JP5843529B2 - Calorie measurement method and system for liquefied natural gas - Google Patents

Calorie measurement method and system for liquefied natural gas Download PDF

Info

Publication number
JP5843529B2
JP5843529B2 JP2011196354A JP2011196354A JP5843529B2 JP 5843529 B2 JP5843529 B2 JP 5843529B2 JP 2011196354 A JP2011196354 A JP 2011196354A JP 2011196354 A JP2011196354 A JP 2011196354A JP 5843529 B2 JP5843529 B2 JP 5843529B2
Authority
JP
Japan
Prior art keywords
natural gas
liquefied natural
density
measured
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011196354A
Other languages
Japanese (ja)
Other versions
JP2013057600A (en
Inventor
信大 輪玉
信大 輪玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Oval Corp
Original Assignee
Osaka Gas Co Ltd
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Oval Corp filed Critical Osaka Gas Co Ltd
Priority to JP2011196354A priority Critical patent/JP5843529B2/en
Publication of JP2013057600A publication Critical patent/JP2013057600A/en
Application granted granted Critical
Publication of JP5843529B2 publication Critical patent/JP5843529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液化天然ガスの熱量測定方法及び液化天然ガスの熱量測定システムに関し、詳しくは、温度、圧力が夫々基準温度、基準圧力である基準状態の液化天然ガスにおける液密度とガス発熱量との関係を予め基準密度対発熱量関係情報として求めておき、測定対象の液化天然ガスの温度、圧力を測定すると共に、測定対象の液化天然ガスの液密度をコリオリ力を用いた密度測定手段により測定して、当該測定した液密度、温度、圧力及び前記基準密度対発熱量関係情報に基づいて、測定対象の液化天然ガスのガス発熱量を求める液化天然ガスの熱量測定方法に関し、又、測定対象の液化天然ガスの温度を測定する温度測定手段と、測定対象の液化天然ガスの圧力を測定する圧力測定手段と、測定対象の液化天然ガスの液密度をコリオリ力を用いて測定する密度測定手段と、温度、圧力が夫々基準温度、基準圧力である基準状態の液化天然ガスにおける液密度とガス発熱量との関係を基準密度対発熱量関係情報として記憶する発熱量演算情報記憶手段と、前記温度測定手段、前記圧力測定手段及び前記密度測定手段夫々の測定情報、並びに、前記発熱量演算情報記憶手段に記憶されている前記基準密度対発熱量関係情報に基づいて、測定対象の液化天然ガスのガス発熱量を求める発熱量演算手段とが設けられた液化天然ガスの熱量測定システムに関する。   The present invention relates to a calorimetric method for liquefied natural gas and a calorimetric system for liquefied natural gas. Is obtained in advance as reference density / calorific value relationship information, and the temperature and pressure of the liquefied natural gas to be measured are measured, and the liquid density of the liquefied natural gas to be measured is measured by a density measuring means using Coriolis force Measure the calorific value of liquefied natural gas to determine the calorific value of the liquefied natural gas to be measured based on the measured liquid density, temperature, pressure and the reference density vs. calorific value relationship information, and measure A temperature measuring means for measuring the temperature of the target liquefied natural gas, a pressure measuring means for measuring the pressure of the target liquefied natural gas, and the Coriolis force Density measurement means to be used, and the calorific value for storing the relationship between the liquid density and the calorific value of the liquefied natural gas in the reference state where the temperature and pressure are the reference temperature and the reference pressure, respectively, as the reference density / calorific value relation information Based on the calculation information storage means, the measurement information of the temperature measurement means, the pressure measurement means and the density measurement means, and the reference density vs. calorific value relationship information stored in the calorific value calculation information storage means The present invention also relates to a calorific value measurement system for liquefied natural gas provided with a calorific value calculation means for obtaining a gas calorific value of liquefied natural gas to be measured.

かかる液化天然ガスの熱量測定方法及び熱量測定システムは、液化天然ガスのガス発熱量を測定するものであり、この液化天然ガスを原料として生成される都市ガスの発熱量を調整するために用いられる。
つまり、温度、圧力が夫々所定の基準温度、基準圧力である基準状態の液化天然ガスにおける液密度とガス発熱量との関係を、予め、基準密度対発熱量関係情報として求めておく。
又、測定対象の液化天然ガスの温度、圧力を測定すると共に、測定対象の液化天然ガスの液密度をコリオリ力を用いた密度測定手段により測定する。
そして、例えば、測定した温度及び圧力に基づいて、測定した液化天然ガスの密度を基準状態の液密度に変換して、その変換した液密度に基づいて、基準密度対発熱量関係情報から測定対象の液化天然ガスのガス発熱量を求める(例えば、特許文献1参照。)。
Such a calorific value measuring method and calorific value measuring system of liquefied natural gas measure the calorific value of liquefied natural gas, and are used to adjust the calorific value of city gas produced using this liquefied natural gas as a raw material. .
In other words, the relationship between the liquid density and the gas heating value in the liquefied natural gas in the reference state where the temperature and the pressure are the predetermined reference temperature and the reference pressure, respectively, is obtained in advance as the reference density / heating value relationship information.
Further, the temperature and pressure of the liquefied natural gas to be measured are measured, and the liquid density of the liquefied natural gas to be measured is measured by density measuring means using Coriolis force.
Then, for example, based on the measured temperature and pressure, the measured density of the liquefied natural gas is converted into the liquid density in the reference state, and based on the converted liquid density, the measurement object is obtained from the reference density vs. calorific value relationship information. The gas calorific value of the liquefied natural gas is obtained (for example, see Patent Document 1).

上記の特許文献1には、記載されていないが、コリオリ力を用いた密度測定手段では、以下のようにして測定対象の液化天然ガスの液密度が測定されると考えられる。
即ち、この密度測定手段は、加振器により振動させられるフローチューブに測定対象の液化天然ガスを流動させたときに生じるコリオリ力を利用して密度を測定するものであり、この密度測定手段には、フローチューブの固有振動数に関連する情報である固有振動数関連情報を検出する振動数関連情報検出手段が備えられている。ちなみに、振動数関連情報検出手段にて検出する固有振動数関連情報としては、フローチューブの固有振動数そのものでも良いし、フローチューブの固有周期でも良い。
Although not described in the above-mentioned Patent Document 1, it is considered that the density measurement means using the Coriolis force measures the liquid density of the liquefied natural gas to be measured as follows.
That is, this density measuring means measures the density by using the Coriolis force generated when the liquefied natural gas to be measured flows through the flow tube that is vibrated by the vibration exciter. Is provided with a frequency related information detecting means for detecting natural frequency related information which is information related to the natural frequency of the flow tube. Incidentally, the natural frequency related information detected by the frequency related information detecting means may be the natural frequency itself of the flow tube or the natural period of the flow tube.

予め、液密度Dwが既知で所定の基準温度Twの第1基準流体をフローチューブに満たして、振動数関連情報検出手段によりフローチューブの固有振動数に関連する情報である固有振動数関連情報Fwを測定し、又、液密度Daが既知で所定の基準温度Taの第2基準流体をフローチューブに満たして、振動数関連情報検出手段によりフローチューブの固有振動数に関連する情報である固有振動数関連情報Faを測定しておく。
又、温度測定手段により、測定対象の液化天然ガスの温度Txを測定すると共に、測定対象の液化天然ガスをフローチューブに流動させて、振動数関連情報検出手段により、測定対象の液化天然ガスが流動するフローチューブの固有振動数に関連する情報である固有振動数関連情報Fxを測定する。
そして、第1基準流体の液密度Dw、基準温度Tw及び固有振動数関連情報Fw、第2基準流体の液密度Da、基準温度Ta及び固有振動数関連情報Fa、測定対象の液化天然ガスの温度Tx及び固有振動数関連情報Fx、並びに、係数αに基づいて、下記の液密度導出関数により、測定対象の液化天然ガスの液密度Dxを求める。
Advance, meet the first reference fluid having a predetermined reference temperature T w liquid density D w is known to the flow tube natural frequency associated which is information related to the natural frequency of the flow tube by the frequency-related information detecting means The information F w is measured, the liquid density Da is known, the second reference fluid having a predetermined reference temperature Ta is filled in the flow tube, and the frequency related information detecting means relates to the natural frequency of the flow tube. previously measured natural frequencies related information F a is information.
Further, the temperature measuring means and measures the temperature T x of the liquefied natural gas to be measured, the liquefied natural gas to be measured by flow in the flow tube, the vibration frequency-related information detection unit, liquefied natural gas to be measured There measuring the natural frequency related information F x which is information related to the natural frequency of the flow tube to flow.
Then, the liquid density D w of the first reference fluid, the reference temperature T w and the natural frequency related information F w , the liquid density D a of the second reference fluid, the reference temperature Ta and the natural frequency related information F a , the measurement target Based on the temperature T x of the liquefied natural gas, the natural frequency related information F x , and the coefficient α, the liquid density D x of the liquefied natural gas to be measured is obtained by the following liquid density derivation function.

x=f〔Dw,Da,Fx 2×(1−α×Tx),Fa 2×(1−α×Ta),Fw 2×(1−α×Tw)〕 D x = f [D w , D a , F x 2 × (1−α × T x ), F a 2 × (1−α × T a ), F w 2 × (1−α × T w )]

つまり、測定対象の液化天然ガスの液密度を求めるに当たって、第1基準流体の液密度、基準温度及び固有振動数関連情報、並びに、第2基準流体の液密度、基準温度及び固有振動数関連情報を用いて校正して求めることにより、測定対象の液化天然ガスの液密度の測定精度を向上しようとするものである。   That is, in determining the liquid density of the liquefied natural gas to be measured, the liquid density of the first reference fluid, the reference temperature and the natural frequency related information, and the liquid density, the reference temperature and the natural frequency related information of the second reference fluid. It is intended to improve the measurement accuracy of the liquid density of the liquefied natural gas to be measured.

このような液化天然ガスの熱量測定方法及び熱量測定システムにおいて、従来は、上記の特許文献1には記載されていないが、係数αは一定の値に一義的に設定されていた。   In such a liquefied natural gas calorific value measuring method and calorific value measuring system, conventionally, although not described in Patent Document 1 above, the coefficient α is uniquely set to a constant value.

特許第4393302号公報Japanese Patent No. 4393302

ところで、フローチューブに流体を流動させたときのフローチューブの振動状態は、そのフローチューブのバネ定数に依存し、一方、フローチューブのバネ定数は、そのフローチューブを流動する流体の温度により変動する。
そして、上記の液密度導出関数において、第1基準流体の固有振動数関連情報Fwは、温度が基準温度Twのときの値であり、又、第2基準流体の固有振動数関連情報Faも、温度が基準温度Taのときの値であるので、それら固有振動数関連情報Fw,Faは、測定対象の液化天然ガスの温度Txに対応したものでない場合がある。
By the way, the vibration state of the flow tube when the fluid flows through the flow tube depends on the spring constant of the flow tube. On the other hand, the spring constant of the flow tube varies depending on the temperature of the fluid flowing through the flow tube. .
In the liquid density derivation function, the natural frequency related information F w of the first reference fluid is a value when the temperature is the reference temperature T w , and the natural frequency related information F of the second reference fluid. Since a is also a value when the temperature is the reference temperature T a , the natural frequency related information F w and F a may not correspond to the temperature T x of the liquefied natural gas to be measured.

しかしながら、従来の液化天然ガスの熱量測定方法及び熱量測定システムでは、固有振動数関連情報Fw,Faに乗じられる係数αは一定の値に設定されているので、上記の液密度導出関数により測定対象の液化天然ガスの液密度を求めるに当たって、測定対象の液化天然ガスの温度の変動が反映されない。つまり、第1基準流体の固有振動数関連情報Fwや第2基準流体の固有振動数関連情報Faが測定対象の液化天然ガスの温度Txのときの値からずれる場合があり、上記の液密度導出関数により液密度Dxを求めることにより液化天然ガスの液密度Dxを測定するに当たって、その測定精度が低下し易かった。 However, in the conventional calorific value measuring method and calorie measuring system of liquefied natural gas, the coefficient α multiplied by the natural frequency related information F w , F a is set to a constant value. In obtaining the liquid density of the liquefied natural gas to be measured, the temperature variation of the liquefied natural gas to be measured is not reflected. That is, the natural frequency related information F w of the first reference fluid and the natural frequency related information F a of the second reference fluid may deviate from the values at the temperature T x of the liquefied natural gas to be measured. in measuring the liquid density D x of liquefied natural gas by obtaining the liquid density D x by the liquid density derivation function, the measurement accuracy was easy to decrease.

例えば、図4において白抜き状態で示すように、測定対象の液化天然ガス(本例の場合は、液化天然ガスにガス発熱量調整用の液化石油ガスが混合された液化混合ガス)の温度Txが−145℃程度から上昇するに伴って、液化天然ガスの液密度Dxの測定誤差が大きくなり、温度Txが−135℃では、液密度Dxの測定誤差が2.3kg/m3程度に大きくなる。
従って、従来では、液化天然ガスの液密度の測定精度が低下し易いことから、その液化天然ガスの液密度を用いて求める液化天然ガスのガス発熱量の測定精度が低下するという問題があった。
For example, as shown in white in FIG. 4, the temperature T of the liquefied natural gas to be measured (in this example, the liquefied mixed gas in which the liquefied natural gas for adjusting the calorific value of gas is mixed with the liquefied natural gas). As x increases from about −145 ° C., the measurement error of the liquid density D x of the liquefied natural gas increases, and when the temperature T x is −135 ° C., the measurement error of the liquid density D x is 2.3 kg / m. Increases to about 3 .
Therefore, conventionally, since the measurement accuracy of the liquid density of the liquefied natural gas is likely to be lowered, there is a problem that the measurement accuracy of the calorific value of the liquefied natural gas obtained using the liquid density of the liquefied natural gas is lowered. .

本発明は、かかる実情に鑑みてなされたものであり、その目的は、液化天然ガスのガス発熱量の測定精度を向上し得る液化天然ガスの熱量測定方法及び液化天然ガスの熱量測定システムを提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a calorific value measurement method and a calorific value measurement system for liquefied natural gas that can improve the measurement accuracy of the calorific value of liquefied natural gas. There is to do.

本発明に係る液化天然ガスの熱量測定方法は、温度、圧力が夫々基準温度、基準圧力である基準状態の液化天然ガスにおける液密度とガス発熱量との関係を予め基準密度対発熱量関係情報として求めておき、測定対象の液化天然ガスの温度、圧力を測定すると共に、測定対象の液化天然ガスの液密度をコリオリ力を用いた密度測定手段により測定して、当該測定した液密度、温度、圧力及び前記基準密度対発熱量関係情報に基づいて、測定対象の液化天然ガスのガス発熱量を求めるものであって、
その特徴構成は、前記密度測定手段による温度が変化することがある測定対象の液化天然ガスの液密度の測定においては、液密度Dwが既知で所定の基準温度Twの第1基準流体を前記密度測定手段のフローチューブに満たしたときの前記フローチューブの固有振動数に関連する情報である固有振動数関連情報Fw、液密度Daが既知で所定の基準温度Taの第2基準流体を前記フローチューブに満たしたときの前記フローチューブの固有振動数に関連する情報である固有振動数関連情報Faを予め測定しておき、測定対象の液化天然ガスの温度Txを測定すると共に、測定対象の液化天然ガスが流動する前記フローチューブの固有振動数に関連する情報である固有振動数関連情報Fxを測定して、前記第1基準流体の液密度Dw、基準温度Tw及び固有振動数関連情報Fw、前記第2基準流体の液密度Da、基準温度Ta及び固有振動数関連情報Fa、測定対象の液化天然ガスの温度Tx及び固有振動数関連情報Fx、並びに、係数αに基づいて、その係数αを測定対象の液化天然ガスの温度Tx基づく下記の係数α導出式にて求める数値として、下記の液密度導出関数により、測定対象の液化天然ガスの液密度Dxを求める点にある。
x=f〔Dw,Da,Fx 2×(1−α×Tx),Fa 2×(1−α×Ta),Fw 2×(1−α×Tw)〕
α=a 1 ×T x 3 +b 1 ×T x 2 +c 1 ×T x +d 1
但し、a 1 、b 1 、c 1 、d 1 :定数
The calorific value measurement method for liquefied natural gas according to the present invention is based on the relationship between the liquid density and the calorific value of the liquefied natural gas in the reference state in which the temperature and the pressure are the reference temperature and the reference pressure, respectively. In addition to measuring the temperature and pressure of the liquefied natural gas to be measured, the liquid density of the liquefied natural gas to be measured is measured by a density measuring means using Coriolis force, and the measured liquid density and temperature are measured. Based on the pressure and the reference density vs. calorific value relationship information, the calorific value of the liquefied natural gas to be measured is obtained,
Its characteristic configuration, in the measurement of liquid density of the liquefied natural gas to be measured temperature by the density measuring unit may change, the first reference fluid liquid density D w is a predetermined reference temperature in a known T w The natural frequency related information F w , which is information related to the natural frequency of the flow tube when it is filled in the flow tube of the density measuring means, the liquid density Da is known, and a second reference of a predetermined reference temperature Ta the flow is information relating to the natural frequency of the tube is measured in advance the natural frequency related information F a, measuring the temperature T x of the liquefied natural gas to be measured when filled with fluid to the flow tube At the same time, the natural frequency related information F x , which is information related to the natural frequency of the flow tube through which the liquefied natural gas to be measured flows, is measured, and the liquid density D w and the reference temperature T of the first reference fluid are measured. w and And the natural frequency related information F w , the liquid density D a of the second reference fluid, the reference temperature T a and the natural frequency related information F a , the temperature T x of the liquefied natural gas to be measured, and the natural frequency related information F Based on x and the coefficient α, the coefficient α is a numerical value obtained by the following coefficient α derivation formula based on the temperature T x of the liquefied natural gas to be measured. The point is to obtain the liquid density D x of natural gas.
D x = f [D w , D a , F x 2 × (1−α × T x ), F a 2 × (1−α × T a ), F w 2 × (1−α × T w )]
α = a 1 × T x 3 + b 1 × T x 2 + c 1 × T x + d 1
Where a 1 , b 1 , c 1 , d 1 : constants

即ち、予め、液密度Dwが既知で所定の基準温度Twの第1基準流体を密度測定手段のフローチューブに満たして固有振動させて、第1基準流体の固有振動数関連情報Fwを測定すると共に、液密度Daが既知で所定の基準温度Taの第2基準流体を密度測定手段のフローチューブに満たして固有振動させて、第2基準流体の固有振動数関連情報Faを測定する。又、測定対象の液化天然ガスの温度Txを測定すると共に、測定対象の液化天然ガスを密度測定手段のフローチューブに流動させて固有振動させて、測定対象の液化天然ガスの固有振動数関連情報Fxを測定する。尚、本願における液化天然ガスには、液化天然ガスを主成分とし、当該液化天然ガスのガス発熱量を調整するための発熱量調整用液化ガス(例えば、液化石油ガス)が混合された液化混合ガスを含む。
そして、第1基準流体の液密度Dw、基準温度Tw及び固有振動数関連情報Fw、第2基準流体の液密度Da、基準温度Ta及び固有振動数関連情報Fa、測定対象の液化天然ガスの温度Tx及び固有振動数関連情報Fx、並びに、測定対象の液化天然ガスの温度Txに応じた数値に設定した係数αに基づいて、上記の液密度導出関数により、測定対象の液化天然ガスの液密度Dxを演算する。
That is, the natural frequency related information F w of the first reference fluid is obtained by filling the first reference fluid having a known liquid density D w and a predetermined reference temperature T w into the flow tube of the density measuring means in advance and performing natural vibration. In addition to the measurement, the second reference fluid having a known liquid density D a and a predetermined reference temperature Ta is filled in the flow tube of the density measuring means and caused to vibrate, and the natural frequency related information F a of the second reference fluid is obtained. taking measurement. Further, while measuring the temperature T x of the liquefied natural gas to be measured, by the natural vibration of the liquefied natural gas to be measured by flow in the flow tube density determination means, the natural frequency associated LNG to be measured Information Fx is measured. The liquefied natural gas in the present application is a liquefied mixture in which liquefied natural gas is a main component and a calorific value adjusting liquefied gas (for example, liquefied petroleum gas) for adjusting the gas calorific value of the liquefied natural gas is mixed. Contains gas.
Then, the liquid density D w of the first reference fluid, the reference temperature T w and the natural frequency related information F w , the liquid density D a of the second reference fluid, the reference temperature Ta and the natural frequency related information F a , the measurement target Based on the liquid density derivation function based on the temperature T x and natural frequency related information F x of the liquefied natural gas and the coefficient α set to a numerical value corresponding to the temperature T x of the liquefied natural gas to be measured, calculating a liquid density D x liquefied natural gas to be measured.

すると、第1基準流体の固有振動数関連情報Fwや、第2基準流体の固有振動数関連情報Faは、測定対象の液化天然ガスの温度Txに対応したものではなくても、係数αは、測定対象の液化天然ガスの温度Txに応じて設定するので、「Fa 2」や「Fw 2」に係数αを乗じることにより、第1基準流体の固有振動数関連情報Fwや、第2基準流体の固有振動数関連情報Faを、測定対象の液化天然ガスの温度Txに応じた値に補正することが可能となり、測定対象の液化天然ガスの液密度の測定精度を向上することができる。
従って、液化天然ガスのガス発熱量の測定精度を向上し得る液化天然ガスの熱量測定方法を提供することができるようになった。
Then, and natural frequencies related information F w of the first reference fluid, the natural frequency related information F a second reference fluid, even not corresponding to the temperature T x of the liquefied natural gas to be measured, the coefficient Since α is set according to the temperature T x of the liquefied natural gas to be measured, the natural frequency related information F of the first reference fluid can be obtained by multiplying “F a 2 ” and “F w 2 ” by a coefficient α. w and the natural frequency related information F a of the second reference fluid can be corrected to a value corresponding to the temperature T x of the liquefied natural gas to be measured, and the liquid density of the liquefied natural gas to be measured can be measured. Accuracy can be improved.
Accordingly, it is possible to provide a calorific value measurement method for liquefied natural gas that can improve the measurement accuracy of the gas calorific value of liquefied natural gas.

そして、係数α導出式を、測定対象の液化天然ガスの温度の三次の近似式に設定することにより、測定対象の液化天然ガスの液密度を、その温度の変動に拘わらず極力精度良く求めることが可能なように、係数αを測定対象の液化天然ガスの温度に応じて適切に設定することができる。
従って、液化天然ガスのガス発熱量の測定精度をより一層向上することができる。
Then , by setting the equation for deriving the coefficient α to a third-order approximation of the temperature of the liquefied natural gas to be measured, the liquid density of the liquefied natural gas to be measured can be obtained as accurately as possible regardless of the fluctuation of the temperature. The coefficient α can be appropriately set according to the temperature of the liquefied natural gas to be measured.
Therefore, the measurement accuracy of the gas calorific value of liquefied natural gas can be further improved.

本発明に係る液化天然ガスの熱量測定システムは、
測定対象の液化天然ガスの温度を測定する温度測定手段と、
測定対象の液化天然ガスの圧力を測定する圧力測定手段と、
測定対象の液化天然ガスの液密度をコリオリ力を用いて測定する密度測定手段と、
温度、圧力が夫々基準温度、基準圧力である基準状態の液化天然ガスにおける液密度とガス発熱量との関係を基準密度対発熱量関係情報として記憶する発熱量演算情報記憶手段と、
前記温度測定手段、前記圧力測定手段及び前記密度測定手段夫々の測定情報、並びに、前記発熱量演算情報記憶手段に記憶されている前記基準密度対発熱量関係情報に基づいて、測定対象の液化天然ガスのガス発熱量を求める発熱量演算手段とが設けられたものであって、
その特徴構成は、前記密度測定手段に、測定対象の液化天然ガスを流動させるフローチューブと、そのフローチューブの固有振動数に関連する情報である固有振動数関連情報を検出する振動数関連情報検出手段と、その振動数関連情報検出手段の検出情報に基づいて測定対象の天然ガスの液密度を演算する密度演算手段と、その密度演算手段により液密度を演算するための情報を記憶する密度演算情報記憶手段とが備えられ、
前記密度演算情報記憶手段に、液密度Dwが既知で所定の基準温度Twの第1基準流体を前記フローチューブに満たしたときに前記振動数関連情報検出手段にて検出された固有振動数関連情報Fw、液密度Daが既知で所定の基準温度Taの第2基準流体を前記フローチューブに満たしたときに前記振動数関連情報検出手段にて検出された固有振動数関連情報Fa、前記第1基準流体の液密度Dw及び基準温度Tw、前記第2基準流体の液密度Da及び基準温度Ta、並びに、係数αが記憶され、
前記密度演算手段が、前記密度演算情報記憶手段の記憶情報、前記温度測定手段の測定情報、及び、測定対象の液化天然ガスを前記フローチューブに流動させたときの前記振動数関連情報検出手段の検出情報に基づいて、前記第1基準流体の液密度Dw、基準温度Tw及び固有振動数関連情報Fw、前記第2基準流体の液密度Da、基準温度Ta及び固有振動
数関連情報Fa、測定対象の液化天然ガスの温度Tx及び固有振動数関連情報Fx、並びに、前記係数αから、下記の液密度導出関数により、測定対象の液化天然ガスの液密度Dxを求めるように構成され、
さらに前記密度演算手段が、前記密度演算情報記憶手段に記憶されている下記の測定対象の液化天然ガスの温度Tx基づく係数α導出式に基づいて、前記係数αを求めるように構成される点にある。
x=f〔Dw,Da,Fx 2×(1−α×Tx),Fa 2×(1−α×Ta),Fw 2×(1−α×Tw)〕
α=a 1 ×T x 3 +b 1 ×T x 2 +c 1 ×T x +d 1
但し、a 1 、b 1 、c 1 、d 1 :定数
The calorimetric system for liquefied natural gas according to the present invention is:
Temperature measuring means for measuring the temperature of the liquefied natural gas to be measured;
Pressure measuring means for measuring the pressure of the liquefied natural gas to be measured;
Density measuring means for measuring the liquid density of the liquefied natural gas to be measured using Coriolis force;
A calorific value calculation information storage means for storing the relationship between the liquid density and the gas calorific value in the liquefied natural gas in the reference state in which the temperature and the pressure are the reference temperature and the reference pressure, respectively, as reference density / calorific value relationship information;
Based on the measurement information of each of the temperature measurement means, the pressure measurement means, and the density measurement means, and the reference density vs. calorific value relationship information stored in the calorific value calculation information storage means, the liquefied natural to be measured is measured. A calorific value calculating means for obtaining a gas calorific value of the gas,
The characteristic configuration is that the density measurement means detects a flow tube for flowing the liquefied natural gas to be measured, and frequency related information detection for detecting natural frequency related information that is information related to the natural frequency of the flow tube. Density calculation means for calculating the liquid density of the natural gas to be measured based on the detection information of the frequency related information detection means, and density calculation for storing information for calculating the liquid density by the density calculation means Information storage means,
The density calculation information storage means, the natural frequency of the detected by frequency-related information detecting means when the liquid density D w satisfies the first reference fluid having a predetermined reference temperature T w known to the flow tube Related information F w, liquid density D a is the frequency-related information detecting means natural frequency related information detected by the F when the second reference fluid having a predetermined reference temperature T a known filled in said flow tube a , a liquid density D w and a reference temperature T w of the first reference fluid, a liquid density D a and a reference temperature T a of the second reference fluid, and a coefficient α are stored,
The density calculation means is stored in the density calculation information storage means, the measurement information in the temperature measurement means, and the frequency related information detection means when the liquefied natural gas to be measured flows through the flow tube. Based on the detection information, the liquid density D w of the first reference fluid, the reference temperature T w and the natural frequency related information F w , the liquid density D a of the second reference fluid, the reference temperature Ta and the natural frequency related From the information F a , the temperature T x of the liquefied natural gas to be measured, the natural frequency related information F x , and the coefficient α, the liquid density D x of the liquefied natural gas to be measured is calculated by the following liquid density derivation function. Configured to ask for
Further, the density calculating means, the density calculation information storage means based on the coefficient α derivations based on the temperature T x of the liquefied natural gas to be measured of the following stored, is configured to determine the coefficients α In the point.
D x = f [D w , D a , F x 2 × (1−α × T x ), F a 2 × (1−α × T a ), F w 2 × (1−α × T w )]
α = a 1 × T x 3 + b 1 × T x 2 + c 1 × T x + d 1
Where a 1 , b 1 , c 1 , d 1 : constants

即ち、液密度Dwが既知で所定の基準温度Twの第1基準流体を密度測定手段のフローチューブに満たして固有振動させたときに、振動数関連情報検出手段にて検出された固有振動数関連情報Fw、液密度Daが既知で所定の基準温度Taの第2基準流体を密度測定手段のフローチューブに満たして固有振動させたときに、振動数関連情報検出手段にて検出された固有振動数関連情報Fa、第1基準流体の液密度Dw及び基準温度Tw、第2基準流体の液密度Da及び基準温度Ta、並びに、係数αが、密度演算情報記憶手段に記憶されている。この係数αは、測定対象の液化天然ガスの温度Txに応じた数値となるように、密度演算情報記憶手段に記憶されている。
そして、密度演算手段は、密度演算情報記憶手段の記憶情報、温度測定手段の測定情報、及び、測定対象の液化天然ガスをフローチューブに流動させたときの振動数関連情報検出手段の検出情報に基づいて、第1基準流体の液密度Dw、基準温度Tw及び固有振動数関連情報Fw、第2基準流体の液密度Da、基準温度Ta及び固有振動数関連情報Fa、並びに、測定対象の液化天然ガスの温度Tx及び固有振動数関連情報Fx、並びに、測定対象の液化天然ガスの温度Txに応じた数値に設定された係数αから、上記の液密度導出関数により、測定対象の液化天然ガスの液密度Dxを求める。
That is, the natural vibration of the liquid density D w is when brought into natural vibration meets the first reference fluid having a predetermined reference temperature T w to the flow tube density determination means known, detected by the frequency-related information detecting means when the number-related information F w, liquid density D a is satisfied the second reference fluid having a predetermined reference temperature T a to the flow tube density determination means known to the natural vibration, detected by the frequency-related information detecting means The natural frequency related information F a , the liquid density D w and the reference temperature T w of the first reference fluid, the liquid density D a and the reference temperature T a of the second reference fluid, and the coefficient α are stored in the density calculation information. Stored in the means. This coefficient α is stored in the density calculation information storage means so as to be a numerical value corresponding to the temperature T x of the liquefied natural gas to be measured.
The density calculation means includes the storage information of the density calculation information storage means, the measurement information of the temperature measurement means, and the detection information of the frequency related information detection means when the liquefied natural gas to be measured flows through the flow tube. Based on the liquid density D w of the first reference fluid, the reference temperature T w and the natural frequency related information F w , the liquid density D a of the second reference fluid, the reference temperature Ta and the natural frequency related information F a , and The liquid density derivation function from the temperature T x and natural frequency related information F x of the measurement target liquefied natural gas and the coefficient α set to a numerical value corresponding to the temperature T x of the measurement target liquefied natural gas Thus, the liquid density D x of the liquefied natural gas to be measured is obtained.

すると、第1基準流体の固有振動数関連情報Fwや、第2基準流体の固有振動数関連情報Faは、測定対象の液化天然ガスの温度Txに対応したものではなくても、係数αは、測定対象の液化天然ガスの温度Txに応じて設定されるので、「Fa 2」や「Fw 2」に係数αを乗じることにより、第1基準流体の固有振動数関連情報Fwや、第2基準流体の固有振動数関連情報Faを、測定対象の液化天然ガスの温度Txに応じた値に補正することが可能となり、測定対象の液化天然ガスの液密度の測定精度を向上することができる。
従って、液化天然ガスのガス発熱量の測定精度を向上し得る液化天然ガスの熱量測定システムを提供することができるようになった。
そして、係数α導出式が、測定対象の液化天然ガスの温度の三次の近似式に設定されているので、測定対象の液化天然ガスの液密度を、その温度の変動に拘わらず極力精度良く求めることが可能なように、係数αを測定対象の液化天然ガスの温度に応じて適切に設定することができる。
従って、液化天然ガスのガス発熱量の測定精度をより一層向上することができる
Then, and natural frequencies related information F w of the first reference fluid, the natural frequency related information F a second reference fluid, even not corresponding to the temperature T x of the liquefied natural gas to be measured, the coefficient Since α is set according to the temperature T x of the liquefied natural gas to be measured, by multiplying “F a 2 ” and “F w 2 ” by the coefficient α, the natural frequency related information of the first reference fluid is obtained. F w and the natural frequency related information F a of the second reference fluid can be corrected to values corresponding to the temperature T x of the liquefied natural gas to be measured, and the liquid density of the liquefied natural gas to be measured can be corrected. Measurement accuracy can be improved.
Accordingly, it is possible to provide a liquefied natural gas calorific value measurement system capable of improving the measurement accuracy of the gas calorific value of liquefied natural gas.
Since the coefficient α derivation formula is set to a third-order approximation formula of the temperature of the liquefied natural gas to be measured, the liquid density of the liquefied natural gas to be measured can be obtained as accurately as possible regardless of the fluctuation of the temperature. The coefficient α can be appropriately set according to the temperature of the liquefied natural gas to be measured.
Therefore, the measurement accuracy of the gas calorific value of liquefied natural gas can be further improved .

本発明に係る液化天然ガスの熱量測定システムの更なる特徴構成は、液化天然ガスが送出される液化天然ガス流路に、当該液化天然ガスのガス発熱量を調整するための発熱量調整用液化ガスが送出される発熱量調整用液化ガス流路が接続され、
前記液化天然ガス流路を流動する液化天然ガスに対する前記発熱量調整用液化ガスの混合比率を調整して、当該液化天然ガスのガス発熱量を調整する混合比率調整手段が設けられ、
前記混合比率調整手段により前記発熱量調整用液化ガスの混合比率が調整されたガス発熱量調整後の液化天然ガスが、測定対象の液化天然ガスとされる点にある。
A further feature of the calorific value measurement system for liquefied natural gas according to the present invention is that the liquefied natural gas flow path through which the liquefied natural gas is sent has a calorific value adjustment liquefaction for adjusting the gas calorific value of the liquefied natural gas. A liquefied gas flow path for adjusting the calorific value through which the gas is sent is connected,
Adjusting the mixing ratio of the calorific value adjustment liquefied gas to the liquefied natural gas flowing in the liquefied natural gas flow path, and provided with a mixing ratio adjusting means for adjusting the gas calorific value of the liquefied natural gas;
The liquefied natural gas after gas calorific value adjustment in which the mixing ratio of the calorific value adjusting liquefied gas is adjusted by the mixing ratio adjusting means is the liquefied natural gas to be measured.

即ち、本発明の液化天然ガスの熱量測定システムにより、発熱量調整用液化ガスが混合されたガス発熱量調整後の液化天然ガスのガス発熱量が測定される。
つまり、通常、消費先(工場や家庭等)に供給される都市ガスのガス発熱量を所定の範囲に調整するために、発熱量調整用液化ガスを液化天然ガスに混合させると共に、その発熱量調整用液化ガスの混合比率を調整する。一方、液化天然ガスと発熱量調整用液化ガスとは温度が違うので、液化天然ガスへの発熱量調整用液化ガスの混合比率を調整して、ガス発熱量を調整すると、そのガス発熱量調整後の液化天然ガスの温度は変動し易い。
そこで、ガス発熱量調整後の液化天然ガスの液密度を本発明に係る液化天然ガスの熱量測定システムにより測定することにより、液化天然ガスの温度の変動に拘わらず、液密度を精度良く測定することができ、そして、その測定値を用いて、発熱量調整用液化ガスの混合比率を調整することにより、液化天然ガスのガス発熱量を所定の範囲に的確に調整することができる。
従って、ガス発熱量が所定の範囲に的確に調整された液化天然ガスを供給することができる。
That is, the calorific value of the liquefied natural gas after the gas calorific value adjustment in which the calorific value adjusting liquefied gas is mixed is measured by the liquefied natural gas calorific value measuring system of the present invention.
In other words, in order to adjust the calorific value of city gas supplied to consumers (factories, homes, etc.) to a predetermined range, the calorific value adjustment liquefied gas is mixed with liquefied natural gas and the calorific value thereof is adjusted. Adjust the mixing ratio of the adjustment liquefied gas. On the other hand, the temperature of liquefied natural gas and liquefied gas for adjusting the calorific value are different, so adjusting the gas calorific value by adjusting the mixing ratio of the liquefied natural gas to liquefied natural gas and adjusting the calorific value of that gas will adjust the calorific value of the gas. The temperature of the later liquefied natural gas tends to fluctuate.
Therefore, by measuring the liquid density of the liquefied natural gas after adjusting the calorific value of the gas, the liquid density can be accurately measured regardless of the fluctuation of the temperature of the liquefied natural gas by measuring the calorific value of the liquefied natural gas according to the present invention. In addition, by adjusting the mixing ratio of the calorific value adjusting liquefied gas using the measured value, the gas calorific value of the liquefied natural gas can be accurately adjusted within a predetermined range.
Therefore, it is possible to supply liquefied natural gas whose gas heat generation amount is accurately adjusted within a predetermined range.

本発明に係る液化天然ガスの熱量測定システムの更なる特徴構成は、前記発熱量調整用液化ガスが液化石油ガスであり、
ガス発熱量調整後の液化天然ガスの温度Txが、−160〜−120℃の範囲で変動し、
当該液化天然ガスの温度Txの変動範囲において、前記定数a1、b1が0に設定されて、前記係数α導出式が、測定対象の液化天然ガスの温度Txを変数とする下記の一次式に設定されている点にある。
α=c1×Tx+d1
但し、c1、d1:定数
According to a further feature of the calorific value measurement system for liquefied natural gas according to the present invention, the calorific value adjustment liquefied gas is liquefied petroleum gas,
The temperature T x of the liquefied natural gas after adjusting the gas heating value fluctuates in the range of −160 to −120 ° C.,
In the fluctuation range of the temperature T x of the liquefied natural gas, the constants a 1 and b 1 are set to 0, and the coefficient α derivation formula is as follows using the temperature T x of the liquefied natural gas to be measured as a variable: The point is that it is set to a linear expression.
α = c 1 × T x + d 1
Where c 1 and d 1 are constants

即ち、液化天然ガスの温度は、−160℃程度であり、一方、例えばプロパンが主成分である液化石油ガスの温度は、−42℃程度であり、液化天然ガスと液化石油ガスとの温度差は比較的大きい。
つまり、発熱量調整用液化ガスとして液化石油ガスを用いると、ガス発熱量調整後の液化天然ガスの温度の変動範囲が比較的大きくなる。
又、係数α導出式が、測定対象の液化天然ガスの温度を変数とする上記の如き一次式に設定されているので、測定対象の液化天然ガス温度の変動に拘わらず液密度を精度良く求めることが可能なように、係数αを測定対象の液化天然ガスの温度に応じて適正且つ簡単に設定することができる。
従って、発熱量調整用液化ガスとして液化石油ガスを用いることにより、測定対象の液化天然ガスの温度の変動範囲が比較的大きい場合でも、液密度を精度良く測定することができるので、液化天然ガスのガス発熱量を精度良く測定することができる。
That is, the temperature of liquefied natural gas is about −160 ° C., while the temperature of liquefied petroleum gas mainly composed of propane, for example, is about −42 ° C., and the temperature difference between liquefied natural gas and liquefied petroleum gas. Is relatively large.
That is, when liquefied petroleum gas is used as the calorific value adjustment liquefied gas, the temperature fluctuation range of the liquefied natural gas after the gas calorific value adjustment is relatively large.
In addition, the coefficient α derivation formula is set to the above-described linear expression using the temperature of the liquefied natural gas to be measured as a variable, so that the liquid density can be obtained accurately regardless of the variation in the temperature of the liquefied natural gas to be measured. The coefficient α can be set appropriately and easily according to the temperature of the liquefied natural gas to be measured.
Therefore, by using liquefied petroleum gas as the calorific value adjustment liquefied gas, the liquid density can be accurately measured even when the temperature fluctuation range of the liquefied natural gas to be measured is relatively large. The calorific value of the gas can be accurately measured.

液化天然ガスの熱量測定システムの全体構成を示すブロック図Block diagram showing the overall configuration of a calorific value measurement system for liquefied natural gas 密度測定装置の測定部の一部切り欠き斜視図Partial cutaway perspective view of the measuring unit of the density measuring device 密度測定装置の測定部の縦断側面図Vertical side view of the measuring unit of the density measuring device 液化天然ガスの温度と液密度の測定誤差との関係を示す図Diagram showing the relationship between the temperature of liquefied natural gas and measurement error of liquid density

以下、図面に基づいて、本発明の実施の形態を説明する。
図1に示すように、液化天然ガス(以下、LNGと記載する場合がある)の熱量測定システムS(以下、単に熱量測定システムと記載する場合がある)は、液化天然ガスを貯留するLNGタンク1からLNGポンプ2により送出されてLNG送出路3を通流する液化天然ガスを測定対象として、その液化天然ガスのガス発熱量を測定するものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a calorific value measurement system S (hereinafter sometimes simply referred to as a calorific value measurement system) of liquefied natural gas (hereinafter sometimes referred to as LNG) is an LNG tank that stores liquefied natural gas. The liquefied natural gas that is sent from 1 to the LNG pump 2 and flows through the LNG delivery path 3 is measured, and the gas calorific value of the liquefied natural gas is measured.

この実施形態では、液化天然ガスのガス発熱量を調整するための発熱量調整用液化ガスとして、液化石油ガス(以下、LPGと記載する場合がある)を用い、その液化石油ガスを貯留するLPGタンク4からLPGポンプ5により液化石油ガスが送出されるLPG送出路6がLNG送出路3に接続されている。
LNG送出路3には、そのLNG送出路3を通流する液化天然ガスの流量を調整するLNG用流量調整弁14が設けられ、LPG送出路6には、そのLPG送出路6を通流する液化石油ガスの流量を調整するLPG用流量調整弁15が設けられている。
LNGポンプ2及びLPGポンプ5は、夫々に応じて設定された一定の回転速度で作動され、LNG用流量調整弁14及びLPG用流量調整弁15は、夫々の開度が各別に調整されることにより、LNG送出路3を流動する液化天然ガスに対する液化石油ガスの混合比率が調整されることになる。つまり、これらLNG用流量調整弁14及びLPG用流量調整弁15により、混合比率調整手段Mが構成される。
In this embodiment, liquefied petroleum gas (hereinafter sometimes referred to as LPG) is used as a calorific value adjusting liquefied gas for adjusting the calorific value of liquefied natural gas, and LPG for storing the liquefied petroleum gas is used. An LPG delivery path 6 through which liquefied petroleum gas is delivered from the tank 4 by the LPG pump 5 is connected to the LNG delivery path 3.
The LNG delivery path 3 is provided with an LNG flow rate adjusting valve 14 for adjusting the flow rate of the liquefied natural gas flowing through the LNG delivery path 3, and the LPG delivery path 6 flows through the LPG delivery path 6. An LPG flow rate adjusting valve 15 for adjusting the flow rate of the liquefied petroleum gas is provided.
The LNG pump 2 and the LPG pump 5 are operated at a constant rotational speed set according to each, and the opening degree of each of the LNG flow rate adjustment valve 14 and the LPG flow rate adjustment valve 15 is adjusted individually. Thus, the mixing ratio of the liquefied petroleum gas to the liquefied natural gas flowing through the LNG delivery path 3 is adjusted. That is, the LNG flow rate adjusting valve 14 and the LPG flow rate adjusting valve 15 constitute a mixing ratio adjusting means M.

この熱量測定システムSは、LNG送出路3におけるLPG送出路6の接続箇所よりも下流側を流動する液化天然ガス、即ち、混合比率調整手段Mにより液化石油ガスの混合比率が調整されたガス発熱量調整後の液化天然ガスのガス発熱量を測定するように設けられる。
以下、熱量測定システムSについて説明を加える。
図1に示すように、熱量測定システムSは、測定対象の液化天然ガスの温度を測定する温度測定手段としての温度センサ7、測定対象の液化天然ガスの圧力を測定する圧力測定手段としての圧力センサ8、測定対象の液化天然ガスの液密度をコリオリ力を用いて測定する密度測定手段としての密度測定装置E、測定対象の液化天然ガス中の窒素含有率を測定するガスクロマトグラフィ9、及び、この熱量測定システムSの運転を制御する制御部10等を備えて構成されている。
This calorific value measurement system S is a liquefied natural gas that flows downstream from the connection point of the LPG delivery path 6 in the LNG delivery path 3, that is, gas heat generation in which the mixing ratio of the liquefied petroleum gas is adjusted by the mixing ratio adjusting means M. It is provided to measure the gas calorific value of the liquefied natural gas after the amount adjustment.
Hereinafter, the heat quantity measurement system S will be described.
As shown in FIG. 1, the calorie measuring system S includes a temperature sensor 7 as a temperature measuring unit that measures the temperature of the liquefied natural gas to be measured, and a pressure as a pressure measuring unit that measures the pressure of the liquefied natural gas to be measured. Sensor 8, density measuring device E as a density measuring means for measuring the liquid density of the liquefied natural gas to be measured using Coriolis force, gas chromatography 9 for measuring the nitrogen content in the liquefied natural gas to be measured, and A control unit 10 for controlling the operation of the calorific value measurement system S is provided.

制御部10は、マイクロコンピュータを備えて構成され、HDDにより構成される記憶部11が内蔵されると共に、各種処理を実行するプログラムがインストールされている。
記憶部11には、温度、圧力が夫々基準温度、基準圧力である基準状態の液化天然ガスにおける液密度とガス発熱量との関係が基準密度対発熱量関係情報として記憶され、この記憶部11が発熱量演算情報記憶手段として機能する。
又、制御部10にインストールされるプログラムには、温度センサ7、圧力センサ8及び密度測定装置E夫々の測定情報、並びに、記憶部11に記憶されている基準密度対発熱量関係情報に基づいて、測定対象の液化天然ガスのガス発熱量を求める発熱量演算手段12が含まれる。
The control unit 10 includes a microcomputer, and includes a storage unit 11 including an HDD, and a program for executing various processes is installed.
The storage unit 11 stores the relationship between the liquid density and the gas heating value in the liquefied natural gas in the reference state in which the temperature and the pressure are the reference temperature and the reference pressure, respectively. Functions as a calorific value calculation information storage means.
Further, the program installed in the control unit 10 is based on the measurement information of the temperature sensor 7, the pressure sensor 8, and the density measuring device E, and the reference density vs. calorific value relationship information stored in the storage unit 11. The calorific value calculation means 12 for determining the gas calorific value of the liquefied natural gas to be measured is included.

密度測定装置Eは、密度測定対象の流体を流動させて密度導出用の情報を得る測定部20を備えて構成されている。
この測定部20は、図2及び図3に示すように、密度測定対象の流体が流動する管路(この実施形態では、LNG送出路3)の途中に介装されて、密度測定対象の流体を流入させて流動させた後、再び、管路に戻す概略U字状のフローチューブ21、そのフローチューブ21を振動させる加振器22、そのフローチューブ21の固有振動数に関連する情報である固有振動数関連情報として固有振動周期(以下、固有周期と記載する場合がある)を検出する振動数関連情報検出手段としての検出器23等を備えて構成されている。
The density measuring apparatus E includes a measuring unit 20 that obtains information for deriving density by flowing a fluid to be measured for density.
As shown in FIGS. 2 and 3, the measuring unit 20 is interposed in the middle of a conduit (in this embodiment, the LNG delivery path 3) through which the density measurement target fluid flows, and the density measurement target fluid. This is information related to the natural frequency of the flow tube 21, the vibrator 22 that vibrates the flow tube 21, and the U-shaped flow tube 21 that is returned to the pipe line again. It comprises a detector 23 as a frequency related information detecting means for detecting a natural vibration period (hereinafter may be referred to as a natural period) as the natural frequency related information.

フローチューブ21は、互いに平行に配設された一対のフローチューブ21,21にて構成され、これら一対のフローチューブ21,21夫々の一端がマニフォールド24に連通接続されると共に、他端も別のマニフォールド24に連通接続され、又、一対のフローチューブ21,21夫々の一端側の部分、他端側の部分が夫々連結板25にて連結されている。
そして、一対のフローチューブ21,21が、一対のマニフォールド24,24を介して、LNG送出路3の途中に介装されている。
The flow tube 21 is composed of a pair of flow tubes 21 and 21 arranged in parallel to each other. One end of each of the pair of flow tubes 21 and 21 is connected to the manifold 24 and the other end is also different. The manifold 24 is connected in communication, and the pair of flow tubes 21 and 21 are connected to each other at one end and the other end by a connecting plate 25.
A pair of flow tubes 21 and 21 are interposed in the middle of the LNG delivery path 3 via the pair of manifolds 24 and 24.

一対の検出器23が、一対のフローチューブ21,21の両端側に振り分けて配置され、加振器22は、一対のフローチューブ21,21夫々の軸心方向の略中央に相当する箇所に配置されている。
図3に示すように、各検出器23は、一方のフローチューブ21に固定されたコイル23cと、他方のフローチューブ21に固定された永久磁石23mとから構成されている。
図2に示すように、加振器22は、一方のフローチューブ21に固定された電磁駆動用コイル22cと、他方のフローチューブ21に固定された永久磁石22mとから構成されている。
そして、制御部10は、一対のフローチューブ21,21を固有振動数で振動させるべく、電磁駆動用コイル22cに交流電流を流すように構成されている。
A pair of detectors 23 are arranged separately on both ends of the pair of flow tubes 21, 21, and the vibrator 22 is arranged at a position corresponding to the approximate center in the axial direction of each of the pair of flow tubes 21, 21. Has been.
As shown in FIG. 3, each detector 23 includes a coil 23 c fixed to one flow tube 21 and a permanent magnet 23 m fixed to the other flow tube 21.
As shown in FIG. 2, the vibrator 22 includes an electromagnetic drive coil 22 c fixed to one flow tube 21 and a permanent magnet 22 m fixed to the other flow tube 21.
And the control part 10 is comprised so that an alternating current may be sent through the coil 22c for electromagnetic drive in order to vibrate a pair of flow tubes 21 and 21 with a natural frequency.

図1に示すように、ガスクロマトグラフィ9は、LNG送出路3から測定用の液化天然ガスをサンプリングするサンプリング部9sを備えており、そのサンプリング部9sにてサンプリングされた液化天然ガス中の窒素含有率(mol%)を測定する。   As shown in FIG. 1, the gas chromatography 9 includes a sampling unit 9s that samples the liquefied natural gas for measurement from the LNG delivery path 3, and contains nitrogen in the liquefied natural gas sampled by the sampling unit 9s. The rate (mol%) is measured.

制御部10にインストールされるプログラムには、検出部20の検出器23の検出情報に基づいて測定対象の液化天然ガスの液密度を演算する密度演算手段13も含まれている。又、制御部10の記憶部11には、密度演算手段13により液密度を演算するための情報が記憶されており、この制御部10の記憶部11が、密度演算情報記憶手段としても機能する。   The program installed in the control unit 10 also includes density calculation means 13 that calculates the liquid density of the liquefied natural gas to be measured based on the detection information of the detector 23 of the detection unit 20. The storage unit 11 of the control unit 10 stores information for calculating the liquid density by the density calculation unit 13, and the storage unit 11 of the control unit 10 also functions as a density calculation information storage unit. .

制御部10記憶部11には、液密度Dwが既知で所定の基準温度Twの第1基準流体としての水をフローチューブ21に満たしたときに検出器23にて検出された固有周期Fw(固有振動数関連情報)、液密度Daが既知で所定の基準温度Taの第2基準流体としての空気をフローチューブ21に満たしたときに検出器23にて検出された固有周期Fa(固有振動数関連情報)、水の液密度Dw及び基準温度Tw、空気の液密度Da及び基準温度Ta、並びに、係数αが記憶されている。 The control unit 10 storage unit 11, the liquid density D w is the natural period F detected by the detector 23 when filled with water as a first reference fluid given at a known reference temperature T w to the flow tube 21 w (natural frequency related information), the liquid density D a specific period F detected by the detector 23 when filled with air as the second reference fluid having a predetermined reference temperature T a known to the flow tube 21 a (natural frequency related information), liquid density D w of water and reference temperature T w , liquid density D a of air, reference temperature T a , and coefficient α are stored.

本発明では、密度演算手段13が、制御部10の記憶部11の記憶情報、温度センサ7の測定情報、及び、測定対象の液化天然ガスをフローチューブ21に流動させたときの検出器23の検出情報に基づいて、水の液密度Dw、基準温度Tw及び固有周期Fw、空気の液密度Da、基準温度Ta及び固有周期Fa、測定対象の液化天然ガスの温度Tx及び固有周期Fx、並びに、係数αから、下記の液密度導出関数により、測定対象の液化天然ガスの液密度Dxを求めるように構成され、係数αが、測定対象の液化天然ガスの温度Txに応じた数値とされる。 In the present invention, the density calculation means 13 is stored in the storage unit 11 of the control unit 10, the measurement information of the temperature sensor 7, and the detector 23 when the liquefied natural gas to be measured flows through the flow tube 21. Based on the detection information, the liquid density D w of water, the reference temperature T w and the natural period F w , the liquid density D a of air, the reference temperature Ta and the natural period F a , and the temperature T x of the liquefied natural gas to be measured And the natural period F x and the coefficient α, the liquid density D x of the liquefied natural gas to be measured is obtained by the following liquid density derivation function, and the coefficient α is the temperature of the liquefied natural gas to be measured. is a numerical value corresponding to T x.

x=f〔Dw,Da,Fx 2×(1−α×Tx),Fa 2×(1−α×Ta),Fw 2×(1−α×Tw)〕 D x = f [D w , D a , F x 2 × (1−α × T x ), F a 2 × (1−α × T a ), F w 2 × (1−α × T w )]

制御部10の発熱量演算手段12は、その記憶部11に記憶されている基準密度対発熱量関係情報、密度演算手段13が演算した測定対象の液化天然ガスの液密度Dx、温度センサ7にて検出された測定対象の液化天然ガスの温度Tx、及び、圧力センサ8にて検出された測定対象の液化天然ガスの圧力Pxに基づいて、測定対象の液化天然ガスのガス発熱量を演算するように構成されている。
そして、制御部10は、発熱量演算手段12にて演算されたガス発熱量が所定の設定ガス発熱量範囲に入るように、LNG流量調整弁14及びLPG流量調整弁15夫々の作動を制御して、LNG送出路3を流動する液化天然ガスに対する液化石油ガスの混合比率を調整するように構成されている。
The calorific value calculation means 12 of the control unit 10 includes reference density / calorific value relationship information stored in the storage unit 11, the liquid density D x of the liquefied natural gas to be measured calculated by the density calculation means 13, and the temperature sensor 7. Based on the temperature T x of the liquefied natural gas detected by the pressure sensor 8 and the pressure P x of the liquefied natural gas measured by the pressure sensor 8, the gas calorific value of the liquefied natural gas measured It is comprised so that may be calculated.
Then, the control unit 10 controls the operation of each of the LNG flow rate adjustment valve 14 and the LPG flow rate adjustment valve 15 so that the gas heat generation amount calculated by the heat generation amount calculation means 12 falls within a predetermined set gas heat generation amount range. Thus, the mixing ratio of the liquefied petroleum gas to the liquefied natural gas flowing through the LNG delivery path 3 is adjusted.

次に、制御部10の発熱量演算手段12及び密度演算手段13について、説明を加える。
上記の液密度導出関数の具体例として、下記の式1が設定され、並びに、測定対象の液化天然ガスの温度Txに応じた係数αを求めるための式として、下記の式2が設定され、密度演算手段13は、温度センサ7にて検出された測定対象の液化天然ガスの温度Txに基づいて、下記の式2により、係数αを求めて、その求めた係数αにより、下記の式1により、測定対象の液化天然ガスの液密度Dxを演算するように構成されている。
Next, the heat generation amount calculation means 12 and the density calculation means 13 of the control unit 10 will be described.
As a specific example of the liquid density derivation function, the following expression 1 is set, and the following expression 2 is set as an expression for obtaining the coefficient α corresponding to the temperature T x of the liquefied natural gas to be measured. The density calculating means 13 obtains a coefficient α according to the following equation 2 based on the temperature T x of the liquefied natural gas to be measured detected by the temperature sensor 7, and uses the obtained coefficient α to According to Equation 1, the liquid density D x of the liquefied natural gas to be measured is calculated.

x=(Dw−Da)×〔[Fx 2(1−α×Tx)−Fa 2(1−α×Ta)]÷[Fw 2(1−α×Tw)−Fa 2(1−α×Ta)]〕+Da……………(式1)
但し、
x:測定対象の液化天然ガスの液密度(g/ml)
w:水の密度(g/ml)、記憶部11の記憶情報
a:空気の密度(g/ml)、記憶部11の記憶情報
x:測定対象の液化天然ガスの固有周期(μs)、検出器23にて検出された値
w:水の固有周期(μs)、記憶部11の記憶情報
a:空気の固有周期(μs)、記憶部11の記憶情報
x:測定対象の液化天然ガスの温度(℃)、温度センサ7にて検出された値
w:水の温度(℃)、記憶部11の記憶情報
a:空気の温度(℃)、記憶部11の記憶情報
D x = (D w −D a ) × [[F x 2 (1−α × T x ) −F a 2 (1−α × T a )] ÷ [F w 2 (1−α × T w ) −F a 2 (1−α × T a )]] + D a (Equation 1)
However,
D x : Liquid density of the liquefied natural gas to be measured (g / ml)
D w : Density of water (g / ml), storage information in the storage unit 11 D a : Density of air (g / ml), storage information in the storage unit 11 F x : Natural period of the liquefied natural gas to be measured (μs) ), Value detected by the detector 23 F w : natural period of water (μs), storage information in the storage unit 11 F a : natural period of air (μs), storage information in the storage unit 11 T x : measurement object The temperature of the liquefied natural gas (° C.), the value detected by the temperature sensor 7 T w : the temperature of the water (° C.), the stored information in the storage unit Ta : the temperature of the air (° C.), the storage in the storage unit 11 information

α=a1×Tx 3+b1×Tx 2+c1×Tx+d1……………(式2)
但し、a1,b1,c1,d1は、実験により求められた定数である。
ちなみに、この実施形態では、
1=0
1=0
1=0.0042
1=4.24
に設定される。
α = a 1 × T x 3 + b 1 × T x 2 + c 1 × T x + d 1 (Equation 2)
Here, a 1 , b 1 , c 1 , and d 1 are constants obtained by experiments.
By the way, in this embodiment,
a 1 = 0
b 1 = 0
c 1 = 0.0042
d 1 = 4.24
Set to

上記の式1は、コリオリ力を用いて流体の密度を計測する密度測定装置において、測定対象の流体の密度を演算するための演算式として用いられている公知の演算式である。
上記の式2は、実験により取得したデータに基づいて設定した近似式である。
即ち、コリオリ力を利用したものとは別の密度測定手段を用いて、密度及び温度夫々が種々に異なる複数種の供試用液化天然ガスの密度を測定する。この別の密度測定手段は、液化天然ガスの密度を液化天然ガスの温度に影響されること無く精度良く計測可能なものとする。そして、同じ供試用液化天然ガスを本発明に係る密度測定装置Eに供試して、上記の式1により液密度Dxを演算するに当たって、その演算値と別の密度測定手段の測定値との差をなくす又は極力小さくするように、上記の式の如く、近似式を設定する。
The above expression 1 is a known arithmetic expression that is used as an arithmetic expression for calculating the density of the fluid to be measured in the density measuring device that measures the density of the fluid using the Coriolis force.
Expression 2 above is an approximate expression set based on data obtained through experiments.
That is, the density of a plurality of types of liquefied natural gas for test having different densities and temperatures is measured using a density measuring means different from that utilizing the Coriolis force. This another density measuring means can measure the density of the liquefied natural gas with high accuracy without being affected by the temperature of the liquefied natural gas. Then, when the same test liquefied natural gas was tested in the density measuring apparatus E according to the present invention and the liquid density D x was calculated according to the above equation 1, the calculated value and the measured value of another density measuring means An approximate expression is set like the above expression so as to eliminate the difference or minimize the difference.

上述のように、係数αを測定対象の液化天然ガスの温度Txに応じた数値に設定して、上記の式1により測定対象の液化天然ガスの液密度Dxを求めることにより、図4において黒塗り状態で示すように、液化天然ガスの温度Txが−150〜−135℃の範囲で変動しても、その温度変動範囲の全域において、密度の測定誤差を小さくすることができる。例えば、液化天然ガスの温度Txが−150〜−145℃の範囲では、密度の測定誤差を、係数αを一定にして測定した場合(図4において白抜き状態で示す)と同等に小さくすることができ、液化天然ガスの温度Txが−145℃よりも高い範囲では、密度の測定誤差を、係数αを一定にして測定した場合(図4において白抜き状態で示す)に比べて大幅に小さくすることができる。
尚、図示を省略するが、本発明によれば、液化天然ガスの温度Txが−160〜−120℃の範囲で変動しても、その温度変動範囲の全域において、図4において−150〜−135℃の液化天然ガスの温度範囲で示すのと同等に、密度の測定誤差を小さくすることができる。
As described above, the coefficient α is set to a numerical value corresponding to the temperature T x of the liquefied natural gas to be measured, and the liquid density D x of the liquefied natural gas to be measured is calculated according to the above equation 1, thereby obtaining FIG. As shown in black in FIG. 2, even if the temperature T x of the liquefied natural gas varies in the range of −150 to −135 ° C., the density measurement error can be reduced over the entire temperature variation range. For example, when the temperature T x of the liquefied natural gas is in the range of −150 to −145 ° C., the density measurement error is reduced to the same level as when the coefficient α is measured to be constant (shown in white in FIG. 4). In the range where the temperature T x of the liquefied natural gas is higher than −145 ° C., the density measurement error is significantly larger than that measured when the coefficient α is constant (shown in a white state in FIG. 4). Can be made smaller.
Although illustration is omitted, according to the present invention, even if the temperature T x of the liquefied natural gas fluctuates in the range of −160 to −120 ° C., in the entire temperature fluctuation range, −150 to As shown in the temperature range of liquefied natural gas of −135 ° C., the density measurement error can be reduced.

制御部10の発熱量演算手段12は、以下の4段階のステップにより、測定対象の液化天然ガスのガス発熱量を演算する。
〔ステップ1〕:
発熱量演算手段12は、密度演算手段13により演算された測定対象の液化天然ガスの液密度Dxを、下記の式3により、圧力が所定の基準圧力P0であり、温度が所定の基準温度T0である基準状態での液密度D0に換算する。
The calorific value calculation means 12 of the controller 10 calculates the gas calorific value of the liquefied natural gas to be measured by the following four steps.
[Step 1]:
Heat generation amount computing means 12, a liquid density D x liquefied natural gas to be measured, which is calculated by the density calculating means 13, by Equation 3 below, the pressure is a predetermined reference pressure P 0, the reference temperature is predetermined Converted to the liquid density D 0 in the reference state at the temperature T 0 .

0=Dx−a2×(T0−Tx)−b2×(P0−Px)……………(式3)
但し、
0:基準状態での液密度(g/ml)
0:基準温度(℃)
x:温度センサ7にて検出された測定対象の液化天然ガスの温度(℃)
0:基準圧力(MPa)
x:圧力センサ8にて検出された測定対象の液化天然ガスの圧力(MPa)
2,b2:実験により求められた定数。
ちなみに、この実施形態では、基準圧力P0=4.0MPaとし、基準温度T0=−160℃とすると、
2=−1.47
2=−0.87
に設定される。
D 0 = D x −a 2 × (T 0 −T x ) −b 2 × (P 0 −P x ) (Equation 3)
However,
D 0 : Liquid density in the standard state (g / ml)
T 0 : Reference temperature (° C)
T x : Temperature of the liquefied natural gas to be measured detected by the temperature sensor 7 (° C.)
P 0 : Reference pressure (MPa)
P x : Pressure of the liquefied natural gas to be measured detected by the pressure sensor 8 (MPa)
a 2 , b 2 : Constants obtained by experiments.
Incidentally, in this embodiment, when the reference pressure P 0 = 4.0 MPa and the reference temperature T 0 = −160 ° C.,
a 2 = −1.47
b 2 = −0.87
Set to

上記の式3は、実験により取得したデータに基づいて設定した近似式である。
即ち、実験により、密度、温度及び圧力夫々が種々に異なる複数種の液化天然ガスにより、液化天然ガスの密度における温度及び圧力夫々に対する依存性を調べて、その依存性を近似式にしたものが上記の式3である。
The above Equation 3 is an approximate equation set based on data acquired through experiments.
That is, by experiment, the dependence of the density of the liquefied natural gas on the temperature and the pressure is investigated using a plurality of types of liquefied natural gas having different densities, temperatures, and pressures, and the dependence is approximated. Equation 3 above.

〔ステップ2〕:
発熱量演算手段12は、上記の式3により求めた基準状態での液密度D0を、下記の式4により、標準状態(0℃、0.1013MPa)でのガス比重DGに換算する。
[Step 2]:
Heat generation amount computing means 12, a liquid density D 0 of the reference state determined by the equation 3 above, by Equation 4 below, the standard state (0 ° C., 0.1013 MPa) in terms of the gas specific gravity D G at.

G=a3×D0 3+b3×D0 2+c3×D0+d3……………(式4)
但し、
G:標準状態(0℃、0.1013MPa)でのガス比重
3,b3,c3,d3:実験により求められた定数
ちなみに、この実施形態では、基準圧力P0=4.0MPaとし、基準温度T0=−160℃とすると、
3=0
3=0.0018
3=0.26
3=110
に設定される。
D G = a 3 × D 0 3 + b 3 × D 0 2 + c 3 × D 0 + d 3 (equation 4)
However,
D G : Gas specific gravity in a standard state (0 ° C., 0.1013 MPa) a 3 , b 3 , c 3 , d 3 : Constants obtained by experiment Incidentally, in this embodiment, the reference pressure P 0 = 4.0 MPa And the reference temperature T 0 = −160 ° C.
a 3 = 0
b 3 = 0.0018
c 3 = 0.26
d 3 = 110
Set to

上記の式4は、実験により取得したデータに基づいて設定した近似式である。
即ち、実験により、基準状態での液密度D0が種々に異なる複数種の液化天然ガスを用いて、基準状態での液密度D0と標準状態でのガス比重DGとの関係を調べて、その関係を近似式にしたものが上記の式4である。
Expression 4 above is an approximate expression set based on data obtained through experiments.
That is, by experiments, the liquid density D 0 of the reference state by using a plurality of liquefied natural gas that is different for various, examine the relationship between the gas density D G of the liquid density D 0 and the standard state in the reference state The above equation 4 is an approximation of the relationship.

〔ステップ3〕:
発熱量演算手段12は、上記の式4により求めた標準状態でのガス比重DGを、下記の式5により、標準状態でのガス発熱量Q0に換算する。
[Step 3]:
Heat generation amount computing means 12, the gas specific gravity D G under standard conditions as determined by equation 4 above, by Equation 5 below, is converted into the gas calorific value Q 0 of the normal state.

0=a4×DG 3+b4×DG 2+c4×DG+d4……………(式5)
但し、
0:標準状態でのガス発熱量(MJ/m3(normal))
4,b4,c4,d4:実験により求められた定数
ちなみに、この実施形態では、
4=0
4=0
4=0.064
4=4.64
に設定される。
Q 0 = a 4 × D G 3 + b 4 × D G 2 + c 4 × D G + d 4 (Equation 5)
However,
Q 0 : Gas calorific value in the standard state (MJ / m 3 (normal))
a 4 , b 4 , c 4 , d 4 : constants obtained by experiments Incidentally, in this embodiment,
a 4 = 0
b 4 = 0
c 4 = 0.064
d 4 = 4.64
Set to

上記の式5は、実験により取得したデータに基づいて設定した近似式である。
即ち、実験により、標準状態でのガス比重DGが種々に異なる複数種の液化天然ガス(液化天然ガスに、当該液化天然ガスのガス発熱量を調整するための液化石油ガスが混合された液化混合ガス)を用いて、標準状態でのガス比重DGとガス発熱量との関係を調べて、その関係を近似式にしたものが上記の式4である。
The above equation 5 is an approximate equation set based on data acquired through experiments.
That is, by experiments, the gas specific gravity D G plural kinds of liquefied natural gas that is different for different (liquefied natural gas in the standard state, liquefied petroleum gas for adjusting the gas heating value of the liquefied natural gas is liquefied mixture The relationship between the gas specific gravity DG and the gas calorific value in the standard state is investigated using a mixed gas), and the relationship is approximated by Equation 4 above.

〔ステップ4〕:
発熱量演算手段12は、上記の式5により求めたガス発熱量Q0とガスクロマトグラフィ9にて検出された測定対象の液化天然ガス中の窒素含有率(mol%)に基づいて、下記の式6により、窒素含有率の影響を除去した測定対象の液化天然ガスのガス発熱量Qを演算する。
[Step 4]:
The calorific value calculation means 12 is based on the following formula based on the gas calorific value Q 0 obtained by the above formula 5 and the nitrogen content (mol%) in the liquefied natural gas to be measured detected by the gas chromatography 9. 6 calculates the calorific value Q of the liquefied natural gas to be measured from which the influence of the nitrogen content has been removed.

Q=Q0−e×N……………(式6)
但し、
Q:窒素含有率の影響を除去した測定対象の液化天然ガスのガス発熱量(MJ/m3(normal))
N:ガスクロマトグラフィ9にて検出された窒素含有率(mol%)
e:実験により求められた定数
ちなみに、この実施形態では、
e=0.79
Q = Q 0 −e × N (Equation 6)
However,
Q: Gas calorific value of the liquefied natural gas to be measured without the influence of nitrogen content (MJ / m 3 (normal))
N: Nitrogen content (mol%) detected by gas chromatography 9
e: Constant obtained by experiment By the way, in this embodiment,
e = 0.79

そして、制御部10は、上述のように求めた液化天然ガスの液密度Dx及びガス発熱量Q(窒素含有率の影響を除去したガス発熱量)を、LCDにて構成された表示部16に表示出力する。 Then, the control unit 10 displays the liquid density D x and the gas calorific value Q (gas calorific value excluding the influence of the nitrogen content) of the liquefied natural gas obtained as described above, and the display unit 16 configured by an LCD. Display output.

つまり、この実施形態では、基準状態の液化天然ガスのガス発熱量を求めるに当たって、基準状態が標準状態に設定されて、基準温度、基準圧力は、夫々、標準温度(0℃)、標準圧力(0.1013MPa)に設定されている。
又、上記の式4は、基準状態での液密度D0と標準状態でのガス比重DGとの関係を示し、式5は、標準状態でのガス比重DGと基準状態(この実施形態では、標準状態)でのガス発熱量Q0との関係を示すものであり、式4と式6とにより、液化天然ガスの基準状態での液密度D0と基準状態(この実施形態では、標準状態)でのガス発熱量Q0との関係が示されることになり、式4と式5とが、基準密度対発熱量関係情報に相当する。
That is, in this embodiment, in obtaining the gas calorific value of the liquefied natural gas in the reference state, the reference state is set to the standard state, and the reference temperature and the reference pressure are the standard temperature (0 ° C.) and the standard pressure ( 0.1013 MPa).
Moreover, Equation 4 above, shows the relationship between the gas density D G of the liquid density D 0 and the standard state in the reference state, Equation 5, the gas specific gravity D G and the reference state (this embodiment in the normal state Shows the relationship between the gas calorific value Q 0 in the standard state, and the liquid density D 0 in the reference state of the liquefied natural gas and the reference state (in this embodiment, The relationship with the gas calorific value Q 0 in the standard state is shown, and the equations 4 and 5 correspond to the reference density / calorific value relationship information.

つまり、この実施形態では、制御部10の記憶部11に、基準密度対発熱量関係情報として、基準状態での液密度D0と標準状態でのガス比重DGとの関係を示す情報(式4)と、その標準状態でのガス比重DGと基準状態(この実施形態では、標準状態)でのガス発熱量Q0との関係を示す情報(式5)が記憶されている。
そして、制御部10の発熱量演算手段12は、記憶部11に記憶されている基準密度対発熱量関係情報に基づいて、密度測定装置Eにて測定された測定対象の液化天然ガスの液密度Dxを、圧力が所定の基準圧力P0であり、温度が所定の基準温度T0である基準状態での液密度D0に換算し、更に、その基準状態での液密度D0を標準状態でのガス比重DGに換算して、その標準状態でのガス比重DGから測定対象の液化天然ガスの基準状態(この実施形態では、標準状態)でのガス発熱量Q0を求めるように構成されていることになる。
That is, in this embodiment, the storage unit 11 of the controller 10, as the reference density to the heating value related information, the liquid density D 0 and gas specific gravity D information indicating the relationship between G (wherein in the standard state in the reference state and 4), the gas specific gravity D G and the reference state (this embodiment in its normal state, information indicating the relationship between the gas heating value Q 0 of the normal state) (equation 5) is stored.
The calorific value calculation means 12 of the control unit 10 then measures the liquid density of the liquefied natural gas to be measured measured by the density measuring device E based on the reference density / calorific value relationship information stored in the storage unit 11. the D x, the pressure is a predetermined reference pressure P 0, the temperature is converted to liquid density D 0 of the reference state is a predetermined reference temperature T 0, further, standard liquid density D 0 in the reference state in terms of the gas specific gravity D G in the state (in this embodiment, the standard state) reference state of the liquefied natural gas to be measured from the gas density D G at the standard state to seek gas calorific value Q 0 in It will be configured.

〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の実施形態では、密度測定装置Eにて測定された測定対象の液化天然ガスの液密度Dxを、圧力が所定の基準圧力P0、温度が所定の基準温度T0である基準状態での液密度D0に換算し、更に、その基準状態での液密度D0を標準状態でのガス比重DGに換算して、その標準状態でのガス比重DGから測定対象の液化天然ガスの基準状態(この実施形態では、標準状態)でのガス発熱量Q0を求める場合について例示した。
これに代えて、密度測定装置Eにて測定された測定対象の液化天然ガスの液密度Dxを、圧力が所定の基準圧力P0、温度が所定の基準温度T0である基準状態での液密度D0に換算して、その基準状態での液密度D0から、直接、測定対象の液化天然ガスの基準状態でのガス発熱量Q0を求めるように構成しても良い。
この場合は、基準状態での液密度D0が種々に異なる複数種の液化天然ガスを用いて、基準状態での液密度D0と基準状態でのガス発熱量Q0との関係を調べて、その関係の近似式を求めて、その近似式を用いて、基準状態での液密度D0から基準状態でのガス発熱量Q0求めるように構成する。
[Another embodiment]
Next, another embodiment will be described.
(A) In the above embodiment, the liquid density D x of the liquefied natural gas to be measured, which is measured by the density measuring device E, has a predetermined reference pressure P 0 as a pressure and a predetermined reference temperature T 0 as a temperature. in terms of the liquid density D 0 of the reference state, further, the liquid density D 0 in the reference state in terms of the gas specific gravity D G under standard conditions, from the gas density D G to be measured in its standard state The case where the calorific value Q 0 of the liquefied natural gas in the standard state (in this embodiment, the standard state) is obtained is illustrated.
Alternatively, the liquefied natural gas to be measured is measured at a density measuring device E liquid density D x, the pressure is a predetermined reference pressure P 0, the temperature is in the reference state is a predetermined reference temperature T 0 in terms of the liquid density D 0, the liquid density D 0 in the reference state, directly it may be configured to determine the gas calorific value Q 0 of the reference state of the liquefied natural gas to be measured.
In this case, the liquid density D 0 of the reference state by using a plurality of liquefied natural gas that is different for various, examine the relationship between the liquid density D 0 and the gas heating value Q 0 of the reference state in the reference state Then, an approximate expression of the relationship is obtained, and the heat generation amount Q 0 in the reference state is obtained from the liquid density D 0 in the reference state using the approximate expression.

(ロ) 上記の実施形態では、係数αと測定対象の液化天然ガスの温度Txとの関係を、近似式にて制御部10の記憶部11に記憶させたが、マップデータにて制御部10の記憶部11に記憶させても良い。 (B) In the above embodiment, the relationship between the coefficient α and the temperature T x of the liquefied natural gas to be measured is stored in the storage unit 11 of the control unit 10 using an approximate expression. You may memorize | store in the memory | storage part 11 of ten.

(ハ) 上記実施形態では、本発明による測定対象の液化天然ガスの液密度の導出を密度演算手段13により自動的に実行させるように構成したが、手動操作で行うように構成しても良い。 (C) In the above-described embodiment, the liquid density of the liquefied natural gas to be measured according to the present invention is automatically executed by the density calculating means 13, but may be configured to be manually operated. .

(ニ) 上記の実施形態では、制御部10に密度演算手段13を設け、又、その密度演算手段13より液密度を演算するための情報は、制御部10の記憶部11に記憶させたが、制御部10とは別に、密度測定装置E用として、密度測定制御部を設けても良い。そして、その密度測定制御部に測定部20の作動を制御させると共に、その密度測定制御部に密度演算手段13を設け、更に、その密度測定制御部の記憶部に、密度演算手段13により液密度を演算するための情報を記憶させて、その密度測定制御部の記憶部を密度演算情報記憶手段として機能させるように構成しても良い。 (D) In the above embodiment, the density calculation means 13 is provided in the control unit 10, and information for calculating the liquid density from the density calculation means 13 is stored in the storage unit 11 of the control unit 10. In addition to the control unit 10, a density measurement control unit may be provided for the density measuring device E. Then, the density measurement control unit controls the operation of the measurement unit 20, the density measurement control unit is provided with the density calculation unit 13, and the density calculation unit 13 stores the liquid density in the storage unit of the density measurement control unit. It is also possible to store the information for calculating the value and to make the storage unit of the density measurement control unit function as a density calculation information storage unit.

(ホ) 上記の実施形態では、固有周期を固有振動数関連情報としたが、固有振動数を固有振動数関連情報としても良い。 (E) In the above embodiment, the natural frequency is the natural frequency related information, but the natural frequency may be the natural frequency related information.

(ヘ) 上記の実施形態では、熱量測定システムSを、LNG送出路3におけるLPG送出路6の接続箇所よりも下流側を流動する液化天然ガスのガス発熱量を測定するように設けたが、熱量測定システムSは、LNG送出路3におけるLPG送出路6の接続箇所よりも上流側を流動する液化天然ガスのガス発熱量を測定するように設けても良い。 (F) In the above embodiment, the calorific value measurement system S is provided so as to measure the gas calorific value of the liquefied natural gas flowing downstream from the connection point of the LPG delivery path 6 in the LNG delivery path 3. The calorific value measurement system S may be provided so as to measure the gas calorific value of the liquefied natural gas flowing upstream from the connection location of the LPG delivery path 6 in the LNG delivery path 3.

(ト) 密度測定装置Eの具体構成は、上記の実施形態において例示した構成に限定されるものではない。例えば、上記の実施形態では、フローチューブ21を一対設けたが1個だけ設けても良い。又、フローチューブ21の形状は、上記の実施形態において例示したU字状に限定されるものではなく、例えば、円弧状でも良い。 (G) The specific configuration of the density measuring apparatus E is not limited to the configuration exemplified in the above embodiment. For example, in the above embodiment, a pair of flow tubes 21 are provided, but only one flow tube 21 may be provided. Moreover, the shape of the flow tube 21 is not limited to the U shape illustrated in said embodiment, For example, circular arc shape may be sufficient.

以上説明したように、液化天然ガスのガス発熱量の測定精度を向上し得る液化天然ガスの熱量測定方法及び液化天然ガスの熱量測定システムを提供することができる。   As described above, it is possible to provide a liquefied natural gas calorie measurement method and a liquefied natural gas calorie measurement system capable of improving the measurement accuracy of the gas calorific value of liquefied natural gas.

3 LNG送出路(液化天然ガス流路)
6 LPG送出路(発熱量調整用液化ガス流路)
7 温度センサ(温度測定手段)
8 圧力センサ(圧力測定手段)
11 記憶部(発熱量演算情報記憶手段、密度演算情報記憶手段)
12 発熱量演算手段
13 密度演算手段
21 フローチューブ
23 検出器(振動数関連情報検出手段)
E 密度測定装置(密度測定手段)
M 混合比率調整手段
S 液化天然ガスの熱量測定システム
3 LNG delivery channel (liquefied natural gas channel)
6 LPG delivery path (liquefied gas flow path for calorific value adjustment)
7 Temperature sensor (temperature measurement means)
8 Pressure sensor (pressure measuring means)
11 Storage section (heat generation amount calculation information storage means, density calculation information storage means)
12 Calorific value calculation means 13 Density calculation means 21 Flow tube 23 Detector (frequency related information detection means)
E Density measuring device (Density measuring means)
M Mixing ratio adjusting means S Calorie measurement system of liquefied natural gas

Claims (4)

温度、圧力が夫々基準温度、基準圧力である基準状態の液化天然ガスにおける液密度とガス発熱量との関係を予め基準密度対発熱量関係情報として求めておき、測定対象の液化天然ガスの温度、圧力を測定すると共に、測定対象の液化天然ガスの液密度をコリオリ力を用いた密度測定手段により測定して、当該測定した液密度、温度、圧力及び前記基準密度対発熱量関係情報に基づいて、測定対象の液化天然ガスのガス発熱量を求める液化天然ガスの熱量測定方法であって、
前記密度測定手段による温度が変化することがある測定対象の液化天然ガスの液密度の測定においては、液密度Dwが既知で所定の基準温度Twの第1基準流体を前記密度測定手段のフローチューブに満たしたときの前記フローチューブの固有振動数に関連する情報である固有振動数関連情報Fw、液密度Daが既知で所定の基準温度Taの第2基準流体を前記フローチューブに満たしたときの前記フローチューブの固有振動数に関連する情報である固有振動数関連情報Faを予め測定しておき、測定対象の液化天然ガスの温度Txを測定すると共に、測定対象の液化天然ガスが流動する前記フローチューブの固有振動数に関連する情報である固有振動数関連情報Fxを測定して、前記第1基準流体の液密度Dw、基準温度Tw及び固有振動数関連情報Fw、前記第2基準流体の液密度Da、基準温度Ta及び固有振動数関連情報Fa、測定対象の液化天然ガスの温度Tx及び固有振動数関連情報Fx、並びに、係数αに基づいて、その係数αを測定対象の液化天然ガスの温度Tx基づく下記の係数α導出式にて求める数値として、下記の液密度導出関数により、測定対象の液化天然ガスの液密度Dxを求める液化天然ガスの熱量測定方法。
x=f〔Dw,Da,Fx 2×(1−α×Tx),Fa 2×(1−α×Ta),Fw 2×(1−α×Tw)〕
α=a 1 ×T x 3 +b 1 ×T x 2 +c 1 ×T x +d 1
但し、a 1 、b 1 、c 1 、d 1 :定数
The relationship between the liquid density and the calorific value of the liquefied natural gas in the reference state where the temperature and the pressure are the reference temperature and the reference pressure, respectively, is obtained in advance as reference density / calorific value relationship information, and the temperature of the liquefied natural gas to be measured In addition to measuring the pressure, the liquid density of the liquefied natural gas to be measured is measured by a density measuring means using Coriolis force, and based on the measured liquid density, temperature, pressure, and the reference density / calorific value relationship information A calorific value measurement method for liquefied natural gas to obtain a gas calorific value of the liquefied natural gas to be measured,
In the measurement of the liquid density of the liquefied natural gas to be measured temperature by the density measuring unit may change, the liquid density D w is the density measuring unit a first reference fluid having a predetermined reference temperature T w known A natural frequency related information F w that is information related to the natural frequency of the flow tube when the flow tube is filled, a liquid density Da, and a second reference fluid having a predetermined reference temperature Ta is used as the flow tube. is information related to the natural frequency of the flow tube when filled in advance measures the natural frequency related information F a, as well as measuring the temperature T x of the liquefied natural gas to be measured, the measurement target The natural frequency related information F x , which is information related to the natural frequency of the flow tube through which the liquefied natural gas flows, is measured, and the liquid density D w , the reference temperature T w and the natural frequency of the first reference fluid are measured. Relation Information F w , liquid density D a of the second reference fluid, reference temperature T a and natural frequency related information F a , temperature T x and natural frequency related information F x of the liquefied natural gas to be measured, and coefficient Based on α, the coefficient α is a numerical value obtained by the following coefficient α derivation formula based on the temperature T x of the liquefied natural gas to be measured, and the liquid density of the liquefied natural gas to be measured is calculated by the following liquid density derivation function. calorimetric method liquefied natural gas to obtain the D x.
D x = f [D w , D a , F x 2 × (1−α × T x ), F a 2 × (1−α × T a ), F w 2 × (1−α × T w )]
α = a 1 × T x 3 + b 1 × T x 2 + c 1 × T x + d 1
Where a 1 , b 1 , c 1 , d 1 : constants
測定対象の液化天然ガスの温度を測定する温度測定手段と、
測定対象の液化天然ガスの圧力を測定する圧力測定手段と、
測定対象の液化天然ガスの液密度をコリオリ力を用いて測定する密度測定手段と、
温度、圧力が夫々基準温度、基準圧力である基準状態の液化天然ガスにおける液密度とガス発熱量との関係を基準密度対発熱量関係情報として記憶する発熱量演算情報記憶手段と、
前記温度測定手段、前記圧力測定手段及び前記密度測定手段夫々の測定情報、並びに、前記発熱量演算情報記憶手段に記憶されている前記基準密度対発熱量関係情報に基づいて、測定対象の液化天然ガスのガス発熱量を求める発熱量演算手段とが設けられた液化天然ガスの熱量測定システムであって、
前記密度測定手段に、測定対象の液化天然ガスを流動させるフローチューブと、そのフローチューブの固有振動数に関連する情報である固有振動数関連情報を検出する振動数関連情報検出手段と、その振動数関連情報検出手段の検出情報に基づいて測定対象の天然ガスの液密度を演算する密度演算手段と、その密度演算手段により液密度を演算するための情報を記憶する密度演算情報記憶手段とが備えられ、
前記密度演算情報記憶手段に、液密度Dwが既知で所定の基準温度Twの第1基準流体を前記フローチューブに満たしたときに前記振動数関連情報検出手段にて検出された固有振動数関連情報Fw、液密度Daが既知で所定の基準温度Taの第2基準流体を前記フローチューブに満たしたときに前記振動数関連情報検出手段にて検出された固有振動数関連情報Fa、前記第1基準流体の液密度Dw及び基準温度Tw、前記第2基準流体の液密度Da及び基準温度Ta、並びに、係数αが記憶され、
前記密度演算手段が、前記密度演算情報記憶手段の記憶情報、前記温度測定手段の測定情報、及び、測定対象の液化天然ガスを前記フローチューブに流動させたときの前記振動数関連情報検出手段の検出情報に基づいて、前記第1基準流体の液密度Dw、基準温度Tw及び固有振動数関連情報Fw、前記第2基準流体の液密度Da、基準温度Ta及び固有振動数関連情報Fa、測定対象の液化天然ガスの温度Tx及び固有振動数関連情報Fx、並びに、前記係数αから、下記の液密度導出関数により、測定対象の液化天然ガスの液密度Dxを求めるように構成され、
さらに前記密度演算手段が、前記密度演算情報記憶手段に記憶されている下記の測定対象の液化天然ガスの温度Tx基づく係数α導出式に基づいて、前記係数αを求めるように構成されている液化天然ガスの熱量測定システム。
x=f〔Dw,Da,Fx2×(1−α×Tx),Fa2×(1−α×Ta),Fw2×(1−α×Tw)〕
α=a 1 ×T x 3 +b 1 ×T x 2 +c 1 ×T x +d 1
但し、a 1 、b 1 、c 1 、d 1 :定数
Temperature measuring means for measuring the temperature of the liquefied natural gas to be measured;
Pressure measuring means for measuring the pressure of the liquefied natural gas to be measured;
Density measuring means for measuring the liquid density of the liquefied natural gas to be measured using Coriolis force;
A calorific value calculation information storage means for storing the relationship between the liquid density and the gas calorific value in the liquefied natural gas in the reference state in which the temperature and the pressure are the reference temperature and the reference pressure, respectively, as reference density / calorific value relationship information;
Based on the measurement information of each of the temperature measurement means, the pressure measurement means, and the density measurement means, and the reference density vs. calorific value relationship information stored in the calorific value calculation information storage means, the liquefied natural to be measured is measured. A calorific value measurement system for liquefied natural gas provided with a calorific value calculation means for obtaining a gas calorific value of gas,
The density measuring means includes a flow tube for flowing the liquefied natural gas to be measured, a frequency related information detecting means for detecting natural frequency related information that is information related to the natural frequency of the flow tube, and the vibration thereof. A density calculation means for calculating the liquid density of the natural gas to be measured based on the detection information of the number related information detection means, and a density calculation information storage means for storing information for calculating the liquid density by the density calculation means. Provided,
The density calculation information storage means, the natural frequency of the detected by frequency-related information detecting means when the liquid density D w satisfies the first reference fluid having a predetermined reference temperature T w known to the flow tube Related information F w, liquid density D a is the frequency-related information detecting means natural frequency related information detected by the F when the second reference fluid having a predetermined reference temperature T a known filled in said flow tube a , a liquid density D w and a reference temperature T w of the first reference fluid, a liquid density D a and a reference temperature T a of the second reference fluid, and a coefficient α are stored,
The density calculation means is stored in the density calculation information storage means, the measurement information in the temperature measurement means, and the frequency related information detection means when the liquefied natural gas to be measured flows through the flow tube. Based on the detection information, the liquid density D w of the first reference fluid, the reference temperature T w and the natural frequency related information F w , the liquid density D a of the second reference fluid, the reference temperature Ta and the natural frequency related From the information F a , the temperature T x of the liquefied natural gas to be measured, the natural frequency related information F x , and the coefficient α, the liquid density D x of the liquefied natural gas to be measured is calculated by the following liquid density derivation function. Configured to ask for
Further, the density calculating means is configured to determine the coefficient α based on a coefficient α derivation formula based on the temperature T x of the liquefied natural gas to be measured, which is stored in the density calculation information storing means. Calorie measurement system for liquefied natural gas.
D x = f [D w, D a, Fx 2 × (1-α × T x), Fa 2 × (1-α × T a), Fw 2 × (1-α × T w) ]
α = a 1 × T x 3 + b 1 × T x 2 + c 1 × T x + d 1
Where a 1 , b 1 , c 1 , d 1 : constants
液化天然ガスが送出される液化天然ガス流路に、当該液化天然ガスのガス発熱量を調整するための発熱量調整用液化ガスが送出される発熱量調整用液化ガス流路が接続され、
前記液化天然ガス流路を流動する液化天然ガスに対する前記発熱量調整用液化ガスの混合比率を調整して、当該液化天然ガスのガス発熱量を調整する混合比率調整手段が設けられ、
前記混合比率調整手段により前記発熱量調整用液化ガスの混合比率が調整されたガス発熱量調整後の液化天然ガスが、測定対象の液化天然ガスとされる請求項に記載の液化天然ガスの熱量測定システム。
A calorific value adjustment liquefied gas flow path for sending a calorific value adjustment liquefied gas for adjusting the gas calorific value of the liquefied natural gas is connected to the liquefied natural gas flow path for sending the liquefied natural gas,
Adjusting the mixing ratio of the calorific value adjustment liquefied gas to the liquefied natural gas flowing in the liquefied natural gas flow path, and provided with a mixing ratio adjusting means for adjusting the gas calorific value of the liquefied natural gas;
3. The liquefied natural gas according to claim 2 , wherein the liquefied natural gas after gas calorific value adjustment in which the mixing ratio of the calorific value adjusting liquefied gas is adjusted by the mixing ratio adjusting means is the liquefied natural gas to be measured. Calorimetry system.
前記発熱量調整用液化ガスが液化石油ガスであり、
ガス発熱量調整後の液化天然ガスの温度Txが、−160〜−120℃の範囲で変動し、
当該液化天然ガスの温度Txの変動範囲において、前記定数a1、b1が0に設定されて、前記係数α導出式が、測定対象の液化天然ガスの温度Txを変数とする下記の一次式に設定されている請求項2又は3に記載の液化天然ガスの熱量測定システム。
α=c1×Tx+d1
但し、c1、d1:定数
The calorific value adjustment liquefied gas is liquefied petroleum gas,
The temperature T x of the liquefied natural gas after adjusting the gas heating value fluctuates in the range of −160 to −120 ° C.,
In the fluctuation range of the temperature T x of the liquefied natural gas, the constants a 1 and b 1 are set to 0, and the coefficient α derivation formula is as follows using the temperature T x of the liquefied natural gas to be measured as a variable: The calorimetric system for liquefied natural gas according to claim 2 or 3 , which is set to a primary expression.
α = c 1 × T x + d 1
Where c 1 and d 1 are constants
JP2011196354A 2011-09-08 2011-09-08 Calorie measurement method and system for liquefied natural gas Active JP5843529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196354A JP5843529B2 (en) 2011-09-08 2011-09-08 Calorie measurement method and system for liquefied natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196354A JP5843529B2 (en) 2011-09-08 2011-09-08 Calorie measurement method and system for liquefied natural gas

Publications (2)

Publication Number Publication Date
JP2013057600A JP2013057600A (en) 2013-03-28
JP5843529B2 true JP5843529B2 (en) 2016-01-13

Family

ID=48133599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196354A Active JP5843529B2 (en) 2011-09-08 2011-09-08 Calorie measurement method and system for liquefied natural gas

Country Status (1)

Country Link
JP (1) JP5843529B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031576A (en) * 2013-08-01 2015-02-16 アズビル株式会社 Heat value calculation formula creation system, heat value calculation formula creation method, heat value measuring system and heat value measuring method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4230672B2 (en) * 2001-02-13 2009-02-25 株式会社オーバル Density measurement method and apparatus using Coriolis mass flowmeter
JP4393302B2 (en) * 2004-08-04 2010-01-06 Jfeエンジニアリング株式会社 Method and apparatus for measuring calorific value of liquefied natural gas

Also Published As

Publication number Publication date
JP2013057600A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
US7690240B2 (en) Flowmeter calibration techniques
KR101744477B1 (en) Vibratory flow meter and zero check method
CN105698903B (en) Method for providing a quality measure for meter verification results
JP4673376B2 (en) Method and apparatus for determining flow pressure using density information
US11199431B2 (en) Flowmeter calibration method and related apparatus
US20140076408A1 (en) Method and apparatus for determining and controlling a static fluid pressure through a vibrating meter
US8650929B2 (en) Method and apparatus for determining a flow rate error in a vibrating flow meter
WO2005093381A9 (en) Multi-phase coriolis flowmeter
RU2665350C1 (en) Device for application of a variable algorithm for a vibration flowmeter and a related method
JP2016540976A (en) Coriolis type device for directly measuring the source and method for measuring the source directly
JP7313516B2 (en) How to compensate for mass flow using known density
JP2024023472A (en) Validating Vapor Pressure Using Fluid Density Measurements
US20020096208A1 (en) Method for determination of mass flow and density of a process stream
JP5843529B2 (en) Calorie measurement method and system for liquefied natural gas
JPH08258898A (en) Measuring device
KR102500691B1 (en) Floating Vapor Pressure Apparatus and Related Methods
RU2776976C1 (en) Using fluid density for checking vapor pressure
RU2793602C1 (en) True vapor pressure and fast vapor detection device and related method
KR20070074673A (en) Method and apparatus for determining flow pressure using density information

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5843529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250