JP5840976B2 - Freezing prevention method for urea SCR system - Google Patents

Freezing prevention method for urea SCR system Download PDF

Info

Publication number
JP5840976B2
JP5840976B2 JP2012037241A JP2012037241A JP5840976B2 JP 5840976 B2 JP5840976 B2 JP 5840976B2 JP 2012037241 A JP2012037241 A JP 2012037241A JP 2012037241 A JP2012037241 A JP 2012037241A JP 5840976 B2 JP5840976 B2 JP 5840976B2
Authority
JP
Japan
Prior art keywords
urea water
urea
injector
pump
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012037241A
Other languages
Japanese (ja)
Other versions
JP2013170569A (en
Inventor
英正 高山
英正 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2012037241A priority Critical patent/JP5840976B2/en
Publication of JP2013170569A publication Critical patent/JP2013170569A/en
Application granted granted Critical
Publication of JP5840976B2 publication Critical patent/JP5840976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、尿素水を還元剤として排気ガス中のNOx(窒素酸化物)を還元浄化し得るようにした尿素SCRシステムの凍結防止方法に関するものである。   The present invention relates to a method for preventing freezing of a urea SCR system that can reduce and purify NOx (nitrogen oxide) in exhaust gas using urea water as a reducing agent.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気系路の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOxと還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust system through which exhaust gas flows, and the selective reduction type There is a type in which a necessary amount of a reducing agent is added upstream of the catalyst and the reducing agent is allowed to undergo a reduction reaction with NOx in exhaust gas on the selective reduction catalyst, thereby reducing the NOx emission concentration. .

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが提案されている。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. Since it is difficult to ensure safety with respect to traveling with ammonia itself, in recent years, it has been proposed to use non-toxic urea water as a reducing agent.

即ち、尿素水を選択還元型触媒の上流側で排出ガス中に添加すれば、約170℃以上の温度条件下で前記尿素水がアンモニアと炭酸ガスに分解され、選択還元型触媒上で排出ガス中のNOxがアンモニアにより良好に還元浄化されることになる。   That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is decomposed into ammonia and carbon dioxide under a temperature condition of about 170 ° C. or higher, and the exhaust gas is exhausted on the selective catalytic reduction catalyst. The NOx contained therein is reduced and purified well by ammonia.

このように尿素水を還元剤として使用する場合、尿素水を車両搭載の尿素水タンクから配管を介して選択還元型触媒の上流側へ送り出すことになるが、この種の尿素水は約−11℃以下で凍ってしまうため、寒冷地での使用にあたっては、前記配管やポンプ、インジェクタ等が凍結圧力で破損してしまわないよう何らかの凍結対策を施す必要があり、従来においては、エンジンの停止時に尿素水を尿素水タンク側へ吸い戻すアフターラン制御を実施することが行われている。   When urea water is used as a reducing agent in this way, urea water is sent to the upstream side of the selective catalytic reduction catalyst from a urea water tank mounted on the vehicle via a pipe. This type of urea water is about -11. Because it freezes at temperatures below ℃, it is necessary to take some measures against freezing so that the piping, pumps, injectors, etc. will not be damaged by freezing pressure. After-run control for sucking urea water back to the urea water tank side is performed.

尚、この種の尿素SCRシステムにおける凍結対策に関連する先行技術文献情報としては下記の特許文献1等がある。   Incidentally, as prior art document information related to freezing countermeasures in this type of urea SCR system, there is the following Patent Document 1 and the like.

特開2008−138583号公報JP 2008-138583 A

しかしながら、前述した如き従来の尿素SCRシステムでは、排気温度の高い運転状態からエンジンを急停止した場合等における特別な条件下でインジェクタの先端に尿素結晶が析出し、その析出した尿素結晶によりインジェクタの先端が詰まってしまうことがあり、このようなインジェクタの先端が詰まった状態でアフターラン制御が実施されると、尿素水タンク側へ向けた尿素水の吸い戻しにより経路内に過度の負圧が発生し、アフターラン制御の終了後に尿素水タンク内の尿素水が経路側へ逆流して該経路内で凍結し、その凍結圧力により配管やポンプ、インジェクタ等が破損する虞れがあった。   However, in the conventional urea SCR system as described above, urea crystals are precipitated at the tip of the injector under special conditions such as when the engine is suddenly stopped from an operation state where the exhaust temperature is high, and the precipitated urea crystals cause the injector to If the after-run control is performed with the injector tip clogged, excessive negative pressure may be generated in the path due to urea water sucked back toward the urea water tank. After the end of the after-run control, the urea water in the urea water tank flows back to the path side and freezes in the path, and the freezing pressure may damage the piping, the pump, the injector, and the like.

本発明は上述の実情に鑑みてなしたもので、アフターラン制御の実施時に経路内に過度の負圧を発生させることなく尿素水を吸い戻してアフターラン制御の終了後における尿素水の逆流を確実に防止し得るようにすることを目的とする。   The present invention has been made in view of the above circumstances, and when the after-run control is performed, the urea water is sucked back without causing excessive negative pressure in the path, and the back-flow of the urea water after the end of the after-run control is performed. The purpose is to ensure that it can be prevented.

本発明は、排気系路の途中に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒を備え且つ該選択還元型触媒より上流側の排気系路内に還元剤として尿素水を添加するインジェクタを備えた尿素SCRシステムの凍結防止方法であって、キーオフ後に排気温度が所定温度以下に下がるのを待ってポンプを駆動し、該ポンプにより尿素水を所定圧力まで昇圧した後にインジェクタを開弁して尿素水の適宜回数の噴射を実施してから経路内の尿素水をポンプにより尿素水タンクに吸い戻すアフターラン制御を実施することを特徴とするものである。 The present invention includes a selective reduction catalyst capable of selectively reacting NOx with ammonia even in the presence of oxygen in the middle of an exhaust system, and urea water as a reducing agent in the exhaust system upstream of the selective reduction catalyst. A method for preventing freezing of a urea SCR system having an injector for adding a fuel, wherein after the key-off, the pump is driven to wait for the exhaust temperature to fall below a predetermined temperature, and after the urea water is increased to a predetermined pressure by the pump, the injector And after-running the urea water in an appropriate number of times, after-run control is performed in which the urea water in the path is sucked back into the urea water tank by a pump.

而して、このようにすれば、排気温度の高い運転状態からエンジンを急停止した場合等にインジェクタの先端に尿素結晶が析出しても、キーオフ後に尿素水の適宜回数の噴射を実施することでインジェクタの先端に析出した尿素結晶が新たな尿素水に溶け出して除去されるので、その直後にアフターラン制御を実施して経路内の尿素水を尿素水タンクに吸い戻すようにすれば、インジェクタの先端の開通状態を維持させたまま前記経路内の尿素水を無理なく尿素水タンクに吸い戻すことが可能となる。   Thus, in this way, even when urea crystals are deposited at the tip of the injector when the engine is suddenly stopped from an operating state with a high exhaust temperature, the urea water is injected as many times as necessary after the key-off. Since the urea crystals deposited at the tip of the injector are dissolved in new urea water and removed, if after-run control is performed immediately after that, the urea water in the path is sucked back into the urea water tank, It is possible to suck the urea water in the path back into the urea water tank without difficulty while maintaining the open state of the injector tip.

また、アフターラン制御の実施時に経路内に高温の排気ガスが吸い込まれる虞れや、インジェクタの先端の尿素結晶を溶かすために噴射した新たな尿素水が高温の排気ガスに晒される虞れが未然に回避され、しかも、所定以上の圧力で確実に尿素水の噴射が行われることになる。 In addition , there is a risk that hot exhaust gas may be sucked into the passage when after-run control is performed, or that new urea water injected to dissolve urea crystals at the tip of the injector may be exposed to the hot exhaust gas. In addition, the urea water is surely injected at a predetermined pressure or higher.

上記した本発明の尿素SCRシステムの凍結防止方法によれば、下記の如き種々の優れた効果を奏し得る。   According to the antifreezing method of the urea SCR system of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、アフターラン制御の実施時に経路内に過度の負圧を発生させることなく尿素水を吸い戻すことができ、アフターラン制御の終了後における尿素水の逆流を確実に防止して該尿素水の経路内での凍結を回避することができるので、その凍結圧力により配管やポンプ、インジェクタ等が破損してしまう事態を未然に防ぐことができる。   (I) According to the first aspect of the present invention, the urea water can be sucked back without generating an excessive negative pressure in the path when the after-run control is performed. Therefore, it is possible to prevent the urea water from flowing back and prevent the urea water from freezing in the path, so that it is possible to prevent the piping, pump, injector and the like from being damaged by the freezing pressure. it can.

(II)本発明の請求項2に記載の発明によれば、高温の排気ガスが経路内に吸い込まれることによる配管やポンプ、インジェクタ等の焼損や腐食を未然に回避することができると共に、インジェクタの先端の尿素結晶を溶かすために噴射した新たな尿素水までもが結晶化してしまう事態を確実に回避することができ、しかも、所定以上の圧力での確実な尿素水の噴射により尿素結晶をより効果的に除去することもできる。   (II) According to the invention described in claim 2 of the present invention, it is possible to avoid burning and corrosion of piping, pumps, injectors and the like due to high-temperature exhaust gas being sucked into the path, and the injector It is possible to reliably avoid the situation that even the new urea water injected to dissolve the urea crystal at the tip of the crystal is crystallized, and the urea crystal can be formed by reliably injecting the urea water at a predetermined pressure or more. It can also be removed more effectively.

本発明を実施する形態の一例を示す系統図である。It is a systematic diagram which shows an example of the form which implements this invention. 図1のポンプにより尿素水を吸い戻す操作を説明する系統図である。It is a systematic diagram explaining operation which sucks back urea water with the pump of FIG. 図1の制御装置における具体的な制御手順を示すフローチャートである。It is a flowchart which shows the specific control procedure in the control apparatus of FIG.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図3は本発明を実施する形態の一例を示すもので、図1中における符号の1は尿素水2を貯留している尿素水タンク、3は該尿素水タンク1からサクションライン4を介し尿素水2を吸い上げ且つその尿素水2をプレッシャーライン5を介しインジェクタ6へ送り出すポンプを示している。   1 to 3 show an example of an embodiment of the present invention. Reference numeral 1 in FIG. 1 denotes a urea water tank that stores urea water 2, and 3 denotes a suction line 4 from the urea water tank 1. 1 shows a pump that sucks up the urea water 2 through the pressure and sends the urea water 2 to the injector 6 through the pressure line 5.

ここで、尿素水2をインジェクタ6へ供給するポンプ3は、正逆二つのポジションを切り替え可能に備えた流路切替バルブ7と、尿素水2の吸排を実質的に担うポンプ本体8とを備えており、前記流路切替バルブ7のポジションを図1の状態から図2の状態に切り替えることにより、プレッシャーライン5の尿素水2をポンプ本体8で吸い戻すこともできるようになっている。   Here, the pump 3 that supplies the urea water 2 to the injector 6 includes a flow path switching valve 7 that can switch between two forward and reverse positions, and a pump body 8 that substantially takes in and discharges the urea water 2. The urea water 2 in the pressure line 5 can also be sucked back by the pump body 8 by switching the position of the flow path switching valve 7 from the state of FIG. 1 to the state of FIG.

即ち、エンジンの停止時には、キーオフ後に流路切替バルブ7が逆向きのポジション(図2のポジション)に切り替えられ、尿素水2がポンプ本体8の駆動により尿素水タンク1側へ吸い戻され、寒冷地等におけるエンジン停止中の尿素水2の凍結を防止する措置が採られるようになっている。   That is, when the engine is stopped, after the key is turned off, the flow path switching valve 7 is switched to a reverse position (the position shown in FIG. 2), and the urea water 2 is sucked back to the urea water tank 1 side by driving the pump body 8. Measures are taken to prevent freezing of urea water 2 while the engine is stopped on the ground or the like.

更に、前記ポンプ3内に、プレッシャーライン5の尿素水2の圧力を検出する圧力センサ9が装備されていると共に、前記インジェクタ6が配設されている排気系路10の適宜位置には、排気ガス11の温度を検出する温度センサ12が装備されており、これら圧力センサ9及び温度センサ12の検出信号9a,12aが、インジェクタ6、流路切替バルブ7、ポンプ本体8の操作を制御信号6a,7a,8aにより制御している制御装置13に入力されるようになっている。   Further, a pressure sensor 9 for detecting the pressure of the urea water 2 in the pressure line 5 is provided in the pump 3, and an exhaust gas is disposed at an appropriate position of the exhaust system passage 10 in which the injector 6 is disposed. A temperature sensor 12 for detecting the temperature of the gas 11 is provided, and the detection signals 9a and 12a of the pressure sensor 9 and the temperature sensor 12 control the operation of the injector 6, the flow path switching valve 7 and the pump body 8 as a control signal 6a. , 7a, 8a is input to the control device 13 controlled.

この制御装置13は、キースイッチ14からのオン・オフ信号14aも入力するようになっていて、このオン・オフ信号14aでキーオフが確認された後も停止(シャットダウン)しないまま作動状態に保持され、キーオフ後に尿素水2の噴射(本形態例では1回)を実施してから経路内の尿素水2を尿素水タンク1に吸い戻すアフターラン制御を実施し得るようになっている。   The controller 13 also receives an on / off signal 14a from the key switch 14, and even after the key-off is confirmed by the on / off signal 14a, the controller 13 is maintained in an operating state without being stopped (shut down). After the key-off, after-run control of returning the urea water 2 in the path to the urea water tank 1 after the injection of the urea water 2 (once in this embodiment) is performed.

即ち、前記制御装置13における具体的な制御手順のフローチャートは図3に示す通りであり、先ずステップS1でキースイッチ14からのオン・オフ信号14aに基づきキーオフが確認されると、次のステップS2で温度センサ12の検出信号12aに基づき排気温度が所定温度T以下に下がるまで判定が繰り返され、排気温度が所定温度T以下に下がったところで次のステップS3に進んでポンプ3(ポンプ本体8)を駆動する制御信号8aが出力され、これによりポンプ3(ポンプ本体8)が駆動することになる。   That is, a flowchart of a specific control procedure in the control device 13 is as shown in FIG. 3. First, when key-off is confirmed based on the on / off signal 14a from the key switch 14 in step S1, the next step S2 is performed. Then, the determination is repeated until the exhaust temperature falls below the predetermined temperature T based on the detection signal 12a of the temperature sensor 12, and when the exhaust temperature falls below the predetermined temperature T, the process proceeds to the next step S3 and the pump 3 (pump main body 8). A control signal 8a for driving is output, and thereby the pump 3 (pump main body 8) is driven.

このようにしてポンプ3が駆動されたら、次のステップS4で圧力センサ9の検出信号9aに基づきプレッシャーライン5の尿素水2の圧力が所定圧力P以上になるまで判定が繰り返され、尿素水2の圧力が所定圧力P以上となったところで次のステップS5へと進んでインジェクタ6を開弁する制御信号6aが出力され、これによりインジェクタ6が尿素水2の噴射を実施することになる。   When the pump 3 is driven in this way, in the next step S4, the determination is repeated based on the detection signal 9a of the pressure sensor 9 until the pressure of the urea water 2 in the pressure line 5 becomes equal to or higher than the predetermined pressure P. When the pressure becomes equal to or higher than the predetermined pressure P, the process proceeds to the next step S5, where a control signal 6a for opening the injector 6 is output, whereby the injector 6 performs the injection of the urea water 2.

次いで、ステップS6にて流路切替バルブ7のポジションを図1の状態から図2の状態に切り替える制御信号7aが出力され、これにより流路切替バルブ7のポジションが図1の状態から図2の状態に切り替えられると、経路内の尿素水2が尿素水タンク1に吸い戻されてアフターラン制御が実施されることになる。   Next, in step S6, a control signal 7a for switching the position of the flow path switching valve 7 from the state of FIG. 1 to the state of FIG. 2 is output, whereby the position of the flow path switching valve 7 is changed from the state of FIG. When the state is switched, the urea water 2 in the path is sucked back into the urea water tank 1 and the after-run control is performed.

そして、次のステップS7において、制御装置13に内蔵された図示しないタイマによりアフターラン制御の経過時間が計測され、この経過時間が所定時間t以上となるまで判定が繰り返され、アフターラン制御の経過時間が所定時間t以上となったところで次のステップS8へと進んでポンプ3(ポンプ本体8)を停止する制御信号8aが出力され、これによりポンプ3(ポンプ本体8)が停止することになる。   In the next step S7, the elapsed time of the after-run control is measured by a timer (not shown) built in the control device 13, and the determination is repeated until the elapsed time reaches a predetermined time t or longer. When the time reaches the predetermined time t or longer, the process proceeds to the next step S8, where a control signal 8a for stopping the pump 3 (pump main body 8) is output, whereby the pump 3 (pump main body 8) is stopped. .

このようにしてポンプ3が停止されたら、次のステップS9でインジェクタ6を閉弁する制御信号6aが出力されて該インジェクタ6が閉弁し、次のステップS10で制御装置13が停止(シャットダウン)することになる。   When the pump 3 is stopped in this way, the control signal 6a for closing the injector 6 is output in the next step S9, the injector 6 is closed, and the control device 13 is stopped (shut down) in the next step S10. Will do.

尚、図1及び図2中における15は、排気系路10のインジェクタ6より下流側に配置されて排気ガス11中のNOxを還元浄化する選択還元型触媒であり、前記インジェクタ6により排気ガス11中に添加された尿素水2を還元剤として供給され、該尿素水2から生成されるアンモニアと排出ガス中のNOxとを酸素共存下でも選択的に反応させ得る触媒性能を備えている。   In FIG. 1 and FIG. 2, reference numeral 15 denotes a selective reduction catalyst that is disposed downstream of the injector 6 in the exhaust passage 10 and reduces and purifies NOx in the exhaust gas 11. The urea water 2 added therein is supplied as a reducing agent, and the catalyst performance is such that ammonia produced from the urea water 2 and NOx in the exhaust gas can be selectively reacted even in the presence of oxygen.

而して、このようにすれば、排気温度の高い運転状態からエンジンを急停止した場合等にインジェクタ6の先端に尿素結晶が析出しても、キーオフ後に尿素水2の噴射(本形態例では1回)を実施することでインジェクタ6の先端に析出した尿素結晶が新たな尿素水2に溶け出して除去されるので、その直後にアフターラン制御を実施して経路内の尿素水2を尿素水タンク1に吸い戻すようにすれば、インジェクタ6の先端の開通状態を維持させたまま前記経路内の尿素水2を無理なく尿素水タンク1に吸い戻すことが可能となる。   Thus, in this way, even when urea crystals are deposited at the tip of the injector 6 when the engine is suddenly stopped from an operating state with a high exhaust temperature, the urea water 2 is injected after the key-off (in this embodiment). 1), the urea crystals deposited at the tip of the injector 6 are dissolved and removed in the new urea water 2, and immediately after that, after-run control is performed to remove the urea water 2 in the path. If sucked back into the water tank 1, the urea water 2 in the path can be sucked back into the urea water tank 1 without difficulty while maintaining the open state of the tip of the injector 6.

しかも、キーオフ後に排気温度が所定温度以下に下がるのを待ってポンプ3を駆動し、該ポンプ3により尿素水2を所定圧力まで昇圧した後にインジェクタ6を開弁して尿素水2の噴射(本形態例では1回)を実施するようにしているので、アフターラン制御の実施時に経路内に高温の排気ガス11が吸い込まれる虞れや、インジェクタ6の先端の尿素結晶を溶かすために噴射した新たな尿素水2が高温の排気ガス11に晒される虞れが未然に回避され、しかも、所定以上の圧力により確実に尿素水2の噴射が行われることになる。   In addition, after the key-off, the pump 3 is driven after waiting for the exhaust gas temperature to fall below the predetermined temperature. After the urea water 2 is boosted to a predetermined pressure by the pump 3, the injector 6 is opened to inject the urea water 2 (this (In the embodiment, once), since after-run control is performed, high-temperature exhaust gas 11 may be sucked into the path, or a new spray injected to dissolve the urea crystal at the tip of the injector 6 The possibility that the urea water 2 is exposed to the high-temperature exhaust gas 11 is avoided in advance, and the urea water 2 is reliably injected by a pressure higher than a predetermined pressure.

従って、上記形態例によれば、アフターラン制御の実施時に経路内に過度の負圧を発生させることなく尿素水2を吸い戻すことができ、アフターラン制御の終了後における尿素水2の逆流を確実に防止して該尿素水2の経路内での凍結を回避することができるので、その凍結圧力によりサクションライン4やプレッシャーライン5等の配管やポンプ3、インジェクタ6等が破損してしまう事態を未然に防ぐことができる。   Therefore, according to the above embodiment, the urea water 2 can be sucked back without generating an excessive negative pressure in the path when the after-run control is performed, and the back flow of the urea water 2 after the end of the after-run control is reduced. Since the freezing in the path of the urea water 2 can be avoided with certainty, the freezing pressure may damage the piping such as the suction line 4 and the pressure line 5, the pump 3, the injector 6 and the like. Can be prevented in advance.

また、高温の排気ガス11が経路内に吸い込まれることによるサクションライン4やプレッシャーライン5等の配管やポンプ3、インジェクタ6等の焼損や腐食を未然に回避することができると共に、インジェクタ6の先端の尿素結晶を溶かすために噴射した新たな尿素水2までもが結晶化してしまう事態を確実に回避することができ、しかも、所定以上の圧力での確実な尿素水2の噴射により尿素結晶をより効果的に除去することもできる。   Further, it is possible to avoid burning and corrosion of the piping such as the suction line 4 and the pressure line 5, the pump 3, and the injector 6 due to the high temperature exhaust gas 11 being sucked into the passage, and the tip of the injector 6. It is possible to reliably avoid the situation where even the new urea water 2 injected to dissolve the urea crystals of the crystallization is crystallized, and the urea crystals 2 can be formed by reliably injecting the urea water 2 at a predetermined pressure or higher. It can also be removed more effectively.

尚、本発明の尿素SCRシステムの凍結防止方法は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the freeze prevention method of the urea SCR system of this invention is not limited only to the above-mentioned example, Of course, various changes can be added within the range which does not deviate from the summary of this invention.

1 尿素水タンク
2 尿素水
3 ポンプ
4 サクションライン(経路)
5 プレッシャーライン(経路)
6 インジェクタ
10 排気系路
11 排気ガス
13 制御装置
15 選択還元型触媒
1 Urea water tank 2 Urea water 3 Pump 4 Suction line (path)
5 Pressure line (path)
6 Injector 10 Exhaust System 11 Exhaust Gas 13 Control Device 15 Selective Reduction Catalyst

Claims (1)

排気系路の途中に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒を備え且つ該選択還元型触媒より上流側の排気系路内に還元剤として尿素水を添加するインジェクタを備えた尿素SCRシステムの凍結防止方法であって、
キーオフ後に排気温度が所定温度以下に下がるのを待ってポンプを駆動し、該ポンプにより尿素水を所定圧力まで昇圧した後にインジェクタを開弁して尿素水の適宜回数の噴射を実施してから経路内の尿素水をポンプにより尿素水タンクに吸い戻すアフターラン制御を実施することを特徴とする尿素SCRシステムの凍結防止方法。
Injector comprising a selective reduction catalyst capable of selectively reacting NOx with ammonia even in the presence of oxygen in the middle of the exhaust system, and adding urea water as a reducing agent into the exhaust system upstream of the selective reduction catalyst A method for preventing freezing of a urea SCR system comprising:
After the key-off, the pump is driven after the exhaust temperature falls below the predetermined temperature, and after the urea water is boosted to the predetermined pressure by the pump, the injector is opened and the urea water is injected as many times as necessary. A method for preventing freezing of a urea SCR system, wherein after-run control is performed to suck the urea water in the tank back into the urea water tank by a pump.
JP2012037241A 2012-02-23 2012-02-23 Freezing prevention method for urea SCR system Active JP5840976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012037241A JP5840976B2 (en) 2012-02-23 2012-02-23 Freezing prevention method for urea SCR system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012037241A JP5840976B2 (en) 2012-02-23 2012-02-23 Freezing prevention method for urea SCR system

Publications (2)

Publication Number Publication Date
JP2013170569A JP2013170569A (en) 2013-09-02
JP5840976B2 true JP5840976B2 (en) 2016-01-06

Family

ID=49264664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012037241A Active JP5840976B2 (en) 2012-02-23 2012-02-23 Freezing prevention method for urea SCR system

Country Status (1)

Country Link
JP (1) JP5840976B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017866B2 (en) * 2012-07-06 2016-11-02 ボッシュ株式会社 Reducing agent supply device, liquid reducing agent recovery control method, and exhaust purification device
KR101583891B1 (en) * 2013-12-24 2016-01-08 현대자동차주식회사 Urea back current prevent device of SCR system for diesel engine
KR101619641B1 (en) 2014-11-14 2016-05-10 현대자동차주식회사 An urea backflow prevention apparatus of scr and a control method thereof
CN112943419B (en) * 2021-03-09 2022-11-29 广西卡迪亚科技有限公司 Anti-crystallization control method for diesel engine SCR tail gas after-treatment system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730278B2 (en) * 2006-10-20 2011-07-20 株式会社デンソー Engine exhaust purification system
JP5912232B2 (en) * 2010-07-08 2016-04-27 いすゞ自動車株式会社 SCR system
JP5834773B2 (en) * 2011-10-28 2015-12-24 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2013170569A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
JP4799289B2 (en) Engine exhaust purification system
JP4470987B2 (en) Reducing agent injection control device
EP2034147B1 (en) Engine exhaust emission control device
JP5912232B2 (en) SCR system
JP3732493B2 (en) Engine exhaust purification system
KR101294067B1 (en) Method fof preventing choking of urea injection nozzle on scr system
JP5846488B2 (en) Exhaust gas purification device for internal combustion engine
JP2006125331A (en) Exhaust emission control device
WO2005033482A1 (en) Exhaust gas cleaner for engine
JP2017025830A (en) Exhaust emission control device for engine
JP5840976B2 (en) Freezing prevention method for urea SCR system
JP4509871B2 (en) Exhaust purification device
JP2006009606A (en) Reducing agent supply device
JP2010261326A (en) Method for detecting abnormality in reducing agent
US10844768B2 (en) Abnormality determination device
JP2010101237A (en) Exhaust emission control device
JP2012127214A (en) Reducing agent supplying system, and exhaust gas purifying system of internal combustion engine
JP2006002663A (en) Exhaust emission control device
JP4728124B2 (en) Exhaust purification device
WO2005085607A1 (en) Exhaust emission control device of engine
WO2006006441A1 (en) System and method for purification of exhaust gas
JP6501065B2 (en) Engine exhaust purification system
JP2007182804A (en) Exhaust emission control device
JP2010196522A (en) Abnormality diagnostic device for exhaust emission control system
JP2007205267A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5840976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250