JP5839310B1 - Heat shrinkable tube with tearability - Google Patents

Heat shrinkable tube with tearability Download PDF

Info

Publication number
JP5839310B1
JP5839310B1 JP2015052533A JP2015052533A JP5839310B1 JP 5839310 B1 JP5839310 B1 JP 5839310B1 JP 2015052533 A JP2015052533 A JP 2015052533A JP 2015052533 A JP2015052533 A JP 2015052533A JP 5839310 B1 JP5839310 B1 JP 5839310B1
Authority
JP
Japan
Prior art keywords
tube
entanglement
molecules
fep
tearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015052533A
Other languages
Japanese (ja)
Other versions
JP2016169856A (en
Inventor
鈴木 雅弘
雅弘 鈴木
衡平 由利
衡平 由利
智世 大久保
智世 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP2015052533A priority Critical patent/JP5839310B1/en
Priority to EP15192342.2A priority patent/EP3050696B1/en
Priority to US14/927,572 priority patent/US9464149B2/en
Application granted granted Critical
Publication of JP5839310B1 publication Critical patent/JP5839310B1/en
Priority to CN201610065436.8A priority patent/CN105840920B/en
Publication of JP2016169856A publication Critical patent/JP2016169856A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/041Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • B29C48/023Extruding materials comprising incompatible ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/22Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes
    • B29C55/24Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes radial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/08Making preforms having internal stresses, e.g. plastic memory by stretching tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/42Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/005Hoses, i.e. flexible

Abstract

【課題】フッ素樹脂製の優れた引き裂き直進性を有する低温での熱収縮率が高い熱収縮チューブを提供する。【解決手段】ベース樹脂として、少なくともフッ素樹脂を、含むチューブであって、200℃にて35%以上収縮させた後の、チューブ長手方向の断面において観察される、高分子の絡み合い単位の太さが、1〜9μmである。分子の絡み合い強度を制御するには、主に2つの方法がある。ひとつは、引き裂き性を向上させるための添加剤の分散制御による絡み合い強度の制御、もうひとつは、ベース樹脂の分子同士の絡み合い制御による絡み合い強度の制御である。【選択図】図3The present invention provides a heat shrinkable tube made of a fluororesin having excellent tear straightness and high heat shrinkage at low temperatures. A tube including at least a fluororesin as a base resin, the thickness of a polymer entanglement unit observed in a cross section in the tube longitudinal direction after being contracted by 35% or more at 200 ° C. Is 1 to 9 μm. There are two main methods for controlling the entanglement strength of molecules. One is the control of the entanglement strength by controlling the dispersion of the additive for improving the tearing property, and the other is the control of the entanglement strength by controlling the entanglement between the molecules of the base resin. [Selection] Figure 3

Description

フッ素樹脂製の引き裂き性を有する熱収縮チューブに関するものであり、特にチューブの材質が熱可塑性フッ素樹脂からなる熱収縮性を有する引き裂きチューブに関するものである。   The present invention relates to a heat-shrinkable tube made of a fluororesin and having a tearability, and more particularly, to a tearable tube having a heat-shrinkability made of a thermoplastic fluororesin.

引き裂き性を有するチューブは、各種物品の使用時までの保護部材として利用されている。なかでもフッ素樹脂製の引き裂きチューブは、炭化水素系合成樹脂製の引き裂きチューブでは得られない、フッ素樹脂が有する耐熱性、耐薬品性、撥水撥油性、非粘着性、自己潤滑性などの特性を有している。そこで、これらの特性を利用して、精密機器、電子部品などの保護用チューブ、あるいはカテーテル、ガイドワイヤーなどを体内に導入するための医療機器導入用チューブ、カテーテルなどの組み立て治具として使用され、不要になると、チューブが引き裂かれて除去される。とくに、熱収縮性を有する引き裂きチューブは、内部の物品の保護を確実に行うことが可能であるが、熱収縮チューブと内部の物品との密着を十分なものとするためには熱収縮率が大きいことが必要である。また、特殊な器具を使用しなくても容易に引き裂きが可能であることが求められている。従来の引き裂きチューブでは、チューブ表面の全長にわたって長手方向に切れ目を入れたもので,決して容易に引き裂きができるものではなかった。   The tube which has tearability is utilized as a protection member until the time of use of various articles | goods. Among them, the tear tube made of fluororesin cannot be obtained with a tear tube made of hydrocarbon synthetic resin, and has such characteristics as heat resistance, chemical resistance, water and oil repellency, non-adhesiveness, and self-lubricating properties. have. Therefore, using these characteristics, it is used as an assembly tool for tubes such as precision instruments, protective tubes for electronic components, or catheters for introducing medical devices for introducing catheters, guide wires, etc., catheters, When no longer needed, the tube is torn and removed. In particular, the tear tube having heat shrinkability can reliably protect the internal article, but the heat shrink rate is sufficient to ensure sufficient adhesion between the heat shrink tube and the internal article. It needs to be big. Further, it is required that tearing can be easily performed without using a special instrument. The conventional tearing tube has a long cut along the entire length of the tube surface, and it has never been easy to tear.

そこで、WO2013/077452号公報では、過度の切れ目を必要とせず引き裂きができるチューブで、熱収縮率を高めたチューブが提案されている。
しかし、用途によって、必要とされるチューブ径が細くなると、チューブを引き裂くときの引き裂き直進性が十分ではないという課題が生じる。チューブ径が細いと、チューブを引き裂くときのチューブを左右に切り開く(引き裂き)力を、左右均等にチューブに加えることは困難である。引き裂き力が不均一に加えられる場合であっても、チューブの全長に亘って確実に引き裂くためには、優れた引き裂き直進性が必要である。また、カテーテルなどの組み立て治具として使用される場合、引き裂き直進性以外にも、高い熱収縮性が必要であると同時に、組み立てたカテーテルの完成品の寸法精度に影響するため、収縮させたときの寸法精度が要求される。収縮したときの内径、長さ共に数%の誤差が大きな問題となる。
In view of this, WO2013 / 077452 proposes a tube that can be torn without requiring an excessive break and has a high heat shrinkage rate.
However, if the required tube diameter is reduced depending on the application, there arises a problem that the straightness of tearing when the tube is torn is not sufficient. When the tube diameter is small, it is difficult to apply the force to open and tear the tube left and right (tearing) evenly to the left and right. Even in the case where the tearing force is applied unevenly, in order to reliably tear the entire length of the tube, excellent straightness of tearing is required. Also, when used as an assembly tool for catheters, etc., it must have high heat shrinkability in addition to straight tearability, and at the same time, it affects the dimensional accuracy of the finished assembled catheter. Dimensional accuracy is required. An error of several percent for both the inner diameter and length when contracted is a serious problem.

WO2013/077452号公報WO2013 / 077452 Publication

上記の課題を鑑みて、本発明の目的は、200℃で35%以上(より好ましい形態としては40%以上の、更に好ましい形態としては44%以上の、特に好ましい形態としては45%以上の)の熱収縮性を有し、収縮させた後のチューブを引き裂いたときの引き裂き直進性に優れるチューブを提供することである。   In view of the above problems, the object of the present invention is to achieve 35% or more at 200 ° C. (40% or more as a more preferable form, 44% or more as a more preferable form, and 45% or more as a particularly preferable form). It is an object of the present invention to provide a tube that has the following heat shrinkability and is excellent in the straightness of tearing when the tube after being contracted is torn.

前記目的を達成するため検討した結果、チューブを構成する高分子の絡み合い単位の太さが特定の範囲にあるとき、優れた引き裂き直進性を有することを見出し、本発明を完成するに至った。すなわち、本発明は、ベース樹脂として、少なくともフッ素樹脂を含むチューブであって、200℃にて35%以上収縮させた後の、長手方向の断面において観察される、高分子の絡み合いの太さが、1μm〜9μmであることを特徴とする引き裂き性を有する熱収縮チューブに関する。   As a result of studies to achieve the above object, the inventors have found that when the thickness of the entanglement unit of the polymer constituting the tube is in a specific range, the present invention has been completed. That is, the present invention is a tube containing at least a fluororesin as a base resin, and the entanglement thickness of the polymer observed in a cross section in the longitudinal direction after being contracted by 35% or more at 200 ° C. It is related with the heat-shrinkable tube which has tearability characterized by being 1 micrometer-9 micrometers.

本発明のチューブは引き裂き直進性に優れるため、チューブ除去時に引き裂き力を均等にかけ難い、細径のチューブでも、容易に引き裂いて除去することが可能である。   Since the tube of the present invention is excellent in straight tearing property, it is difficult to apply a tearing force evenly when removing the tube, and even a small diameter tube can be easily torn and removed.

本発明のチューブの製造工程の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing process of the tube of this invention. 本発明のチューブの断面の観察方法を示す図である。It is a figure which shows the observation method of the cross section of the tube of this invention. 200℃にて35%以上収縮させた本発明のチューブの長手方向断面の写真である。It is a photograph of the longitudinal section of the tube of the present invention shrunk by 35% or more at 200 ° C. チューブ拡張に使用する拡張治具の断面概略図である。(a)はチューブ両端を固定するタイプ、(b)は片端のみ固定するタイプ、の拡張治具を示す。It is a section schematic diagram of an expansion jig used for tube expansion. (A) shows an expansion jig of a type in which both ends of the tube are fixed, and (b) shows a type in which only one end is fixed. ETFE分散粒子の分散制御による本発明のチューブを200℃にて35%以上収縮させたときの、(a)はチューブ内の分子の状態を模式的に表した図、(b)は(a)が引き裂けるときの伝播の経路を表した図である。(A) is a diagram schematically showing the state of molecules in the tube when the tube of the present invention is contracted by 35% or more at 200 ° C. by dispersion control of ETFE dispersed particles, and (b) is (a). It is a figure showing the path of propagation when a torn. ダルメージスクリューの先端ダルメージの形状の一例を示す概略図である。It is the schematic which shows an example of the shape of the front-end | tip dalmage of a dalmage screw. FEP分子同士の絡み合い制御による本発明のチューブを200℃にて35%以上収縮させたときの、(a)はチューブ内の分子の状態を模式的に表した図、(b)は(a)が引き裂けるときの伝播の経路を表した図である。When the tube of the present invention is contracted by 35% or more at 200 ° C. by controlling the entanglement between FEP molecules, (a) is a diagram schematically showing the state of the molecules in the tube, and (b) is (a). It is a figure showing the path of propagation when a torn. 図2に示す本発明のチューブのx-y断面を模式的に表した図である。(a)は、ETFE分散粒子の分散制御による分子の絡み合い強度を制御したチューブ、(b)は、FEP分子同士の絡み合いの制御による分子の絡み合い強度を制御したチューブの一部の模式図である。It is the figure which represented typically the xy cross section of the tube of this invention shown in FIG. (A) is the tube which controlled the entanglement intensity | strength of the molecule | numerator by dispersion | distribution control of an ETFE dispersion particle, (b) is a schematic diagram of a part of the tube which controlled the entanglement intensity | strength of the molecule | numerator by control of the entanglement of FEP molecules. . 2軸押出機スクリューのギャップを説明する図である。It is a figure explaining the gap of a twin screw extruder screw.

高分子材料は、それを構成する分子の分子鎖が毛糸だま状に絡まった状態で存在している。高分子材料を成形した成形体においても、この分子の絡み合いの状態を維持しており、成形体の物性は、分子の絡み合いの構造に大きく影響される。本発明は、自社出願の特許文献1を改良した発明であり、チューブを構成する分子の絡み合いの強度の制御によって、優れた引き裂き直進性を有する熱収縮チューブを提供するものである。本発明の引き裂き直進性に優れる熱収縮チューブは、200℃にて35%以上収縮させた後の、チューブ長手方向の断面において観察される、高分子の絡み合い単位の太さが、1μm〜9μmであることを特徴としており、40%以上収縮するものの方がより好ましく、更に44%以上が好ましく、特に45%以上が好ましい。細いチューブであるほど、収縮率が出にくくなることから、チューブの外径が1.40mm以下で上記収縮率を達成することが好ましい。   The polymer material exists in a state in which the molecular chains of the molecules constituting the polymer material are entangled in the shape of a yarn. Even in a molded body obtained by molding a polymer material, the state of molecular entanglement is maintained, and the physical properties of the molded body are greatly influenced by the structure of molecular entanglement. The present invention is an invention obtained by improving Patent Document 1 filed in-house, and provides a heat-shrinkable tube having excellent tearing straightness by controlling the strength of entanglement of molecules constituting the tube. The heat shrinkable tube excellent in tearing straightness of the present invention has a polymer entanglement unit thickness of 1 μm to 9 μm observed in a cross section in the tube longitudinal direction after being shrunk by 35% or more at 200 ° C. It is characterized by the fact that it shrinks by 40% or more, more preferably 44% or more, and particularly preferably 45% or more. As the tube becomes thinner, the shrinkage rate is less likely to occur. Therefore, it is preferable to achieve the shrinkage rate when the outer diameter of the tube is 1.40 mm or less.

本発明の引き裂き性を有する熱収縮チューブは、一例として図1に示す工程によって作成される。本発明の特徴を有する熱収縮チューブを作製するには、後述するように、分子の絡み合い強度を制御する必要がある。分子の絡み合い強度を制御するには、主に2つの方法がある。ひとつは、引き裂き性を向上させるための添加剤の分散制御による絡み合い強度の制御、もうひとつは、ベース樹脂の分子同士の絡み合い制御による絡み合い強度の制御である。   The tearable heat-shrinkable tube of the present invention is produced by the process shown in FIG. 1 as an example. In order to produce a heat-shrinkable tube having the characteristics of the present invention, it is necessary to control the entanglement strength of molecules as will be described later. There are two main methods for controlling the entanglement strength of molecules. One is the control of the entanglement strength by controlling the dispersion of the additive for improving the tearing property, and the other is the control of the entanglement strength by controlling the entanglement between the molecules of the base resin.

以下に、図を用いて、分子の絡み合い構造によるチューブの引き裂き性への影響を説明する。 Hereinafter, the influence on the tearability of the tube by the molecular entanglement structure will be described with reference to the drawings.

図2において、熱収縮チューブの断面の観察方法を説明する。ここで、本発明のチューブは引き裂き性チューブなので、引き裂くことによってその断面を観察することができる。チューブ1を引き裂くときには、チューブの中心に入れた切り込み11に、切り込みを広げる方向の引っ張りの力を加えて、z軸方向(図2ではチューブ長手方向をz軸方向としている)へ引き裂く。一例として、z軸方向へ引き裂いたときのz軸を含む断面の写真を図3に示す。   In FIG. 2, a method for observing the cross section of the heat-shrinkable tube will be described. Here, since the tube of the present invention is a tearable tube, its cross section can be observed by tearing. When the tube 1 is torn, a pulling force is applied to the notch 11 inserted in the center of the tube so as to widen the notch, and the tube 1 is torn in the z-axis direction (the longitudinal direction of the tube is the z-axis direction in FIG. 2). As an example, a photograph of a cross section including the z-axis when torn in the z-axis direction is shown in FIG.

引き裂き性を向上させるための添加剤の分散制御による絡み合い強度を制御する方法を以下に示す。   A method for controlling the entanglement strength by controlling the dispersion of the additive for improving the tearability will be described below.

本発明の引き裂き性を有する熱収縮チューブには、ベース樹脂として、少なくともフッ素樹脂を用いる。以下、ベース樹脂として、テトラフルオロエチレン及びヘキサフルオロプロピレンを構成モノマーとして含む共重合体(以後、「FEP」と言う)を用いた例により、本発明を説明する。引き裂き性が足りない場合には、引き裂き性を向上させる添加剤として、ベース樹脂と非相溶の高分子、またはフィラーを、ベース樹脂に添加することができる。   In the heat-shrinkable tube having tearability according to the present invention, at least a fluororesin is used as a base resin. Hereinafter, the present invention will be described with reference to an example in which a copolymer containing tetrafluoroethylene and hexafluoropropylene as constituent monomers (hereinafter referred to as “FEP”) is used as the base resin. When the tearability is insufficient, a polymer or filler incompatible with the base resin can be added to the base resin as an additive for improving the tearability.

ベース樹脂と非相溶の高分子として、例えばテトラフルオロエチレン−エチレン共重合体(以後、「ETFE」と言う)、液晶ポリマー、ポリイミド、ポリエーテルエーテルケトン、ポリアミドなどが挙げられる。また、フィラーとして、例えば各種無機フィラー、ガラス繊維、炭素繊維などが挙げられる。FEPに添加する引き裂き性を向上させる添加剤の添加量は、FEPを含めた全体量の20wt%以下が好ましい。添加量が20wt%を超えると、チューブの拡張率を高くすることができず、40%以上の高い熱収縮率が得られない。   Examples of the polymer incompatible with the base resin include tetrafluoroethylene-ethylene copolymer (hereinafter referred to as “ETFE”), liquid crystal polymer, polyimide, polyetheretherketone, and polyamide. Examples of the filler include various inorganic fillers, glass fibers, and carbon fibers. The addition amount of the additive for improving the tearability added to FEP is preferably 20 wt% or less of the total amount including FEP. When the addition amount exceeds 20 wt%, the expansion rate of the tube cannot be increased, and a high heat shrinkage rate of 40% or more cannot be obtained.

本発明の一態様として、ベース樹脂のFEPに、引き裂き性を向上させる添加剤としてETFEを使用したチューブを例にして、以下に説明する。   As an embodiment of the present invention, a tube using ETFE as an additive for improving tearability in the FEP of the base resin will be described below as an example.

チューブは図1に示す工程で成形される。FEPにETFEを分散させるために用いる二軸押出機は、ETFEを微細に分散(以後、「微分散」という)させるために、スクリューのパターンとギャップを調整する。図9に示すように、ギャップ8とは、スクリュー7の山部の間隔をいう。スクリューのパターンには滞留部を設けることが好ましい。これを単軸押出機でチューブに成形する。成形したチューブは、図4(a)に示す拡張治具2を用いて拡張する。チューブ1を、外径を規制するためのパイプ(以後、「外径規制管21」と言う)に通し、チューブ1の両端を、外径規制管21の両端にある封止治具22にセットして密封する。チューブをセットした拡張治具2を加熱しながら、圧縮気体を注入口23から注入し、チューブ1の内部を加圧して径方向へ拡張する。   The tube is formed by the process shown in FIG. A twin screw extruder used to disperse ETFE in FEP adjusts the screw pattern and gap in order to finely disperse ETFE (hereinafter referred to as “fine dispersion”). As shown in FIG. 9, the gap 8 refers to the interval between the crests of the screw 7. It is preferable to provide a retention part in the screw pattern. This is formed into a tube with a single screw extruder. The formed tube is expanded using the expansion jig 2 shown in FIG. The tube 1 is passed through a pipe for regulating the outer diameter (hereinafter referred to as “outer diameter regulating tube 21”), and both ends of the tube 1 are set in sealing jigs 22 at both ends of the outer diameter regulating tube 21. And seal. While heating the expansion jig 2 in which the tube is set, compressed gas is injected from the injection port 23, and the inside of the tube 1 is pressurized and expanded in the radial direction.

上述のように作成したチューブを収縮させたときの、チューブ内の分子の状態を模式的に表したのが図5(a)である。ETFE分散粒子3は、押出成形後にチューブ長手方向(図5ではチューブ長手方向をz軸方向としている)に引き伸ばされた状態で存在しており、次にチューブの内径を拡張することで、FEP4とETFE分散粒子3の界面の一部にボイドが発生する。拡張により発生したボイド部分はFEP4とETFE分散粒子3が解離した状態であり、分子の絡み合いが断たれた状態となっている。ETFEを微分散したことで、チューブ内には多数のボイドが存在することになる。また、FEP分子の絡み合いの状態としては、押出成形後にFEP分子の絡み合った部分4aと分子の絡み合いのない部分4bが存在し、拡張により、FEP分子の絡み合いが解けやすい状態となる。具体的には、フッ素樹脂であるFEPは、分子鎖間の凝集力が低いため分子鎖が滑りやすく、FEP分子の絡み合いが少ない部分では、拡張によって分子鎖がスライドし、FEP分子の絡み合いが解けやすい状態となる。   FIG. 5A schematically shows the state of molecules in the tube when the tube prepared as described above is contracted. The ETFE dispersed particles 3 exist in a state where they are stretched in the longitudinal direction of the tube (in FIG. 5, the longitudinal direction of the tube is the z-axis direction) after extrusion, and then the inner diameter of the tube is expanded to obtain FEP4 and A void is generated at a part of the interface of the ETFE dispersed particles 3. The void portion generated by the expansion is in a state where the FEP4 and the ETFE dispersed particles 3 are dissociated, and the molecular entanglement is cut off. By finely dispersing ETFE, a large number of voids exist in the tube. Further, as the state of entanglement of the FEP molecules, there are a portion 4a in which the FEP molecules are entangled and a portion 4b in which the molecules are not entangled after the extrusion molding, and the expansion makes the state of easy entanglement of the FEP molecules. Specifically, FEP, which is a fluororesin, has low cohesion between molecular chains, so that the molecular chains are slippery, and in the part where the entanglement of the FEP molecules is small, the molecular chains slide due to expansion, and the entanglement of the FEP molecules is released. Easy state.

拡張したチューブを収縮させた後には、FEP4とETFE分散粒子3の界面に発生したボイドの部分の分子の絡み合いが断たれた状態が維持される。前記ボイド部分では、分子の絡み合いが無くなっているため、分子の絡み合いを解くための力(以後、「分子の絡み合い強度」という)は、0である。また、FEP分子の絡み合いが解けやすい状態の部分は、分子の絡み合い強度は0に近い。収縮後のチューブには、この分子の絡み合い強度0の部分と絡み合い強度の弱い部分とに囲まれたFEP分子の束が形成される。このチューブ端部に切り込みを入れ、切り込みを引き裂き起点にして引き裂く力を加えると、FEP分子の束に沿って裂けが伝搬する。図5(b)は、図5(a)が引き裂けるときの伝播の経路5を表している。   After the expanded tube is contracted, the state in which the molecular entanglement of the void portion generated at the interface between the FEP 4 and the ETFE dispersed particle 3 is cut off is maintained. In the void portion, the molecular entanglement disappears, and therefore the force for releasing the molecular entanglement (hereinafter referred to as “molecular entanglement strength”) is zero. Further, in the portion where the entanglement of the FEP molecules is easily undone, the entanglement strength of the molecules is close to zero. In the tube after contraction, a bundle of FEP molecules surrounded by a portion where the entanglement strength is 0 and a portion where the entanglement strength is weak is formed. When a notch is made at the end of the tube and a tearing force is applied using the notch as a starting point for tearing, the tear propagates along the bundle of FEP molecules. FIG. 5B shows the propagation path 5 when FIG. 5A tears.

ETFE分散粒子3の分散の制御によって、分子の絡み合い強度を制御したチューブには、実際に、z軸を含む断面に分子の束を観察することができる(図3(収縮後のチューブ断面))。   In the tube in which the molecular entanglement strength is controlled by controlling the dispersion of the ETFE dispersed particles 3, a bundle of molecules can actually be observed in a cross section including the z axis (FIG. 3 (tube cross section after contraction)). .

以下に、FEP分子同士の絡み合いの制御による分子の絡み合い強度を制御する方法を示す。FEP分子同士の絡み合いを制御するには、主に2つの方法がある。   A method for controlling the entanglement strength of molecules by controlling the entanglement between FEP molecules will be described below. There are mainly two methods for controlling the entanglement between FEP molecules.

一つ目は、ETFEの凝集を抑えながら、押出金型内でFEP分子の絡み合いをほどく方法である。具体的には、ETFEを微分散させたFEPを用い、さらに、ETFEの凝集を抑える方法の一例として、ダルメージスクリューを用いる。ダルメージの形状は、凝集を抑えながら、せん断力をできるだけ低くできるように考慮した形状を選択する。ダルメージスクリューの先端の形状の一例を図6に示す(ダルメージ6)。スクリューからダイ間は、せん断速度を抑える構造の金型を用いる。せん断速度を抑えることでせん断力が抑えられ、スクリュー部で絡み合った分子の絡み合いがほどかれる。   The first is a method of untangling FEP molecules in an extrusion mold while suppressing aggregation of ETFE. Specifically, FEP in which ETFE is finely dispersed is used, and a dalmage screw is used as an example of a method for suppressing aggregation of ETFE. The shape of the dull image is selected in consideration of the ability to reduce the shearing force as much as possible while suppressing aggregation. An example of the shape of the tip of the dalmage screw is shown in FIG. 6 (Dalmage 6). A die having a structure that suppresses the shear rate is used between the screw and the die. By suppressing the shear rate, the shear force is suppressed and the entanglement of the molecules entangled at the screw part is unwound.

二つ目に、押出金型出口で分子の絡み合いを減少させる方法である。具体的には、押出し成形時のDraw-Down-Ratio(DDR)を大きく設定して成形する。DDRは、下式で求められる。
DDRを大きくすることでチューブ径方向の分子の絡み合いを減少させることができる。ここで、フッ素樹脂のチューブ押出成形時には、通常、DDRを3〜15として成形される(日刊工業新聞社刊 フッ素樹脂ハンドブック P250)と記されている。しかし、本発明の引き裂き性を有する熱収縮チューブでは、DDRを50以上とすることが好ましい。このようにして成形したチューブは、径方向にFEP分子の絡み合いが少ない部分が多く存在する。
The second method is to reduce molecular entanglement at the exit of the extrusion die. Specifically, molding is performed with a large Draw-Down-Ratio (DDR) during extrusion molding. DDR is obtained by the following equation.
Increasing DDR can reduce molecular entanglement in the tube radial direction. Here, at the time of fluororesin tube extrusion molding, it is usually written that the DDR is 3 to 15 (Nikkan Kogyo Shimbun Fluoropolymer Handbook P250). However, in the heat shrinkable tube having tearability according to the present invention, the DDR is preferably 50 or more. The tube formed in this way has many portions where the entanglement of FEP molecules is small in the radial direction.

ただし、DDRを大きくして押出成形したチューブを熱収縮チューブに加工した場合、チューブの熱収縮作業時に長手方向に大きく収縮することが知られている。DDRが30のときでも5%以上の収縮が起こってしまうことが知られており(特開平11‐323053)、これまで、DDRを50以上として成形することは行われていない。本発明のチューブにおいても、カテーテルの組み立て治具として使用する場合には長手方向の収縮が大きいことは問題となる。そこで、図4(b)に示した拡張治具2を用いて拡張することで、DDRを大きくして押出成形したチューブでも長手方向に収縮しない熱収縮チューブを得られるように工夫した。チューブ1の一端に可動封止治具24を取り付け、外径規制管21の中に入れる。次に、チューブ1の他端を、外径規制管21にセットされた封止治具22に取り付けてチューブ内部を密封する。チューブをセットした拡張治具2を加熱しながら、圧縮気体を注入口23から注入し、チューブ1の内部を加圧して径方向へ拡張する。可動封止治具24の外径は外径規制管21の内径より小さく、規制管内をスライドして移動可能であり、チューブ長手方向の成形時のひずみを取り除きながら拡張を行うことができる。   However, it is known that when a tube formed by extruding with a large DDR is processed into a heat shrinkable tube, the tube contracts greatly in the longitudinal direction during the heat shrinking operation of the tube. It is known that even when DDR is 30, shrinkage of 5% or more occurs (Japanese Patent Laid-Open No. 11-323053), and until now, molding with DDR of 50 or more has not been performed. Even in the tube of the present invention, when it is used as an assembly jig for a catheter, a large contraction in the longitudinal direction becomes a problem. Therefore, the expansion jig 2 shown in FIG. 4B is expanded so that a heat-shrinkable tube that does not contract in the longitudinal direction can be obtained even if the tube is extruded by increasing the DDR. A movable sealing jig 24 is attached to one end of the tube 1 and placed in the outer diameter regulating tube 21. Next, the other end of the tube 1 is attached to a sealing jig 22 set on the outer diameter regulating tube 21 to seal the inside of the tube. While heating the expansion jig 2 in which the tube is set, compressed gas is injected from the injection port 23, and the inside of the tube 1 is pressurized and expanded in the radial direction. The outer diameter of the movable sealing jig 24 is smaller than the inner diameter of the outer diameter regulating tube 21 and can be slid and moved in the regulating tube, and can be expanded while removing strain during molding in the tube longitudinal direction.

上述のように特に分子の絡み合いの状態を調整して作成したチューブを収縮させたときの、チューブ内の分子の状態を模式的に表したのが図7(a)である。図5(a)と比較して、ETFE分散粒子3の数が少なく、FEP分子の絡み合いがない部分4bが多く存在する。ETFE分散粒子3の分散制御による分子の絡み合い強度の制御のときと比較して、分子の絡み合い強度が0の部分は少なく、分子の絡み合い強度が弱い部分が多く存在することになる。収縮後のチューブには、分子の絡み合い強度の弱い部分と分子の絡み合い強度0の部分に囲まれたFEP分子の束が形成される。図7(b)は、図7(a)が引き裂けるときの裂け伝播の経路5を表している。チューブの引き裂きは、FEP分子の束に沿って伝搬する。   FIG. 7A schematically shows the state of the molecules in the tube when the tube prepared by adjusting the state of molecular entanglement as described above is contracted. Compared to FIG. 5 (a), the number of ETFE dispersed particles 3 is small, and there are many portions 4b that are not entangled with FEP molecules. Compared with the case of controlling the molecular entanglement strength by controlling the dispersion of the ETFE dispersed particles 3, there are few portions where the molecular entanglement strength is 0 and there are many portions where the molecular entanglement strength is weak. In the tube after contraction, a bundle of FEP molecules surrounded by a portion where the molecular entanglement strength is weak and a portion where the molecular entanglement strength is 0 is formed. FIG. 7B shows the path 5 of the tear propagation when FIG. 7A tears. Tube tearing propagates along bundles of FEP molecules.

FEP分子同士の絡み合いの制御による分子の絡み合い強度を制御したチューブにも、ETFE分散粒子の分散制御による分子の絡み合い強度を制御したチューブと同様に、z軸を含む断面に、分子の束が観察される。   Similar to the tube that controls the entanglement strength of molecules by controlling the dispersion of ETFE dispersed particles, a bundle of molecules is observed on the cross-section including the z axis in the tube that controls the entanglement strength of molecules by controlling the entanglement of FEP molecules. Is done.

FEPに添加するETFEの添加量が少ない時、ETFE分散粒子3はまばらにしか存在せず、ほとんどがFEP分子同士の絡み合いの制御のみでFEP分子の束を形成している。このように、添加剤を減らしていっても、または添加剤がなくても、FEP分子の絡み合いの制御による分子の絡み合い強度の制御によって、収縮後のチューブに分子の絡み合い強度の弱い部分に囲まれたFEP分子の束を有する熱収縮チューブを得ることが可能である。   When the amount of ETFE added to the FEP is small, the ETFE dispersed particles 3 exist only sparsely, and most of them form a bundle of FEP molecules only by controlling the entanglement between the FEP molecules. In this way, even when the additive is reduced or without the additive, the entangled strength of the molecule by controlling the entanglement of the FEP molecules is surrounded by a portion where the entangled strength of the molecule is weak in the tube after contraction. It is possible to obtain heat-shrinkable tubes with bundles of FEP molecules that have been made.

図2のチューブのx-y断面の一部を模式的に表したのが図8である。図8(a)は、ETFE分散粒子3の分散制御による分子の絡み合い強度を制御したチューブの模式図であり、ベース樹脂のFEP4の中にETFE分散粒子3が点在している。図8(b)は、FEP分子同士の絡み合いの制御による分子の絡み合い強度を制御したチューブの模式図であり、FEP分子の絡み合いが少なくなったベース樹脂4の中に、FEP分子の絡み合いがない点4bが存在している。図8(a)のETFE分散粒子3と、図8(b)のFEP分子の絡み合いがない点4bは、分子の絡み合い強度が0または0に近い点となり、その間に分子の絡み合い強度がそれらより大きいベース樹脂4がある。分子の絡み合い強度の弱い部分と分子の絡み合い強度0の部分に囲まれたFEP分子の束の太さ(以後、「高分子の絡み合い単位の太さ」と言う)は、ETFE分散粒子3またはFEP分子の絡み合いがない点4b間の間隔に依存する。高分子の絡み合い単位の太さは、チューブの引き裂き直進性と相関する。200℃にて35%以上収縮させた後のチューブに、優れた引き裂き直進性を付与するには、高分子の絡み合い単位の太さは、1μm〜9μmであることが必要である。1μm〜7μmであることが好ましく、1μm〜6μmであることが更に好ましく、1μm〜4μmであることが特に好ましい。   FIG. 8 schematically shows a part of the xy cross section of the tube of FIG. FIG. 8A is a schematic diagram of a tube in which the molecular entanglement strength is controlled by controlling the dispersion of the ETFE dispersed particles 3, and the ETFE dispersed particles 3 are scattered in the FEP4 of the base resin. FIG. 8B is a schematic diagram of a tube in which the entanglement strength of the molecules is controlled by controlling the entanglement between the FEP molecules, and there is no entanglement of the FEP molecules in the base resin 4 in which the entanglement of the FEP molecules is reduced. Point 4b exists. The point 4b in which the ETFE dispersed particles 3 in FIG. 8 (a) and the FEP molecules in FIG. 8 (b) are not entangled is a point where the entanglement strength of the molecules is 0 or close to 0, and the entanglement strength of the molecules is between them. There is a large base resin 4. The thickness of the bundle of FEP molecules surrounded by the portion where the molecular entanglement strength is weak and the portion where the molecular entanglement strength is 0 (hereinafter referred to as “thickness of polymer entanglement unit”) is ETFE dispersed particle 3 or FEP. Depends on the spacing between points 4b where there is no entanglement of molecules. The thickness of the polymer entanglement unit correlates with the straightness of tearing of the tube. In order to impart excellent tear straightness to the tube after being contracted by 35% or more at 200 ° C., the thickness of the polymer entanglement unit needs to be 1 μm to 9 μm. It is preferably 1 μm to 7 μm, more preferably 1 μm to 6 μm, and particularly preferably 1 μm to 4 μm.

高分子の絡み合いの単位の太さが大きすぎるとき、それは、分子の絡み合いの強度が0または0に近い点の間隔が大きいことを意味し、裂けの伝播の方向がふらついて引き裂き直進性に劣る。また、分子の絡み合い単位の太さが小さすぎるとき、それは、チューブ全体の強度が小さいことにもなるから、チューブの拡張などの加工、取り扱いがし難くなるため好ましくない。   When the thickness of the unit of the polymer entanglement is too large, it means that the strength of the molecular entanglement is 0 or a point interval close to 0 is large, and the direction of propagation of tearing fluctuates and the straightness of tearing is poor. . Moreover, when the thickness of the molecular entanglement unit is too small, it is not preferable because the strength of the entire tube is also small, and it becomes difficult to process and handle the tube such as expansion.

(高分子の絡み合い単位の太さの測定)
高分子の絡み合い単位の太さは、チューブ長手方向の断面の形状を測定し、その断面の形状を波形として表示して算出した。以下に、図3を用いて説明する。断面の形状について、コンフォーカル顕微鏡(レーザーテック(株)製 H1200、対物レンズ 100倍)を用いて、図3のy軸方向に走査して、断面の、高さ方向(表面形状測定においてZ方向と呼ばれる)の測定を行った。測定範囲における波形のZ方向の幅の中心値を算出し中心線を引いた。中心値は、測定範囲で得られる波形の最大値を有するピークと、最小値を有するピークを除いて算出した。その中心線と波形の交差する点から、次の中心線との交差する点までの間隔、つまり一つの山または谷の幅となる中心線の長さを、高分子の絡み合い単位の太さとした。
(引き裂き直進性の試験)
細径のチューブを引き裂くときにも十分な引き裂き直進性が得られるかを、より明確に判断するために、以下の方法で測定した。長さ1000mmの試料の一方の端部に、長さ40mmの切り込みを設ける。切り込みは治具を用いて、チューブの中心に、チューブ長手方向に平行に設ける。切り込み部から、200mm/minの速度でチューブのもう一方の端部まで引き裂く。引き裂かれた二片のチューブの重量をそれぞれ測定し、重量の比率を求める。比率が50%対50%に近いものほど引き裂き直進性が高いと判断できる。細径のチューブを引き裂くには、比率は50%対50%〜45%対55%の範囲内にすることが必要である。比率が50%対50%〜48%対52%の範囲内、更には50%対50%〜49%対51%の範囲内にすることで引き裂き直進性が向上する。
(Measurement of polymer entanglement unit thickness)
The thickness of the polymer entanglement unit was calculated by measuring the cross-sectional shape in the tube longitudinal direction and displaying the cross-sectional shape as a waveform. This will be described below with reference to FIG. For the shape of the cross section, scan in the y-axis direction of FIG. 3 using a confocal microscope (H1200 manufactured by Lasertec Corporation, objective lens 100 times), and the height direction of the cross section (in the Z direction in the surface shape measurement) Called). The center value of the width in the Z direction of the waveform in the measurement range was calculated and the center line was drawn. The center value was calculated by excluding the peak having the maximum value of the waveform obtained in the measurement range and the peak having the minimum value. The distance from the point where the center line and the waveform intersect to the point where the next center line intersects, that is, the length of the center line that is the width of one peak or valley, is the thickness of the polymer entanglement unit. .
(Tearing straightness test)
In order to judge more clearly whether or not sufficient tearing straightness can be obtained when tearing a small-diameter tube, the following method was used. A cut having a length of 40 mm is provided at one end of a sample having a length of 1000 mm. The notch is provided in the center of the tube in parallel with the longitudinal direction of the tube using a jig. From the notch, tear to the other end of the tube at a speed of 200 mm / min. Each of the two pieces of torn tube is weighed to determine the weight ratio. It can be judged that the closer the ratio is to 50% vs. 50%, the higher the straightness of tearing. To tear small diameter tubes, the ratio should be in the range of 50% to 50% to 45% to 55%. When the ratio is in the range of 50% to 50% to 48% to 52%, and further in the range of 50% to 50% to 49% to 51%, straight tearing performance is improved.

実施例1
(成形材料の作製)
テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(三井デュポンフロロケミカル製FEP−130J)とテトラフルオロエチレン−エチレン共重合体(ETFE:旭硝子製C−55AP)を、FEP/ETFE重量比=80/20で混合し、タンブラーで十分に攪拌した。これをシリンダー径20mmの2軸押出機に投入し、スクリュー回転数45rpm、ダイ温度320℃で押し出し、ペレット成形した。スクリューは、滞留部を4か所設けたパターンのものを使用し、ギャップが0.5mmの組み合わせとした。
(試料チューブの成形)
作成したペレットを用いて、シリンダー径20mmの単軸押出機によって、チューブ成形を行った。スクリューは、フルフライトスクリューを使用し、スクリュー回転数10rpm、ダイ温度390℃、引き落とし比DDR10でサイジングプレート法によってチューブ成形を行った。内径0.5mm、外径0.9mm、肉厚0.2mmのチューブを得た。
(試料チューブの拡張)
成形したチューブを、図4(a)と同じタイプの拡張治具に装着し、治具外部から加熱しながら内部に加圧窒素を注入して、チューブ内径の拡張を行い、長さ1000mmにカットした。チューブの外径は1.33mmであった。
(試料チューブの収縮)
拡張した試料チューブから無作為に10個抜き取り、内径を測定した後、200℃の恒温槽で20min加熱して熱収縮させて試料チューブとした。収縮後の内径を測定して、収縮率を算出した。
Example 1
(Production of molding material)
Tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (FEI-130J manufactured by Mitsui DuPont Fluorochemical) and tetrafluoroethylene-ethylene copolymer (ETFE: C-55AP manufactured by Asahi Glass Co.), FEP / ETFE weight ratio = 80/20 and mixed well with a tumbler. This was put into a twin screw extruder having a cylinder diameter of 20 mm, extruded at a screw rotation speed of 45 rpm and a die temperature of 320 ° C., and pelletized. A screw having a pattern in which four retaining portions were provided was used, and a gap was set to 0.5 mm.
(Sample tube forming)
Using the prepared pellet, tube forming was performed by a single screw extruder having a cylinder diameter of 20 mm. As the screw, a full flight screw was used, and tube formation was performed by a sizing plate method at a screw rotation speed of 10 rpm, a die temperature of 390 ° C., and a draw-down ratio DDR10. A tube having an inner diameter of 0.5 mm, an outer diameter of 0.9 mm, and a wall thickness of 0.2 mm was obtained.
(Expansion of sample tube)
The formed tube is attached to the same type of expansion jig as shown in Fig. 4 (a), and the inside diameter of the tube is expanded by injecting pressurized nitrogen into the inside while heating from the outside of the jig, and cut to a length of 1000 mm. did. The outer diameter of the tube was 1.33 mm.
(Sample tube shrinkage)
Ten samples were randomly extracted from the expanded sample tube, and after measuring the inner diameter, the sample tube was heated and contracted for 20 minutes in a thermostatic bath at 200 ° C. to obtain a sample tube. The shrinkage rate was calculated by measuring the inner diameter after shrinkage.

実施例2
(成形材料の作製)
FEP/ETFE重量比を、FEP/ETFE重量比=90/10で混合した以外は、実施例1と同様に作製した。
(試料チューブの成形)
単軸押出機のスクリューに、ダルメージスクリューを使用し、引き落とし比DDRを10として成形した。それ以外の条件は実施例1と同様に成形した。
(試料チューブの拡張・収縮)
実施例1と同様の条件で行った。拡張後のチューブの外径は1.39mmであった。
Example 2
(Production of molding material)
It was produced in the same manner as in Example 1 except that the FEP / ETFE weight ratio was mixed at the FEP / ETFE weight ratio = 90/10.
(Sample tube forming)
A dalmage screw was used as the screw of the single screw extruder, and the draw ratio DDR was set to 10. The other conditions were the same as in Example 1.
(Sample tube expansion / contraction)
It carried out on the conditions similar to Example 1. The outer diameter of the expanded tube was 1.39 mm.

実施例3
(成形材料の作製)
FEP/ETFE重量比を、FEP/ETFE重量比=97/3で混合した以外は、実施例1と同様に作製した。
(試料チューブの成形)
単軸押出機のスクリューに、ダルメージスクリューを使用し、引き落とし比DDRを50として成形した。それ以外の条件は実施例1と同様に成形した。
(試料チューブの拡張)
成形したチューブを、図4(b)と同じタイプの拡張治具に装着し、治具外部から加熱しながら内部に加圧窒素を注入して、チューブ内径の拡張を行い、長さ1000mmにカットした。チューブの外径は1.36mmであった。
(試料チューブの収縮)
実施例1と同様の条件で行った。
Example 3
(Production of molding material)
It was produced in the same manner as in Example 1 except that the FEP / ETFE weight ratio was mixed at FEP / ETFE weight ratio = 97/3.
(Sample tube forming)
A dull image screw was used as the screw of the single screw extruder, and the draw ratio DDR was set to 50. The other conditions were the same as in Example 1.
(Expansion of sample tube)
Mount the molded tube on the same type of expansion jig as in Fig. 4 (b), inject pressurized nitrogen into the inside while heating from the outside of the jig, expand the inner diameter of the tube, and cut to a length of 1000 mm did. The outer diameter of the tube was 1.36 mm.
(Sample tube shrinkage)
It carried out on the conditions similar to Example 1.

比較例1〜3
(成形材料の作製)
テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(三井デュポンフロロケミカル製FEP−130J)とテトラフルオロエチレン−エチレン共重合体(ETFE:旭硝子製C−55AP)を、各重量比で混合し、これをシリンダー径20mmの2軸押出機に投入し、スクリュー回転数45rpm、ダイ温度320℃で押し出し、ペレット成形した。スクリューは、ギャップを−1.5mm(スクリューの重なり部分が1.5mm)、滞留部を設けないパターンのものを使用した。
(試料チューブの成形)
作製したペレットを用いて、シリンダー径20mmの単軸押出機によって、チューブ成形を行った。スクリューは、フルフライトスクリューを使用し、スクリュー回転数10rpm、引き落とし比DDR10、ダイ温度390℃でサイジングプレート法によってチューブ成形を行った。内径0.5mm、外径0.9mm、肉厚0.2mmのチューブを得た。
(試料チューブの拡張)
成形したチューブを、図4(a)と同じタイプの拡張治具に装着し、治具外部から加熱しながら内部に加圧窒素を注入して、チューブ内径の拡張を行い、長さ1000mmにカットした。
(試料チューブの収縮)
拡張した試料チューブから無作為に10個抜き取り、内径を測定した後、200℃の恒温槽で20min加熱して熱収縮させて試料チューブとした。収縮後の内径を測定して、収縮率を算出した。
Comparative Examples 1-3
(Production of molding material)
Tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (FEI-130J manufactured by Mitsui Dupont Fluorochemical) and tetrafluoroethylene-ethylene copolymer (ETFE: C-55AP manufactured by Asahi Glass) are mixed in each weight ratio. Then, this was put into a twin screw extruder having a cylinder diameter of 20 mm and extruded at a screw rotation speed of 45 rpm and a die temperature of 320 ° C. to form a pellet. The screw used was a pattern with a gap of -1.5 mm (overlapping portion of the screw was 1.5 mm) and no retention portion.
(Sample tube forming)
Using the prepared pellets, tube forming was performed by a single screw extruder having a cylinder diameter of 20 mm. As the screw, a full flight screw was used, and tube formation was performed by a sizing plate method at a screw rotation speed of 10 rpm, a draw-down ratio DDR10, and a die temperature of 390 ° C. A tube having an inner diameter of 0.5 mm, an outer diameter of 0.9 mm, and a wall thickness of 0.2 mm was obtained.
(Expansion of sample tube)
The molded tube is attached to the same type of expansion jig as shown in Fig. 4 (a), and the inside diameter of the tube is expanded by injecting pressurized nitrogen into the inside while heating from the outside of the jig, and cut to a length of 1000 mm. did.
(Sample tube shrinkage)
Ten samples were randomly extracted from the expanded sample tube, and after measuring the inner diameter, the sample tube was heated and contracted for 20 minutes in a thermostatic bath at 200 ° C. to obtain a sample tube. The shrinkage rate was calculated by measuring the inner diameter after shrinkage.

作製した各試料チューブについて、分子の絡み合い単位の太さを、先述の分子の絡み合い単位の太さの測定方法に基づいて求めた。また、引き裂き直進性を、先述の引き裂き直進性の試験方法に基づいて測定した。その結果を表1に示す。
本発明の実施例1〜3のチューブは、200℃で40%以上の熱収縮率が得られており、高分子の絡み合い単位の太さは、1μm〜9μmであった。チューブの引き裂き直進性を示す、引き裂かれたチューブの重量の比率は、50%対50%〜49%対51%で、非常に優れた引き裂き直進性が得られた。これに対し、従来の引き裂き性を有する熱収縮チューブの比較例1と2のチューブは、40%以上の熱収縮率は得られたが、高分子の絡み合い単位の太さが大きすぎるため、引き裂き直進性が十分に得られず、細径のチューブを引き裂くときでも十分な引き裂き直進性が得られる目安の重量比45%対55%をはずれてしまった。比較例3は、引き裂き直進性は得られたが、20%以上拡張することができず、40%以上の熱収縮率を得ることができなかった(200℃で1時間加熱後でも収縮率は21%であった)。
For each of the prepared sample tubes, the thickness of the molecular entanglement unit was determined based on the method for measuring the thickness of the molecular entanglement unit described above. Further, the tear straightness was measured based on the above-described test method for tear straightness. The results are shown in Table 1.
In the tubes of Examples 1 to 3 of the present invention, a heat shrinkage rate of 40% or more was obtained at 200 ° C., and the thickness of the polymer entanglement unit was 1 μm to 9 μm. The ratio of the weight of the torn tube, which shows the straightness of tearing of the tube, was 50% to 50% to 49% to 51%, and very good straightness of tearing was obtained. In contrast, the heat-shrinkable tubes of Comparative Examples 1 and 2 having a conventional tearable tube have a heat shrinkage ratio of 40% or more, but the thickness of the polymer entanglement unit is too large. The straightness was not sufficiently obtained, and the weight ratio of 45% to 55%, which is a standard for obtaining sufficient straightness of tearing even when a small-diameter tube was torn, was off. In Comparative Example 3, straight tearability was obtained, but it was not possible to expand 20% or more, and a heat shrinkage rate of 40% or more could not be obtained (the shrinkage rate was not improved even after heating at 200 ° C. for 1 hour). 21%).

実施例4
(成形材料の作製)
テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(以下、「PFA」と言う。)(三井フロロデュポンPFA−340J)とC−55APを、PFA/ETFE重量比=97/3で混合した以外は、実施例3と同様に作製した。
(試料チューブの成形)
実施例3と同様に成形した。
(試料チューブの拡張)
実施例3と同様に拡張した。チューブの外径は1.18mmであった。
(試料チューブの収縮)
実施例3と同様に行った。
作製した試料チューブについて各測定を実施したところ、高分子の絡み合い単位の太さが8μm、引き裂き直進性が52:48、収縮率が35%であった。フッ素樹脂の種類に依らず、高分子の絡み合い単位の太さと引き裂き直進性との間に相関関係がみられた。
Example 4
(Production of molding material)
Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (hereinafter referred to as “PFA”) (Mitsui Fluoro DuPont PFA-340J) and C-55AP were mixed at a PFA / ETFE weight ratio of 97/3. It was produced in the same manner as in Example 3.
(Sample tube forming)
Molded in the same manner as in Example 3.
(Expansion of sample tube)
Expanded as in Example 3. The outer diameter of the tube was 1.18 mm.
(Sample tube shrinkage)
The same operation as in Example 3 was performed.
When each measurement was performed on the prepared sample tube, the thickness of the polymer entanglement unit was 8 μm, the straightness of tearing was 52:48, and the shrinkage rate was 35%. Regardless of the type of fluororesin, there was a correlation between the thickness of the polymer entanglement unit and the straightness of tearing.

本発明のフッ素樹脂製の引き裂きチューブは、熱収縮性が高いとともに引き裂き直進性が良好であるので、加工時の装着および使用後の除去が容易であり、カテーテルなどの組み立て治具として好適である。   The fluororesin tear tube of the present invention has high heat shrinkability and good tear straightness, so that it can be easily mounted and removed after use, and is suitable as an assembly jig for catheters and the like. .

1:チューブ、2:拡張治具、21:外径規制管、22:封止治具、23:注入口、24:可動封止冶具、3:ETFE分散粒子、4:FEP、5:裂け伝播の経路、6:ダルメージ、7:スクリュー、8:ギャップ 1: tube, 2: expansion jig, 21: outer diameter regulating tube, 22: sealing jig, 23: injection port, 24: movable sealing jig, 3: ETFE dispersed particles, 4: FEP, 5: tear propagation 6: Dalmage, 7: Screw, 8: Gap

Claims (5)

ベース樹脂として、少なくともフッ素樹脂を、含むチューブであって、200℃で加熱した時の収縮率が35%以上であり、200℃にて35%以上収縮させた後の、チューブ長手方向の断面において観察される、高分子の絡み合い単位の太さが、1μm〜9μmであることを特徴とする引き裂き性を有する熱収縮チューブ。 In a tube containing at least a fluororesin as a base resin, the shrinkage rate when heated at 200 ° C. is 35% or more, and in the cross section in the longitudinal direction of the tube after being shrunk by 35% or more at 200 ° C. A heat-shrinkable tube having a tearing property, characterized in that the thickness of the polymer entanglement unit is 1 μm to 9 μm. ベース樹脂として、少なくともフッ素樹脂を、含むチューブであって、200℃で加熱した時の収縮率が44%以上であり、200℃にて44%以上収縮させた後の、チューブ長手方向の断面において観察される、高分子の絡み合い単位の太さが、1μm〜9μmであることを特徴とする引き裂き性を有する熱収縮チューブ。 In a tube containing at least a fluororesin as a base resin, the shrinkage rate when heated at 200 ° C. is 44% or more, and in the cross section in the tube longitudinal direction after being shrunk by 44% or more at 200 ° C. A heat-shrinkable tube having a tearing property, characterized in that the thickness of the polymer entanglement unit is 1 μm to 9 μm. 前記フッ素樹脂がテトラフルオロエチレン及びヘキサフルオロプロピレンを構成モノマーとして含む共重合体であることを特徴とする、請求項1または2に記載の引き裂き性を有する熱収縮チューブ。 The heat-shrinkable tube having tearability according to claim 1 or 2 , wherein the fluororesin is a copolymer containing tetrafluoroethylene and hexafluoropropylene as constituent monomers. 引き裂き直進性を表す比率が、50%対50%〜48%対52%の範囲内であることを特徴とする、請求項1〜に記載の引き裂き性を有するチューブ。 The tube having tearability according to any one of claims 1 to 3 , wherein a ratio representing straightness of tearing is in a range of 50% to 50% to 48% to 52% . チューブの外径が1.39mm以下であることを特徴とする、請求項1〜に記載の引き裂き性を有する熱収縮チューブ。 Wherein the outer diameter of the tube is less than 1.39 mm, the heat shrinkable tube having a tear resistance according to claim 1-4.
JP2015052533A 2015-02-01 2015-03-16 Heat shrinkable tube with tearability Active JP5839310B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015052533A JP5839310B1 (en) 2015-02-01 2015-03-16 Heat shrinkable tube with tearability
EP15192342.2A EP3050696B1 (en) 2015-02-01 2015-10-30 Heat-shrinkable tube having tearability
US14/927,572 US9464149B2 (en) 2015-02-01 2015-10-30 Heat-shrinkable tube having tearability
CN201610065436.8A CN105840920B (en) 2015-02-01 2016-01-29 With lancinating heat-shrink tube

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2015030043 2015-02-01
JP2015030043 2015-02-01
JP2015023727 2015-02-09
JP2015023727 2015-02-09
JP2015037064 2015-02-26
JP2015037064 2015-02-26
JP2015050164 2015-03-13
JP2015050164 2015-03-13
JP2015052533A JP5839310B1 (en) 2015-02-01 2015-03-16 Heat shrinkable tube with tearability

Publications (2)

Publication Number Publication Date
JP5839310B1 true JP5839310B1 (en) 2016-01-06
JP2016169856A JP2016169856A (en) 2016-09-23

Family

ID=55069259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052533A Active JP5839310B1 (en) 2015-02-01 2015-03-16 Heat shrinkable tube with tearability

Country Status (4)

Country Link
US (1) US9464149B2 (en)
EP (1) EP3050696B1 (en)
JP (1) JP5839310B1 (en)
CN (1) CN105840920B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044335A (en) * 2015-08-24 2017-03-02 株式会社潤工社 Heat shrinkage tube with tear characteristic
US9957384B2 (en) 2015-08-24 2018-05-01 Junkosha Inc. Heat-shrinkable tube having tearability

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106221078A (en) * 2016-08-18 2016-12-14 苏州泰斯拓伟机电设备有限公司 A kind of modified Fluoroelastomer heat-shrinkable tube and preparation method thereof
CN106221080A (en) * 2016-08-18 2016-12-14 苏州泰斯拓伟机电设备有限公司 A kind of preparation method of Teflon heat-shrink tube
US10898616B1 (en) 2017-07-11 2021-01-26 Teleflex Medical Incorporated Peelable heat-shrink tubing
CN108081567B (en) * 2017-12-26 2022-05-24 深圳市沃尔核材股份有限公司 Production method and production system of thermal shrinkage branch finger stall
JP7181897B2 (en) * 2018-01-04 2022-12-01 グンゼ株式会社 Thermoplastic fluororesin tube
JP7215842B2 (en) * 2018-07-30 2023-01-31 グンゼ株式会社 TUBE AND METHOD OF MANUFACTURING SAME TUBE
WO2020158854A1 (en) * 2019-01-31 2020-08-06 株式会社 潤工社 Heat-shrinkable tube having tearable properties
CN114364721A (en) * 2019-08-30 2022-04-15 日星电气有限公司 Heat shrinkable tube and method for forming the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323053A (en) * 1998-05-08 1999-11-26 Sumitomo Electric Ind Ltd Fluororesin composition, insulating tube, heat shrinkable tube and insulating electric wire all using the composition, and their production
JP2007179889A (en) * 2005-12-28 2007-07-12 Nissei Electric Co Ltd Heat shrinkable tube with improved tear property
JP2007321817A (en) * 2006-05-30 2007-12-13 Junkosha Co Ltd Fluororesin tear-off tube
JP2008020037A (en) * 2006-07-14 2008-01-31 Junkosha Co Ltd Fluoroplastic tube with tearable characteristic
WO2013077452A1 (en) * 2011-11-21 2013-05-30 株式会社 潤工社 Thermally shrinkable tube having tearing properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323053A (en) * 1998-05-08 1999-11-26 Sumitomo Electric Ind Ltd Fluororesin composition, insulating tube, heat shrinkable tube and insulating electric wire all using the composition, and their production
JP2007179889A (en) * 2005-12-28 2007-07-12 Nissei Electric Co Ltd Heat shrinkable tube with improved tear property
JP2007321817A (en) * 2006-05-30 2007-12-13 Junkosha Co Ltd Fluororesin tear-off tube
JP2008020037A (en) * 2006-07-14 2008-01-31 Junkosha Co Ltd Fluoroplastic tube with tearable characteristic
WO2013077452A1 (en) * 2011-11-21 2013-05-30 株式会社 潤工社 Thermally shrinkable tube having tearing properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044335A (en) * 2015-08-24 2017-03-02 株式会社潤工社 Heat shrinkage tube with tear characteristic
US9957384B2 (en) 2015-08-24 2018-05-01 Junkosha Inc. Heat-shrinkable tube having tearability
JP6990501B2 (en) 2015-08-24 2022-02-03 株式会社潤工社 Heat-shrinkable tube with tearability

Also Published As

Publication number Publication date
EP3050696B1 (en) 2017-05-17
JP2016169856A (en) 2016-09-23
CN105840920A (en) 2016-08-10
CN105840920B (en) 2018-09-07
US20160222145A1 (en) 2016-08-04
US9464149B2 (en) 2016-10-11
EP3050696A1 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5839310B1 (en) Heat shrinkable tube with tearability
JP6990501B2 (en) Heat-shrinkable tube with tearability
KR101844628B1 (en) Thermally shrinkable tube having tearing properties
JP6369961B2 (en) Molding material and heat shrinkable tube made of the molding material
US9957384B2 (en) Heat-shrinkable tube having tearability
WO2008007680A1 (en) Fluororesin tearable tube
DE2304429B2 (en) MOLDED BODY MADE OF TETRAFLUORAETHYLENE MIXED POLYMERIZES
JP6470968B2 (en) Rubber or thermoplastic elastomer composition and molded article comprising the composition
Leal et al. Interfacial interactions in bicomponent polymer fibers
WO2021039837A1 (en) Heat-shrinkable tube and method for forming same
EP3919259A1 (en) Heat-shrinkable tube having tearable properties
US20220176615A1 (en) Heat-Shrinkable Tube Having Tearable Properties
Iglésias et al. Fracture Toughness Of Hdpe Evaluated By Fatigue And Notch Precracking
US11802199B2 (en) Thermoplastic fluororesin tube
Markov et al. Formation of the phase structure and its influence on the properties of oriented polypropylene-polyethylene blend films
Henry A study of the effects of select processing and material variables on jacket shrinkage in a PVDF-HFP tube-on extrusion process

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5839310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250