JP5839803B2 - Bypass energy recovery device for fluid machinery - Google Patents

Bypass energy recovery device for fluid machinery Download PDF

Info

Publication number
JP5839803B2
JP5839803B2 JP2011011525A JP2011011525A JP5839803B2 JP 5839803 B2 JP5839803 B2 JP 5839803B2 JP 2011011525 A JP2011011525 A JP 2011011525A JP 2011011525 A JP2011011525 A JP 2011011525A JP 5839803 B2 JP5839803 B2 JP 5839803B2
Authority
JP
Japan
Prior art keywords
pressure loss
energy recovery
bypass
pressure
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011011525A
Other languages
Japanese (ja)
Other versions
JP2012154186A (en
Inventor
真成 飯野
真成 飯野
佐野 岳志
岳志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011011525A priority Critical patent/JP5839803B2/en
Publication of JP2012154186A publication Critical patent/JP2012154186A/en
Application granted granted Critical
Publication of JP5839803B2 publication Critical patent/JP5839803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

本発明は、例えばポンプ・水車等流体機械のバイパスエネルギ回収装置に関する。   The present invention relates to a bypass energy recovery device for a fluid machine such as a pump or a water turbine.

一般に、ポンプ・水車等流体(液体)機械では、単段・多段を問わず、スラスト力バランスやミニフロー(低流量域)でのポンプ特性(不安定性や振動)をコントロールするため、主流路の高圧側から分岐して低圧側に通じるバイパス流路を設けているが、このバイパス流量をコントロールするのに、オリフィスや狭路により圧力損失(以下、圧損という)を与える方式を採用している。   Generally, in fluid (liquid) machines such as pumps and water turbines, regardless of whether they are single-stage or multi-stage, in order to control the thrust force balance and pump characteristics (instability and vibration) in the mini-flow (low flow area), A bypass flow path that branches from the high-pressure side and leads to the low-pressure side is provided. In order to control this bypass flow rate, a system that applies pressure loss (hereinafter referred to as pressure loss) by an orifice or narrow path is adopted.

例えば、特許文献1で開示された多段遠心ポンプにおいては、吐出側から吸込側へ向けたポンプ内部バイパス用穴を設けて、ポンプ流量を増加させることなくポンプ内部でのバイパス流量を増加させることで低流量域運転時の異常圧力脈動を低減するようにしている。即ち、ポンプ最少流量を増加させることによるプラントシステム側への悪影響をなくしているのである。   For example, in the multistage centrifugal pump disclosed in Patent Document 1, by providing a pump internal bypass hole from the discharge side to the suction side, the bypass flow rate inside the pump is increased without increasing the pump flow rate. Abnormal pressure pulsation during low flow rate operation is reduced. That is, the adverse effect on the plant system side by increasing the pump minimum flow rate is eliminated.

また、特許文献2で開示された多段遠心ポンプにおいては、インペラに作用する軸方向スラストをバランスさせるため、最終段のインペラの背側の高圧の液体をシール部で絞ることにより減圧してバランスディスクの高圧側室に導入し、この高圧側室の圧力を軸方向隙間により圧損を調節することで制御している。さらに、本特許文献2では、バランスディスクの高圧側に高圧側室内の液体を付勢してその圧力を上昇させる複数の羽根を設けている。   In the multistage centrifugal pump disclosed in Patent Document 2, in order to balance the axial thrust acting on the impeller, the balance disk is depressurized by squeezing the high-pressure liquid on the back side of the impeller at the final stage at the seal portion. The pressure in the high pressure side chamber is controlled by adjusting the pressure loss by the axial clearance. Furthermore, in this patent document 2, the several blade | wing which energizes the liquid in a high pressure side chamber and raises the pressure is provided in the high pressure side of the balance disk.

実開昭63−67693号公報Japanese Utility Model Publication No. 63-67693 特開平11−82364号公報Japanese Patent Laid-Open No. 11-82364

このように、特許文献1及び2においては、主流路の高圧側から分岐して低圧側に通じるバイパス流路を流れるバイパス流量をコントロールする方法としてオリフィスや狭路により圧損を与える方式を採用しているが、減圧(圧損)分の流体エネルギは、従来、回収することなく無駄に失っていた。特に、特許文献2では、バランスディスクの高圧側に複数の羽根を設けて加圧するというエネルギ「供給」方式については開示されているが、そもそも捨てているエネルギを有効活用するという技術思想は一切開示されていない。   As described above, in Patent Documents 1 and 2, a method of applying pressure loss by an orifice or a narrow path is adopted as a method of controlling the bypass flow rate that flows through the bypass flow path branched from the high pressure side of the main flow path to the low pressure side. However, conventionally, the fluid energy corresponding to the reduced pressure (pressure loss) has been lost without being recovered. In particular, Patent Document 2 discloses an energy “supply” method in which a plurality of blades are provided on the high-pressure side of a balance disk to pressurize, but the technical idea of effectively utilizing the energy that has been discarded is not disclosed at all. It has not been.

そこで、本発明は、圧損機構における減圧(圧損)分の流体エネルギを有効活用して機器のトータル効率を向上させることができる流体機械のバイパスエネルギ回収装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a bypass energy recovery device for a fluid machine that can effectively use the fluid energy corresponding to the pressure reduction (pressure loss) in the pressure loss mechanism to improve the total efficiency of the device.

斯かる目的を達成するための本発明に係る流体機械のバイパスエネルギ回収装置は、
主流路の高圧側から分岐して低圧側に通じるバイパス流路に圧損機構を備えた流体機械において、
前記バイパス流路に、前記圧損機構における圧損エネルギを回収するための圧損エネルギ回収手段を設け、
前記流体機械と前記圧損エネルギ回収手段が別軸であり、
前記圧損エネルギ回収手段は、遠心ポンプにおけるバランスディスクの圧力調整部水路に設置したハイドロタービンである
ことを特徴とする。
In order to achieve such an object, a bypass energy recovery device for a fluid machine according to the present invention comprises:
In a fluid machine having a pressure loss mechanism in a bypass channel that branches from the high pressure side of the main channel and leads to the low pressure side,
A pressure loss energy recovery means for recovering pressure loss energy in the pressure loss mechanism is provided in the bypass flow path,
The fluid machine and the pressure loss energy recovery means Ri another axial der,
The pressure loss energy recovery means is a hydro turbine installed in a water pressure channel of a balance disk of a balance disk in a centrifugal pump .

本発明に係るバイパスエネルギ回収装置によれば、圧損機構における圧損エネルギを圧損エネルギ回収手段により回収するようにしたので、圧損機構における圧損分の流体エネルギを有効活用して機器のトータル効率を向上させることができる。   According to the bypass energy recovery device of the present invention, since the pressure loss energy in the pressure loss mechanism is recovered by the pressure loss energy recovery means, the fluid energy corresponding to the pressure loss in the pressure loss mechanism is effectively used to improve the total efficiency of the device. be able to.

本発明の実施例1を示すバイパスエネルギ回収装置を備えた多段遠心ポンプの流体流れ説明図である。It is fluid flow explanatory drawing of the multistage centrifugal pump provided with the bypass energy recovery apparatus which shows Example 1 of this invention. パワージェネレータの異なった具体例を示す各々の概略構成図である。It is each schematic block diagram which shows the specific example from which a power generator differs. 本発明の実施例2を示すバイパスエネルギ回収装置を備えた多段遠心ポンプの流体流れ説明図である。It is fluid flow explanatory drawing of the multistage centrifugal pump provided with the bypass energy recovery apparatus which shows Example 2 of this invention. 本発明の実施例3を示すバイパスエネルギ回収装置を備えた多段遠心ポンプの流体流れ説明図である。It is fluid flow explanatory drawing of the multistage centrifugal pump provided with the bypass energy recovery apparatus which shows Example 3 of this invention. 本発明の実施例4を示すバイパスエネルギ回収装置を備えた多段遠心ポンプの要部断面図である。It is principal part sectional drawing of the multistage centrifugal pump provided with the bypass energy recovery apparatus which shows Example 4 of this invention.

以下、本発明に係る流体機械のバイパスエネルギ回収装置を実施例により図面を用いて詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a bypass energy recovery device for a fluid machine according to the present invention will be described in detail with reference to the drawings by way of examples.

図1は本発明の実施例1を示すバイパスエネルギ回収装置を備えた多段遠心ポンプの流体流れ説明図、図2はパワージェネレータの異なった具体例を示す各々の概略構成図である。   FIG. 1 is an explanatory diagram of a fluid flow of a multistage centrifugal pump including a bypass energy recovery device according to a first embodiment of the present invention, and FIG. 2 is a schematic configuration diagram showing different specific examples of a power generator.

図1に示すように、多段遠心ポンプの主軸10上には、中間(センター)ブシュ11を境に吸込口12側に1段から5段のインペラが固設されると共に吐出口13側に、1段から5段のインペラにおける内部流体の流れ方向とは反対の流れ方向となるように、6段から10段のインペラが固設される。   As shown in FIG. 1, on the main shaft 10 of the multi-stage centrifugal pump, 1 to 5 stage impellers are fixed on the suction port 12 side with an intermediate (center) bush 11 as a boundary, and on the discharge port 13 side, The 6th to 10th stage impellers are fixed so that the flow direction is opposite to the flow direction of the internal fluid in the 1st to 5th stage impellers.

そして、吸込口12から1段→10段のインペラを経て吐出口13に至る流体の主流路14(これは、1段から5段のインペラ間の第1流路14aと6段から10段のインペラ間の第2流路14とからなる)の他に、10段のインペラから5段のインペラへと内部流体を戻す戻り流路15が中間ブシュ11に形成されると共に、6段のインペラ手前からつり合いブシュ16に形成された戻り流路17を経て1段のインペラへ内部流体を戻すつり合い管(バイパス流路)18が設けられる。更に、前記主流路14における10段のインペラ下流側と1段のインペラ上流側とを結ぶ内部バイパス用配管(バイパス流路)19が設けられる。 The main flow path 14 of fluid from the suction port 12 to the discharge port 13 through the first stage → 10th stage impeller (this is the first flow path 14a between the first stage to the fifth stage impeller and the sixth stage to the 10th stage In addition to the second flow path 14b between the impellers, a return flow path 15 for returning the internal fluid from the 10-stage impeller to the 5-stage impeller is formed in the intermediate bush 11, and the 6-stage impeller A counterbalance pipe (bypass channel) 18 for returning the internal fluid to the first stage impeller through a return channel 17 formed in the counterbalance bush 16 from the front is provided. Furthermore, an internal bypass pipe (bypass flow path) 19 that connects the 10th stage impeller downstream side and the 1st stage impeller upstream side in the main flow path 14 is provided.

前記内部バイパス用配管19に、圧損機構兼圧損エネルギ回収手段としてのパワージェネレータ20が介装される。このパワージェネレータ20としては、図2に示すように、フランシス型のランナー21aを備えた水車22aで発電機23aを駆動するもの(図2の(a))、プロペラ型のランナー21bを備えた水車22bで発電機23bを駆動するもの(図2の(b))やフランシス型のランナー21a(プロペラ型のランナー21bでも良い)を備えた二つの水車22aをタンデム等に繋いで発電機23aを駆動するもの(図2の(a))等を用いると好適である。   A power generator 20 as a pressure loss mechanism / pressure loss energy recovery means is interposed in the internal bypass pipe 19. As this power generator 20, as shown in FIG. 2, a generator 22a is driven by a turbine 22a provided with a Francis-type runner 21a (FIG. 2A), and a turbine provided with a propeller-type runner 21b. The generator 23a is driven by connecting two turbines 22a, which are equipped with a 22b to drive the generator 23b ((b) of FIG. 2) or a Francis-type runner 21a (or a propeller-type runner 21b) to a tandem or the like. It is preferable to use what to do ((a) in FIG. 2).

このように構成されるため、多段遠心ポンプの低流量域運転時には、先ず、プラントシステム側からポンプ流量Qが主流路14に対し給排される。そして、1段から5段のインペラ間の主流路14(第1流路14a)には、前記ポンプ流量Qに加えて戻り流路17及びつり合い管18からのバイパス流量q1と内部バイパス用配管19からのバイパス流量q3とが増加されて流れる。一方、6段から10段のインペラ間の主流路14(第2流路14b)には、前記ポンプ流量Qに加えて戻り流路15からのバイパス流量q2と内部バイパス用配管19からのバイパス流量q3とが増加されて流れる。   Since it is configured in this way, when the multistage centrifugal pump is operated in a low flow rate region, first, the pump flow rate Q is supplied to and discharged from the main flow path 14 from the plant system side. In addition to the pump flow rate Q, the bypass flow rate q1 from the return flow channel 17 and the balance pipe 18 and the internal bypass pipe 19 are provided in the main flow path 14 (first flow path 14a) between the first to fifth impellers. And the bypass flow rate q3 from is increased. On the other hand, in the main flow path 14 (second flow path 14b) between the 6th to 10th impellers, in addition to the pump flow Q, the bypass flow q2 from the return flow path 15 and the bypass flow from the internal bypass pipe 19 are used. q3 is increased and flows.

これにより、ポンプ流量Qを増加させることなくポンプ内部でのバイパス流量q1,q2,q3を増加させることで、1段から10段のインペラにおける実質的な流量増加が図られ、低流量域運転時の異常圧力脈動を効果的に低減させられる。即ち、ポンプ実質流量を増加させることによりプラントシステム側への悪影響をなくすことができるのである。また、戻り流路17及びつり合い管18からのバイパス流量q1により、1段から10段のインペラに作用する軸方向スラストをバランスさせられる。   As a result, by increasing the bypass flow rates q1, q2, and q3 inside the pump without increasing the pump flow rate Q, a substantial increase in the flow rate in the 1st to 10th stage impellers can be achieved. The abnormal pressure pulsation can be effectively reduced. That is, the adverse effect on the plant system side can be eliminated by increasing the pump actual flow rate. Further, the axial thrust acting on the first to tenth impellers can be balanced by the bypass flow rate q1 from the return flow path 17 and the balance pipe 18.

そして、本実施例では、内部バイパス用配管19に圧損機構兼圧損エネルギ回収手段としてのパワージェネレータ20を介装したので、圧損機構における圧損エネルギをパワージェネレータ20により回収することができ、圧損機構における圧損分の流体エネルギを有効活用して多段遠心ポンプのトータル効率を向上させることができる。   In this embodiment, since the power generator 20 as the pressure loss mechanism / pressure loss energy recovery means is interposed in the internal bypass pipe 19, the pressure loss energy in the pressure loss mechanism can be recovered by the power generator 20, and in the pressure loss mechanism The total efficiency of the multistage centrifugal pump can be improved by effectively utilizing the fluid energy corresponding to the pressure loss.

図3Aは本発明の実施例2を示すバイパスエネルギ回収装置を備えた多段遠心ポンプの流体流れ説明図である。   FIG. 3A is an explanatory diagram of fluid flow of a multistage centrifugal pump including a bypass energy recovery device according to Embodiment 2 of the present invention.

これは、実施例1における内部バイパス用配管19に、フランシス型のランナー25a(プロペラ型のランナーでも良い)を備えたハイドロタービン(圧損機構兼圧損エネルギ回収手段)25を、主軸10に直接連携させて配置した例であり、その他の構成は図1と同様なので図1と同一部材には同一符号を付して重複する説明は省略する。   This is because a hydro turbine (pressure loss mechanism / pressure loss energy recovery means) 25 provided with a Francis type runner 25a (propeller type runner) may be directly linked to the main shaft 10 in the internal bypass pipe 19 in the first embodiment. The other components are the same as those shown in FIG. 1, and the same members as those shown in FIG.

これによれば、圧損機構における圧損エネルギをハイドロタービン25により軸動力として回収することができ、実施例1と同様の作用効果が得られる。   According to this, the pressure loss energy in the pressure loss mechanism can be recovered as shaft power by the hydro turbine 25, and the same effect as the first embodiment can be obtained.

図3Bは本発明の実施例3を示すバイパスエネルギ回収装置を備えた多段遠心ポンプの流体流れ説明図である。   FIG. 3B is a fluid flow explanatory diagram of a multistage centrifugal pump including a bypass energy recovery device according to a third embodiment of the present invention.

これは、実施例1における内部バイパス用配管19に、フランシス型のランナー25a(プロペラ型のランナーでも良い)を備えた例えば二つの(一つ以上であれば良い)ハイドロタービン(圧損機構兼圧損エネルギ回収手段)25を回転軸25b上にタンデムに繋いで配置し、この回転軸25bをギアボックス(変速機)26を介して主軸10に間接的に連携させた例であり、その他の構成は図1と同様なので図1と同一部材には同一符号を付して重複する説明は省略する。   This is because, for example, two (or more) hydroturbines (pressure loss mechanism and pressure loss energy) provided with the Francis type runner 25a (may be a propeller type runner) in the internal bypass pipe 19 in the first embodiment. (Collecting means) 25 is arranged in tandem on the rotary shaft 25b, and this rotary shaft 25b is indirectly linked to the main shaft 10 via a gear box (transmission) 26. 1, the same members as those in FIG.

これによれば、圧損機構における圧損エネルギを例えば二つの(一つ以上であれば良い)ハイドロタービン(圧損機構兼圧損エネルギ回収手段)25により軸動力として回収することができ、実施例1と同様の作用効果が得られる。   According to this, the pressure loss energy in the pressure loss mechanism can be recovered as shaft power by, for example, two (one or more) hydro turbines (pressure loss mechanism / pressure loss energy recovery means) 25, as in the first embodiment. The following effects can be obtained.

図4は本発明の実施例4を示すバイパスエネルギ回収装置を備えた多段遠心ポンプの要部断面図である。   FIG. 4 is a cross-sectional view of a main part of a multistage centrifugal pump equipped with a bypass energy recovery device showing Embodiment 4 of the present invention.

これは、中間ケーシング39と吐出ケーシング40内に横架された主軸30上に複数のインペラ31とこれらインペラ31に作用する軸方向スラストをバランスするためのバランスディスク32を固定してなる多段遠心ポンプにおいて、バランスディスク32のディスク隙間(圧力調整部水路:バイパス流路)35に圧損エネルギ回収手段としてのハイドロタービン(羽根車)38を設置した例である。   This is a multistage centrifugal pump in which a plurality of impellers 31 and a balance disk 32 for balancing axial thrust acting on the impellers 31 are fixed on a main shaft 30 that is horizontally mounted in an intermediate casing 39 and a discharge casing 40. In this example, a hydro turbine (impeller) 38 as pressure loss energy recovery means is installed in a disk gap (pressure adjusting unit water channel: bypass channel) 35 of the balance disk 32.

具体的には、多段遠心ポンプの運転時、ディスク隙間35手前の高圧側室34には最終段のインペラ31の背側からインペラ31によって圧力P1から圧力P2へ昇圧された液体がシール部33で圧力P3に減圧されて供給される。図示例では、バランスディスク32の高圧側に高圧側室34内の液体を付勢してその圧力P3を上昇させる複数の羽根37を設けているがこれは特に設けなくても良い。そして、この圧力P3の液体の一部はディスク隙間35を通りバランスディスク32の外周面のシール部36を流過することにより圧力P0に減圧されて低圧側室42内に入り、バランス管41を経て流出する。 Specifically, when the multistage centrifugal pump is in operation, the high pressure side chamber 34 in front of the disk gap 35 is filled with the liquid pressurized from the pressure P 1 to the pressure P 2 by the impeller 31 from the back side of the final stage impeller 31. in supplied pressure is reduced to a pressure P 3. In the illustrated example, a plurality of blades 37 are provided on the high pressure side of the balance disk 32 to urge the liquid in the high pressure side chamber 34 to increase its pressure P 3 , but this need not be provided. A part of the liquid having the pressure P 3 passes through the disk gap 35 and flows through the seal portion 36 on the outer peripheral surface of the balance disk 32 to be reduced to the pressure P 0 and enter the low pressure side chamber 42. It flows out through.

これによって、インペラ31の背側の圧力P2によりインペラ31に作用する吸込側へのスラスト力が高圧側室34内の圧力P3によりバランスディスク32に作用する低圧側室42へのスラスト力とバランスさせられる。 Thereby, the thrust force to the suction side acting on the impeller 31 by the pressure P 2 on the back side of the impeller 31 is balanced with the thrust force to the low pressure side chamber 42 acting on the balance disk 32 by the pressure P 3 in the high pressure side chamber 34. It is done.

そして、本実施例では、圧損機構を構成するディスク隙間35に圧損エネルギ回収手段としてのハイドロタービン38を設置したので、圧損機構における圧損エネルギをハイドロタービン38により軸動力として回収することができ、圧損機構における圧損分の流体エネルギを有効活用して多段遠心ポンプのトータル効率を向上させることができる。   In this embodiment, since the hydro turbine 38 as pressure loss energy recovery means is installed in the disk gap 35 constituting the pressure loss mechanism, the pressure loss energy in the pressure loss mechanism can be recovered as shaft power by the hydro turbine 38. The total efficiency of the multistage centrifugal pump can be improved by effectively utilizing the fluid energy corresponding to the pressure loss in the mechanism.

尚、ハイドロタービン38のおける羽根は、軸動力を回収するため、ロータ側に単純に遠心方向へ取り付けるだけでは効果は得られないことから、傾けるか又は捩じられるかしてトルクを回収できる羽根角度にすることは言うまでもない。また、ディスク隙間35及びハイドロタービン38の構造は、図示例に限定されず、圧損機構と圧損エネルギ回収手段が達成されれば種々の構造変更が可能である。   In addition, since the blade | wing in the hydro turbine 38 collect | recovers shaft power, since it cannot obtain an effect only by attaching it to a rotor side simply to a centrifugal direction, it is the blade | wing which can collect | recover torque by inclining or twisting. Needless to say, the angle. Further, the structures of the disk gap 35 and the hydro turbine 38 are not limited to the illustrated examples, and various structures can be changed as long as the pressure loss mechanism and the pressure loss energy recovery means are achieved.

尚、本発明は上記各実施例に限定されず、本発明の要旨を逸脱しない範囲で各種変更が可能であることはいうまでもない。例えば、パワージェネレータは、電気・動力など種類は問わない。   Needless to say, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention. For example, the power generator may be of any type such as electricity and power.

本発明に係る流体機械のバイパスエネルギ回収装置は、ポンプ・水車に限らず、圧縮機・タービン等の流体(空気)機械に適用すると好適である。   The bypass energy recovery device for a fluid machine according to the present invention is not limited to a pump and a water turbine, and is preferably applied to a fluid (air) machine such as a compressor and a turbine.

10 主軸
11 中間ブシュ
12 吸込口
13 吐出口
14 主流路
14a 第1流路
14b 第2流路
15 戻り流路
16 つり合いブシュ
17 戻り流路
18 つり合い管(バイパス流路)
19 内部バイパス用配管(バイパス流路)
20 パワージェネレータ(圧損機構兼圧損エネルギ回収手段)
21a フランシス型のランナー
21b プロペラ型のランナー
22a,22b 水車
23a,23b 発電機
25 ハイドロタービン(圧損機構兼圧損エネルギ回収手段)
25a フランシス型のランナー
26 ギアボックス(変速機)
30 主軸
31 インペラ
32 バランスディスク
33 シール部
34 高圧側室
35 ディスク隙間(圧損機構:バイパス流路)
36 シール部
37 羽根
38 ハイドロタービン(圧損エネルギ回収手段)
39 中間ケーシング
40 吐出ケーシング
41 バランス管
42 低圧側室
DESCRIPTION OF SYMBOLS 10 Main axis | shaft 11 Intermediate bush 12 Suction port 13 Discharge port 14 Main flow path 14a 1st flow path 14b 2nd flow path 15 Return flow path 16 Balance bush 17 Return flow path 18 Balance pipe (bypass flow path)
19 Internal bypass piping (bypass flow path)
20 Power generator (pressure loss mechanism and pressure loss energy recovery means)
21a Francis type runner 21b Propeller type runner 22a, 22b Water wheel 23a, 23b Generator 25 Hydro turbine (pressure loss mechanism and pressure loss energy recovery means)
25a Francis-type runner 26 Gearbox (transmission)
30 Spindle 31 Impeller 32 Balance disc 33 Sealing part 34 High-pressure side chamber 35 Disc clearance (pressure loss mechanism: bypass flow path)
36 Seal part 37 Blade 38 Hydro turbine (pressure loss energy recovery means)
39 Intermediate casing 40 Discharge casing 41 Balance pipe 42 Low pressure side chamber

Claims (1)

主流路の高圧側から分岐して低圧側に通じるバイパス流路に圧損機構を備えた流体機械において、
前記バイパス流路に、前記圧損機構における圧損エネルギを回収するための圧損エネルギ回収手段を設け、
前記流体機械と前記圧損エネルギ回収手段が別軸であり、
前記圧損エネルギ回収手段は、遠心ポンプにおけるバランスディスクの圧力調整部水路に設置したハイドロタービンである
ことを特徴とする流体機械のバイパスエネルギ回収装置。
In a fluid machine having a pressure loss mechanism in a bypass channel that branches from the high pressure side of the main channel and leads to the low pressure side,
A pressure loss energy recovery means for recovering pressure loss energy in the pressure loss mechanism is provided in the bypass flow path,
The fluid machine and the pressure loss energy recovery means Ri another axial der,
The bypass energy recovery device for a fluid machine, wherein the pressure loss energy recovery means is a hydro turbine installed in a pressure adjustment section water channel of a balance disk in a centrifugal pump .
JP2011011525A 2011-01-24 2011-01-24 Bypass energy recovery device for fluid machinery Expired - Fee Related JP5839803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011525A JP5839803B2 (en) 2011-01-24 2011-01-24 Bypass energy recovery device for fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011525A JP5839803B2 (en) 2011-01-24 2011-01-24 Bypass energy recovery device for fluid machinery

Publications (2)

Publication Number Publication Date
JP2012154186A JP2012154186A (en) 2012-08-16
JP5839803B2 true JP5839803B2 (en) 2016-01-06

Family

ID=46836193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011525A Expired - Fee Related JP5839803B2 (en) 2011-01-24 2011-01-24 Bypass energy recovery device for fluid machinery

Country Status (1)

Country Link
JP (1) JP5839803B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192877A (en) * 1983-04-15 1984-11-01 Nippon Steel Corp Water turbine for power retrieval
JPS6291693A (en) * 1985-10-16 1987-04-27 Nikkiso Co Ltd Power recovery-type canning motor pump
IT1234116B (en) * 1989-06-07 1992-04-29 Novax S R L SELF-PRIMING CENTRIFUGAL PUMP.
DE4416497C1 (en) * 1994-05-10 1995-01-12 Gutehoffnungshuette Man Geared multi-shaft turbo-compressor and geared multi-shaft radial expander
JPH10339156A (en) * 1997-06-05 1998-12-22 Sanwa Seiki Co Ltd Power recovering device
DE60215293T2 (en) * 2002-01-17 2007-05-24 Hitachi, Ltd. Energy collector system and associated operating method

Also Published As

Publication number Publication date
JP2012154186A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
US2648493A (en) Compressor
CN201265547Y (en) Balancing type single-suction horizontal multiple-stage centrifugal pump
CN103291651A (en) Double-stage variable-speed oppositely-rotating axial flow pump flow passage component for water spraying propelling
CN105626540B (en) Sectional multi-stage centrifugal pump
CN203685691U (en) Total-lift double suction pump
CN109578083A (en) A kind of turbomachine and aero-engine
CN205243867U (en) Vortex pump
JP5839803B2 (en) Bypass energy recovery device for fluid machinery
CN108691717B (en) Mixed-flow water turbine with double rotating wheels
CN210343837U (en) Adjustable impeller structure of centrifugal pump
CN100455824C (en) Dynamic regulation method of axial force in multistage centrifugal pump with balance drum to balance axial force
CN109885886B (en) Hydraulic design method for reducing hump of multi-stage pump head curve
CN101846081B (en) Horizontal radial multi-stage centrifugal pump
CN114233684B (en) High-speed high-pressure centrifugal pump
CN104405457B (en) A kind of energy gradient utilization system of back pressure turbine heat supply
CN201090516Y (en) Middle opening single suction multilevel diffuser centrifugal pump
CN111120414B (en) Axial force balance structure and method for large-flow high-power precompression pump
CN101676567A (en) Symmetrical balance centrifugal double horizontal pump
CN201526512U (en) Slag slurry pump blade fluid power balance combined seal
CN103994097A (en) Double-suction impeller and double-suction vortex pump
CN204238990U (en) A kind of energy gradient utilization system of back pressure turbine heat supply
JP5260577B2 (en) Double casing pump and method for adjusting performance of double casing pump
JP5550562B2 (en) HYDRAULIC DEVICE, ENERGY CONVERSION EQUIPMENT PROVIDED WITH THE DEVICE, AND METHOD OF USING HYDRODYNAMIC LABYLINS BEARING IN THE DEVICE
CN202348765U (en) Multi-stage canned motor pump with back-to-back impellers
CN204327291U (en) Gas turbine electric lubricating oil oil feed pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R151 Written notification of patent or utility model registration

Ref document number: 5839803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees