11 and the outboard side inner ring raceway 13a of the hub axle 13.
Further, the hub flange side end surface 11e of the outer ring 11 and the outer ring side surface 13l of the hub flange 13b face each other to form a regulating gap A having a distance ΔA.

図2は車軸用軸受装置と荷重との位置関係を説明する説明図である。
図2において、車軸用軸受装置1は外輪11の固定フランジ11cが車体18に固定用ボルト18aで固定され、ハブ軸13のハブフランジ13bと車輪17がハブボルト17aとハブナット17bで固定されている。すなわち、車軸用軸受装置1は車輪17を車体18に対し、回転自在に支えている。路面から車輪17の接地点Pにラジアル荷重Frおよびスラスト荷重Faが作用すると、車輪17を介して車軸用軸受装置1のハブ軸13にモーメント荷重として作用し、ハブ軸13が変形し、ハブ軸13の各部位に対峙する外輪11の各部位に対する、相対的な接近、離反が生じる。
FIG. 2 is an explanatory view illustrating the positional relationship between the axle bearing device and the load.
In FIG. 2, in the axle bearing device 1, a fixing flange 11c of the outer ring 11 is fixed to a vehicle body 18 by fixing bolts 18a, and a hub flange 13b and wheels 17 of the hub shaft 13 are fixed by hub bolts 17a and hub nuts 17b. That is, the axle bearing device 1 supports the wheel 17 with respect to the vehicle body 18 so as to be rotatable. When the radial load Fr and the thrust load Fa act on the ground contact point P of the wheel 17 from the road surface, it acts as a moment load on the hub shaft 13 of the axle bearing device 1 via the wheel 17, the hub shaft 13 is deformed, and the hub shaft Thus, relative approach and separation of each part of the outer ring 11 facing each of the 13 parts occurs.

図3は車軸用軸受装置の荷重と相対接近量との関係を説明する説明図である。
図3は図2中のタイヤ接地点Pに垂直方向荷重Frと軸方向荷重Faの両方が作用する前提で、垂直方向荷重Frは想定の上限値に固定し、軸方向荷重Faを変化させた時の、規制用間隙Aを構成する固定側特定部位と回転側特定部位の相対接近量を表している。
FIG. 3 is an explanatory view illustrating the relationship between the load of the axle bearing device and the relative approach amount.
FIG. 3 assumes that both the vertical load Fr and the axial load Fa act on the tire contact point P in FIG. 2, and the vertical load Fr is fixed to an assumed upper limit value, and the axial load Fa is changed. The relative approach amount of the fixed side specific part and the rotation side specific part constituting the restriction gap A is shown.

軸方向荷重Faは垂直方向荷重Frに軸方向の加速度を乗じて求めるため、横軸は重力の加速度を1Gとしたときの軸方向の加速度(以下横Gと称す)を表している。縦軸は各荷重条件における、対峙する部材、部位の相対接近量であり、車軸用軸受装置全体の有限要素解析結果から読取った数値を用いている。本発明の第1の実施形態においては、縦軸は規制用間隙Aを構成する外輪11のハブフランジ側端面11eと、ハブフランジ13bの外輪側側面13lとの間の相対接近量δを示す。   Since the axial load Fa is obtained by multiplying the vertical load Fr by the axial acceleration, the horizontal axis represents the axial acceleration (hereinafter referred to as the lateral G) when the acceleration of gravity is 1G. The vertical axis represents the relative approach amount of the facing member and part under each load condition, and a numerical value read from the finite element analysis result of the entire axle bearing device is used. In the first embodiment of the present invention, the vertical axis indicates the relative approach amount δ between the hub flange side end surface 11e of the outer ring 11 constituting the regulating gap A and the outer ring side surface 13l of the hub flange 13b.

本発明の第1の実施形態の車軸用軸受装置1における、設計時想定の最大荷重に相当する横GがG1で、この時の相対接近量δはδ1である。規制用間隙Aが構成されていない従来の車軸用軸受装置の構成と仮定した時、ハブ軸13が折損にいたる荷重に相当する横GがG2で、この時の外輪11のハブフランジ側端面11eと、ハブフランジ13bの外輪側側面13lの相対接近量δはδ2である。   In the axle bearing device 1 of the first embodiment of the present invention, the lateral G corresponding to the maximum load assumed at the time of design is G1, and the relative approach amount δ at this time is δ1. Assuming a configuration of a conventional axle bearing device in which the regulating gap A is not configured, the lateral G corresponding to the load that causes the hub shaft 13 to break is G2, and the hub flange side end surface 11e of the outer ring 11 at this time is G2. The relative approach amount δ of the outer ring side surface 13l of the hub flange 13b is δ2.

本発明の第1の実施形態の車軸用軸受装置1では、所定の荷重としての横GはG1とG2の中間値であるG3に設定されており、G3における相対接近量はδA3である。
本発明の第1の実施形態の車軸用軸受装置1における規制用間隙Aの間隔ΔAはδ3に等しい。すなわち設計時想定の最大荷重G1より大きく、ハブ軸13が破断にいたる負荷G2より小さい所定の荷重G3において規制用間隙Aの間隔ΔAは0となり、外輪11のハブフランジ側端面11eと、ハブフランジ13bの外輪側側面13lは接触する。
In the axle bearing device 1 according to the first embodiment of the present invention, the lateral G as the predetermined load is set to G3, which is an intermediate value between G1 and G2, and the relative approach amount at G3 is δA3.
The spacing ΔA of the regulating gap A in the axle bearing device 1 according to the first embodiment of the present invention is equal to δ3. That is, at a predetermined load G3 that is larger than the maximum load G1 assumed at the time of design and smaller than the load G2 that causes the hub shaft 13 to break, the spacing ΔA of the regulating gap A becomes 0, and the hub flange side end surface 11e of the outer ring 11 and the hub flange The outer ring side surface 13l of 13b contacts.

図4は荷重と、車軸用軸受装置1のハブ軸13の内径隅部13gの応力σとの関係を説明する説明図である。図4は図2中のタイヤ接地点Pに垂直方向荷重Frと軸方向荷重Faの両方が作用する前提で、垂直方向荷重Frは想定の上限値に固定し、軸方向荷重Faを変化させた時の、ハブ軸13の内径隅部13gの応力σを表している。   FIG. 4 is an explanatory diagram for explaining the relationship between the load and the stress σ of the inner diameter corner portion 13g of the hub shaft 13 of the axle bearing device 1. FIG. 4 assumes that both the vertical load Fr and the axial load Fa act on the tire contact point P in FIG. 2, and the vertical load Fr is fixed to an assumed upper limit value and the axial load Fa is changed. The stress σ at the inner diameter corner 13g of the hub shaft 13 is shown.

荷重条件は図3と同じで、横軸は図3同様横Gを表している。縦軸は内径隅部13gの応力σであり、車軸用軸受装置1全体の有限要素解析結果から読取った数値を用いている。ここで、前述の車軸用軸受装置全体の有限要素解析結果、路面から車輪17の接地点Pにラジアル荷重Frおよびスラスト荷重Faが作用した場合、ハブ軸13の内径隅部13gは車軸用軸受装置1の最弱部であることがわかっている。   The load conditions are the same as in FIG. 3, and the horizontal axis represents the horizontal G as in FIG. The vertical axis represents the stress σ of the inner diameter corner portion 13g, and a numerical value read from the finite element analysis result of the entire axle bearing device 1 is used. Here, as a result of the finite element analysis of the entire axle bearing device described above, when the radial load Fr and the thrust load Fa act on the ground contact point P of the wheel 17 from the road surface, the inner diameter corner portion 13g of the hub shaft 13 becomes the axle bearing device. It is known that it is the weakest part of 1.

設計時想定の最大荷重に相当する横GがG1で、この時の最弱部である内径隅部13gの応力はσ1である。規制用間隙Aが構成されていない従来の車軸用軸受装置の構成と仮定した時のハブ軸13が破断にいたる荷重に相当する横GがG2で、この時の最弱部である内径隅部13gの応力はσ2である。   The lateral G corresponding to the maximum load assumed at the time of design is G1, and the stress at the inner diameter corner 13g which is the weakest part at this time is σ1. Assuming the configuration of the conventional axle bearing device in which the restriction gap A is not configured, the lateral G corresponding to the load that causes the hub shaft 13 to break is G2, and the inner diameter corner portion that is the weakest portion at this time The stress of 13 g is σ2.

本発明の第1の実施形態の車軸用軸受装置1の所定の荷重に相当する横G、すなわち前述の外輪11のハブフランジ側端面11eと、ハブフランジ13bの外輪側側面13lとが接触する荷重に相当する横GがG3である。G3における、最弱部である内径隅部13gの応力はσ3である。   The lateral G corresponding to a predetermined load of the axle bearing device 1 of the first embodiment of the present invention, that is, the load at which the hub flange side end surface 11e of the outer ring 11 and the outer ring side surface 13l of the hub flange 13b are in contact with each other. The lateral G corresponding to is G3. In G3, the stress at the inner diameter corner portion 13g which is the weakest portion is σ3.

本発明の第1の実施形態の車軸用軸受装置1において、横GがG3を超えると、ハブ軸13の支持点が通常の2列の軌道部に、外輪11のハブフランジ側端面11eと、ハブフランジ13bの外輪側側面13lとの接触部を加えた3点となり、荷重が分散し、最弱部である内径隅部13gの応力の増加は大幅に緩和される。すなわち、ハブ軸13が破断にいたる応力σ2は、横GがG2で発生していたが、第1の実施形態の車軸用軸受装置1においてはG2より大きなG4で発生し、ハブ軸13の強度は大幅に向上する。   In the axle bearing device 1 according to the first embodiment of the present invention, when the lateral G exceeds G3, the support point of the hub shaft 13 is arranged in two normal rows of raceways, the hub flange side end surface 11e of the outer ring 11, and Three points including the contact portion with the outer ring side surface 13l of the hub flange 13b are added, the load is dispersed, and the increase in stress at the inner diameter corner portion 13g, which is the weakest portion, is greatly relieved. That is, the stress σ2 that causes the hub shaft 13 to break is generated when the lateral G is G2, but in the axle bearing device 1 of the first embodiment, the stress σ2 is generated at G4 that is larger than G2, and the strength of the hub shaft 13 is increased. Is greatly improved.

上述のごとく、第1の実施形態の車軸用軸受装置1は、所定の荷重を超える荷重が作用した状態で回転すると、外輪11のハブフランジ側端面11eと、ハブフランジ13bの外輪側側面13lとが接触し、接触回転による振動が発生する。運転者はこの接触回転による振動を感知し、決定的な損傷に至る前に車を停止させることができる。さらに、前記所定の荷重をこえる荷重が作用すると、ハブ軸の最弱部13gの応力が緩和され、車軸用軸受装置1の強度は従来製品に対し大幅に向上する。   As described above, when the axle bearing device 1 according to the first embodiment rotates in a state where a load exceeding a predetermined load is applied, the hub flange side end surface 11e of the outer ring 11 and the outer ring side surface 13l of the hub flange 13b Come into contact with each other, and vibration due to contact rotation occurs. The driver can sense the vibrations caused by this contact rotation and stop the car before reaching critical damage. Further, when a load exceeding the predetermined load is applied, the stress of the weakest portion 13g of the hub axle is relaxed, and the strength of the axle bearing device 1 is greatly improved as compared with the conventional product.

(第2の実施形態)
図5は、本発明の第2の実施形態の車軸用軸受装置20の軸方向の断面図である。
第2の実施形態の車軸用軸受装置は規制用間隙Aの位置、形状、構成が第1の実施形態と異なる。
第2の実施形態の車軸用軸受装置では、第1の実施の形態と同じものについては、第1の実施の形態と同一の符号を用い説明は省略する。また、第1の実施形態と共通の構成、作用効果については説明を省略することにし、第1の実施形態の車軸用軸受装置と異なる構成、作用効果についてのみ説明を行う。
(Second Embodiment)
FIG. 5 is a sectional view in the axial direction of the axle bearing device 20 according to the second embodiment of the present invention.
The axle bearing device of the second embodiment differs from the first embodiment in the position, shape, and configuration of the restriction gap A.
In the axle bearing device of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted. Further, the description of the configuration and the effect common to those of the first embodiment will be omitted, and only the configuration and the effect different from the axle bearing device of the first embodiment will be described.

図5における車軸用軸受装置2は外輪21と、ハブ軸13と、内輪12と、転動体としての2列の複数の玉14と、2個の保持器15と、ABSセンサ装着のカバー24と、パルサリング25を有するいわゆるABSセンサ内臓タイプの車軸用軸受装置である。   The axle bearing device 2 in FIG. 5 includes an outer ring 21, a hub shaft 13, an inner ring 12, a plurality of balls 14 as two rolling elements, two cages 15, and a cover 24 equipped with an ABS sensor. A so-called ABS sensor built-in type axle bearing device having a pulsar ring 25.

外輪21は環状でインボ−ド側端部に半径方向外方に拡径して、車軸用軸受装置20を車体18に取付けるための固定フランジ21cを有し、固定フランジ21cには固定用ボルト18aが貫通する複数の通し穴21dが設けられている。外輪21のインボード側の内周部には、インボード側外輪軌道21a、アウトボード側の内周部にはアウトボード側外輪軌道21bが形成されている。外輪21の内周部のインボード側の端部には外輪軌道21aと同心の円筒形状のカバー嵌合部21eが形成されている。   The outer ring 21 has an annular shape and radially expands radially inward at the inboard side end, and has a fixing flange 21c for mounting the axle bearing device 20 to the vehicle body 18, and the fixing flange 21c has a fixing bolt 18a. A plurality of through-holes 21d are provided. An inboard side outer ring raceway 21 a is formed on the inner peripheral part of the outer ring 21 on the inboard side, and an outboard side outer ring raceway 21 b is formed on the inner peripheral part on the outboard side. A cylindrical cover fitting portion 21e concentric with the outer ring raceway 21a is formed at the end portion on the inboard side of the inner peripheral portion of the outer ring 21.

ハブ軸23は軸方向中央の外周部にアウトボード側内輪軌道23a、アウトボード側端部の外周面に半径方向外方に拡径して、車輪17が取付けられるハブフランジ23bを有し、ハブフランジ23bには車輪17を固定する複数のハブボルト17aが埋め込まれている。ハブ軸23のアウトボード側内輪軌道23aからインボード側の外周面にはハブ軸外径面23eが形成されている。ハブ軸外径面23eのインボード側の端部から径方向に縮径する内輪嵌合部側面23k、内輪嵌合部側面23kの内径隅部23gからインボード側に延在する内輪嵌合部23cが形成されている。   The hub shaft 23 has an outboard-side inner ring raceway 23a on the outer peripheral portion at the center in the axial direction, a hub flange 23b that is radially outwardly expanded on the outer peripheral surface of the end portion on the outboard side, and to which the wheel 17 is attached. A plurality of hub bolts 17a for fixing the wheel 17 are embedded in the flange 23b. A hub shaft outer diameter surface 23e is formed on the outer surface on the inboard side from the outboard side inner ring raceway 23a of the hub shaft 23. Inner ring fitting portion side surface 23k radially reducing from the inboard side end of hub shaft outer diameter surface 23e, and inner ring fitting portion extending from the inner diameter corner portion 23g of inner ring fitting portion side surface 23k to the inboard side. 23c is formed.

内輪12は小端面12eをハブ軸23の嵌合部側面23kに当接してハブ軸23の内輪嵌合部23cに外嵌装着されている。さらに、ハブ軸23の端部には筒状の端部を直径方向外方に屈曲変形させて内輪12の大端面12fに押し付け、内輪12の抜け止めを行うかしめ部23dが形成されている。   The inner ring 12 is externally fitted to the inner ring fitting portion 23c of the hub shaft 23 with the small end surface 12e contacting the fitting portion side surface 23k of the hub shaft 23. Further, the end portion of the hub shaft 23 is formed with a caulking portion 23d that prevents the inner ring 12 from coming off by bending and deforming the cylindrical end portion outward in the diametrical direction and pressing it against the large end surface 12f of the inner ring 12.

2列の複数の転動体としての玉14はそれぞれ保持器15に円周方向に所定の間隔に保持されて、前記外輪21のインボード側外輪軌道21aと前記内輪12のインボード側内輪軌道12aの間、および、前記外輪21のアウトボード側外輪軌道21bと前記ハブ軸23のアウトボード側内輪軌道23aの間を転動する。   The balls 14 as a plurality of rolling elements in two rows are respectively held in the retainer 15 at predetermined intervals in the circumferential direction, and the inboard side outer ring raceway 21a of the outer ring 21 and the inboard side inner ring raceway 12a of the inner ring 12 are arranged. And between the outboard side outer ring raceway 21b of the outer ring 21 and the outboard side inner ring raceway 23a of the hub axle 23.

カバー24は鋼板をプレスにて成型した有底の円筒形状である。外周部のアウトボード側端部に嵌合部24aを有し、嵌合部24aは外輪21のカバー嵌合部21eに内嵌されている。嵌合部24aのインボード側に直径方向に拡径するフランジ24bを有し、カバー24の底部にはABSセンサ25が後述のパルサリング26のパルサ部に対峙して装着されている。カバー24の内周部のアウトボード側端部には固定側特定部位としてのカバー内径24cを有している。   The cover 24 has a bottomed cylindrical shape formed by pressing a steel plate. A fitting portion 24 a is provided at an end portion on the outboard side of the outer peripheral portion, and the fitting portion 24 a is fitted into the cover fitting portion 21 e of the outer ring 21. A flange 24b that expands in the diameter direction is provided on the inboard side of the fitting portion 24a, and an ABS sensor 25 is mounted on the bottom of the cover 24 so as to face a pulsar portion of a pulsar ring 26 described later. The inner peripheral portion of the cover 24 has a cover inner diameter 24c as a fixed side specific portion at an end portion on the outboard side.

パルサリング26は鋼板をプレスにて成型した、断面がL字形の環体で、円筒部26aのインボード側端部から半径方向内方に縮径してフランジ部26bが形成されている。フランジ部26bには長方形の軸方向に貫通するポケット26eが等間隔に配置されている。パルサリング26の円筒部26aの内周面アウトボード側端部には嵌合部26cを有し、嵌合部26cは内輪12の大外径部12cに外嵌されている。   The pulsar ring 26 is an annular body formed by pressing a steel plate and having an L-shaped cross section, and has a flange portion 26b that is radially reduced inward from the inboard side end of the cylindrical portion 26a. In the flange portion 26b, pockets 26e penetrating in the rectangular axial direction are arranged at equal intervals. A fitting portion 26 c is provided at an end on the inner peripheral surface outboard side of the cylindrical portion 26 a of the pulsar ring 26, and the fitting portion 26 c is externally fitted to the large outer diameter portion 12 c of the inner ring 12.

また、パルサリング26の円筒部26aの外周面アウトボード側端部には固定側特定部位としてのパルサリング外径26dを有しており、カバー内径24cとパルサリング外径26dは直径方向に対峙して、間隔がΔ2Aの規制用間隙2Aを構成している。   Moreover, the outer peripheral surface outboard side end of the cylindrical portion 26a of the pulsar ring 26 has a pulsar ring outer diameter 26d as a fixed side specific portion, and the cover inner diameter 24c and the pulsar ring outer diameter 26d are opposed to each other in the diametrical direction. A regulating gap 2A having an interval of Δ2A is formed.

図6は車軸用軸受装置と荷重との位置関係を説明する説明図である。
図6において、車軸用軸受装置2は外輪21の固定フランジ21cが車体18に固定用ボルト18aで固定され、ハブ軸23のハブフランジ23bと車輪17がハブボルト17aとハブナット17bで固定されている。すなわち、車軸用軸受装置2は車輪17を車体18に対し、回転自在に支えている。路面から車輪17の接地点Pにラジアル荷重Frおよびスラスト荷重Faが作用すると、車輪17を介して車軸用軸受装置2のハブ軸23にモーメント荷重として作用し、ハブ軸23が変形し、ハブ軸23の各部位に対峙する外輪21の各部位に対する、相対的な接近、離反が生じる。
FIG. 6 is an explanatory view for explaining the positional relationship between the axle bearing device and the load.
In FIG. 6, in the axle bearing device 2, the fixing flange 21c of the outer ring 21 is fixed to the vehicle body 18 by fixing bolts 18a, and the hub flange 23b of the hub shaft 23 and the wheels 17 are fixed by hub bolts 17a and hub nuts 17b. That is, the axle bearing device 2 supports the wheel 17 with respect to the vehicle body 18 so as to be rotatable. When the radial load Fr and the thrust load Fa act on the ground contact point P of the wheel 17 from the road surface, it acts as a moment load on the hub shaft 23 of the axle bearing device 2 via the wheel 17, and the hub shaft 23 is deformed. Thus, relative approach and separation of each part of the outer ring 21 facing each part 23 occurs.

図7は車軸用軸受装置の荷重と相対接近量との関係を説明する説明図である。
図7は図6中のタイヤ接地点Pに垂直方向荷重Frと軸方向荷重Faの両方が作用する前提で、垂直方向荷重Frは想定の上限値に固定し、軸方向荷重Faを変化させた時の、規制用間隙2Aを構成する固定側特定部位と回転側特定部位の相対接近量を表している。
FIG. 7 is an explanatory view illustrating the relationship between the load of the axle bearing device and the relative approach amount.
FIG. 7 assumes that both the vertical load Fr and the axial load Fa act on the tire contact point P in FIG. 6. The vertical load Fr is fixed to an assumed upper limit value, and the axial load Fa is changed. The relative approach amount of the fixed side specific part and the rotation side specific part constituting the restriction gap 2A at the time is shown.

軸方向荷重Faは垂直方向荷重Frに軸方向の加速度を乗じて求めるため、横軸は重力の加速度を1Gとしたときの軸方向の加速度(以下横Gと称す)を表している。縦軸は各荷重条件における、対峙する部材、部位の相対接近量であり、車軸用軸受装置全体の有限要素解析結果から読取った数値を用いている。本発明の第2の実施形態においては、縦軸は規制用間隙2Aを構成するカバー内径24cと、パルサリング外径26dとの間の相対接近量δを示す。   Since the axial load Fa is obtained by multiplying the vertical load Fr by the axial acceleration, the horizontal axis represents the axial acceleration (hereinafter referred to as the lateral G) when the acceleration of gravity is 1G. The vertical axis represents the relative approach amount of the facing member and part under each load condition, and a numerical value read from the finite element analysis result of the entire axle bearing device is used. In the second embodiment of the present invention, the vertical axis indicates the relative approach amount δ between the cover inner diameter 24c constituting the regulating gap 2A and the pulsar ring outer diameter 26d.

本発明の第2の実施形態の車軸用軸受装置2における、設計時想定の最大荷重に相当する横GがG21で、この時の相対接近量δはδ21である。規制用間隙2Aが構成されていない従来の車軸用軸受装置の構成と仮定した時、ハブ軸23が折損にいたる荷重に相当する横GがG22で、この時のカバー内径24cと、パルサリング外径26dの相対接近量δはδ22である。   In the axle bearing device 2 of the second embodiment of the present invention, the lateral G corresponding to the maximum load assumed at the time of design is G21, and the relative approach amount δ at this time is δ21. Assuming the configuration of a conventional axle bearing device in which the regulating gap 2A is not configured, the lateral G corresponding to the load that causes the hub shaft 23 to break is G22, and the cover inner diameter 24c and the pulsar ring outer diameter at this time The relative approach amount δ of 26d is δ22.

本発明の第2の実施形態の車軸用軸受装置2では、所定の荷重としての横GはG21とG22の中間値であるG23に設定されており、G23における相対接近量はδ23である。
本発明の第1の実施形態の車軸用軸受装置1における規制用間隙Aの間隔Δ2Aはδ23に等しい。すなわち設計時想定の最大荷重G21より大きく、ハブ軸23が破断にいたる負荷G22より小さい所定の荷重G23において規制用間隙2Aの間隔Δ2Aは0となり、カバー内径24cと、パルサリング外径26dは接触する。
In the axle bearing device 2 of the second embodiment of the present invention, the lateral G as the predetermined load is set to G23, which is an intermediate value between G21 and G22, and the relative approach amount at G23 is δ23.
The spacing Δ2A of the regulating gap A in the axle bearing device 1 according to the first embodiment of the present invention is equal to δ23. That is, at a predetermined load G23 that is larger than the maximum load G21 assumed at the time of design and smaller than the load G22 that causes the hub shaft 23 to break, the interval Δ2A of the regulating gap 2A is 0, and the cover inner diameter 24c and the pulsar ring outer diameter 26d are in contact with each other. .

図8は荷重と、車軸用軸受装置2のハブ軸23の内径隅部23gの応力σとの関係を説明する説明図である。図8は図6中のタイヤ接地点Pに垂直方向荷重Frと軸方向荷重Faの両方が作用する前提で、垂直方向荷重Frは想定の上限値に固定し、軸方向荷重Faを変化させた時の、ハブ軸23の内径隅部23gの応力σを表している。   FIG. 8 is an explanatory diagram for explaining the relationship between the load and the stress σ of the inner diameter corner portion 23g of the hub shaft 23 of the axle bearing device 2. FIG. 8 is based on the premise that both the vertical load Fr and the axial load Fa act on the tire contact point P in FIG. 6, and the vertical load Fr is fixed to an assumed upper limit value and the axial load Fa is changed. The stress σ at the inner diameter corner 23g of the hub shaft 23 is shown.

荷重条件は図7と同じで、横軸は図7同様横Gを表している。縦軸は内径隅部23gの応力σであり、車軸用軸受装置2全体の有限要素解析結果から読取った数値を用いている。ここで、前述の車軸用軸受装置全体の有限要素解析結果、路面から車輪17の接地点Pにラジアル荷重Frおよびスラスト荷重Faが作用した場合、ハブ軸23の内径隅部23gは車軸用軸受装置2の最弱部であることがわかっている。   The load conditions are the same as in FIG. 7, and the horizontal axis represents the horizontal G as in FIG. The vertical axis represents the stress σ of the inner diameter corner 23g, and a numerical value read from the finite element analysis result of the entire axle bearing device 2 is used. Here, as a result of the finite element analysis of the entire axle bearing device described above, when the radial load Fr and the thrust load Fa act on the ground contact point P of the wheel 17 from the road surface, the inner diameter corner portion 23g of the hub shaft 23 becomes the axle bearing device. 2 is the weakest part.

設計時想定の最大荷重に相当する横GがG21で、この時の最弱部である内径隅部23gの応力はσ21である。規制用間隙2Aが構成されていない従来の車軸用軸受装置の構成と仮定した時のハブ軸23が破断にいたる荷重に相当する横GがG22で、この時の最弱部である内径隅部23gの応力はσ22である。   The lateral G corresponding to the maximum load assumed at the time of design is G21, and the stress at the inner diameter corner 23g which is the weakest part at this time is σ21. Assuming the configuration of the conventional axle bearing device in which the regulating gap 2A is not configured, the lateral G corresponding to the load that causes the hub shaft 23 to break is G22, and the inner diameter corner that is the weakest portion at this time The stress of 23 g is σ22.

本発明の第2の実施形態の車軸用軸受装置2の所定の荷重に相当する横G、すなわち前述のカバー内径24cと、パルサリング外径26dとが接触する荷重に相当する横GがG23である。G23における、最弱部である内径隅部23gの応力はσ23である。   The lateral G corresponding to a predetermined load of the axle bearing device 2 of the second embodiment of the present invention, that is, the lateral G corresponding to the load where the above-mentioned cover inner diameter 24c and the pulsar ring outer diameter 26d are in contact is G23. . In G23, the stress at the inner diameter corner portion 23g which is the weakest portion is σ23.

本発明の第2の実施形態の車軸用軸受装置2において、横GがG23を超えると、ハブ軸23の支持点が通常の2列の軌道部に、カバー内径24cと、パルサリング外径26dとの接触部を加えた3点となり、荷重が分散し、最弱部である内径隅部23gの応力の増加は大幅に緩和される。すなわち、ハブ軸23が破断にいたる応力σ22は、横GがG22で発生していたが、第1の実施形態の車軸用軸受装置1においてはG22より大きなG24で発生し、ハブ軸23の強度は大幅に向上する。   In the axle bearing device 2 according to the second embodiment of the present invention, when the lateral G exceeds G23, the support point of the hub shaft 23 is in the normal two rows of raceways, the cover inner diameter 24c, the pulsar ring outer diameter 26d, The three contact points are added, the load is dispersed, and the increase in stress at the inner diameter corner portion 23g, which is the weakest portion, is greatly relieved. That is, the stress σ22 that causes the hub shaft 23 to break is generated at G22 in the lateral G, but is generated at G24 that is larger than G22 in the axle bearing device 1 of the first embodiment. Is greatly improved.

上述のごとく、第2の実施形態の車軸用軸受装置2は、所定の荷重を超える荷重が作用した状態で回転すると、カバー内径24cと、パルサリング外径26dとが接触し、接触回転による振動が発生する。運転者はこの接触回転による振動を感知し、決定的な損傷に至る前に車を停止させることができる。さらに、前記所定の荷重をこえる荷重が作用するとハブ軸の最弱部23gの応力増加が緩和され、車軸用軸受装置2の強度は従来製品に対し大幅に向上する。   As described above, when the axle bearing device 2 of the second embodiment rotates in a state where a load exceeding a predetermined load is applied, the cover inner diameter 24c and the pulsar ring outer diameter 26d come into contact with each other, and vibration due to contact rotation occurs. Occur. The driver can sense the vibrations caused by this contact rotation and stop the car before reaching critical damage. Further, when a load exceeding the predetermined load is applied, an increase in stress at the weakest portion 23g of the hub shaft is alleviated, and the strength of the axle bearing device 2 is greatly improved as compared with the conventional product.

本発明の第2の実施形態における車軸用軸受装置2のカバー24は鋼板で形成されているが、本発明では、カバーは例えば樹脂等の金属以外の材料からなる車軸用軸受装置であっても良い。   Although the cover 24 of the axle bearing device 2 in the second embodiment of the present invention is formed of a steel plate, in the present invention, the cover may be an axle bearing device made of a material other than metal such as resin. good.

本発明の第2の実施形態における車軸用軸受装置2のパルサリング26は等間隔に配置されたポケットを有する鋼板で形成されているが、本発明では、パルサリングは例えば等間隔に配置された凹凸を有する金属や、極性を持つ磁性部分を有する樹脂等の金属以外の材料からなる車軸用軸受装置であっても良い。   The pulsar ring 26 of the axle bearing device 2 in the second embodiment of the present invention is formed of a steel plate having pockets arranged at equal intervals. However, in the present invention, the pulsar ring has, for example, irregularities arranged at equal intervals. An axle bearing device made of a material other than a metal such as a metal having a polarity or a resin having a magnetic part having polarity may be used.

本発明の第1、第2の実施形態における車軸用軸受装置1、20は複数の転動体は玉であるが、本発明では、転動体が円すいころ等のころである車軸用軸受装置であっても良い。   The axle bearing devices 1 and 20 in the first and second embodiments of the present invention are a plurality of rolling elements which are balls, but the present invention is an axle bearing apparatus in which the rolling elements are rollers such as tapered rollers. May be.

本発明の第1、第2の実施形態における車軸用軸受装置1、20はハブ軸13、23が中実である従動輪用の車軸用軸受装置であるが、本発明では、ハブ軸にスプライン等の駆動伝達手段が形成された駆動輪用の車軸用軸受装置であっても良い。   The axle bearing devices 1 and 20 in the first and second embodiments of the present invention are axle bearing devices for driven wheels in which the hub shafts 13 and 23 are solid. In the present invention, the hub shaft is splined. An axle bearing device for a drive wheel in which drive transmission means such as the above is formed may be used.

1、2 ‥ 車軸用軸受装置
11、21 ‥ 外輪
11a、11b、21a、21b ‥ 外輪軌道
11e ‥ 外輪端面(固定側特定部位)
12 ‥ 内輪
12a、13a、23a ‥ 内輪軌道
13、23 ‥ ハブ軸
13b、23b‥ ハブフランジ
13c、23c‥ 内輪嵌合部
13l ‥ ハブフランジ側面(回転側特定部位)
14 ‥ 玉(転動体)
17 ‥ 車輪
18 ‥ 車体
24 ‥ カバー(別部材)
24c ‥ カバー内径(固定側特定部位)
26 ‥ パルサリング(別部材)
26d ‥ パルサリング外径(回転側特定部位)
A、2A ‥ 規制用間隙
1, 2 ... Axle bearing device 11, 21 ... Outer ring 11a, 11b, 21a, 21b ... Outer ring raceway 11e ... Outer ring end face (fixed side specific part)
12 ... Inner ring 12a, 13a, 23a ... Inner ring raceway 13, 23 ... Hub shaft 13b, 23b ... Hub flange 13c, 23c ... Inner ring fitting part 13l ... Hub flange side surface (specific part on the rotation side)
14 ... Ball (rolling element)
17 ... Wheel 18 ... Car body 24 ... Cover (separate member)
24c ··· Cover inner diameter (fixed side specific part)
26 ... Pulsaring (separate member)
26d ... Pulsar ring outer diameter (specific part on the rotation side)
A, 2A ・ ・ ・ Regulatory gap

Claims (2)

内周部に2列の外輪軌道が形成された外輪と、
軸方向一方側端部に半径方向外方に拡径して延在するハブフランジ、他方端部に縮径して軸方向に延在する内輪嵌合部、前記ハブフランジと前記内輪嵌合部の中間の中央外周部に内輪軌道が形成されたハブ軸と、
外周面の軸方向中央に内輪軌道が形成され、前記ハブ軸の前記内輪嵌合部に外嵌装着された内輪と
前記外輪の一方の外輪軌道と前記ハブ軸の内輪軌道の間、および、前記外輪の他方の外輪軌道と前記内輪の内輪軌道の間で転動する2列の複数の転動体とを有する車輪用軸受装置であって、
前記外輪の一部に形成された固定側特定部位と前記内輪または前記ハブ軸の一部に前記固定側特定部位と対峙して形成された回転側特定部位とで規制用間隙を構成し、
前記規制用間隙の間隔は前記車輪用軸受装置の設計時想定の最大荷重より大きく前記ハブ軸が破断にいたる荷重より小さい所定の荷重における前記固定側特定部位と前記回転側特定部位の相対接近量に等しいことを特徴とする車輪用軸受装置。
An outer ring having two rows of outer ring raceways formed on the inner periphery;
A hub flange extending radially outward at one end in the axial direction, an inner ring fitting portion contracting at the other end and extending in the axial direction, the hub flange and the inner ring fitting portion A hub shaft in which an inner ring raceway is formed in the middle outer periphery of
An inner ring raceway is formed in the center of the outer peripheral surface in the axial direction, between the inner ring fitted on the inner ring fitting portion of the hub axle and one outer ring raceway of the outer ring and the inner ring raceway of the hub axle, and A wheel bearing device having a plurality of rolling elements in two rows that roll between the other outer ring raceway of the outer ring and the inner ring raceway of the inner ring,
A fixed gap formed on a part of the outer ring and a rotary specific part formed on the inner ring or a part of the hub shaft facing the fixed side specific part to form a regulating gap;
The distance between the restriction gaps is a relative approach amount between the fixed side specific part and the rotary side specific part at a predetermined load that is larger than the maximum load assumed at the time of designing the wheel bearing device and smaller than the load at which the hub shaft breaks. A wheel bearing device characterized by being equal to
前記固定側特定部位が前記外輪の前記ハブフランジ側端面であり、前記回転側特定部位が前記ハブフランジの前記外輪側側面であることを特徴とする請求項1に記載の車輪用軸受装置。   2. The wheel bearing device according to claim 1, wherein the fixed side specific portion is an end surface on the hub flange side of the outer ring, and the rotation side specific portion is the side surface on the outer ring side of the hub flange.
JP2011188083A 2011-08-31 2011-08-31 Axle bearing device Active JP5845731B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011188083A JP5845731B2 (en) 2011-08-31 2011-08-31 Axle bearing device
CN2012204388421U CN202851663U (en) 2011-08-31 2012-08-30 Bearing device for car axle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188083A JP5845731B2 (en) 2011-08-31 2011-08-31 Axle bearing device

Publications (2)

Publication Number Publication Date
JP2013050160A JP2013050160A (en) 2013-03-14
JP5845731B2 true JP5845731B2 (en) 2016-01-20

Family

ID=47982869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188083A Active JP5845731B2 (en) 2011-08-31 2011-08-31 Axle bearing device

Country Status (2)

Country Link
JP (1) JP5845731B2 (en)
CN (1) CN202851663U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6567633B2 (en) 2017-11-28 2019-08-28 Ntn株式会社 Hub unit with steering function and vehicle equipped with the same
JP6720393B2 (en) * 2019-07-31 2020-07-08 Ntn株式会社 Hub bearing with steering shaft and hub unit with steering function

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT235863Y1 (en) * 1995-05-19 2000-07-18 Skf Ind Spa ROTATION SPEED DETECTION DEVICE WITH REMOVABLE SENSOR.
JP2000346063A (en) * 1999-06-04 2000-12-12 Ishikawajima Harima Heavy Ind Co Ltd Roller bearing
JP2005016990A (en) * 2003-06-23 2005-01-20 Nsk Ltd Encoder for wheel rotation speed detection
CN100549697C (en) * 2003-10-14 2009-10-14 日本精工株式会社 The hub unit that is used for driving wheel
JP4370884B2 (en) * 2003-11-12 2009-11-25 日本精工株式会社 Load measuring device for rolling bearing units
JP4229335B2 (en) * 2006-11-14 2009-02-25 Ntn株式会社 Wheel bearing device

Also Published As

Publication number Publication date
CN202851663U (en) 2013-04-03
JP2013050160A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
EP1939471B1 (en) Bearing device for wheel
CN103448467A (en) Asymmetric hub assembly
JP5019988B2 (en) Wheel bearing with sensor
JP4925625B2 (en) Wheel bearing with sensor
JP5845731B2 (en) Axle bearing device
US20150191044A1 (en) Bearing module
US8657502B2 (en) Inner ring of wheel bearing device, manufacturing method therefor, and wheel bearing device
JP2007326473A (en) Bearing device for wheel
JP5644665B2 (en) Bearing unit
WO2012108507A1 (en) Bearing device for hub shaft for wheel
JP2016130113A (en) Semi-floating type wheel support device
EP2889498B1 (en) Wheel Bearing Device
JP2013067323A (en) Bearing device for axle
US20130182985A1 (en) Wheel rolling bearing device
JP2017075623A (en) Wheel supporting double row tapered roller bearing unit
US20240110596A1 (en) Wheel bearing device
JP6054124B2 (en) Wheel bearing device
JP2006144966A (en) Rolling bearing device
CN102418738B (en) High-rigidity long-life wheel hub bearing unit
JPH10181304A (en) Hub unit bearing for wheel
WO2015147245A1 (en) Bearing device for wheel
JP2012116429A (en) Wheel bearing device
JP2012245807A (en) Axle bearing apparatus
JP2023085053A (en) hub unit bearing
JP2008064130A (en) Rolling bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5845731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150