JP5839258B2 - Fixing device and image forming apparatus having the same - Google Patents

Fixing device and image forming apparatus having the same Download PDF

Info

Publication number
JP5839258B2
JP5839258B2 JP2011137277A JP2011137277A JP5839258B2 JP 5839258 B2 JP5839258 B2 JP 5839258B2 JP 2011137277 A JP2011137277 A JP 2011137277A JP 2011137277 A JP2011137277 A JP 2011137277A JP 5839258 B2 JP5839258 B2 JP 5839258B2
Authority
JP
Japan
Prior art keywords
magnetic field
fixing
heat
magnetic
demagnetizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011137277A
Other languages
Japanese (ja)
Other versions
JP2013003511A (en
Inventor
一平 藤本
一平 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011137277A priority Critical patent/JP5839258B2/en
Publication of JP2013003511A publication Critical patent/JP2013003511A/en
Application granted granted Critical
Publication of JP5839258B2 publication Critical patent/JP5839258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)

Description

本発明は、誘導加熱方式で加熱される定着部材を用いて未定着画像を記録材上に加熱定着させる定着装置、並びに、この定着装置を備えた複写機、プリンタ、ファクシミリ装置、印刷機、これらの複合装置などの画像形成装置に関するものである。   The present invention relates to a fixing device that heat-fixes an unfixed image on a recording material using a fixing member heated by an induction heating method, and a copying machine, a printer, a facsimile machine, a printing machine, and the like provided with the fixing device. The present invention relates to an image forming apparatus such as a composite apparatus.

この種の画像形成装置は、一般に、潜像担持体上に形成したトナー像を記録材(以下「用紙」という。)に転写した後、そのトナー像を用紙上に加熱定着する定着処理を経て、画像を出力する。この定着処理では、熱と圧力とによってトナーを溶融して用紙に浸透させることで、トナー像を用紙に定着させる。定着処理で採用される加熱方式としては、近年、誘導加熱方式が注目されている。誘導加熱方式は、励磁コイル等の磁界発生部材により発生する高周波磁界によって生じる誘導磁束が、定着ベルトに設けられた磁性を有する発熱層を貫くことで発熱層に渦電流を発生させ、これにより発熱層を発熱させることで定着ベルトを加熱する方式である。   This type of image forming apparatus generally undergoes a fixing process in which a toner image formed on a latent image carrier is transferred to a recording material (hereinafter referred to as “paper”) and then the toner image is heated and fixed on the paper. , Output an image. In this fixing process, the toner image is fixed on the paper by melting the toner by heat and pressure and penetrating the toner into the paper. In recent years, an induction heating method has attracted attention as a heating method employed in fixing processing. In the induction heating method, an induction magnetic flux generated by a high-frequency magnetic field generated by a magnetic field generating member such as an exciting coil penetrates a heat generating layer having magnetism provided on a fixing belt to generate an eddy current in the heat generating layer, thereby generating heat. In this method, the fixing belt is heated by generating heat in the layer.

特許文献1には、磁束を発生させてその磁束によって定着スリーブ(無端状シート部材)の発熱層を誘導加熱する励磁コイルが定着スリーブの外周面に対向配置された誘導加熱方式の定着装置が開示されている。この定着装置の定着スリーブは、発熱層よりも内周面側に整磁合金層を有している。整磁合金は、キュリー温度に達するまでは磁性を発揮するが、キュリー温度以上になると磁性が失われるという機能を有するものである。このような整磁合金層を定着スリーブに設けることで、励磁コイルが発生させた誘導磁束は、整磁合金の温度がキュリー温度に達するまでは定着スリーブの内周面側には届かないが、誘導加熱される発熱層の熱が伝搬して整磁合金の温度がキュリー温度以上になると、定着スリーブの内周面へ透過する。   Patent Document 1 discloses an induction heating type fixing device in which an exciting coil that generates a magnetic flux and induction-heats a heat generation layer of a fixing sleeve (endless sheet member) by the magnetic flux is arranged to face the outer peripheral surface of the fixing sleeve. Has been. The fixing sleeve of this fixing device has a magnetic shunt alloy layer on the inner peripheral surface side of the heat generating layer. The magnetic shunt alloy exhibits magnetism until reaching the Curie temperature, but has a function of losing magnetism when the Curie temperature is exceeded. By providing such a magnetic shunt alloy layer on the fixing sleeve, the induction magnetic flux generated by the exciting coil does not reach the inner peripheral surface side of the fixing sleeve until the temperature of the magnetic shunt alloy reaches the Curie temperature. When the heat of the heat generating layer that is induction-heated propagates and the temperature of the magnetic shunt alloy becomes equal to or higher than the Curie temperature, it is transmitted to the inner peripheral surface of the fixing sleeve.

特許文献1に記載の定着装置には、定着スリーブの内周面側に消磁部材が設けられている。この消磁部材は、これに作用する誘導磁束が変動することで、その誘導磁束を打ち消す磁束を発生させるものである。したがって、特許文献1に記載の定着装置によれば、励磁コイルにより誘導磁束を発生させたとき、整磁合金がキュリー温度に達するまでは誘導加熱により発熱層が急速に昇温するが、整磁合金がキュリー温度以上になると、励磁コイルの誘導磁束が消磁部材に作用して発熱層を貫く磁束が減少する。これにより、電子的な温度制御を行わなくても、定着スリーブの温度を整磁合金のキュリー温度付近に安定させることができる。このような機能を自己温度制御機能という。   In the fixing device described in Patent Document 1, a demagnetizing member is provided on the inner peripheral surface side of the fixing sleeve. The demagnetizing member generates a magnetic flux that cancels the induced magnetic flux when the induced magnetic flux acting on the demagnetizing member fluctuates. Therefore, according to the fixing device described in Patent Document 1, when the induction magnetic flux is generated by the exciting coil, the heating layer is rapidly heated by induction heating until the magnetic shunt alloy reaches the Curie temperature. When the alloy reaches the Curie temperature or higher, the induced magnetic flux of the exciting coil acts on the demagnetizing member, and the magnetic flux penetrating the heat generating layer decreases. Accordingly, the temperature of the fixing sleeve can be stabilized near the Curie temperature of the magnetic shunt alloy without performing electronic temperature control. Such a function is called a self-temperature control function.

ところが、消磁部材を用いて自己温度制御機能を実現する定着装置では、整磁合金の温度がキュリー温度以上になったときに消磁部材による消磁効果が定着ベルトの発熱層に十分に及ぶように、励磁コイル及び整磁合金に近接した位置に消磁部材を設置する必要がある。このとき、励磁コイルと整磁合金との間には発熱層が介在しているため、消磁部材は発熱層に近接して配置せざるを得ない。整磁合金と消磁部材とが非接触の状態で配置されているとしても、これらが近接配置されていると、高温になった整磁合金から消磁部材へ対流熱伝達や輻射によって伝熱する。そのため、定着ベルトを目標温度まで昇温させるのに必要なウォームアップ時間が、消磁部材の熱容量の分だけ増大してしまう。整磁合金と消磁部材との距離が短いほど、整磁合金から消磁部材への伝熱量が増加するため、ウォームアップ時間が増大しやすくなる。特に整磁合金と消磁部材とが接触している場合には、整磁合金から消磁部材への伝熱量がより多くなるため、ウォームアップ時間が更に増大しやすい。   However, in the fixing device that realizes the self-temperature control function using the demagnetizing member, when the temperature of the magnetic shunt alloy becomes equal to or higher than the Curie temperature, the demagnetizing effect by the demagnetizing member sufficiently reaches the heating layer of the fixing belt. It is necessary to install a demagnetizing member at a position close to the exciting coil and the magnetic shunt alloy. At this time, since the heat generating layer is interposed between the exciting coil and the magnetic shunt alloy, the degaussing member has to be disposed close to the heat generating layer. Even if the magnetic shunt alloy and the demagnetizing member are disposed in a non-contact state, if they are disposed close to each other, heat is transferred from the magnetic shunt alloy that has reached a high temperature to the demagnetizing member by convection heat transfer or radiation. For this reason, the warm-up time required to raise the temperature of the fixing belt to the target temperature increases by the heat capacity of the demagnetizing member. As the distance between the magnetic shunt alloy and the degaussing member is shorter, the amount of heat transfer from the magnetic shunt alloy to the degaussing member increases, so the warm-up time tends to increase. In particular, when the magnetic shunt alloy and the degaussing member are in contact with each other, the amount of heat transfer from the magnetic shunt alloy to the degaussing member is increased, so that the warm-up time is likely to further increase.

一方で、上記特許文献1に記載の定着装置では、励磁コイルに対して消磁部材を変位させる駆動機構を設け、ウォームアップ時には消磁部材を励磁コイルとの対向位置から退避した位置に移動させる。これにより、ウォームアップ時には、整磁合金がキュリー温度以上になっても、消磁部材による消磁効果が働かず、定着スリーブを整磁合金のキュリー温度以上の温度まで一気に昇温できる。この定着装置によれば、消磁部材が常に励磁コイルに対向配置されている構成と比較して、整磁合金のキュリー温度付近でも定着スリーブの昇温速度が落ちることがないので、ウォームアップ時間を短縮することが可能である。   On the other hand, the fixing device described in Patent Document 1 includes a drive mechanism that displaces the degaussing member with respect to the excitation coil, and moves the demagnetization member to a position retracted from the position facing the excitation coil during warm-up. Thus, at the time of warm-up, even if the magnetic shunt alloy becomes equal to or higher than the Curie temperature, the demagnetizing effect by the demagnetizing member does not work, and the fixing sleeve can be raised to a temperature equal to or higher than the Curie temperature of the magnetic shunt alloy. According to this fixing device, the temperature increase rate of the fixing sleeve does not decrease even near the Curie temperature of the magnetic shunt alloy as compared with the configuration in which the degaussing member is always arranged to face the exciting coil. It can be shortened.

しかしながら、この定着装置では、消磁部材の位置を移動させる駆動機構が必要となり、装置の大型化やコスト増大を招くといった不具合がある。よって、消磁部材を用いて自己温度制御機能を実現する定着装置において、このような駆動機構を設けずに、ウォームアップ時間の短縮化を図れる新たな構成が望まれる。   However, this fixing device requires a drive mechanism for moving the position of the demagnetizing member, and there is a problem that the size of the device is increased and the cost is increased. Therefore, in a fixing device that realizes a self-temperature control function using a demagnetizing member, a new configuration that can shorten the warm-up time without providing such a drive mechanism is desired.

本発明は、以上の背景に鑑みなされたものであり、その目的とするところは、消磁部材を用いて自己温度制御機能を実現する際に駆動機構を設けずにウォームアップ時間を短縮することが可能な定着装置及びこれを備えた画像形成装置を提供することである。   The present invention has been made in view of the above background, and an object of the present invention is to shorten the warm-up time without providing a drive mechanism when realizing a self-temperature control function using a demagnetizing member. It is an object of the present invention to provide a fixing device that can be used and an image forming apparatus including the fixing device.

上記目的を達成するために、本発明は、発熱層を有し、該発熱層で発生した熱により未定着画像を記録材上に加熱定着させる無端状シート部材からなる定着部材と、上記定着部材の内周面又は外周面の周方向一部分に対向配置され、該定着部材の発熱層を誘導加熱させる磁界を発生させる磁界発生部材と、上記発熱層を挟んで上記磁界発生部材とは反対側に配置され、上記定着部材と一体又は別体に設けられた整磁部材と、上記整磁部材を挟んで上記磁界発生部材とは反対側に配置され、上記磁界発生部材との対向部分が上記定着部材の面に沿った形状である消磁部材とを有し、上記定着部材の発熱層の熱によって上記整磁部材の温度がキュリー温度以上になることで上記消磁部材に上記磁界発生部材の磁界が作用して該消磁部材でこれを打ち消す磁界が発生し、該磁界により該発熱層に作用する磁界の大きさが弱まることによって該発熱層が過剰に加熱するのを抑制する自己温度制御機能を備えた定着装置において、上記消磁部材は、上記磁界発生部材との対向部分における定着部材周方向内側部分、該磁界発生部材が発生させた磁界によって生じる磁束量が相対的に少ない少磁束部分を欠落させるための開口部を備えた単一部材で構成されていることを特徴とするものである。
また、本発明は、発熱層を有し、該発熱層で発生した熱により未定着画像を記録材上に加熱定着させる無端状シート部材からなる定着部材と、上記定着部材の内周面又は外周面の周方向一部分に対向配置され、該定着部材の発熱層を誘導加熱させる磁界を発生させる磁界発生部材と、上記発熱層を挟んで上記磁界発生部材とは反対側に配置され、上記定着部材と一体又は別体に設けられた整磁部材と、上記整磁部材を挟んで上記磁界発生部材とは反対側に配置され、上記磁界発生部材との対向部分が上記定着部材の面に沿った形状である消磁部材とを有し、上記定着部材の発熱層の熱によって上記整磁部材の温度がキュリー温度以上になることで上記消磁部材に上記磁界発生部材の磁界が作用して該消磁部材でこれを打ち消す磁界が発生し、該磁界により該発熱層に作用する磁界の大きさが弱まることによって該発熱層が過剰に加熱するのを抑制する自己温度制御機能を備えた定着装置において、上記消磁部材は、上記磁界発生部材との対向部分における定着部材周方向の内側部分に、該磁界発生部材が発生させた磁界によって生じる磁束量が相対的に少ない少磁束部分と上記発熱層との距離が上記対向部分の中で最も長い箇所を備えた単一部材で構成されていることを特徴とするものである。
In order to achieve the above object, the present invention provides a fixing member comprising an endless sheet member that has a heat generating layer and heat-fixes an unfixed image on a recording material by heat generated in the heat generating layer, and the fixing member. And a magnetic field generating member that generates a magnetic field for inductively heating the heat generating layer of the fixing member, and is disposed opposite to the magnetic field generating member across the heat generating layer. A magnetic shunt member disposed integrally with or separately from the fixing member, and disposed on the opposite side of the magnetic field generating member across the magnetic shunt member, and a portion facing the magnetic field generating member is located on the fixing side A demagnetizing member having a shape along the surface of the member, and when the temperature of the magnetic shunt member becomes equal to or higher than the Curie temperature by the heat of the heat generating layer of the fixing member, the magnetic field of the magnetic field generating member is applied to the demagnetizing member. Acting to strike this with the degaussing member In the fixing device having a self-temperature control function that suppresses excessive heating of the heat generating layer due to the generation of a magnetic field to be erased and the magnitude of the magnetic field acting on the heat generating layer by the magnetic field being weakened, the demagnetizing member includes: , the inner portion of the fixing member circumferentially in opposite portion between the magnetic field generating member, an opening of the order magnetic flux generated by the magnetic field the magnetic field generating member have been generated by omission of the relatively small small magnetic flux portion It is characterized by comprising a single member .
The present invention also includes a fixing member having an exothermic layer, an endless sheet member that heat-fixes an unfixed image on a recording material by heat generated in the exothermic layer, and an inner peripheral surface or outer periphery of the fixing member. A magnetic field generating member disposed opposite to a part of the surface in the circumferential direction and generating a magnetic field for inductively heating the heat generating layer of the fixing member; and the fixing member disposed on the opposite side of the magnetic field generating member across the heat generating layer. The magnetic shunt member provided integrally or separately with the magnetic shunt member, and the magnetic field generating member is disposed on the opposite side of the magnetic shunt member, and a portion facing the magnetic field generating member extends along the surface of the fixing member. A demagnetizing member having a shape, and when the temperature of the magnetic shunt member becomes equal to or higher than the Curie temperature by the heat of the heat generation layer of the fixing member, the magnetic field of the magnetic field generating member acts on the demagnetizing member. A magnetic field that counteracts this is generated, In the fixing device having a self-temperature control function that suppresses excessive heating of the heat generation layer due to the magnitude of the magnetic field acting on the heat generation layer by the magnetic field, the degaussing member is connected to the magnetic field generation member. A location where the distance between the heat generation layer and the small magnetic flux portion where the amount of magnetic flux generated by the magnetic field generated by the magnetic field generating member is relatively small is the longest in the facing portion in the inner portion of the facing portion in the circumferential direction of the fixing member It is comprised by the single member provided with.

本発明においては、定着部材の内周面又は外周面の周方向一部分に対向配置されている磁界発生部材に対向して消磁部材が配置されている。この消磁部材は、磁界発生部材との対向部分が定着部材の面に沿った形状であるので、当該対向部分は、定着部材を挟んで反対側に配置されている磁界発生部材に対して可能な限り近接して配置することが可能である。したがって、消磁部材の近接対向部分には、磁界発生部材が発生させた誘導磁束が多く到達するので、その誘導磁束を減少させる多くの反発磁束が発生する。また、このように配置される消磁部材は、定着部材の発熱層にも可能な限り近接して配置されることになる。よって、消磁部材で発生した多くの反発磁束によって発熱層を貫く誘導磁束を効果的に減少させることができる。   In the present invention, the demagnetizing member is disposed so as to face the magnetic field generating member disposed facing the circumferential portion of the inner circumferential surface or the outer circumferential surface of the fixing member. Since this demagnetizing member has a shape that faces the magnetic field generating member along the surface of the fixing member, the facing portion is possible with respect to the magnetic field generating member disposed on the opposite side across the fixing member. It is possible to arrange them as close as possible. Accordingly, since a large amount of the induced magnetic flux generated by the magnetic field generating member reaches the close-facing portion of the demagnetizing member, a large amount of repulsive magnetic flux that reduces the induced magnetic flux is generated. Further, the demagnetizing member arranged in this way is arranged as close as possible to the heat generating layer of the fixing member. Therefore, the induced magnetic flux penetrating the heat generating layer can be effectively reduced by the large amount of repulsive magnetic flux generated in the degaussing member.

ここで、ある瞬間に消磁部材における磁界発生部材との対向部分を貫く磁束の量は一様ではなく、磁界発生部材との位置関係等によって磁束量が多い部分と磁束量が少ない部分とが存在する。そして、消磁部材のうち、磁束量が相対的に少ない部分(少磁束部分)は、これを発熱層に近接配置したとしても、その発熱層に対する消磁効果が低い。そこで、本発明では、消磁部材の少磁束部分については、欠落させるか、又は、発熱層との距離が消磁部材の対向部分中で最も長くなるように形成している。これにより、消磁部材の対向部分を発熱層に対して一様に近接配置された構成と比較して、発熱層から消磁部材への伝熱量を少なくすることができ、消磁部材に起因したウォームアップ時間の増大を抑制することができる。   Here, the amount of magnetic flux that passes through the portion of the degaussing member facing the magnetic field generating member at a certain moment is not uniform, and there are portions with a large amount of magnetic flux and portions with a small amount of magnetic flux depending on the positional relationship with the magnetic field generating member. To do. And even if the part (small magnetic flux part) with a relatively small amount of magnetic flux among the demagnetizing members is disposed close to the heat generating layer, the demagnetizing effect on the heat generating layer is low. Therefore, in the present invention, the small magnetic flux portion of the demagnetizing member is omitted or formed so that the distance from the heat generating layer is the longest in the facing portion of the demagnetizing member. As a result, the amount of heat transferred from the heat generation layer to the demagnetization member can be reduced compared to a configuration in which the facing portion of the demagnetization member is disposed uniformly close to the heat generation layer, and the warm-up caused by the demagnetization member An increase in time can be suppressed.

すなわち、本発明は、消磁部材における磁界発生部材との対向部分のうち、発熱層の消磁効果に大きな影響を及ぼす部分については発熱層に近接配置して十分な自己温度制御機能の実現を確保するとともに、発熱層の消磁効果への影響が小さい少磁束部分については発熱層から離すことで発熱層から消磁部材への伝熱量を減らし、ウォームアップ時間の短縮化を図るというものである。   That is, according to the present invention, among the portions of the demagnetizing member facing the magnetic field generating member, the portion that greatly affects the demagnetizing effect of the heat generating layer is disposed close to the heat generating layer to ensure a sufficient self-temperature control function. At the same time, a small magnetic flux portion that has a small influence on the demagnetizing effect of the heat generating layer is separated from the heat generating layer to reduce the amount of heat transfer from the heat generating layer to the demagnetizing member, thereby shortening the warm-up time.

本発明によれば、消磁部材を用いて自己温度制御機能を実現する際に駆動機構を設けずにウォームアップ時間を短縮することができるという優れた効果が得られる。   According to the present invention, when the self-temperature control function is realized using the demagnetizing member, an excellent effect that the warm-up time can be shortened without providing a drive mechanism is obtained.

実施形態に係るプリンタの概略構成図である。1 is a schematic configuration diagram of a printer according to an embodiment. 同プリンタに採用される定着装置を加圧ローラ回転軸方向から見たときの模式図である。FIG. 2 is a schematic diagram when a fixing device employed in the printer is viewed from a pressure roller rotation axis direction. 同定着装置を用紙搬送方向入口側から見たときの模式図である。FIG. 3 is a schematic diagram when the fixing device is viewed from an entrance side in a sheet conveyance direction. 同定着装置における磁束発生部の外観を示す斜視図である。FIG. 3 is a perspective view illustrating an appearance of a magnetic flux generation unit in the fixing device. 同磁束発生部における励磁コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of the exciting coil in the magnetic flux generation part. 同定着装置における定着スリーブの厚さ方向の断面図である。FIG. 3 is a cross-sectional view in the thickness direction of a fixing sleeve in the fixing device. (a)は、同定着装置における整磁合金の温度がキュリー温度未満であるときの磁場の様子を模式的に表した説明図である。(b)は、同整磁合金の温度がキュリー温度以上であるときの磁場の様子を模式的に表した説明図である。(A) is explanatory drawing which represented typically the mode of the magnetic field when the temperature of the magnetic shunt alloy in an identification attachment apparatus is less than Curie temperature. (B) is explanatory drawing which represented typically the mode of the magnetic field when the temperature of the magnetic shunt alloy is more than Curie temperature. 比較例に係る定着装置の構成を示す模式図である。FIG. 6 is a schematic diagram illustrating a configuration of a fixing device according to a comparative example. 他の比較例に係る定着装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the fixing device which concerns on another comparative example. 更に他の比較例に係る定着装置の構成を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration of a fixing device according to another comparative example. 変形例1の定着装置を加圧ローラ回転軸方向から見たときの模式図である。FIG. 10 is a schematic diagram when the fixing device of Modification 1 is viewed from the pressure roller rotation axis direction. 変形例2の消磁部材の斜視図である。It is a perspective view of the demagnetizing member of the modification 2. 変形例3の定着装置を加圧ローラ回転軸方向から見たときの模式図である。FIG. 10 is a schematic diagram when the fixing device of Modification 3 is viewed from the direction of the pressure roller rotation axis.

以下、本発明を、画像形成装置であるレーザプリンタ(以下、単に「プリンタ」という。)に適用した実施形態について説明する。
図1は、本実施形態に係るプリンタの概略構成図である。
本プリンタは、潜像担持体としての感光体ドラム1を有している。感光体ドラム1は、図中矢印A方向に回転駆動されながら、感光体ドラム1に接触する帯電手段としての帯電ローラ50により、その表面を一様に帯電される。その後、潜像形成手段としての光書込ユニット51により画像情報に基づき走査露光されて、感光体ドラム1の表面に静電潜像が形成される。なお、帯電手段及び潜像形成手段としては、帯電ローラ50及び光書込ユニット51とは異なるものを用いることもできる。感光体ドラム1上に形成された静電潜像は、現像装置2により現像され、感光体ドラム1上にトナー像が形成される。感光体ドラム1上に形成されたトナー像は、転写ローラ53を備えた転写手段としての転写ユニットにより、給紙カセット54から給紙ローラ55及びレジストローラ対56を経て搬送される記録材としての用紙52上に転写される。以上の構成によって、本実施形態におけるトナー像形成手段が実現されている。
Hereinafter, an embodiment in which the present invention is applied to a laser printer (hereinafter simply referred to as “printer”) as an image forming apparatus will be described.
FIG. 1 is a schematic configuration diagram of a printer according to the present embodiment.
This printer has a photosensitive drum 1 as a latent image carrier. The surface of the photosensitive drum 1 is uniformly charged by a charging roller 50 as charging means that contacts the photosensitive drum 1 while being driven to rotate in the direction of arrow A in the figure. Thereafter, scanning exposure is performed based on image information by an optical writing unit 51 as a latent image forming unit, and an electrostatic latent image is formed on the surface of the photosensitive drum 1. As the charging unit and the latent image forming unit, those different from the charging roller 50 and the optical writing unit 51 can be used. The electrostatic latent image formed on the photosensitive drum 1 is developed by the developing device 2 to form a toner image on the photosensitive drum 1. The toner image formed on the photosensitive drum 1 is used as a recording material conveyed from a paper feed cassette 54 through a paper feed roller 55 and a resist roller pair 56 by a transfer unit as a transfer means having a transfer roller 53. Transferred onto the paper 52. With the above configuration, the toner image forming means in the present embodiment is realized.

転写終了後の用紙52は、定着手段としての定着装置10によりトナー像が定着され、機外に排出される。具体的には、定着後に定着装置10から排出される用紙52を収容する排紙トレイ61上に排紙される。転写されずに感光体ドラム1上に残留した転写残トナーは、クリーニング手段としてのクリーニングユニット58により感光体ドラム1の表面から除去される。また、感光体ドラム1上の残留電荷は、除電手段としての除電ランプ59で除去される。   After the transfer, the paper 52 is fixed with a toner image by the fixing device 10 as a fixing unit, and is discharged outside the apparatus. Specifically, the paper is discharged onto a paper discharge tray 61 that stores the paper 52 discharged from the fixing device 10 after fixing. Untransferred toner remaining on the photosensitive drum 1 without being transferred is removed from the surface of the photosensitive drum 1 by a cleaning unit 58 as a cleaning unit. Further, the residual charge on the photosensitive drum 1 is removed by a static elimination lamp 59 as a static elimination means.

次に、本実施形態のプリンタの特徴部である定着装置10について詳しく説明する。
図2は、本実施形態のプリンタに採用される定着装置10を加圧ローラ回転軸方向から見たときの模式図である。
本定着装置10は、発熱層を有する無端状シート部材からなる定着部材としての定着スリーブ11を備えている。この定着スリーブ11は、略円筒形状となるように設置されていて、図中矢印の向きに回転する。定着スリーブ11は、加圧ローラ12に当接して定着ニップを形成できるように、ニップ形成部材13とこれを支持する加圧支持部材14によって加圧ローラ12に圧接されている。
Next, the fixing device 10 that is a characteristic part of the printer of this embodiment will be described in detail.
FIG. 2 is a schematic view of the fixing device 10 employed in the printer according to the present embodiment as viewed from the direction of the pressure roller rotation axis.
The fixing device 10 includes a fixing sleeve 11 as a fixing member made of an endless sheet member having a heat generating layer. The fixing sleeve 11 is installed so as to have a substantially cylindrical shape, and rotates in the direction of the arrow in the drawing. The fixing sleeve 11 is in pressure contact with the pressure roller 12 by a nip forming member 13 and a pressure support member 14 that supports the fixing sleeve 11 so that the fixing nip can be formed by contacting the pressure roller 12.

また、定着スリーブ11の外周面近傍には、磁束発生部15が対向配置されている。この磁束発生部15は、定着装置本体に固定されている。また、定着スリーブ11の内周面近傍には、磁束発生部15と対向するように消磁部材16が配置されている。この消磁部材16も、定着装置本体に固定されている。消磁部材16は、例えばアルミニウムで形成されている。   In addition, a magnetic flux generator 15 is disposed in the vicinity of the outer peripheral surface of the fixing sleeve 11. The magnetic flux generator 15 is fixed to the fixing device main body. Further, a demagnetizing member 16 is disposed in the vicinity of the inner peripheral surface of the fixing sleeve 11 so as to face the magnetic flux generator 15. This demagnetizing member 16 is also fixed to the fixing device body. The demagnetizing member 16 is made of aluminum, for example.

図3は、定着装置を用紙搬送方向入口側から見たときの模式図である。
定着スリーブ11は、その回転軸方向両端部でフランジ部材17によって支持されている。また、加圧支持部材14及び消磁部材16も、このフランジ部材17によって支持されている。本実施形態において、加圧ローラ12は、図示しない駆動モータからの駆動力を受けて図中矢印の向きに回転駆動し、定着スリーブ11は、定着ニップで加圧ローラ12から駆動力を受けて従動回転する。加圧ローラ12の外周面両端部には高摩擦領域12aが設けられており、加圧ローラ12に対して定着スリーブ11がスリップすることが抑制されている。
FIG. 3 is a schematic diagram when the fixing device is viewed from the entrance side in the sheet conveyance direction.
The fixing sleeve 11 is supported by flange members 17 at both ends in the rotation axis direction. Further, the pressure support member 14 and the demagnetizing member 16 are also supported by the flange member 17. In this embodiment, the pressure roller 12 receives a driving force from a driving motor (not shown) and is rotationally driven in the direction of the arrow in the figure, and the fixing sleeve 11 receives a driving force from the pressure roller 12 at the fixing nip. Followed rotation. High friction regions 12 a are provided at both ends of the outer peripheral surface of the pressure roller 12, and the fixing sleeve 11 is prevented from slipping with respect to the pressure roller 12.

図4は、磁束発生部15の外観を示す斜視図である。
磁束発生部15は、定着スリーブ11の発熱層を誘導加熱させる磁界を発生させる磁界発生部材としての励磁コイル15aを備えている。また、磁束発生部15は、定着スリーブ11の外周面の湾曲に合わせて湾曲したアーチ状のコア(アーチコア)15bを、定着スリーブ11の回転軸方向に5つ並列に備えている。励磁コイル15aは、図4に示すように、アーチコア15bと定着スリーブ11との間に位置する扁平なコイル(平面コイル)であり、そのコイル軸が定着スリーブ11の外周面法線方向と略一致するように、定着スリーブ11の外周面に対向配置されている。
FIG. 4 is a perspective view showing the appearance of the magnetic flux generator 15.
The magnetic flux generator 15 includes an exciting coil 15 a as a magnetic field generating member that generates a magnetic field for inductively heating the heat generating layer of the fixing sleeve 11. In addition, the magnetic flux generator 15 includes five arch-shaped cores (arch cores) 15 b that are curved in accordance with the curvature of the outer peripheral surface of the fixing sleeve 11 in parallel with the rotation axis direction of the fixing sleeve 11. As shown in FIG. 4, the exciting coil 15 a is a flat coil (planar coil) positioned between the arch core 15 b and the fixing sleeve 11, and its coil axis substantially coincides with the normal direction of the outer peripheral surface of the fixing sleeve 11. Thus, the fixing sleeve 11 is disposed so as to face the outer peripheral surface.

図5は、励磁コイル15aの構成を示す説明図である。
本実施形態の定着装置10は、磁束発生部15の励磁コイル15aを電力供給源であるインバータ15cによって高周波駆動することによって、励磁コイル15aの周囲に高周波磁界(磁束)を発生させる。これにより発生する磁束の多くは、アーチコア15bの内部を通ってアーチコア15bの両端部15dから定着スリーブ11に向けて案内される。この高周波磁界によって、定着スリーブ11の発熱層には渦電流が発生し、これにより発熱層が誘導加熱され、定着スリーブ11の温度が上昇する。
FIG. 5 is an explanatory diagram showing the configuration of the exciting coil 15a.
The fixing device 10 of the present embodiment generates a high-frequency magnetic field (magnetic flux) around the excitation coil 15a by driving the excitation coil 15a of the magnetic flux generator 15 with high frequency by an inverter 15c that is a power supply source. Most of the magnetic flux generated thereby is guided toward the fixing sleeve 11 from both ends 15d of the arch core 15b through the inside of the arch core 15b. Due to this high-frequency magnetic field, an eddy current is generated in the heat generating layer of the fixing sleeve 11, whereby the heat generating layer is inductively heated, and the temperature of the fixing sleeve 11 rises.

図6は、定着スリーブ11の厚さ方向の断面図である。
定着スリーブ11は、直径が例えば40mmで、内周面側から順に、整磁部材である整磁合金11a、第1酸化防止層11b、発熱層11c、第2酸化防止層11d、弾性層11e、表層である離型層11fが積層した層構造を有する。整磁合金11aには、公知かつ適宜の整磁合金を用いることができ、厚さは例えば50μmとする。また、酸化防止層11b,11dには、例えばニッケルストライクメッキを用いることができ、厚さは例えば1μm以下とする。発熱層11cには、例えば銅メッキを用いることができ、厚さは例えば15μmとする。弾性層11eには、例えばシリコーンゴムを用いることができ、厚さは例えば150μmとする。離型層11fには、例えばPFAを用いることができ、厚さは例えば30μmとする。本実施形態の定着スリーブ11の厚さは、例えば200μm以上250μm以下の範囲内である。ただし、これらはすべて一例であり、定着スリーブ11の層構成、材料、厚さなどは適宜設定される。
FIG. 6 is a cross-sectional view of the fixing sleeve 11 in the thickness direction.
The fixing sleeve 11 has a diameter of, for example, 40 mm, and in order from the inner peripheral surface side, the magnetic shunt alloy 11a that is a magnetic shunt member, the first antioxidant layer 11b, the heat generating layer 11c, the second antioxidant layer 11d, the elastic layer 11e, It has a layered structure in which a release layer 11f which is a surface layer is laminated. A known and appropriate magnetic shunt alloy can be used for the magnetic shunt alloy 11a, and the thickness is, for example, 50 μm. Further, for example, nickel strike plating can be used for the antioxidant layers 11b and 11d, and the thickness is set to 1 μm or less, for example. For example, copper plating can be used for the heat generating layer 11c, and the thickness is set to 15 μm, for example. For example, silicone rubber can be used for the elastic layer 11e, and the thickness thereof is, for example, 150 μm. For the release layer 11f, for example, PFA can be used, and the thickness is, for example, 30 μm. The thickness of the fixing sleeve 11 of the present embodiment is, for example, in the range of 200 μm to 250 μm. However, these are all examples, and the layer configuration, material, thickness, and the like of the fixing sleeve 11 are appropriately set.

本実施形態の整磁合金11aは、キュリー温度が例えば100℃以上300℃以下になるように形成された磁性体(例えば鉄やニッケルを含む整磁合金材料)からなる。定着スリーブ11の内周面全域に設けられているので、定着スリーブ11の外周面に対向配置された励磁コイル15aと、定着スリーブ11の内周面に対向配置された消磁部材16との間に常に介在するように構成されている。   The magnetic shunt alloy 11a of the present embodiment is made of a magnetic body (for example, a magnetic shunt alloy material containing iron or nickel) formed so that the Curie temperature is, for example, 100 ° C. or higher and 300 ° C. or lower. Since the fixing sleeve 11 is provided over the entire inner peripheral surface of the fixing sleeve 11, the exciting coil 15 a disposed to face the outer peripheral surface of the fixing sleeve 11 and the demagnetizing member 16 disposed to face the inner peripheral surface of the fixing sleeve 11. It is configured to always intervene.

図7(a)は、整磁合金11aの温度がキュリー温度未満であるときの磁場の様子を模式的に表した説明図である。
整磁合金11aの温度がキュリー温度未満であるとき、その整磁合金11aは磁性体のままである。そのため、励磁コイル15aからの誘導磁束は、図7(a)に示すように、整磁合金11aを透過することはない。整磁合金11aは、励磁コイル15aと消磁部材16との間に位置しているので、整磁合金11aの温度がキュリー温度未満であるときは、励磁コイル15aからの誘導磁束が消磁部材16に届かない。したがって、消磁部材16では、励磁コイル15aからの誘導磁束を減少させる磁界を発生しない。その結果、定着スリーブ11の発熱層11cは、消磁部材16による消磁効果を受けることなく、励磁コイル15aからの誘導磁束によって誘導加熱され、急速に昇温される。
Fig.7 (a) is explanatory drawing which represented typically the mode of the magnetic field when the temperature of the magnetic shunt alloy 11a is less than Curie temperature.
When the temperature of the magnetic shunt alloy 11a is lower than the Curie temperature, the magnetic shunt alloy 11a remains magnetic. Therefore, the induced magnetic flux from the exciting coil 15a does not pass through the magnetic shunt alloy 11a as shown in FIG. Since the magnetic shunt alloy 11a is located between the exciting coil 15a and the demagnetizing member 16, when the temperature of the magnetic shunt alloy 11a is lower than the Curie temperature, the induced magnetic flux from the exciting coil 15a is applied to the demagnetizing member 16. Not reach. Therefore, the demagnetizing member 16 does not generate a magnetic field that reduces the induced magnetic flux from the exciting coil 15a. As a result, the heat generating layer 11c of the fixing sleeve 11 is induction-heated by the induction magnetic flux from the exciting coil 15a without being demagnetized by the demagnetizing member 16, and rapidly heated.

図7(b)は、整磁合金11aの温度がキュリー温度以上であるときの磁場の様子を模式的に表した説明図である。
定着スリーブ11の発熱層11cが誘導加熱されて昇温すると、その熱が整磁合金11aに伝熱され、整磁合金11aも昇温する。そして、整磁合金11aの温度がキュリー温度以上になると、整磁合金11aは磁性を失うので、図7(b)に示すように、励磁コイル15aからの誘導磁束が整磁合金11aを透過して消磁部材16に届く。この誘導磁束は時間変化している。そのため、このような誘導磁束が導体である消磁部材16を貫くことで、消磁部材16に誘導電流(渦電流)が流れ、この誘導される渦電流は誘導磁束を打ち消す方向に働き、これに伴い誘導磁束を打ち消す反発磁束が誘導される。このようにして消磁部材16に反発磁束が生じると、この反発磁束は励磁コイル15aからの誘導磁束を減殺する(消磁効果)。その結果、発熱層11cに作用する誘導磁束が減少し、発熱層11cの発熱が抑制され、整磁合金層の温度Tが低下する。
FIG. 7B is an explanatory view schematically showing the state of the magnetic field when the temperature of the magnetic shunt alloy 11a is equal to or higher than the Curie temperature.
When the heating layer 11c of the fixing sleeve 11 is heated by induction, the heat is transferred to the magnetic shunt alloy 11a and the magnetic shunt alloy 11a also rises in temperature. When the temperature of the magnetic shunt alloy 11a becomes equal to or higher than the Curie temperature, the magnetic shunt alloy 11a loses its magnetism, so that the induced magnetic flux from the exciting coil 15a passes through the magnetic shunt alloy 11a as shown in FIG. Reaches the demagnetizing member 16. This induced magnetic flux changes with time. Therefore, when such induced magnetic flux passes through the degaussing member 16 that is a conductor, an induced current (eddy current) flows through the demagnetizing member 16, and this induced eddy current acts in a direction to cancel the induced magnetic flux. A repulsive magnetic flux that cancels the induced magnetic flux is induced. When a repulsive magnetic flux is generated in the demagnetizing member 16 in this way, the repellent magnetic flux reduces the induced magnetic flux from the exciting coil 15a (demagnetizing effect). As a result, the induced magnetic flux acting on the heat generating layer 11c decreases, heat generation of the heat generating layer 11c is suppressed, and the temperature T of the magnetic shunt alloy layer decreases.

発熱層11cに作用する誘導磁束が減少すると、発熱層11cの発熱効率が落ちるので、発熱層11cの温度が低下すると共に、整磁合金11aの温度も低下する。その後、発熱層11cの温度が低下して整磁合金11aの温度がキュリー温度を下回ると、再び、励磁コイル15aからの誘導磁束が整磁合金11aを透過できなくなる。これにより、消磁部材16による消磁効果がなくなり、発熱層11cの温度が再び上昇する。   When the induction magnetic flux acting on the heat generating layer 11c is reduced, the heat generation efficiency of the heat generating layer 11c is lowered, so that the temperature of the heat generating layer 11c is lowered and the temperature of the magnetic shunt alloy 11a is also lowered. Thereafter, when the temperature of the heat generating layer 11c decreases and the temperature of the magnetic shunt alloy 11a falls below the Curie temperature, the induced magnetic flux from the exciting coil 15a cannot pass through the magnetic shunt alloy 11a again. Thereby, the degaussing effect by the degaussing member 16 is lost, and the temperature of the heat generating layer 11c rises again.

このような自己温度制御機能により、本実施形態の定着装置10によれば、整磁合金11aがキュリー温度に達するまではほぼ瞬時に昇温するが、整磁合金11aがキュリー温度に達すると昇温しなくなって一定の温度を保持される。したがって、整磁合金11aを形成する素材のキュリー温度が本実施形態に係るプリンタに要求される目標定着温度である100℃以上〜300℃以下の範囲内となるような材料からなる磁性体で整磁合金11aを形成しておけば、定着スリーブ11の温度が過剰に高くなることなく、定着スリーブ11の温度を概ね目標定着温度に保持できるようになる。よって、電子的な温度制御を用いることなく、定着スリーブ11の表面における高い離型性と耐熱性等を確保できる。   With such a self-temperature control function, according to the fixing device 10 of the present embodiment, the temperature rises almost instantaneously until the magnetic shunt alloy 11a reaches the Curie temperature, but increases when the magnetic shunt alloy 11a reaches the Curie temperature. It keeps constant temperature without being heated. Therefore, the magnetic material is made of a magnetic material made of such a material that the Curie temperature of the material forming the magnetic shunt alloy 11a falls within the range of 100 ° C. to 300 ° C., which is the target fixing temperature required for the printer according to the present embodiment. If the magnetic alloy 11a is formed, the temperature of the fixing sleeve 11 can be maintained at approximately the target fixing temperature without excessively increasing the temperature of the fixing sleeve 11. Therefore, high releasability and heat resistance on the surface of the fixing sleeve 11 can be ensured without using electronic temperature control.

ここで、仮に、図8に示すように、消磁部材16Aが平板状部材で構成され、消磁部材16Aが全体的に励磁コイル15aと離れた構成であると、消磁部材16Aと励磁コイル15aとの距離が遠いために、整磁合金11aを透過して消磁部材16Aに達する誘導磁束が少ない。これでは、消磁部材16Aによって生じる反発磁束が少なく、発熱層11cに十分な消磁効果を及ぼすことができない。そのため、発熱層11cが過剰に昇温するおそれがあり、十分な自己温度制御機能を得ることができない。   Here, as shown in FIG. 8, if the demagnetizing member 16A is formed of a flat plate member and the demagnetizing member 16A is entirely separated from the exciting coil 15a, the demagnetizing member 16A and the exciting coil 15a Since the distance is long, the induced magnetic flux that passes through the magnetic shunt alloy 11a and reaches the demagnetizing member 16A is small. Thus, the repulsive magnetic flux generated by the demagnetizing member 16A is small, and a sufficient demagnetizing effect cannot be exerted on the heat generating layer 11c. For this reason, the heat generation layer 11c may be excessively heated, and a sufficient self-temperature control function cannot be obtained.

一方で、仮に、図9に示すように、消磁部材16Bを、定着スリーブ11の内周面に合わせて湾曲した湾曲板状部材とすれば、消磁部材16Bの全体を定着スリーブ11の内周面に近接配置することができる。この構成によれば、消磁部材16Bと、定着スリーブ11の外周面に対向配置された励磁コイル15aとの距離が近いので、整磁合金11aを透過して消磁部材16Bに達する誘導磁束が多くなり、発熱層11cに十分な消磁効果を及ぼすことができる。しかしながら、この構成では、消磁部材16Bと定着スリーブ11の発熱層11cとの距離も近くなるので、発熱層11cの熱が整磁合金11aから消磁部材16Bへと対流熱伝達および輻射で伝搬しやすくなる。その結果、発熱層11cの昇温速度が遅くなり、ウォームアップ時間が長くなってしまう。すなわち、十分な自己温度制御機能を得るために消磁部材16Bを励磁コイル15aに近付けると、消磁部材16Bと発熱層11cとの距離も近づくことになってウォームアップ時間の長期化につながる。   On the other hand, if the demagnetizing member 16B is a curved plate-like member that is curved in accordance with the inner peripheral surface of the fixing sleeve 11, as shown in FIG. 9, the entire demagnetizing member 16B is the inner peripheral surface of the fixing sleeve 11. Can be placed close to each other. According to this configuration, since the distance between the demagnetizing member 16B and the exciting coil 15a disposed opposite to the outer peripheral surface of the fixing sleeve 11 is short, the induced magnetic flux that passes through the magnetic shunt alloy 11a and reaches the demagnetizing member 16B increases. A sufficient demagnetizing effect can be exerted on the heat generating layer 11c. However, in this configuration, since the distance between the demagnetizing member 16B and the heat generating layer 11c of the fixing sleeve 11 is also close, the heat of the heat generating layer 11c easily propagates from the magnetic shunt alloy 11a to the demagnetizing member 16B by convective heat transfer and radiation. Become. As a result, the heating rate of the heat generating layer 11c is slowed, and the warm-up time is lengthened. That is, when the degaussing member 16B is brought close to the exciting coil 15a in order to obtain a sufficient self-temperature control function, the distance between the demagnetizing member 16B and the heat generating layer 11c also becomes close, leading to a longer warm-up time.

ここで、図9に示すように、消磁部材16Bの全体を湾曲させて定着スリーブ11の内周面に近付けた構成においては、励磁コイル15aのコア部部に対向しているコア対向部16bよりも、励磁コイル15aの巻線部分に対向している巻線対向部16aの方が、励磁コイル15aからの誘導磁束が多く通る。よって、巻線対向部16aで生じる反発磁束は、コア対向部16bよりも多いので、巻線対向部16aは、コア対向部16bよりも、発熱層11cの消磁効果に与える影響が大きい。   Here, as shown in FIG. 9, in the configuration in which the entire demagnetizing member 16B is curved and brought closer to the inner peripheral surface of the fixing sleeve 11, the core facing portion 16b facing the core portion of the exciting coil 15a is used. However, a larger amount of the induced magnetic flux from the exciting coil 15a passes through the winding facing portion 16a facing the winding portion of the exciting coil 15a. Therefore, since the repulsive magnetic flux generated in the winding facing portion 16a is larger than that in the core facing portion 16b, the winding facing portion 16a has a larger influence on the demagnetizing effect of the heat generating layer 11c than the core facing portion 16b.

そこで、本実施形態の消磁部材16では、図2に示すように、巻線対向部16aについては定着スリーブ11の内周面に合わせて湾曲させ、コア対向部16bについては平面となるように形成されている。これにより、巻線対向部16aについては、その全体を定着スリーブ11の内周面に近接配置させることができ、定着スリーブ11の外周面に対向配置された励磁コイル15aとの距離をなるべく短いものとすることができる。一方、コア対向部16bについては、図9に示した構成と比較して、定着スリーブ11の内周面との距離が遠くなるので、発熱層11cの熱が消磁部材16へと伝搬しにくくなる。その結果、図9に示した構成よりもウォームアップ時間の短縮化が図れる。   Therefore, in the demagnetizing member 16 of the present embodiment, as shown in FIG. 2, the winding facing portion 16a is curved in accordance with the inner peripheral surface of the fixing sleeve 11, and the core facing portion 16b is formed to be flat. Has been. As a result, the entire winding facing portion 16a can be disposed close to the inner peripheral surface of the fixing sleeve 11, and the distance from the exciting coil 15a disposed facing the outer peripheral surface of the fixing sleeve 11 is as short as possible. It can be. On the other hand, as for the core facing portion 16b, the distance from the inner peripheral surface of the fixing sleeve 11 is longer than that in the configuration shown in FIG. 9, so that the heat of the heat generating layer 11c is difficult to propagate to the demagnetizing member 16. . As a result, the warm-up time can be shortened compared to the configuration shown in FIG.

本実施形態によれば、コア対向部16bが発生させる反発磁束による消磁効果は、図9に示した構成と比較して小さくなる。しかしながら、このコア対向部16bの消磁効果はもともと巻線対向部16aの消磁効果と比較して小さいものであったので、このコア対向部16bの消磁効果が小さくなったとしても、励磁コイル15aに近接配置された巻線対向部16aによって十分な消磁効果を得ることができ、十分な自己温度制御機能を発揮することができる。   According to the present embodiment, the demagnetizing effect due to the repulsive magnetic flux generated by the core facing portion 16b is smaller than that in the configuration shown in FIG. However, since the demagnetizing effect of the core facing portion 16b is originally smaller than the demagnetizing effect of the winding facing portion 16a, even if the demagnetizing effect of the core facing portion 16b is reduced, the exciting coil 15a A sufficient demagnetizing effect can be obtained by the winding facing portions 16a arranged in proximity, and a sufficient self-temperature control function can be exhibited.

本実施形態における消磁部材16の巻線対向部16aと定着スリーブ11の内周面とのギャップは、3mm±0.5mmに設定したが、この数値は適宜設定可能である。また、本実施形態によれば、図9に示した構成と比べて、ウォームアップ時間を約2秒短縮できることが確認された。   In this embodiment, the gap between the winding facing portion 16a of the demagnetizing member 16 and the inner peripheral surface of the fixing sleeve 11 is set to 3 mm ± 0.5 mm, but this value can be set as appropriate. Further, according to the present embodiment, it was confirmed that the warm-up time can be shortened by about 2 seconds as compared with the configuration shown in FIG.

なお、本実施形態では、消磁部材16を単一部材で構成した例であるが、図10に示すように、消磁部材を例えば2つに分割し、各消磁部材16Cを励磁コイル15aの巻線と対向するように構成してもよい。この場合、定着スリーブ11の内周面と対向する面積が減るので、上記実施形態よりも更に発熱層11cから消磁部材への伝熱量が少なくできる。ただし、このように消磁部材を分割すると、整磁合金11aを透過した誘導磁束が消磁部材16Cを貫くときに発生する誘導電流(渦電流)が発生しにくくなるので、他の方法により十分な反発磁束を発生させることを担保する必要が生じる場合がある。よって、他の方法により十分な反発磁束を発生させることを担保することが難しい場合には、消磁部材については単一部材で構成するのが望ましい。   In the present embodiment, the demagnetizing member 16 is an example of a single member. However, as shown in FIG. 10, the demagnetizing member is divided into, for example, two parts, and each demagnetizing member 16C is wound on the exciting coil 15a. You may comprise so that it may oppose. In this case, since the area facing the inner peripheral surface of the fixing sleeve 11 is reduced, the amount of heat transferred from the heat generating layer 11c to the degaussing member can be further reduced as compared with the above embodiment. However, if the demagnetizing member is divided in this way, an induced current (eddy current) generated when the induced magnetic flux that has passed through the magnetic shunt alloy 11a penetrates the demagnetizing member 16C is less likely to be generated. It may be necessary to ensure that magnetic flux is generated. Therefore, when it is difficult to ensure that a sufficient repulsive magnetic flux is generated by another method, it is desirable that the demagnetizing member is constituted by a single member.

〔変形例1〕
次に、上記実施形態における定着装置の一変形例(以下、本変形例を「変形例1」という。)について説明する。
図11は、本変形例1の定着装置を加圧ローラ回転軸方向から見たときの模式図である。
本変形例1の消磁部材26は、コア対向部26bの形状が、平面形状ではなく定着スリーブ11の内周面から離れる方向へ凸状になった形状である。このような消磁部材26であれば、上記実施形態よりも、コア対向部26bと発熱層11cとの距離が大きくなるので、発熱層11cの熱が消磁部材26へと更に伝搬しにくくなり、ウォームアップ時間の短縮化を更に図ることができる。
[Modification 1]
Next, a modified example of the fixing device in the above embodiment (hereinafter, this modified example is referred to as “modified example 1”) will be described.
FIG. 11 is a schematic diagram of the fixing device of Modification 1 when viewed from the direction of the pressure roller rotation axis.
In the demagnetizing member 26 according to the first modification, the shape of the core facing portion 26b is not a planar shape but a shape protruding in a direction away from the inner peripheral surface of the fixing sleeve 11. With such a demagnetizing member 26, since the distance between the core facing portion 26b and the heat generating layer 11c is larger than that in the above embodiment, the heat of the heat generating layer 11c is more difficult to propagate to the demagnetizing member 26, and the warm It is possible to further shorten the up time.

〔変形例2〕
次に、上記実施形態における定着装置の他の変形例(以下、本変形例を「変形例2」という。)について説明する。
図12は、本変形例2の消磁部材の斜視図である。
本変形例2の消磁部材36は、図12に示すように、コア対向部36bの一部を欠落させて開口部36cとしたものである。このような消磁部材26であれば、上記実施形態や上記変形例1よりも、発熱層11cの熱が消磁部材36へと更に伝搬しにくくなり、ウォームアップ時間の更なる短縮化を更に図ることができる。
[Modification 2]
Next, another modified example of the fixing device in the above embodiment (hereinafter, this modified example is referred to as “Modified Example 2”) will be described.
FIG. 12 is a perspective view of a demagnetizing member according to the second modification.
As shown in FIG. 12, the degaussing member 36 of the second modification is formed by opening a portion 36c by removing a part of the core facing portion 36b. With such a demagnetizing member 26, the heat of the heat generating layer 11c is less likely to propagate to the demagnetizing member 36 than in the above-described embodiment and Modification 1, and the warm-up time can be further shortened. Can do.

本変形例2において、開口部36cの定着スリーブ周方向長さは、開口部36cが励磁コイル15aのコア(空気)と対向するように調整されている。また、開口部36cの定着スリーブ軸長さは、最小紙幅サイズ以下にすることが望ましい。本プリンタは、最小紙幅サイズがハガキサイズの短辺であるので、これに合わせて開口部36cの定着スリーブ軸長さを105mmに設定した。   In the second modification, the circumferential length of the fixing sleeve in the fixing sleeve is adjusted so that the opening 36c faces the core (air) of the exciting coil 15a. Further, it is desirable that the fixing sleeve shaft length of the opening 36c be equal to or smaller than the minimum paper width size. In this printer, the minimum paper width size is the short side of the postcard size, and accordingly, the fixing sleeve shaft length of the opening 36c is set to 105 mm.

〔変形例3〕
次に、上記実施形態における定着装置の更に他の変形例(以下、本変形例を「変形例34」という。)について説明する。
図13は、本変形例3の定着装置を加圧ローラ回転軸方向から見たときの模式図である。
本変形例3の定着装置は、定着スリーブ11から整磁合金を分離し、定着スリーブ11と整磁合金41とを別体構成としたものである。整磁合金41は、定着スリーブ11に対して接触又は非接触状態となるように、定着装置本体に固定されている。また、本変形例3の整磁合金41は、定着スリーブ11の周方向一部分のみに対向するように構成されている。これにより、上記実施形態や上記変形例1及び2のように整磁合金11aが定着スリーブ11の全周にわたって設けられている場合よりも、整磁合金41の熱容量を減らすことができ、ウォームアップ時間の短縮化を図ることができる。
[Modification 3]
Next, still another modified example (hereinafter, this modified example will be referred to as “modified example 34”) of the fixing device in the above embodiment will be described.
FIG. 13 is a schematic diagram when the fixing device of the third modification is viewed from the direction of the pressure roller rotation axis.
In the fixing device according to the third modification, the magnetic shunt alloy is separated from the fixing sleeve 11, and the fixing sleeve 11 and the magnetic shunt alloy 41 are configured separately. The magnetic shunt alloy 41 is fixed to the fixing device main body so as to be in contact with or not in contact with the fixing sleeve 11. Further, the magnetic shunt alloy 41 of the third modification is configured to face only a part of the fixing sleeve 11 in the circumferential direction. As a result, the heat capacity of the magnetic shunt alloy 41 can be reduced compared to the case where the magnetic shunt alloy 11a is provided over the entire circumference of the fixing sleeve 11 as in the above-described embodiment and the first and second modifications, and warm-up is performed. Time can be shortened.

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
発熱層11cを有し、発熱層11cで発生した熱により未定着画像を記録材としての用紙52上に加熱定着させる無端状シート部材からなる定着スリーブ11等の定着部材と、上記定着部材の内周面又は外周面の周方向一部分に対向配置され、該定着部材の発熱層11cを誘導加熱させる磁界を発生させる励磁コイル15a等の磁界発生部材と、上記発熱層11cを挟んで上記磁界発生部材とは反対側に配置され、上記定着部材と一体又は別体に設けられた整磁合金11a,41等の整磁部材と、上記整磁部材を挟んで上記磁界発生部材とは反対側に配置され、上記磁界発生部材との対向部分が上記定着部材の面に沿った形状である消磁部材16,26,36とを有し、上記定着部材の発熱層11cの熱によって上記整磁部材の温度がキュリー温度以上になることで上記消磁部材16,26,36に上記磁界発生部材の磁界が作用して該消磁部材16,26,36でこれを打ち消す磁界が発生し、該磁界により該発熱層11cに作用する磁界の大きさが弱まることによって該発熱層11cが過剰に加熱するのを抑制する自己温度制御機能を備えた定着装置において、上記消磁部材16,26,36は、上記磁界発生部材との対向部分の一部分であって、該磁界発生部材が発生させた磁界によって生じる磁束量が相対的に少ない少磁束部分を欠落させた開口部36cを有するか、又は、コア対向部16b,26b,36b等の少磁束部分と上記発熱層11cとの距離が最も長くなるように形成されている。
これによれば、上述したように、磁界発生部材と対向している消磁部材のうち、発熱層の消磁効果に大きな影響を及ぼす対向部分16a,26a,36aについては、発熱層に近接配置して十分な自己温度制御機能の実現を確保するとともに、発熱層の消磁効果への影響が小さい少磁束部分16b,26b,36b,36cについては発熱層から離して配置することで発熱層から消磁部材への伝熱量を減らし、ウォームアップ時間の短縮化を図ることができる。
What has been described above is merely an example, and the present invention has a specific effect for each of the following modes.
(Aspect A)
A fixing member such as an endless sheet member having an exothermic layer 11c, which heat-fixes an unfixed image on a sheet 52 as a recording material by heat generated in the exothermic layer 11c; A magnetic field generating member such as an excitation coil 15a, which is disposed opposite to a circumferential surface or a part of the outer circumferential surface in the circumferential direction and generates a magnetic field for induction heating the heat generating layer 11c of the fixing member, and the magnetic field generating member sandwiching the heat generating layer 11c. Is disposed on the opposite side of the fixing member, and is disposed on the opposite side of the magnetic field generating member with the magnetic shunt member sandwiched between the magnetic shunt members such as the magnetic shunt alloys 11a and 41 provided separately or separately from the fixing member. And the demagnetizing members 16, 26, and 36 having a shape along the surface of the fixing member at a portion facing the magnetic field generating member, and the temperature of the magnetic shunt member by the heat of the heat generating layer 11c of the fixing member. Is Curie When the temperature becomes higher than the temperature, the magnetic field of the magnetic field generating member acts on the demagnetizing members 16, 26, and 36 to generate a magnetic field that counteracts the demagnetizing members 16, 26, and 36, and the magnetic field causes the heat generating layer 11c. In the fixing device having a self-temperature control function that suppresses excessive heating of the heat generating layer 11c due to weakening of the acting magnetic field, the demagnetizing members 16, 26, and 36 are connected to the magnetic field generating member. It has an opening part 36c that is a part of the opposed part and has a small magnetic flux part that is relatively small in the amount of magnetic flux generated by the magnetic field generated by the magnetic field generating member, or the core facing parts 16b, 26b, 36b. The distance between the small magnetic flux portion such as the heat generating layer 11c is the longest.
According to this, as described above, among the demagnetizing members facing the magnetic field generating member, the facing portions 16a, 26a, and 36a that greatly affect the demagnetizing effect of the heat generating layer are arranged close to the heat generating layer. The small magnetic flux portions 16b, 26b, 36b, and 36c, which ensure a sufficient self-temperature control function and have a small influence on the demagnetizing effect of the heat generating layer, are arranged away from the heat generating layer so that the heat generating layer is demagnetized. The amount of heat transfer can be reduced and the warm-up time can be shortened.

(態様B)
上記態様Aにおいて、上記消磁部材は単一部材で構成されている。
これによれば、上記消磁部材が分割されている構成と比較して、整磁部材を透過した誘導磁束が消磁部材を貫くときに発生する誘導電流(渦電流)が発生しやすくなるので、十分な反発磁束を発生させることができ、より十分な自己温度制御機能を得ることができる。
(Aspect B)
In the aspect A, the demagnetizing member is a single member.
According to this, compared to the configuration in which the demagnetizing member is divided, an induced current (eddy current) generated when the induced magnetic flux that has passed through the magnetic shunt member passes through the demagnetizing member is likely to be generated. Thus, a repulsive magnetic flux can be generated and a more sufficient self-temperature control function can be obtained.

(態様C)
上記態様A又はBにおいて、上記磁界発生部材は、これに対向する上記定着部材の内周面又は外周面に略平行な励磁コイル15a等の平面コイルであり、上記消磁部材16,26,36における少磁束部分16b,26b,36b,36cは、上記コイルのコアに対向する部分である。
これによれば、上述したように、簡素な構成で、十分な自己温度制御機能の実現とウォームアップ時間の短縮化の両立を図ることができる。
(Aspect C)
In the above aspect A or B, the magnetic field generating member is a planar coil such as an exciting coil 15a that is substantially parallel to the inner peripheral surface or the outer peripheral surface of the fixing member facing the magnetic member, and the demagnetizing members 16, 26, and 36 The small magnetic flux portions 16b, 26b, 36b, and 36c are portions facing the core of the coil.
According to this, as described above, it is possible to achieve both a sufficient self-temperature control function and a shortened warm-up time with a simple configuration.

(態様D)
上記態様A〜Cのいずれか1つの態様において、上記定着部材は、略円筒形状となるように設置されており、上記磁界発生部材は、これが対向する定着部材の内周面又は外周面の湾曲に合わせて配置されている。
これによれば、磁界発生部材を定着部材の発熱層11cや消磁部材16,26,36に対してより近接配置することが可能となり、発熱層11cの誘導加熱による発熱効率を向上させるとともに、消磁部材による高い消磁効果を実現して安定した自己温度制御機能を実現できる。
(Aspect D)
In any one of the above aspects A to C, the fixing member is installed so as to have a substantially cylindrical shape, and the magnetic field generating member is curved on the inner peripheral surface or the outer peripheral surface of the fixing member facing the fixing member. It is arranged according to.
According to this, the magnetic field generating member can be disposed closer to the heat generating layer 11c of the fixing member and the demagnetizing members 16, 26, 36, and the heat generation efficiency by induction heating of the heat generating layer 11c is improved and the demagnetization is performed. A high demagnetization effect by the member can be realized, and a stable self-temperature control function can be realized.

(態様E)
上記態様A〜Dのいずれか1つの態様において、上記磁界発生部材は、上記定着部材の外周面に対向配置され、上記整磁部材は、上記発熱層11cよりも上記定着部材の内周面側で該定着部材と一体に設けられている。
これによれば、上記実施形態や上記変形例1及び2のように、定着装置の構成を簡素化でき、コスト低減を図ることができる。
(Aspect E)
In any one of the above aspects A to D, the magnetic field generating member is disposed to face the outer peripheral surface of the fixing member, and the magnetic shunt member is on the inner peripheral surface side of the fixing member with respect to the heat generating layer 11c. And provided integrally with the fixing member.
According to this, the configuration of the fixing device can be simplified and the cost can be reduced as in the embodiment and the first and second modifications.

(態様F)
上記態様A〜Eのいずれか1つの態様において、上記整磁部材は、上記定着部材と別体に設けられ、かつ、該定着部材の周方向一部分に対向するように構成されている。
これによれば、上記変形例3で説明したように、上記実施形態や上記変形例1及び2のように整磁部材が定着部材の全周にわたって設けられている場合よりも、整磁部材の熱容量を減らすことができ、ウォームアップ時間の短縮化を図ることができる。
(Aspect F)
In any one of the above aspects A to E, the magnetic shunt member is provided separately from the fixing member, and is configured to face a part in the circumferential direction of the fixing member.
According to this, as described in Modification 3 above, the magnetic shunting member is formed more than in the case where the magnetic shunting member is provided over the entire circumference of the fixing member as in the above embodiment and Modifications 1 and 2. The heat capacity can be reduced and the warm-up time can be shortened.

10 定着装置
11 定着スリーブ
11a,41 整磁合金
11b,11d 酸化防止層
11c 発熱層
11e 弾性層
11f 離型層
12 加圧ローラ
13 ニップ形成部材
14 加圧支持部材
15 磁束発生部
15a 励磁コイル
15b アーチコア
16,26,36 消磁部材
16a,26a,36a 巻線対向部
16b,26b,36b コア対向部
36c 開口部
DESCRIPTION OF SYMBOLS 10 Fixing device 11 Fixing sleeve 11a, 41 Magnetic shunt alloy 11b, 11d Antioxidation layer 11c Heat generation layer 11e Elastic layer 11f Release layer 12 Pressure roller 13 Nip forming member 14 Pressure support member 15 Magnetic flux generation part 15a Excitation coil 15b Arch core 16, 26, 36 Demagnetizing member 16a, 26a, 36a Winding facing portion 16b, 26b, 36b Core facing portion 36c Opening portion

特開2009‐58829号公報JP 2009-58829 A

Claims (7)

発熱層を有し、該発熱層で発生した熱により未定着画像を記録材上に加熱定着させる無端状シート部材からなる定着部材と、
上記定着部材の内周面又は外周面の周方向一部分に対向配置され、該定着部材の発熱層を誘導加熱させる磁界を発生させる磁界発生部材と、
上記発熱層を挟んで上記磁界発生部材とは反対側に配置され、上記定着部材と一体又は別体に設けられた整磁部材と、
上記整磁部材を挟んで上記磁界発生部材とは反対側に配置され、上記磁界発生部材との対向部分が上記定着部材の面に沿った形状である消磁部材とを有し、
上記定着部材の発熱層の熱によって上記整磁部材の温度がキュリー温度以上になることで上記消磁部材に上記磁界発生部材の磁界が作用して該消磁部材でこれを打ち消す磁界が発生し、該磁界により該発熱層に作用する磁界の大きさが弱まることによって該発熱層が過剰に加熱するのを抑制する自己温度制御機能を備えた定着装置において、
上記消磁部材は、上記磁界発生部材との対向部分における定着部材周方向内側部分、該磁界発生部材が発生させた磁界によって生じる磁束量が相対的に少ない少磁束部分を欠落させるための開口部を備えた単一部材で構成されていることを特徴とする定着装置。
A fixing member comprising an endless sheet member that has a heat generating layer and heat-fixes an unfixed image on the recording material by heat generated in the heat generating layer;
A magnetic field generating member disposed opposite to a part of the inner circumferential surface or the outer circumferential surface of the fixing member to generate a magnetic field for inductively heating the heat generating layer of the fixing member;
A magnetic shunt member disposed on the opposite side of the magnetic field generating member across the heat generating layer and provided integrally with or separately from the fixing member;
A demagnetizing member disposed on the opposite side of the magnetic field generating member with the magnetic shunt member interposed therebetween, and a portion facing the magnetic field generating member having a shape along the surface of the fixing member,
When the temperature of the magnetic shunt member becomes equal to or higher than the Curie temperature due to the heat of the heat generating layer of the fixing member, the magnetic field of the magnetic field generating member acts on the demagnetizing member, and a magnetic field is generated that counteracts the demagnetizing member, In a fixing device having a self-temperature control function that suppresses excessive heating of the heat generating layer due to weakening of the magnitude of the magnetic field acting on the heat generating layer by the magnetic field.
The degaussing member, the inner portion of the fixing member circumferentially in opposite portion between the magnetic field generating member, the order amount of magnetic flux generated by the magnetic field the magnetic field generating member have been generated by omission of the relatively small small magnetic flux portion A fixing device comprising a single member having an opening .
発熱層を有し、該発熱層で発生した熱により未定着画像を記録材上に加熱定着させる無端状シート部材からなる定着部材と、
上記定着部材の内周面又は外周面の周方向一部分に対向配置され、該定着部材の発熱層を誘導加熱させる磁界を発生させる磁界発生部材と、
上記発熱層を挟んで上記磁界発生部材とは反対側に配置され、上記定着部材と一体又は別体に設けられた整磁部材と、
上記整磁部材を挟んで上記磁界発生部材とは反対側に配置され、上記磁界発生部材との対向部分が上記定着部材の面に沿った形状である消磁部材とを有し、
上記定着部材の発熱層の熱によって上記整磁部材の温度がキュリー温度以上になることで上記消磁部材に上記磁界発生部材の磁界が作用して該消磁部材でこれを打ち消す磁界が発生し、該磁界により該発熱層に作用する磁界の大きさが弱まることによって該発熱層が過剰に加熱するのを抑制する自己温度制御機能を備えた定着装置において、
上記消磁部材は、上記磁界発生部材との対向部分における定着部材周方向の内側部分に、該磁界発生部材が発生させた磁界によって生じる磁束量が相対的に少ない少磁束部分と上記発熱層との距離が上記対向部分の中で最も長い箇所を備えた単一部材で構成されていることを特徴とする定着装置。
A fixing member comprising an endless sheet member that has a heat generating layer and heat-fixes an unfixed image on the recording material by heat generated in the heat generating layer;
A magnetic field generating member disposed opposite to a part of the inner circumferential surface or the outer circumferential surface of the fixing member to generate a magnetic field for inductively heating the heat generating layer of the fixing member;
A magnetic shunt member disposed on the opposite side of the magnetic field generating member across the heat generating layer and provided integrally with or separately from the fixing member;
A demagnetizing member disposed on the opposite side of the magnetic field generating member with the magnetic shunt member interposed therebetween, and a portion facing the magnetic field generating member having a shape along the surface of the fixing member,
When the temperature of the magnetic shunt member becomes equal to or higher than the Curie temperature due to the heat of the heat generating layer of the fixing member, the magnetic field of the magnetic field generating member acts on the demagnetizing member, and a magnetic field is generated that counteracts the demagnetizing member, In a fixing device having a self-temperature control function that suppresses excessive heating of the heat generating layer due to weakening of the magnitude of the magnetic field acting on the heat generating layer by the magnetic field .
The demagnetizing member includes a small magnetic flux portion that generates a relatively small amount of magnetic flux generated by the magnetic field generated by the magnetic field generating member and an inner portion of the fixing member circumferential direction in a portion facing the magnetic field generating member, and the heat generating layer. A fixing device comprising a single member having a longest distance among the opposed portions .
請求項1又は2の定着装置において、
上記磁界発生部材は、これに対向する上記定着部材の内周面又は外周面に略平行な平面コイルであり、
上記消磁部材における上記少磁束部分は、上記コイルのコアに対向する部分であることを特徴とする定着装置。
The fixing device according to claim 1 or 2,
The magnetic field generating member is a planar coil substantially parallel to the inner circumferential surface or outer circumferential surface of the fixing member facing the magnetic field generating member,
The fixing device according to claim 1, wherein the small magnetic flux portion of the demagnetizing member is a portion facing the core of the coil.
請求項1乃至3のいずれか1項に記載の定着装置において、
上記定着部材は、略円筒形状となるように設置されており、
上記磁界発生部材は、これが対向する定着部材の内周面又は外周面の湾曲に合わせて配置されていることを特徴とする定着装置。
The fixing device according to any one of claims 1 to 3,
The fixing member is installed so as to have a substantially cylindrical shape,
The fixing device according to claim 1, wherein the magnetic field generating member is arranged in accordance with a curvature of an inner peripheral surface or an outer peripheral surface of the fixing member facing the magnetic field generating member.
請求項1乃至4のいずれか1項に記載の定着装置において、
上記磁界発生部材は、上記定着部材の外周面に対向配置され、
上記整磁部材は、上記発熱層よりも上記定着部材の内周面側で該定着部材と一体に設けられていることを特徴とする定着装置。
The fixing device according to any one of claims 1 to 4,
The magnetic field generating member is disposed opposite to the outer peripheral surface of the fixing member,
The fixing device, wherein the magnetic shunt member is provided integrally with the fixing member on an inner peripheral surface side of the fixing member with respect to the heat generating layer.
請求項1乃至5のいずれか1項に記載の定着装置において、
上記整磁部材は、上記定着部材と別体に設けられ、かつ、該定着部材の周方向一部分に対向するように構成されていることを特徴とする定着装置。
The fixing device according to any one of claims 1 to 5,
The fixing device, wherein the magnetic shunt member is provided separately from the fixing member, and is configured to face a part of the fixing member in the circumferential direction.
記録材上にトナー像を形成するトナー像形成手段と、記録材上に形成されたトナー像を該記録材に加熱定着させる加熱定着手段とを備えた画像形成装置において、
上記加熱定着手段として、請求項1乃至6のいずれか1項に記載の定着装置を用いたことを特徴とする画像形成装置。
An image forming apparatus comprising: a toner image forming unit that forms a toner image on a recording material; and a heat fixing unit that heat-fixes the toner image formed on the recording material to the recording material.
An image forming apparatus using the fixing device according to claim 1 as the heat fixing unit.
JP2011137277A 2011-06-21 2011-06-21 Fixing device and image forming apparatus having the same Active JP5839258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137277A JP5839258B2 (en) 2011-06-21 2011-06-21 Fixing device and image forming apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137277A JP5839258B2 (en) 2011-06-21 2011-06-21 Fixing device and image forming apparatus having the same

Publications (2)

Publication Number Publication Date
JP2013003511A JP2013003511A (en) 2013-01-07
JP5839258B2 true JP5839258B2 (en) 2016-01-06

Family

ID=47672115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137277A Active JP5839258B2 (en) 2011-06-21 2011-06-21 Fixing device and image forming apparatus having the same

Country Status (1)

Country Link
JP (1) JP5839258B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458903B2 (en) 2013-01-17 2019-10-29 Koninklijke Philips N.V. Method and apparatus for monitoring a level of a gaseous species of interest
JP6135245B2 (en) * 2013-03-29 2017-05-31 株式会社リコー Fixing apparatus and image forming apparatus
JP6225751B2 (en) * 2013-03-29 2017-11-08 株式会社リコー Fixing apparatus and image forming apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011454A1 (en) * 2004-07-26 2006-02-02 Matsushita Electric Industrial Co., Ltd. Heat generating roller, fixing equipment, and image forming apparatus
JP4956975B2 (en) * 2005-12-05 2012-06-20 パナソニック株式会社 Fixing device and image forming apparatus
JP4949803B2 (en) * 2006-03-17 2012-06-13 株式会社リコー Fixing apparatus and image forming apparatus
JP2009058829A (en) * 2007-08-31 2009-03-19 Ricoh Co Ltd Image forming device, fixing device, heat generation rotor, and temperature control method
JP5509545B2 (en) * 2008-06-20 2014-06-04 コニカミノルタ株式会社 Fixing apparatus and image forming apparatus
JP5439754B2 (en) * 2008-06-23 2014-03-12 コニカミノルタ株式会社 Fixing apparatus and image forming apparatus
JP5503248B2 (en) * 2009-10-19 2014-05-28 キヤノン株式会社 Image heating device

Also Published As

Publication number Publication date
JP2013003511A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP4936430B2 (en) Fixing apparatus and image forming apparatus
JP4949803B2 (en) Fixing apparatus and image forming apparatus
US9274467B2 (en) Image heating apparatus
JP2007264421A (en) Fixing member, fixing device, and image forming apparatus
JP2002083676A (en) Heating apparatus and image forming apparatus
JP2008185991A (en) Temperature control method for heating device, fixing device and heating member, and image forming apparatus
JP2013174868A (en) Image heating device
JP6069828B2 (en) Fixing apparatus and image forming apparatus
JP6137893B2 (en) Heating apparatus and image forming apparatus
JP2007108213A (en) Fixing device
JP2005005017A (en) Heating device and image formation apparatus
JP5518238B2 (en) Image heating device
JP5029656B2 (en) Electromagnetic induction heating device, fixing device using the same, and image forming apparatus
JP5693196B2 (en) Image heating device
JP2011090087A (en) Image heating device
JP5839258B2 (en) Fixing device and image forming apparatus having the same
JP2014052460A (en) Image forming apparatus
JP5800688B2 (en) Image heating device
JP5091541B2 (en) Fixing device and image forming apparatus using the same
JP2008257155A (en) Fixing unit and image forming apparatus using the same
JP2006011217A (en) Fixing device and image forming apparatus
JP2005056595A (en) Heating device and image formation device
JP2014052454A (en) Image heating device
JP2014052462A (en) Image heating device
JP2014029373A (en) Image heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R151 Written notification of patent or utility model registration

Ref document number: 5839258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151