JP5842777B2 - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP5842777B2
JP5842777B2 JP2012217230A JP2012217230A JP5842777B2 JP 5842777 B2 JP5842777 B2 JP 5842777B2 JP 2012217230 A JP2012217230 A JP 2012217230A JP 2012217230 A JP2012217230 A JP 2012217230A JP 5842777 B2 JP5842777 B2 JP 5842777B2
Authority
JP
Japan
Prior art keywords
power
phase
seat
power storage
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012217230A
Other languages
Japanese (ja)
Other versions
JP2014072987A (en
Inventor
秀一 長門
秀一 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012217230A priority Critical patent/JP5842777B2/en
Publication of JP2014072987A publication Critical patent/JP2014072987A/en
Application granted granted Critical
Publication of JP5842777B2 publication Critical patent/JP5842777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)

Description

この発明は、三相/二相変換する単相交流き電システムに適用される電力貯蔵システムに関する。   The present invention relates to a power storage system applied to a single-phase AC feeding system that performs three-phase / two-phase conversion.

単相交流き電システムに適用される従来の電力貯蔵システムにおいては、M座とT座との間で有効電力を融通する電力補償装置の交流/直流変換器の直流部に一つの電力貯蔵装置を設置し、き電システムの電力調整を行っていた(例えば、特許文献1)。   In a conventional power storage system applied to a single-phase AC power feeding system, one power storage device is provided in the DC part of the AC / DC converter of the power compensator for accommodating active power between the M seat and the T seat. And adjusting the power of the feeding system (for example, Patent Document 1).

国際公開公報WO2010/109840(第8−10頁、第1図)International Publication WO2010 / 109840 (pages 8-10, FIG. 1)

特許文献1のような従来の電力貯蔵システムでは、単相側に一つの電力貯蔵装置を設置し、有効電力の負担を安定させるためにM座またはT座における余剰な回生電力を電力貯蔵装置に充電し、逆に必要な力行電力を電力貯蔵装置から放電する場合、M座とT座のそれぞれにインバータ装置などが含まれる電力変換装置を必要とし、少なくとも2組以上の電力変換装置が必要であるので、電力貯蔵システムが大型化するという問題点があった。   In a conventional power storage system such as Patent Document 1, one power storage device is installed on the single-phase side, and excess regenerative power in the M seat or T seat is supplied to the power storage device in order to stabilize the burden of active power. In order to charge and discharge the necessary power running power from the power storage device, a power conversion device including an inverter device or the like is required for each of the M seat and the T seat, and at least two or more sets of power conversion devices are required. As a result, there is a problem that the power storage system becomes large.

この発明は、上述のような課題を解決するためになされたもので、M座またはT座のいずれか一方に一組のインバータ装置などが含まれる電力変換装置を設置するだけで、電力貯蔵装置の充放電を行うことができる電力貯蔵システムを得るものである。   The present invention has been made in order to solve the above-described problems, and by simply installing a power conversion device including a set of inverter devices or the like in either the M seat or the T seat, the power storage device is provided. An electric power storage system capable of charging / discharging is obtained.

この発明に係る電力貯蔵システムは、三相/二相変換変圧器の二次側M座および二次側T座を介して電車負荷と電力を授受する電力貯蔵装置を備えた電力貯蔵システムであって、二次側M座側および二次側T座側のうちの一方に接続され、電力貯蔵装置との間で交流/直流変換を行う電力変換装置と、二次側M座側および二次側T座側の電流および電圧を計測する検出装置と、検出装置で計測された電流および電圧に基づいて算出した二次側M座側の有効電力と二次側T座側の有効電力と電力貯蔵装置の充放電電力との合計がゼロとなるように充放電電力を算出する電力算出装置と、充放電電力に基づいて前記電力変換装置及び前記電力貯蔵装置を制御する制御装置とを備え、制御装置は、充放電電力と電力貯蔵装置が充放電可能な電力とに基づいて電力貯蔵装置の充放電を制御するものである。 An electric power storage system according to the present invention is an electric power storage system including an electric power storage device that exchanges electric power with a train load via a secondary side M seat and a secondary side T seat of a three-phase / two-phase conversion transformer. A power converter that is connected to one of the secondary M seat side and the secondary T seat side and performs AC / DC conversion with the power storage device, and the secondary M seat side and the secondary side. Detection device for measuring the current and voltage on the side T seat side, the effective power on the secondary side M seat side and the effective power and power on the secondary side T seat side calculated based on the current and voltage measured by the detection device A power calculation device that calculates charge / discharge power so that the total charge / discharge power of the storage device is zero, and a control device that controls the power conversion device and the power storage device based on charge / discharge power , controller, charge-discharge electric power and the power storage device to the rechargeable power And it controls the charging and discharging of the power storage device Zui.

この発明に係る電力貯蔵システムは、M座またはT座のいずれか一方に一組の電力変換装置を設置するだけで、電力貯蔵装置の充放電を行うことができる。
The power storage system according to the present invention can charge and discharge the power storage device only by installing a set of power conversion devices in either the M seat or the T seat.

この発明の実施の形態1における電力貯蔵システムの構成図である。It is a block diagram of the electric power storage system in Embodiment 1 of this invention. この発明の実施の形態1における電力貯蔵システムの制御手順を示すフロー図である。It is a flowchart which shows the control procedure of the electric power storage system in Embodiment 1 of this invention. この発明の実施の形態2における電力貯蔵システムの構成図である。It is a block diagram of the electric power storage system in Embodiment 2 of this invention. この発明の実施の形態2における電力貯蔵システムの制御手順を示すフロー図である。It is a flowchart which shows the control procedure of the electric power storage system in Embodiment 2 of this invention. この発明の実施の形態3における電力貯蔵システムの構成図である。It is a block diagram of the electric power storage system in Embodiment 3 of this invention. この発明の実施の形態4における電力貯蔵システムの構成図である。It is a block diagram of the electric power storage system in Embodiment 4 of this invention.

実施の形態1.
図1は、この発明を実施するための実施の形態1における電力貯蔵システムの構成図である。電力貯蔵システム4は、三相/二相変換する単相交流き電システムに適用されるものであり、三相/二相変換変圧器2の二次側M座(以降、M座と称す)および二次側T座(以降、T座と称す)を介して電車負荷3、12と電力を授受する電力貯蔵装置である電池11を備えている。図1において、三相/二相変換変圧器2は、電気鉄道用として単相電力を三相系統1より供給する系統において、三相を二相のM座側の電圧およびT座側の電圧に変換するスコット結線変圧器や変形ウッド結線変圧器などである。電車負荷3は、三相/二相変換されたM座側負荷である。電車負荷3における電力は、三相/二相変換されたM座側電力である。電車負荷12は、三相/二相変換されたT座側負荷である。電車負荷12における電力は、三相/二相変換されたT座側電力である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a power storage system according to Embodiment 1 for carrying out the present invention. The power storage system 4 is applied to a single-phase AC feeding system that performs three-phase / two-phase conversion, and is a secondary side M seat (hereinafter referred to as M seat) of the three-phase / two-phase conversion transformer 2. The battery 11 is a power storage device that exchanges power with the train loads 3 and 12 via a secondary T seat (hereinafter referred to as T seat). In FIG. 1, a three-phase / two-phase conversion transformer 2 is a system that supplies single-phase power from a three-phase system 1 for an electric railway. Such as Scott connection transformer and modified Wood connection transformer. The train load 3 is an M-seat side load subjected to three-phase / two-phase conversion. The electric power in the train load 3 is M-seat side electric power that has undergone three-phase / two-phase conversion. The train load 12 is a three-phase / two-phase converted T-seat side load. The electric power in the train load 12 is T-seat side electric power that has undergone three-phase / two-phase conversion.

電力貯蔵システム4は、単相交流側の電車負荷3、12に対して電池11(例えばリチウムイオン電池)から充放電ができる装置であり、検出装置5、電力算出装置6、制御装置7、インバータ用変圧器8、AC/DC変換装置9、DC/DC変換装置10、電池11によって構成される。インバータ用変圧器8、AC/DC変換装置9、およびDC/DC変換装置10は、M座側またはT座側のいずれか一方であるM座側に接続され、電池11との間で交流/直流変換を行う電力変換装置である。なお、図1では、インバータ用変圧器8、AC/DC変換装置9、DC/DC変換装置10、および電池11がT座側に接続されているが、これらの装置がM座側に接続されてもよい。   The power storage system 4 is a device that can charge and discharge from a battery 11 (for example, a lithium ion battery) to the train loads 3 and 12 on the single-phase AC side, and includes a detection device 5, a power calculation device 6, a control device 7, and an inverter. Transformer 8, AC / DC converter 9, DC / DC converter 10, and battery 11. The inverter transformer 8, the AC / DC conversion device 9, and the DC / DC conversion device 10 are connected to the M seat side, which is either the M seat side or the T seat side, and AC / This is a power conversion device that performs DC conversion. In FIG. 1, the inverter transformer 8, the AC / DC converter 9, the DC / DC converter 10, and the battery 11 are connected to the T seat side, but these devices are connected to the M seat side. May be.

検出装置5は、M座側およびT座側の電流および電圧を計測するもので、M座側き電線電圧、M座側き電線電流、T座側き電線電圧、およびT座側き電線電流を計測する。電力算出装置6は、検出装置5を用いて計測されたM座側き電線電圧およびM座側き電線電流からM座側の単相交流側の電力を算出し、M座側の有効電力を算出する。また、電力算出装置6は、検出装置5を用いて計測されたT座側き電線電圧およびT座側き電線電流からT座側の単相交流側の電力を算出し、T座側の有効電力を算出する。また、電力算出装置6は、M座側の有効電力とT座側の有効電力との合計を算出する。   The detecting device 5 measures the current and voltage on the M seat side and the T seat side, and the M seat side feeder voltage, the M seat side feeder current, the T seat side feeder voltage, and the T seat side feeder current. Measure. The power calculation device 6 calculates the power of the M seat side single-phase AC side from the M seat side feeder voltage and the M seat side feeder current measured using the detection device 5, and calculates the M seat side effective power. calculate. The power calculation device 6 calculates the power on the T-seat side single-phase AC side from the T-seat side feeder voltage and the T-seat side feeder current measured using the detection device 5, and the T-seat side effective power is calculated. Calculate power. Further, the power calculation device 6 calculates the sum of the active power on the M seat side and the active power on the T seat side.

制御装置7は、M座側の有効電力とT座側の有効電力との合計に基づいて、電池11の充放電電力の制御を行うために、AC/DC変換装置9、DC/DC変換装置10、および電池11を制御する。インバータ用変圧器8は、M座側またはT座側のいずれか一方(本実施の形態ではT座側)の単相交流側のき電電圧とAC/DC変換装置9の交流側との電圧を変換する。AC/DC変換装置9、DC/DC変換装置10、および電池11は、電力貯蔵システム4において一般的に考えられる電池11の充放電が行えるように動作するもので、詳細な動作説明は省略する。   The control device 7 controls the charging / discharging power of the battery 11 based on the sum of the active power on the M seat side and the active power on the T seat side, so that the AC / DC conversion device 9 and the DC / DC conversion device are controlled. 10 and the battery 11 are controlled. The inverter transformer 8 is a voltage between the feeding voltage on the single-phase AC side on either the M seat side or the T seat side (T seat side in this embodiment) and the AC side of the AC / DC converter 9. Convert. The AC / DC converter 9, the DC / DC converter 10, and the battery 11 operate so as to charge and discharge the battery 11 that is generally considered in the power storage system 4, and detailed description of the operation is omitted. .

図2は、電力貯蔵システム4の制御手順を示すフロー図である。図2を用いて、電力貯蔵システム4の制御手順を説明する。電力貯蔵システム4が起動すると、検出装置5は、所定の時間間隔(例えば1秒)に対して、M座側の単相き電線のM座側き電線電圧を計測し(S101)、M座側の単相き電線に流れるM座側き電線電流を計測し(S102)、T座側の単相き電線のT座側き電線電圧を計測し(S103)、T座側の単相き電線に流れるT座側き電線電流を計測する(S104)。   FIG. 2 is a flowchart showing a control procedure of the power storage system 4. The control procedure of the power storage system 4 will be described with reference to FIG. When the power storage system 4 is activated, the detection device 5 measures the M-seat-side feeder voltage of the single-phase feeder on the M-seat for a predetermined time interval (for example, 1 second) (S101). The M-seat-side wire current flowing through the single-phase wire on the side is measured (S102), and the T-seat-side wire voltage of the single-phase wire on the T-seat side is measured (S103). The T-seat side wire current flowing in the wire is measured (S104).

電力算出装置6は、検出装置5を用いて計測されたM座側き電線電圧およびM座側き電線電流からM座側の単相交流側の消費電力または回生電力を算出し、この電力から有効電力Pmを求める(S105)。同様に、検出装置5を用いて計測されたT座側き電線電圧およびT座側き電線電流からT座側の単相交流側の消費電力または回生電力を算出し、この電力から有効電力Ptを求める(S106)。そして、有効電力Pmと有効電力Ptと電池11の充放電電力である電池充放電電力Pdとの和がゼロとなるように、式(1)から電池充放電電力Pdを求める(S107)。
Pd=−(Pm+Pt) ・・・(1)
ここで、電車の力行時における力行電力や補機電力などの消費電力はプラス符号、電車の回生時における回生電力はマイナス符号で表す。
The power calculation device 6 calculates the power consumption or regenerative power on the single-phase AC side on the M seat side from the M seat side feeder voltage and M seat side feeder current measured using the detection device 5, and from this power The effective power Pm is obtained (S105). Similarly, the power consumption or regenerative power on the T-seat side single-phase AC side is calculated from the T-seat side feeder voltage and the T-seat side feeder current measured using the detection device 5, and the active power Pt is calculated from this power. Is obtained (S106). And battery charging / discharging electric power Pd is calculated | required from Formula (1) so that the sum of active electric power Pm, active electric power Pt, and battery charging / discharging electric power Pd which is charging / discharging electric power of the battery 11 may become zero (S107).
Pd = − (Pm + Pt) (1)
Here, power consumption such as powering power and auxiliary power when the train is powering is represented by a plus sign, and regenerative power when the train is regenerating is represented by a minus sign.

制御装置7は、AC/DC変換装置9、DC/DC変換装置10、および電池11を制御して、電池充放電電力Pdを制御する。まず、電池充放電電力Pdの符号を判定する(S108)。この符合がプラスの場合、電池11の充電制御が充電可能な範囲で電池充放電電力Pdが最大となるように充電制御を行う(S109)。そして、充電可能な電力に合わせてDC/DC変換装置を制御し(S111)、AC/DC変換装置を制御して単相交流を直流に変換する(S112)。ただし、要求される充電電力の大きさが充電可能な最大電力の大きさよりも大きい場合には、充電可能な最大電力で充電できるように制御される。   The control device 7 controls the AC charge / discharge power Pd by controlling the AC / DC conversion device 9, the DC / DC conversion device 10, and the battery 11. First, the sign of the battery charge / discharge power Pd is determined (S108). When this sign is positive, the charging control is performed so that the battery charging / discharging power Pd is maximized within a range in which the charging control of the battery 11 can be charged (S109). Then, the DC / DC converter is controlled in accordance with the chargeable power (S111), and the AC / DC converter is controlled to convert single-phase alternating current into direct current (S112). However, when the required charging power is larger than the maximum chargeable power, control is performed so that charging can be performed with the maximum chargeable power.

次に、符合がマイナスの場合、電池11の放電制御が充電可能な範囲で電池充放電電力の絶対値|Pd|が最大となるように放電制御を行う(S110)。そして、放電可能な電力に合わせてDC/DC変換装置を制御し(S111)、AC/DC変換装置を制御して単相交流を直流に変換する(S112)。ただし、要求される放電電力の絶対値が放電可能な最大電力の絶対値よりも大きい場合には、放電可能な最大電力で放電できるように制御される。このようにして、制御装置7は、M座側の有効電力とT座側の有効電力と電池11の充放電電力との合計がゼロに近づくように電池11の充放電を制御する。   Next, when the sign is negative, the discharge control is performed so that the absolute value | Pd | of the battery charge / discharge power is maximized within a range in which the discharge control of the battery 11 can be charged (S110). Then, the DC / DC converter is controlled in accordance with the dischargeable power (S111), and the AC / DC converter is controlled to convert the single-phase alternating current into direct current (S112). However, when the absolute value of the required discharge power is larger than the absolute value of the maximum power that can be discharged, control is performed so that the discharge can be performed with the maximum power that can be discharged. In this way, the control device 7 controls charging / discharging of the battery 11 such that the sum of the active power on the M seat side, the active power on the T seat side, and the charging / discharging power of the battery 11 approaches zero.

なお、電力貯蔵システム4が運転中に停止指令を受けると停止判定を行い(S113)、停止判定がYesであると、電力貯蔵システム4は停止する。停止判定がNoであると、次の時間間隔において電圧と電流の計測が行われ、同様な制御手順が繰り返される。   When the power storage system 4 receives a stop command during operation, a stop determination is made (S113). If the stop determination is Yes, the power storage system 4 stops. If the stop determination is No, the voltage and current are measured at the next time interval, and the same control procedure is repeated.

以上のように、電力貯蔵システム4は、M座側の有効電力とT座側の有効電力との合計に合わせて、電池11を充放電することができるので、M座またはT座のいずれか一方の片座にAC/DC変換装置9、DC/DC変換装置10、および電池11を設置するだけでM座とT座側に電池の充放電が可能となる。   As described above, since the power storage system 4 can charge and discharge the battery 11 in accordance with the sum of the active power on the M seat side and the active power on the T seat side, either the M seat or the T seat can be used. By simply installing the AC / DC conversion device 9, the DC / DC conversion device 10, and the battery 11 in one single seat, the battery can be charged and discharged on the M seat and T seat sides.

実施の形態2.
図3は、この発明を実施するための実施の形態2における電力貯蔵システムの構成図である。本実施の形態において、実施の形態1と異なるところは、検出装置5Aが単相側ではなく、三相/二相変換変圧器2の三相側に設けられたことと、電力算出装置6Aが三相側の電圧および電流に基づいて有効電力を算出することである。その他の構成は実施の形態1と同じである。図3において、図1と同一の符号を付したものは、同一またはこれに相当するものである。
Embodiment 2. FIG.
FIG. 3 is a configuration diagram of a power storage system according to Embodiment 2 for carrying out the present invention. In the present embodiment, the difference from the first embodiment is that the detection device 5A is provided not on the single-phase side but on the three-phase side of the three-phase / two-phase conversion transformer 2, and the power calculation device 6A is The active power is calculated based on the voltage and current on the three-phase side. Other configurations are the same as those of the first embodiment. In FIG. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.

電力貯蔵システム4Aは、単相交流側の電車負荷3、12に対して電池11から充放電ができる装置であり、検出装置5A、電力算出装置6A、制御装置7、インバータ用変圧器8、AC/DC変換装置9、DC/DC変換装置10、電池11によって構成される。インバータ用変圧器8、AC/DC変換装置9、およびDC/DC変換装置10は、M座側またはT座側のいずれか一方であるM座側に接続され、電池11との間で交流/直流変換を行う電力変換装置である。なお、図3では、インバータ用変圧器8、AC/DC変換装置9、DC/DC変換装置10、および電池11がT座側に接続されているが、これらの装置がM座側に接続されてもよい。   The power storage system 4A is a device that can charge and discharge from the battery 11 to the train loads 3 and 12 on the single-phase AC side, and includes a detection device 5A, a power calculation device 6A, a control device 7, an inverter transformer 8, and an AC. / DC converter 9, DC / DC converter 10, and battery 11. The inverter transformer 8, the AC / DC conversion device 9, and the DC / DC conversion device 10 are connected to the M seat side, which is either the M seat side or the T seat side, and AC / This is a power conversion device that performs DC conversion. In FIG. 3, the inverter transformer 8, the AC / DC converter 9, the DC / DC converter 10, and the battery 11 are connected to the T seat side, but these devices are connected to the M seat side. May be.

検出装置5Aは、三相/二相変換変圧器2の三相側の三相電圧(U相電圧、V相電圧、W相電圧)および三相電流(U相電流、V相電流、W相電流)を計測する。電力算出装置6Aは、検出装置5Aを用いて計測された三相電圧および三相電流に基づいて各相の電力を算出し、各相の有効電力を算出する。また、電力算出装置6Aは、各相の有効電力の合計を算出する。制御装置7は、各相の有効電力の合計に基づいて、電池11の充放電電力の制御を行うために、AC/DC変換装置9、DC/DC変換装置10、および電池11を制御する。   The detection device 5A includes a three-phase voltage (U-phase voltage, V-phase voltage, W-phase voltage) and three-phase current (U-phase current, V-phase current, W-phase) of the three-phase side of the three-phase / two-phase conversion transformer 2. Current). The power calculation device 6A calculates the power of each phase based on the three-phase voltage and the three-phase current measured using the detection device 5A, and calculates the effective power of each phase. In addition, the power calculation device 6A calculates the total active power of each phase. The control device 7 controls the AC / DC conversion device 9, the DC / DC conversion device 10, and the battery 11 in order to control the charge / discharge power of the battery 11 based on the total active power of each phase.

図4は、電力貯蔵システム4Aの制御手順を示すフロー図である。図4を用いて、電力貯蔵システム4Aの制御手順を説明する。電力貯蔵システム4Aが起動すると、検出装置5Aは、所定の時間間隔(例えば1秒)に対して、U相電圧を計測し(S121)、U相電流を計測し(S122)、V相電圧を計測し(S123)、V相電流を計測し(S124)、W相電圧を計測し(S125)、W相電流を計測する(S126)。   FIG. 4 is a flowchart showing a control procedure of the power storage system 4A. A control procedure of the power storage system 4A will be described with reference to FIG. When the power storage system 4A is activated, the detection device 5A measures the U-phase voltage (S121), the U-phase current (S122), and the V-phase voltage for a predetermined time interval (for example, 1 second). Measure (S123), measure the V-phase current (S124), measure the W-phase voltage (S125), and measure the W-phase current (S126).

電力算出装置6Aは、検出装置5Aを用いて計測されたU相電圧およびU相電流からU相の有効電力Puを求める(S127)。同様に、検出装置5Aを用いて計測されたV相電圧およびV相電流からV相の有効電力Pvを求め(S128)、W相電圧およびW相電流からW相の有効電力Pwを求める(S129)。そして、有効電力Puと有効電力Pvと有効電力Pwと電池11の充放電電力である電池充放電電力Pdとの和がゼロとなるように、式(2)から電池充放電電力Pdを求める(S130)。
Pd=−(Pu+Pv+Pw) ・・・(2)
ここで、電車の力行時における力行電力や補機電力などの消費電力はプラス符号、電車の回生時における回生電力はマイナス符号で表す。
The power calculation device 6A obtains the U-phase active power Pu from the U-phase voltage and the U-phase current measured using the detection device 5A (S127). Similarly, the V-phase active power Pv is obtained from the V-phase voltage and V-phase current measured using the detection device 5A (S128), and the W-phase active power Pw is obtained from the W-phase voltage and W-phase current (S129). ). And battery charging / discharging power Pd is calculated | required from Formula (2) so that the sum of active power Pu, active power Pv, active power Pw, and battery charging / discharging power Pd which is charging / discharging power of the battery 11 may be zero ( S130).
Pd = − (Pu + Pv + Pw) (2)
Here, power consumption such as powering power and auxiliary power when the train is powering is represented by a plus sign, and regenerative power when the train is regenerating is represented by a minus sign.

制御装置7は、AC/DC変換装置9、DC/DC変換装置10、および電池11を制御して、電池充放電電力Pdを制御する。まず、電池充放電電力Pdの符号を判定する(S131)。この符合がプラスの場合、電池11の充電制御が充電可能な範囲で電池充放電電力Pdが最大となるように充電制御を行う(S132)。そして、充電可能な電力に合わせてDC/DC変換装置を制御し(S134)、AC/DC変換装置を制御して単相交流を直流に変換する(S135)。ただし、要求される充電電力の大きさが充電可能な最大電力の大きさよりも大きい場合には、充電可能な最大電力で充電できるように制御される。   The control device 7 controls the AC charge / discharge power Pd by controlling the AC / DC conversion device 9, the DC / DC conversion device 10, and the battery 11. First, the sign of the battery charge / discharge power Pd is determined (S131). When the sign is positive, the charging control is performed so that the battery charging / discharging power Pd becomes the maximum within the chargeable range of the charging control of the battery 11 (S132). Then, the DC / DC converter is controlled in accordance with the chargeable power (S134), and the AC / DC converter is controlled to convert the single-phase alternating current into direct current (S135). However, when the required charging power is larger than the maximum chargeable power, control is performed so that charging can be performed with the maximum chargeable power.

次に、符合がマイナスの場合、電池11の放電制御が充電可能な範囲で電池充放電電力の絶対値|Pd|が最大となるように放電制御を行う(S133)。そして、放電可能な電力に合わせてDC/DC変換装置を制御し(S134)、AC/DC変換装置を制御して単相交流を直流に変換する(S135)。ただし、要求される放電電力の絶対値が放電可能な最大電力の絶対値よりも大きい場合には、放電可能な最大電力で放電できるように制御される。   Next, when the sign is negative, the discharge control is performed so that the absolute value | Pd | of the battery charge / discharge power is maximized within a range in which the discharge control of the battery 11 can be charged (S133). Then, the DC / DC converter is controlled in accordance with the dischargeable power (S134), and the AC / DC converter is controlled to convert the single-phase alternating current into direct current (S135). However, when the absolute value of the required discharge power is larger than the absolute value of the maximum power that can be discharged, control is performed so that the discharge can be performed with the maximum power that can be discharged.

なお、電力貯蔵システム4Aが運転中に停止指令を受けると停止判定を行い(S136)、停止判定がYesであると、電力貯蔵システム4Aは停止する。停止判定がNoであると、次の時間間隔において電圧と電流の計測が行われ、同様な制御手順が繰り返される。   When the power storage system 4A receives a stop command during operation, a stop determination is made (S136). If the stop determination is Yes, the power storage system 4A stops. If the stop determination is No, the voltage and current are measured at the next time interval, and the same control procedure is repeated.

以上のように、電力貯蔵システム4Aは、三相各相の有効電力の合計に合わせて、電池11を充放電することができるので、M座またはT座のいずれかの片座にAC/DC変換装置9、DC/DC変換装置10、および電池11を設置するだけでM座側とT座側に電池の充放電が可能となる。   As described above, since the power storage system 4A can charge and discharge the battery 11 in accordance with the total active power of each of the three phases, AC / DC can be installed in either one of the M seat and the T seat. The battery can be charged and discharged on the M seat side and the T seat side only by installing the conversion device 9, the DC / DC conversion device 10, and the battery 11.

実施の形態3.
図5は、この発明を実施するための実施の形態3における電力貯蔵システムの構成図である。本実施の形態において、実施の形態1と異なるところは、T座側とAC/DC変換装置9との間に設けられたインバータ用変圧器8の代わりに、M座側およびT座側とAC/DC変換装置9Aとの間に逆三相/二相変換変圧器18を設けられたことと、逆三相/二相変換変圧器18が設けられたことにより、AC/DC変換装置9AのAC側が三相になったことである。その他の構成は実施の形態1と同じである。
Embodiment 3 FIG.
FIG. 5 is a configuration diagram of an electric power storage system according to Embodiment 3 for carrying out the present invention. In the present embodiment, the difference from the first embodiment is that instead of the inverter transformer 8 provided between the T seat side and the AC / DC conversion device 9, the M seat side and the T seat side are connected to the AC seat. Since the reverse three-phase / two-phase conversion transformer 18 is provided between the DC / DC conversion device 9A and the reverse three-phase / two-phase conversion transformer 18 is provided, the AC / DC conversion device 9A The AC side has become three-phase. Other configurations are the same as those of the first embodiment.

電力貯蔵システム4Bは、単相交流側の電車負荷3、12に対して電池11から充放電ができる装置であり、検出装置5、電力算出装置6、制御装置7A、逆三相/二相変換変圧器18、AC/DC変換装置9A、DC/DC変換装置10、電池11によって構成される。逆三相/二相変換変圧器18、AC/DC変換装置9A、およびDC/DC変換装置10は、電池11との間で交流/直流変換を行う電力変換装置である。   The power storage system 4B is a device capable of charging and discharging from the battery 11 with respect to the train loads 3 and 12 on the single-phase AC side, and includes a detection device 5, a power calculation device 6, a control device 7A, and an inverse three-phase / two-phase conversion. The transformer 18, the AC / DC converter 9 </ b> A, the DC / DC converter 10, and the battery 11 are configured. The reverse three-phase / two-phase conversion transformer 18, the AC / DC conversion device 9 </ b> A, and the DC / DC conversion device 10 are power conversion devices that perform AC / DC conversion with the battery 11.

逆三相/二相変換変圧器18は、M座側およびT座側の単相交流側のき電電圧を三相交流電圧に変換する。また、AC/DC変換装置9Aは、三相交流と直流とを変換する。検出装置5は、M座側およびT座側の電流および電圧を計測し、電力算出装置6は、M座側およびT座側の有効電力を算出する。制御装置7Aは、M座側の有効電力とT座側の有効電力との合計に基づいて、電池11の充放電電力の制御を行うために、AC/DC変換装置9A、DC/DC変換装置10、および電池11を制御する。電力貯蔵システム4Bの制御方法は、AC/DC変換装置9Aの制御が単相交流から三相交流に変わる点が異なるだけで、図2に示すように実施の形態1で説明した制御方法と同じである。   The reverse three-phase / two-phase conversion transformer 18 converts the feeding voltage on the single-phase AC side on the M seat side and the T seat side into a three-phase AC voltage. The AC / DC converter 9A converts three-phase alternating current and direct current. The detection device 5 measures the current and voltage on the M seat side and the T seat side, and the power calculation device 6 calculates the active power on the M seat side and the T seat side. The control device 7A controls the charging / discharging power of the battery 11 based on the sum of the active power on the M seat side and the active power on the T seat side, so that the AC / DC conversion device 9A, the DC / DC conversion device 10 and the battery 11 are controlled. The control method of the power storage system 4B is the same as the control method described in the first embodiment as shown in FIG. 2 except that the control of the AC / DC converter 9A is changed from a single-phase AC to a three-phase AC. It is.

以上のように、M座側およびT座側に接続される逆三相/二相変換変圧器18を有する電力変換装置に電池11を接続した場合でも、M座側の有効電力とT座側の有効電力との合計に合わせて、電池11を充放電する制御を適用することができる。   As described above, even when the battery 11 is connected to the power conversion device having the reverse three-phase / two-phase conversion transformer 18 connected to the M seat side and the T seat side, the active power on the M seat side and the T seat side Control for charging / discharging the battery 11 can be applied in accordance with the total of the active power.

実施の形態4.
図6は、この発明を実施するための実施の形態4における電力貯蔵システムの構成図である。本実施の形態において、実施の形態2と異なるところは、T座側とAC/DC変換装置9との間に設けられたインバータ用変圧器8の代わりに、M座側およびT座側とAC/DC変換装置9Aとの間に逆三相/二相変換変圧器18を設けられたことと、逆三相/二相変換変圧器18が設けられたことにより、AC/DC変換装置9AのAC側が三相になったことである。その他の構成は実施の形態2と同じである。
Embodiment 4 FIG.
FIG. 6 is a configuration diagram of an electric power storage system according to Embodiment 4 for carrying out the present invention. In the present embodiment, the difference from the second embodiment is that instead of the inverter transformer 8 provided between the T seat side and the AC / DC conversion device 9, the M seat side and the T seat side are connected to the AC seat. Since the reverse three-phase / two-phase conversion transformer 18 is provided between the DC / DC conversion device 9A and the reverse three-phase / two-phase conversion transformer 18 is provided, the AC / DC conversion device 9A The AC side has become three-phase. Other configurations are the same as those of the second embodiment.

電力貯蔵システム4Cは、単相交流側の電車負荷3、12に対して電池11から充放電ができる装置であり、検出装置5A、電力算出装置6A、制御装置7A、逆三相/二相変換変圧器18、AC/DC変換装置9A、DC/DC変換装置10、電池11によって構成される。逆三相/二相変換変圧器18、AC/DC変換装置9A、およびDC/DC変換装置10は、電池11との間で交流/直流変換を行う電力変換装置である。   The power storage system 4C is a device that can charge and discharge from the battery 11 to the train loads 3 and 12 on the single-phase AC side, and includes a detection device 5A, a power calculation device 6A, a control device 7A, and an inverse three-phase / two-phase conversion. The transformer 18, the AC / DC converter 9 </ b> A, the DC / DC converter 10, and the battery 11 are configured. The reverse three-phase / two-phase conversion transformer 18, the AC / DC conversion device 9 </ b> A, and the DC / DC conversion device 10 are power conversion devices that perform AC / DC conversion with the battery 11.

逆三相/二相変換変圧器18は、M座側およびT座側の単相交流側のき電電圧を三相交流電圧に変換する。また、AC/DC変換装置9Aは、三相交流と直流とを変換する。検出装置5Aは、三相/二相変換変圧器2の三相側の三相電圧および三相電流を計測し、電力算出装置6Aは、各相の有効電力を算出する。制御装置7Aは、各相の有効電力の合計に基づいて、電池11の充放電電力の制御を行うために、AC/DC変換装置9A、DC/DC変換装置10、および電池11を制御する。電力貯蔵システム4Cの制御方法は、AC/DC変換装置9Aの制御が単相交流から三相交流に変わる点が異なるだけで、図4に示すように実施の形態2で説明した制御方法と同じである。   The reverse three-phase / two-phase conversion transformer 18 converts the feeding voltage on the single-phase AC side on the M seat side and the T seat side into a three-phase AC voltage. The AC / DC converter 9A converts three-phase alternating current and direct current. The detection device 5A measures the three-phase voltage and the three-phase current on the three-phase side of the three-phase / two-phase conversion transformer 2, and the power calculation device 6A calculates the active power of each phase. The control device 7A controls the AC / DC conversion device 9A, the DC / DC conversion device 10, and the battery 11 in order to control the charge / discharge power of the battery 11 based on the total active power of each phase. The control method of the power storage system 4C is the same as the control method described in the second embodiment as shown in FIG. 4 except that the control of the AC / DC converter 9A is changed from single-phase AC to three-phase AC. It is.

以上のように、M座側およびT座側に接続される逆三相/二相変換変圧器18を有する電力変換装置に電池11を接続した場合でも、三相各相の有効電力の合計に合わせて、電池11を充放電する制御を適用することができる。   As described above, even when the battery 11 is connected to the power conversion device having the reverse three-phase / two-phase conversion transformer 18 connected to the M seat side and the T seat side, the total effective power of each of the three phases is obtained. In addition, control for charging and discharging the battery 11 can be applied.

1 三相系統、2 三相/二相変換変圧器、3 電車負荷、
4,4A,4B,4C 電力貯蔵システム、5,5A 検出装置、
6,6A 電力算出装置、7,7A 制御装置、
8 インバータ用変圧器、9,9A AC/DC変換装置、
10 DC/DC変換装置、11電池、18 逆三相/二相変換変圧器。
1 Three-phase system, 2 Three-phase / two-phase conversion transformer, 3 Train load,
4,4A, 4B, 4C power storage system, 5,5A detector,
6, 6A power calculation device, 7, 7A control device,
8 Inverter transformer, 9, 9A AC / DC converter,
10 DC / DC converter, 11 batteries, 18 reverse three-phase / two-phase conversion transformer.

Claims (4)

三相/二相変換変圧器の二次側M座及び二次側T座を介して電車負荷と電力を授受する電力貯蔵装置を備えた電力貯蔵システムであって、
前記二次側M座側又は前記二次側T座側のどちらか一方に接続され、前記電力貯蔵装置との間で交流/直流変換を行う電力変換装置と、
前記二次側M座側及び前記二次側T座側の電流及び電圧を計測する検出装置と、
前記電流及び前記電圧に基づいて算出した前記二次側M座側の有効電力および前記二次側T座側の有効電力と、前記電力貯蔵装置の充放電電力との和がゼロとなるように前記充放電電力を算出する電力算出装置と、
前記充放電電力に基づいて前記電力変換装置及び前記電力貯蔵装置を制御する制御装置とを備え、
前記制御装置は、前記充放電電力と、前記電力貯蔵装置が充放電可能な電力とに基づいて充放電を制御することを特徴とする電力貯蔵システム。
A power storage system comprising a power storage device that transfers electric power to and from a train load via a secondary side M seat and a secondary side T seat of a three-phase / two-phase conversion transformer,
A power conversion device connected to either the secondary side M seat side or the secondary side T seat side and performing AC / DC conversion with the power storage device;
A detector for measuring current and voltage on the secondary side M seat side and the secondary side T seat side;
The sum of the active power on the secondary side M seat side and the active power on the secondary side T seat side calculated based on the current and the voltage, and the charge / discharge power of the power storage device is zero. A power calculation device for calculating the charge / discharge power ;
A control device for controlling the power conversion device and the power storage device based on the charge / discharge power ,
The said control apparatus controls charging / discharging based on the said charging / discharging electric power and the electric power which the said electric power storage apparatus can charge / discharge, The electric power storage system characterized by the above-mentioned.
三相/二相変換変圧器の二次側M座及び二次側T座を介して電車負荷と電力を授受する電力貯蔵装置を備えた電力貯蔵システムであって、
前記二次側M座側又は前記二次側T座側のどちらか一方に接続され、前記電力貯蔵装置との間で交流/直流変換を行う電力変換装置と、
前記三相/二相変換変圧器の三相側の電流及び電圧を計測する検出装置と、
前記電流及び前記電圧に基づいて算出した前記三相側の有効電力と、前記電力貯蔵装置の充放電電力との和がゼロとなるように前記充放電電力を算出する電力算出装置と、
前記充放電電力に基づいて前記電力変換装置及び前記電力貯蔵装置を制御する制御装置とを備え、
前記制御装置は、前記充放電電力と、前記電力貯蔵装置が充放電可能な電力とに基づいて充放電を制御することを特徴とする電力貯蔵システム。
A power storage system comprising a power storage device that transfers electric power to and from a train load via a secondary side M seat and a secondary side T seat of a three-phase / two-phase conversion transformer,
A power conversion device connected to either the secondary side M seat side or the secondary side T seat side and performing AC / DC conversion with the power storage device;
A detector for measuring the current and voltage on the three-phase side of the three-phase / two-phase conversion transformer;
A power calculation device that calculates the charge / discharge power so that the sum of the active power on the three-phase side calculated based on the current and the voltage and the charge / discharge power of the power storage device is zero ;
A control device for controlling the power conversion device and the power storage device based on the charge / discharge power ,
The said control apparatus controls charging / discharging based on the said charging / discharging electric power and the electric power which the said electric power storage apparatus can charge / discharge, The electric power storage system characterized by the above-mentioned.
三相/二相変換変圧器の二次側M座及び二次側T座を介して電車負荷と電力を授受する電力貯蔵装置を備えた電力貯蔵システムであって、
前記二次側M座側及び前記二次側T座側に接続される逆三相/二相変換変圧器を有し、前記電力貯蔵装置との間で交流/直流変換を行う電力変換装置と、
前記二次側M座側及び前記二次側T座側の電流及び電圧を計測する検出装置と、
前記電流および前記電圧に基づいて算出した前記二次側M座側の有効電力と前記二次側T座側の有効電力と、前記電力貯蔵装置の充放電電力との和がゼロとなるように前記充放電電力を算出する電力算出装置と、
前記充放電電力に基づいて前記電力変換装置及び前記電力貯蔵装置を制御する制御装置とを備え、
前記制御装置は、前記充放電電力と、前記電力貯蔵装置が充放電可能な電力とに基づいて充放電を制御することを特徴とする電力貯蔵システム。
A power storage system comprising a power storage device that transfers electric power to and from a train load via a secondary side M seat and a secondary side T seat of a three-phase / two-phase conversion transformer,
A power conversion device having an inverse three-phase / two-phase conversion transformer connected to the secondary side M seat side and the secondary side T seat side, and performing AC / DC conversion with the power storage device; ,
A detector for measuring current and voltage on the secondary side M seat side and the secondary side T seat side;
The sum of the effective power on the secondary side M seat side calculated based on the current and the voltage, the active power on the secondary side T seat side, and the charge / discharge power of the power storage device is zero. A power calculation device for calculating the charge / discharge power ;
A control device for controlling the power conversion device and the power storage device based on the charge / discharge power ,
The said control apparatus controls charging / discharging based on the said charging / discharging electric power and the electric power which the said electric power storage apparatus can charge / discharge, The electric power storage system characterized by the above-mentioned.
三相/二相変換変圧器の二次側M座及び二次側T座を介して電車負荷と電力を授受する電力貯蔵装置を備えた電力貯蔵システムであって、
前記二次側M座側及び前記二次側T座側に接続される逆三相/二相変換変圧器を有し、前記電力貯蔵装置との間で交流/直流変換を行う電力変換装置と、
前記三相/二相変換変圧器の三相側の電流及び電圧を計測する検出装置と、
前記電流及び前記電圧に基づいて算出した前記三相側の有効電力と、前記電力貯蔵装置の充放電電力との和がゼロとなるように前記充放電電力を算出する電力算出装置と、
前記充放電電力に基づいて前記電力変換装置及び前記電力貯蔵装置を制御する制御装置とを備え、
前記制御装置は、前記充放電電力と、前記電力貯蔵装置が充放電可能な電力とに基づいて充放電を制御することを特徴とする電力貯蔵システム。
A power storage system comprising a power storage device that transfers electric power to and from a train load via a secondary side M seat and a secondary side T seat of a three-phase / two-phase conversion transformer,
A power conversion device having an inverse three-phase / two-phase conversion transformer connected to the secondary side M seat side and the secondary side T seat side, and performing AC / DC conversion with the power storage device; ,
A detector for measuring the current and voltage on the three-phase side of the three-phase / two-phase conversion transformer;
A power calculation device that calculates the charge / discharge power so that the sum of the active power on the three-phase side calculated based on the current and the voltage and the charge / discharge power of the power storage device is zero ;
A control device for controlling the power conversion device and the power storage device based on the charge / discharge power,
The said control apparatus controls charging / discharging based on the said charging / discharging electric power and the electric power which the said electric power storage apparatus can charge / discharge, The electric power storage system characterized by the above-mentioned.
JP2012217230A 2012-09-28 2012-09-28 Power storage system Active JP5842777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217230A JP5842777B2 (en) 2012-09-28 2012-09-28 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217230A JP5842777B2 (en) 2012-09-28 2012-09-28 Power storage system

Publications (2)

Publication Number Publication Date
JP2014072987A JP2014072987A (en) 2014-04-21
JP5842777B2 true JP5842777B2 (en) 2016-01-13

Family

ID=50747726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217230A Active JP5842777B2 (en) 2012-09-28 2012-09-28 Power storage system

Country Status (1)

Country Link
JP (1) JP5842777B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470456B2 (en) * 1995-04-27 2003-11-25 株式会社明電舎 Control circuit of self-excited inverter for active / reactive power adjustment
JP3508347B2 (en) * 1995-12-11 2004-03-22 株式会社明電舎 Feeder voltage compensation system and equipment
JP2000006693A (en) * 1998-06-19 2000-01-11 Nissin Electric Co Ltd Method and device for regulating feeder voltage
JP4583154B2 (en) * 2004-12-13 2010-11-17 東洋電機製造株式会社 Control device for feeder system power storage system
JP5443078B2 (en) * 2009-07-07 2014-03-19 川崎重工業株式会社 Power conditioner for feeding system

Also Published As

Publication number Publication date
JP2014072987A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
KR100415747B1 (en) Apparatus for controlling elevator
EP3498521A1 (en) Electric vehicle energy management system, control method therefor, and electric vehicle
JP6236391B2 (en) Device for balancing the amount of charge for power batteries
US20170338668A1 (en) Management device, charging and discharging control device, electricity storage system, and charging and discharging control method
DK2200149T3 (en) Charger and charging method
JP2011239670A5 (en)
JP2009044930A (en) Power supply system, and vehicle equipped therewith
RU2479090C2 (en) Power converter
US20170187190A1 (en) Distributed power supply system, power converter device, and method of controlling power factor
US20150303719A1 (en) Battery Combined System
JP4098182B2 (en) Motor drive system and elevator drive system
WO2014083788A1 (en) Bidirectional converter
US10135282B2 (en) Storage battery control apparatus, power storage system, and method for charging storage battery
JP5551342B2 (en) Charger
JP2012100443A (en) Fast charging method and device
WO2013094396A1 (en) Charging/discharging device and charging/discharging system using same
WO2012049955A1 (en) Power management system
JP5673504B2 (en) Vehicle charging device
CN115885446A (en) Energy system and charge-discharge control method
JP2019033636A (en) Power supply apparatus
JP2004112954A (en) Power storage device
JP5196011B2 (en) Charge control system
JP5842777B2 (en) Power storage system
US20110068628A1 (en) Power assist device
JP5814193B2 (en) Power converter and power generation system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5842777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250