JP5838292B2 - Ultrasonic flow measuring device - Google Patents

Ultrasonic flow measuring device Download PDF

Info

Publication number
JP5838292B2
JP5838292B2 JP2010252541A JP2010252541A JP5838292B2 JP 5838292 B2 JP5838292 B2 JP 5838292B2 JP 2010252541 A JP2010252541 A JP 2010252541A JP 2010252541 A JP2010252541 A JP 2010252541A JP 5838292 B2 JP5838292 B2 JP 5838292B2
Authority
JP
Japan
Prior art keywords
flow path
measurement
flow
ultrasonic
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010252541A
Other languages
Japanese (ja)
Other versions
JP2012103148A (en
Inventor
伊藤 雅彦
雅彦 伊藤
藤井 裕史
裕史 藤井
佐藤 真人
真人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2010252541A priority Critical patent/JP5838292B2/en
Priority to PCT/JP2011/006182 priority patent/WO2012063447A1/en
Publication of JP2012103148A publication Critical patent/JP2012103148A/en
Application granted granted Critical
Publication of JP5838292B2 publication Critical patent/JP5838292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、超音波パスルの送受信を行う超音波振動子およびこの超音波振動子を用いて気体や液体の流量や流速の計測をする超音波流量測定装置に関するものである。   The present invention relates to an ultrasonic transducer that transmits and receives ultrasonic pulses and an ultrasonic flow rate measuring apparatus that measures the flow rate and flow velocity of gas and liquid using the ultrasonic transducer.

従来、この種の超音波流量測定装置では、流量測定部を複数のブロック化された流量測定路で構成し、流量測定路のブロック数を変更することにより、測定する流量の大小に対応している(例えば、特許文献1参照)。   Conventionally, in this type of ultrasonic flow measurement device, the flow measurement unit is configured with a plurality of blocked flow measurement paths, and the number of blocks in the flow measurement path is changed to correspond to the magnitude of the flow to be measured. (For example, refer to Patent Document 1).

図8は特許文献1に記載された従来の超音波流量測定装置を示すものである。図8に示すように、流量測定部15は、ブロック化された複数の流量測定路15a、15b、15cより形成されている。また、流量測定部15には、取り付け板16、17が取り付けられており、流量測定路15a、15b、15cに対応していて、開口部が開けられている。   FIG. 8 shows a conventional ultrasonic flow rate measuring apparatus described in Patent Document 1. In FIG. As shown in FIG. 8, the flow rate measuring unit 15 is formed by a plurality of blocked flow rate measuring paths 15a, 15b, and 15c. In addition, attachment plates 16 and 17 are attached to the flow rate measurement unit 15, and corresponding to the flow rate measurement paths 15a, 15b, and 15c, and openings are opened.

流量測定部15には上流室18と下流室19が接続されている。20は、上流室18には入口部20が接続されており、下流室19には排出部が接続されている。   An upstream chamber 18 and a downstream chamber 19 are connected to the flow rate measurement unit 15. 20, an inlet 20 is connected to the upstream chamber 18, and a discharge unit is connected to the downstream chamber 19.

このような構成をとることにより、流量測定部15のブロック数の増減することにより、流量の大小の計測に対応する。つまり、より大きな流量を計測する流量計を構成する場合は、流量測定部15のブロック数を増加し、より小さな流量を計測する流量計を構成する場合には、ブロック数を減少させる。ブロック数の増減があった場合には、その数に見合った開口部数を有する取り付け板16、17を用いることになる。   By adopting such a configuration, the number of blocks of the flow rate measurement unit 15 is increased or decreased to cope with measurement of the flow rate. That is, when configuring a flow meter that measures a larger flow rate, the number of blocks of the flow rate measurement unit 15 is increased, and when configuring a flow meter that measures a smaller flow rate, the number of blocks is decreased. When the number of blocks increases or decreases, the mounting plates 16 and 17 having the number of openings corresponding to the number are used.

特許第3692560号公報Japanese Patent No. 3692560

しかしながら、前記従来の構成では、着脱可能な測定流路と一対の超音波振動子で構成しているが、流量範囲が異なる場合にはブロック化した流路を組み合わせて、ブロック板も必要となる。   However, in the conventional configuration, a detachable measurement channel and a pair of ultrasonic transducers are used. However, if the flow rate range is different, a block plate is also required by combining blocked channels. .

また、流路をブロック化して組み合わせるため、ブロック数の違いにより、被測定流体に乱れが生じてしまい超音波で時間計測を行う範囲において、被測定計測流体の密度分布が崩れ均一に超音波が送受信できなくなることを、一対の超音波振動子を複数の流路測定路ごとに配置して対応しているが、各超音波振動子を切り換える必要があり、流路のブロック化数に対して、一対の超音波振動子を準備する必要がある。また、その接続、切り換えを測定ブロック数に対応して設定する必要があり、流量測定部の変更は非常に煩雑な作業になり、流量変更に対応する切り換え作業における作業効率という観点から未だ改良の余地があった。   In addition, because the flow paths are combined into blocks, the fluid to be measured will be disturbed due to the difference in the number of blocks, and the density distribution of the fluid to be measured will be disrupted and the ultrasonic waves will be uniformly distributed within the range where time measurement is performed with ultrasonic waves. The fact that a pair of ultrasonic transducers is arranged for each of the plurality of flow path measurement paths is handled to prevent transmission / reception, but each ultrasonic transducer needs to be switched, It is necessary to prepare a pair of ultrasonic transducers. In addition, it is necessary to set the connection and switching according to the number of measurement blocks, and changing the flow rate measurement unit is a very complicated task, and it has not been improved from the viewpoint of work efficiency in switching work corresponding to the flow rate change. There was room.

本発明は、上記従来技術の有する課題に鑑みてなされてものであり、流量の大小に対応するために行う流量測定部の切り換えを低コストの部材を使用して容易に実施できる超音波流量測定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an ultrasonic flow rate measurement that can be easily performed using a low-cost member for switching the flow rate measurement unit to cope with the magnitude of the flow rate. An object is to provide an apparatus.

前記従来の課題を解決するために、本発明の超音波流量測定装置は、被測定流体が流れ込む流体供給部と、被測定流体が排出される流体排出部と、流体供給部と流体排出部間に連接され、被測定流体の流れ方向に対して流路断面が整流部材を介して分割された複数の多層流路を備えた計測流路部と、計測流路部に設置され、超音波信号を送受信可能な一対の超音波振動子と、計測流路部の多層流路ごとに挿入可能な流路調整部材とを含み、多層流路部に挿入する流路調整部材の数を変更することにより計測流路部の断面積を調整することを特徴とするものである。   In order to solve the above-described conventional problems, an ultrasonic flow rate measuring device according to the present invention includes a fluid supply unit into which a fluid to be measured flows, a fluid discharge unit from which the fluid to be measured is discharged, and between the fluid supply unit and the fluid discharge unit. Are connected to the measurement flow path section having a plurality of multi-layer flow paths whose flow path cross-section is divided by a rectifying member with respect to the flow direction of the fluid to be measured; Including a pair of ultrasonic transducers capable of transmitting and receiving and a flow path adjustment member that can be inserted for each multilayer flow path of the measurement flow path section, and changing the number of flow path adjustment members to be inserted into the multilayer flow path section The cross-sectional area of the measurement channel is adjusted by the above.

これによって、低コストの部材により計測流路部の断面積を容易に制御することが可能となり、被測定流体の流量変更に対応して、超音波流量測定装置の流量計測性能を簡単な作業でかつ低コストで維持することができるものである。   This makes it possible to easily control the cross-sectional area of the measurement flow path section with a low-cost member, and the flow measurement performance of the ultrasonic flow measurement device can be easily performed in response to changes in the flow rate of the fluid to be measured. And it can be maintained at low cost.

本発明の超音波流量測定装置は、被測定流体の流量変更に対応して、超音波流量測定装置の流量計測性能を簡単な作業でかつ低コストで維持することができるものである。   The ultrasonic flow rate measuring device of the present invention can maintain the flow rate measurement performance of the ultrasonic flow rate measuring device in a simple operation and at low cost in response to a change in the flow rate of the fluid to be measured.

本発明の実施形態1における超音波流量測定装置の断面図Sectional drawing of the ultrasonic flow measuring device in Embodiment 1 of this invention 本発明の実施形態1における流量計測部の断面図Sectional drawing of the flow measurement part in Embodiment 1 of this invention 本発明の実施形態1における計測流路部の断面図Sectional drawing of the measurement flow-path part in Embodiment 1 of this invention. 本発明の実施形態1における流路調整部材を備えた流体供給部の側面図The side view of the fluid supply part provided with the flow-path adjustment member in Embodiment 1 of this invention. 本発明の実施形態1における流路調整部材を挿入した状態の計測流路部の断面図Sectional drawing of the measurement flow-path part in the state which inserted the flow-path adjustment member in Embodiment 1 of this invention. (a)は本発明の本発明の第2実施形態における流路調整部材を2枚備えた流体供給部の上面図、(b)は同流路調整部材を4枚備えた流体供給部の上面図(A) is a top view of a fluid supply unit including two flow path adjustment members according to the second embodiment of the present invention, and (b) is an upper surface of a fluid supply unit including four flow path adjustment members. Figure 本発明の実施形態3における整流部材ユニットを挿入した状態の計測流路部の上面図The top view of the measurement flow path part of the state which inserted the baffle member unit in Embodiment 3 of this invention 従来の超音波流量測定装置の断面図Sectional view of a conventional ultrasonic flow measurement device

第1の発明は、被測定流体が流れ込む流体供給部と、前記被測定流体が排出される流体排出部と、前記流体供給部と前記流体排出部間に連接され、前記被測定流体の流れ方向に対して流路断面が整流部材を介して分割された複数の多層流路を備えた計測流路部と、前記計測流路部に設置され、超音波信号を送受信可能な一対の超音波振動子と、前記計測流路部の前記多層流路ごとに挿入可能な流路調整部材とを含み、前記多層流路部に挿入する前記流路調整部材の数を変更することにより前記計測流路部の断面積を調整することを特徴とする超音波流量測定装置である。   A first aspect of the present invention is a fluid supply part into which a fluid to be measured flows, a fluid discharge part from which the fluid to be measured is discharged, a fluid supply part connected to the fluid discharge part, and a flow direction of the fluid to be measured. And a pair of ultrasonic vibrations that are installed in the measurement flow path unit and can transmit and receive an ultrasonic signal. A measuring channel by changing the number of the channel adjusting members inserted into the multilayer channel part. It is an ultrasonic flow rate measuring device characterized by adjusting a cross-sectional area of a portion.

これによって、低コストの部材により計測流路部の断面積を容易に制御することが可能となり、被測定流体の流量変更に対応して、超音波流量測定装置の流量計測性能を簡単な作業でかつ低コストで維持することができるものである。   This makes it possible to easily control the cross-sectional area of the measurement flow path section with a low-cost member, and the flow measurement performance of the ultrasonic flow measurement device can be easily performed in response to changes in the flow rate of the fluid to be measured. And it can be maintained at low cost.

第2の発明は、特に第1の発明において、前記流体供給部は、上流側にガイド部を備えたものである。   In a second aspect of the invention, particularly in the first aspect of the invention, the fluid supply section includes a guide section on the upstream side.

これによって、流体の計測流路部への導入をスムーズにおこない乱流の発生を抑制することにより、高い計測精度を維持することができる。   Accordingly, high measurement accuracy can be maintained by smoothly introducing the fluid into the measurement flow path portion and suppressing the generation of turbulent flow.

第3の発明は、特に第1または第2の発明において、前記流路調整部材は、前記計測流
路部に設置された超音波振動子から送受信される超音波が伝搬する領域まで挿入される構成とし、前記計測流路部に挿入された前記流路調整部材の数に対応して、前記超音波振動子の送信出力を制御する制御部を備えたものである。
In a third aspect of the invention, particularly in the first or second aspect of the invention, the flow path adjustment member is inserted to a region where ultrasonic waves transmitted / received from an ultrasonic transducer installed in the measurement flow path section propagate. The control unit includes a control unit that controls the transmission output of the ultrasonic transducer corresponding to the number of the channel adjustment members inserted into the measurement channel unit.

これによって、計測流路部の断面積に対応して、超音波振動子の送信出力を制御する手段を有しているので、一対の超音波振動子の超音波の送受信パルスで高精度な流量測定が可能である。   As a result, since it has means for controlling the transmission output of the ultrasonic transducer corresponding to the cross-sectional area of the measurement flow path section, a highly accurate flow rate with ultrasonic transmission / reception pulses of a pair of ultrasonic transducers Measurement is possible.

以下、本発明の実施形態に係る超音波流量測定装置について、図面を参照して説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, an ultrasonic flow measuring device according to an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施形態1における超音波流量測定装置の構成を示す断面図であり、図2は、超音波流量測定装置の流量計測部の構成を示す断面図であり、図3は流路計測部の計測流路の断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration of an ultrasonic flow measuring device according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view showing a configuration of a flow measuring unit of the ultrasonic flow measuring device, and FIG. It is sectional drawing of the measurement flow path of a flow-path measurement part.

図1に示すように、超音波流量測定装置1は、ケース本体2に、被測定流体を導入する流体導入口3と、被測定流体を排出する流体排出口4とを備えており、ケース本体2内には、一対の超音波振動子5、6と、その一対の超音波振動子の超音波伝達時間を測定し、被測定流体の流速を演算する制御部(図示せず)を備えた流量計測部7が収容されている。   As shown in FIG. 1, the ultrasonic flow rate measuring device 1 includes a case body 2 having a fluid inlet 3 for introducing a fluid to be measured and a fluid outlet 4 for discharging the fluid to be measured. 2 includes a pair of ultrasonic transducers 5 and 6 and a control unit (not shown) that measures the ultrasonic transmission time of the pair of ultrasonic transducers and calculates the flow velocity of the fluid to be measured. A flow rate measuring unit 7 is accommodated.

図2に示すように、流量計測部7は、矢印Aに示すようにガスなどの流体が流れ込む入口である流体供給部8と、流体供給部8の下流側に連接された計測流路部9と、計測流路部9の下流側に連接された流体排出部10を備えており、この計測流路部9には一対の超音波振動子5、6と、超音波振動子5、6の送受信や流量の演算を行う制御部(図示せず)が設置されている。流体供給部8は中央部に流体が通過できる開口を備えた枠状であり、計測流路部9に着脱可能な構成となっている。   As shown in FIG. 2, the flow rate measurement unit 7 includes a fluid supply unit 8 that is an inlet through which a fluid such as a gas flows as indicated by an arrow A, and a measurement channel unit 9 that is connected to the downstream side of the fluid supply unit 8. And a fluid discharge unit 10 connected to the downstream side of the measurement flow path unit 9. The measurement flow path unit 9 includes a pair of ultrasonic transducers 5 and 6 and ultrasonic transducers 5 and 6. A control unit (not shown) that performs transmission / reception and flow rate calculation is installed. The fluid supply unit 8 has a frame shape having an opening through which a fluid can pass at the center, and is configured to be detachable from the measurement channel unit 9.

流量計測部7の機能は、超音波振動子5から発振された超音波は計測流路部9の下部壁面を反射して、超音波振動子6に受信される。また、この逆の超音波伝播からも受発信される。このように、超音波の伝播時間より流体の流速が計算される。   The function of the flow rate measurement unit 7 is that the ultrasonic wave oscillated from the ultrasonic transducer 5 is reflected by the lower wall surface of the measurement flow path unit 9 and received by the ultrasonic transducer 6. It is also transmitted and received from the opposite ultrasonic propagation. Thus, the fluid flow velocity is calculated from the propagation time of the ultrasonic waves.

この流速をV、流量計測部7の流路の断面籍をSとすると、流量Qを次式にて算出する。   When this flow velocity is V and the cross-sectional area of the flow path of the flow rate measuring unit 7 is S, the flow rate Q is calculated by the following equation.

Q=K・V・S
Kは、測定流速Vを平均流速に換算する補正係数である。
Q = K ・ V ・ S
K is a correction coefficient for converting the measured flow velocity V into an average flow velocity.

計測流路部9には、図3に示すように流路の断面を略垂直方向に仕切る整流部材11が設けられ、複数の多層流路12が形成されている。この多層流路12により計測流路部9を流れる流体は、計測流路部9中を整流状態で通過することになる。計測流路部9を通過した流体は、流体排出部10を通過して超音波流量測定装置1の流体排出口4より装置外に送出される。   As shown in FIG. 3, the measurement flow path portion 9 is provided with a rectifying member 11 that partitions the cross section of the flow path in a substantially vertical direction, and a plurality of multilayer flow paths 12 are formed. The fluid flowing through the measurement flow path portion 9 by the multilayer flow path 12 passes through the measurement flow path portion 9 in a rectified state. The fluid that has passed through the measurement flow path section 9 passes through the fluid discharge section 10 and is sent out of the apparatus through the fluid discharge port 4 of the ultrasonic flow rate measuring apparatus 1.

計測流路部9の多層流路12の数は、流れる流体量によりあらかじめ設置される整流部材11によって決められている。そのため、例えばガスメータとしての流量計測に使用する場合、使用するガス機器の号数が変化し、少量のガス流量しか流れなくなった場合、あらかじめ決めた多層流路12の数では、個々の多層流路12ごとに流れる流量が均一でなくなり、一対の超音波振動子5、6のみでは多層流路12ごとの超音波伝播時間に差が生
じて、高精度な流量計測ができなくなる可能性があるため、号数切り換えに対応した多層流路12を有する流量計測部7に切り換える必要がある。
The number of the multilayer flow paths 12 in the measurement flow path section 9 is determined by the rectifying member 11 installed in advance according to the amount of fluid flowing. Therefore, for example, when used for flow rate measurement as a gas meter, when the number of gas equipment to be used changes and only a small amount of gas flow flows, the number of multi-layer channels 12 determined in advance is different from each other. The flow rate flowing every 12 is not uniform, and there is a possibility that the ultrasonic propagation time for each multi-layer flow path 12 may be different if only a pair of ultrasonic transducers 5 and 6 is used, and high-precision flow rate measurement may not be possible. It is necessary to switch to the flow rate measuring unit 7 having the multilayer flow path 12 corresponding to the number switching.

本実施の形態における超音波流量測定装置1においては、例えば、号数が小さくなった場合に多層流路12の一部を埋めるための流路調整部材13を一体に備えた流体供給部8を予め準備して、流路調整部材13を多層流路12に挿入して多層流路12の断面積が調節可能な構成となっている。   In the ultrasonic flow rate measuring apparatus 1 according to the present embodiment, for example, the fluid supply unit 8 that integrally includes the flow path adjusting member 13 for filling a part of the multilayer flow path 12 when the number becomes small. The flow path adjusting member 13 is inserted in the multilayer flow path 12 in advance and the cross-sectional area of the multilayer flow path 12 can be adjusted.

図2に示すように、流路調整部材13は計測流路部9に挿入した状態で、計測流路部9の略全長をカバーする長さを有しており、超音波振動子5、6から受発信される超音波が伝搬する領域全てをカバーするように設定されている。   As shown in FIG. 2, the flow path adjustment member 13 has a length that covers the substantially entire length of the measurement flow path section 9 in a state of being inserted into the measurement flow path section 9, and the ultrasonic transducers 5, 6. It is set so as to cover the entire region where the ultrasonic wave transmitted / received from is propagated.

図4は流路調整部材13を一体に備えた流体供給部8の側面図であり、図5は流路調整部材を挿入した状態の計測流路部9の断面図である。   FIG. 4 is a side view of the fluid supply unit 8 integrally provided with the flow path adjusting member 13, and FIG. 5 is a cross-sectional view of the measurement flow path unit 9 with the flow path adjusting member inserted.

図4に示すように、流路調整部材13を備えた流体供給部8は、計測流路部9にフック8aなどで固定できる着脱機構を備えており、容易に取り替え作用ができるようになっている。   As shown in FIG. 4, the fluid supply unit 8 provided with the flow path adjusting member 13 includes an attachment / detachment mechanism that can be fixed to the measurement flow path unit 9 with a hook 8 a or the like, so that it can be easily replaced. Yes.

また、図5に示すように、計測流路部9に流路調整部材13を挿入した状態では、複数の多層流路12の一部が閉塞され、計測流路部9の流路断面積が小さくなっている。   In addition, as shown in FIG. 5, in the state where the flow path adjustment member 13 is inserted into the measurement flow path portion 9, a part of the plurality of multilayer flow paths 12 is blocked, and the cross-sectional area of the measurement flow path section 9 is It is getting smaller.

このように、流量を計測する計測流路部9の多層流路12を流体供給部8と一体に形成された流路調整部材13により、流体が通過する多層流路12の数を切り替えることにより、計測流路部9の流路断面積を制御することが可能となり、例えばガス器具の号数の切り替えによる被測定流体の基本的な流量の変更に対応することができ、その際にも流量計測部7全体または計測流路部9全体を交換する必要がない。   In this way, by switching the number of the multi-layer flow paths 12 through which the fluid passes by the flow path adjusting member 13 formed integrally with the fluid supply section 8 in the multi-layer flow path 12 of the measurement flow path section 9 for measuring the flow rate. The flow passage cross-sectional area of the measurement flow passage section 9 can be controlled. For example, it is possible to cope with a change in the basic flow rate of the fluid to be measured by switching the number of the gas appliance. There is no need to replace the entire measuring section 7 or the entire measuring flow path section 9.

しかも、本実施の形態の超音波流量測定装置は、低コストの部材により計測流路部の断面積を容易に制御することが可能となり、被測定流体の流量変更に対応して、超音波流量測定装置の流量計測性能を簡単な作業でかつ低コストで維持することができるものである。   In addition, the ultrasonic flow measuring device of the present embodiment can easily control the cross-sectional area of the measurement flow path portion with a low-cost member, and the ultrasonic flow rate corresponding to the change in the flow rate of the fluid to be measured. The flow rate measurement performance of the measuring device can be maintained with simple work and at low cost.

なお、本実施の形態においては、流体供給部8が備える流路調整部材13は2枚としたが、これに限るものではなく、計測流路部9に流れる流量により流路調整部材13の挿入数は任意に変更することが可能である。   In this embodiment, the number of flow path adjustment members 13 provided in the fluid supply unit 8 is two. However, the number of flow path adjustment members 13 is not limited to this. The number can be changed arbitrarily.

(実施の形態2)
図5は本発明の実施の形態2における流路調整部材13を一体に備えた流体供給部8を示すものであり、図6(a)は、2枚の流路調整部材13を一体に備えた流体供給部8の上面図を示し、図6(b)は、4枚の流路調整部材13を備えた流体供給部8の上面図を示すものである。
(Embodiment 2)
FIG. 5 shows the fluid supply unit 8 integrally including the flow path adjusting member 13 according to Embodiment 2 of the present invention, and FIG. 6A integrally includes two flow path adjusting members 13. FIG. 6B is a top view of the fluid supply unit 8 including the four flow path adjusting members 13.

本実施の形態が実施の形態1と異なる点は、流体供給部8の上流側にガイド部が一体的に形成されていることである。   The present embodiment is different from the first embodiment in that a guide portion is integrally formed on the upstream side of the fluid supply portion 8.

図6(a)に示すように、流体供給部8は、下流側に2枚の流路調整部材13を備え、上流側には少なくとも一部を曲面で形成されたガイド部8bを一体に備えている。ガイド部8bは、流体が流路調整部材13の前端に直接当たらず、流路調整部材13が挿入されていない多層流路12にスムーズに流入するような形状に形成されている。   As shown in FIG. 6A, the fluid supply unit 8 includes two flow path adjusting members 13 on the downstream side, and integrally includes a guide portion 8b formed at least partially in a curved surface on the upstream side. ing. The guide portion 8b is formed in such a shape that the fluid does not directly contact the front end of the flow path adjustment member 13 and smoothly flows into the multilayer flow path 12 in which the flow path adjustment member 13 is not inserted.

ガイド部8bを備えることにより、流体の計測流路部9への導入をスムーズにおこない乱流の発生を抑制することにより、高い計測精度を維持することができる。   By providing the guide portion 8b, high measurement accuracy can be maintained by smoothly introducing the fluid into the measurement flow path portion 9 and suppressing the generation of turbulent flow.

また、図6(b)に示すように、流路調整部材13を4枚備える場合は、ガイド部8bの形状を枚数に応じた形状にすることにより流体の導入をよりスムーズにすることが可能である。   As shown in FIG. 6B, when four flow path adjusting members 13 are provided, the introduction of fluid can be made smoother by making the shape of the guide portion 8b in accordance with the number of the flow guide members 8b. It is.

なお、本実施の形態においては、流体供給部8が備える流路調整部材13は多層流路12に偶数箇所挿入する構成であるが、これに限るものではなく、計測流路部9に流れる流量により流路調整部材13の挿入数は任意に変更することが可能である。   In the present embodiment, the flow path adjusting member 13 included in the fluid supply unit 8 is configured to be inserted into the multilayer flow path 12 at an even number, but this is not a limitation, and the flow rate flowing through the measurement flow path unit 9 Thus, the number of inserted flow path adjusting members 13 can be arbitrarily changed.

(実施の形態3)
図7は、本発明の実施形態2における超音波流量測定装置の計測流路部を上部から見た断面図である。
(Embodiment 3)
FIG. 7 is a cross-sectional view of the measurement flow path portion of the ultrasonic flow measurement device according to the second embodiment of the present invention as viewed from above.

超音波振動子5、6から発振された超音波は図に示す超音波発振・受振領域14の伝播経路を経て受信側の超音波振動子6、5に受信される。整流部材11によって仕切られている計測流路部9内の複数の多層流路12a、12b、12c、12d、12eは、流体供給部8に一体に形成されている流路調整部材13により、多層流路12a、12eが埋められることになる。そのとき、流路調整部材13は、超音波振動子5、6から発せられる一部の超音波伝播経路を塞ぐこととなり、超音波伝達強度が弱くなる。   The ultrasonic waves oscillated from the ultrasonic transducers 5 and 6 are received by the ultrasonic transducers 6 and 5 on the receiving side through the propagation path of the ultrasonic oscillation / vibration region 14 shown in the figure. A plurality of multilayer flow paths 12 a, 12 b, 12 c, 12 d, and 12 e in the measurement flow path section 9 partitioned by the rectifying member 11 are multilayered by the flow path adjustment member 13 that is formed integrally with the fluid supply section 8. The flow paths 12a and 12e are filled. At that time, the flow path adjusting member 13 blocks some ultrasonic propagation paths emitted from the ultrasonic transducers 5 and 6, and the ultrasonic transmission intensity becomes weak.

そのため、流路調整部材13が多層流路12の一部を塞ぐことになったとき、超音波振動子5、6から発振される出力を大きくすることにより、超音波振動子5、6の超音波伝達強度を上げて、流量計測精度を維持させる必要がある。   For this reason, when the flow path adjusting member 13 blocks a part of the multilayer flow path 12, the output of the ultrasonic vibrators 5, 6 is increased to increase the supersonic wave of the ultrasonic vibrators 5, 6. It is necessary to increase the sound transmission intensity and maintain the flow measurement accuracy.

計測流路部9内の多層流路12の一部を塞いだ場合、流路調整部材13の挿入の情報を制御部に入力して、超音波振動子5、6の出力を上げることにより、流路調整部材13が挿入されていないときと同様な超音波流量計測性能を維持することができ、汎用性の高い超音波流量測定装置を提供することができる。   When a part of the multilayer flow path 12 in the measurement flow path section 9 is blocked, information on the insertion of the flow path adjustment member 13 is input to the control section, and the output of the ultrasonic transducers 5 and 6 is increased. The ultrasonic flow measurement performance similar to that when the flow path adjusting member 13 is not inserted can be maintained, and a highly versatile ultrasonic flow measurement device can be provided.

超音波振動子5、6の出力値を設定する方法について、流路調整部材13を多層流路12に挿入し時点で、多層流路12の断面積に対応した超音波振動子の出力値情報を制御部にインプットするか、あるいは、流路調整部材13を挿入後、一定時間流体の流速計測を実施後、流量演算により出力値を決定するなど、手段は問わない。   Regarding the method of setting the output values of the ultrasonic transducers 5 and 6, the output value information of the ultrasonic transducer corresponding to the cross-sectional area of the multilayer flow channel 12 when the flow channel adjusting member 13 is inserted into the multilayer flow channel 12. Any means may be used, such as determining the output value by calculating the flow rate after measuring the flow velocity of the fluid for a certain period of time after inserting the flow path adjusting member 13.

以上のように、本発明にかかる超音波流量測定装置は、計測流路内を流れる流体の流量を計測する計測装置の汎用性を向上させるので、流量測定基準器及びガスメータの適用に好適である。   As described above, the ultrasonic flow measurement device according to the present invention improves the versatility of the measurement device that measures the flow rate of the fluid flowing in the measurement flow path, and is therefore suitable for application to a flow measurement reference device and a gas meter. .

1 超音波流量測定装置
5、6 超音波振動子
8 流体供給部
8b ガイド部
9 計測流路部
10 流体排出部
11 整流部材
12 多層流路
13 流路調整部材
DESCRIPTION OF SYMBOLS 1 Ultrasonic flow measuring device 5, 6 Ultrasonic vibrator 8 Fluid supply part 8b Guide part 9 Measurement flow path part 10 Fluid discharge part 11 Rectification member 12 Multilayer flow path 13 Flow path adjustment member

Claims (1)

被測定流体が流れ込む流体供給部と、
前記被測定流体が排出される流体排出部と、
前記流体供給部と前記流体排出部間に連接され、前記被測定流体の流れ方向に対して流路断面が整流部材を介して分割された複数の多層流路を備えた計測流路部と、
前記計測流路部に設置され、超音波信号を送受信可能な一対の超音波振動子と、
前記計測流路部の前記多層流路ごとに挿入可能な流路調整部材と、を含み、
前記多層流路部に挿入する前記流路調整部材の数を変更することにより前記計測流路部の断面積を調整し、
前記流路調整部材は、前記計測流路部に設置された超音波振動子から送受信される超音波が伝搬する領域まで挿入される構成とし、
前記計測流路部に挿入された前記流路調整部材の数に対応して、前記超音波振動子の送信出力を制御する制御部を備えた、
ことを特徴とする超音波流量測定装置。
A fluid supply section into which the fluid to be measured flows;
A fluid discharge part from which the fluid to be measured is discharged;
A measurement flow path section that is connected between the fluid supply section and the fluid discharge section, and includes a plurality of multilayer flow paths whose flow path cross-section is divided via a rectifying member with respect to the flow direction of the fluid to be measured;
A pair of ultrasonic transducers installed in the measurement channel and capable of transmitting and receiving ultrasonic signals;
A flow path adjustment member that can be inserted for each of the multilayer flow paths of the measurement flow path section,
Adjusting the cross-sectional area of the measurement flow path portion by changing the number of flow path adjustment members inserted into the multilayer flow path portion;
The flow path adjustment member is configured to be inserted to a region where ultrasonic waves transmitted / received from an ultrasonic transducer installed in the measurement flow path portion propagate,
Corresponding to the number of the flow path adjustment members inserted into the measurement flow path section, a control section for controlling the transmission output of the ultrasonic transducer,
An ultrasonic flow rate measuring device.
JP2010252541A 2010-11-11 2010-11-11 Ultrasonic flow measuring device Active JP5838292B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010252541A JP5838292B2 (en) 2010-11-11 2010-11-11 Ultrasonic flow measuring device
PCT/JP2011/006182 WO2012063447A1 (en) 2010-11-11 2011-11-07 Ultrasonic flow rate measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010252541A JP5838292B2 (en) 2010-11-11 2010-11-11 Ultrasonic flow measuring device

Publications (2)

Publication Number Publication Date
JP2012103148A JP2012103148A (en) 2012-05-31
JP5838292B2 true JP5838292B2 (en) 2016-01-06

Family

ID=46050616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010252541A Active JP5838292B2 (en) 2010-11-11 2010-11-11 Ultrasonic flow measuring device

Country Status (2)

Country Link
JP (1) JP5838292B2 (en)
WO (1) WO2012063447A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033583B2 (en) * 2012-06-25 2016-11-30 東洋ガスメーター株式会社 Gas meter
DE102014216553B3 (en) * 2014-08-20 2016-02-11 Landis+Gyr Gmbh Flow meter with a measuring insert inserted into a housing
KR102478319B1 (en) * 2021-12-23 2022-12-16 강윤호 Flow slot member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3689975B2 (en) * 1996-05-31 2005-08-31 松下電器産業株式会社 Ultrasonic flow meter
JP2001343264A (en) * 2000-05-31 2001-12-14 Yazaki Corp Method and device for measuring quantity of flow
JP4396246B2 (en) * 2003-12-03 2010-01-13 パナソニック株式会社 Flow measuring device
EP2351994A4 (en) * 2008-12-18 2017-12-27 Panasonic Corporation Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP2012103148A (en) 2012-05-31
WO2012063447A1 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
RU2478190C2 (en) Method and measurement system for determination and/or monitoring of measured medium flow rate via measuring tube
KR100694937B1 (en) Ultrasonic type fluid measuring device
US8701501B2 (en) Ultrasonic flowmeter
JP4186645B2 (en) Ultrasonic flow measuring device
CN110553690B (en) Fluid measuring device, and fluid measuring module and assembly for a fluid measuring device
JP5838292B2 (en) Ultrasonic flow measuring device
US20170307427A1 (en) Method and arrangement for an ultrasound clamp-on flow measurement and circuit arrangement for control of an ultrasound clamp-on flow measurement
JP2012247299A (en) Ultrasonic flow rate measuring unit and gas flowmeter employing the same
JPWO2013051272A1 (en) Setting method of flow rate measuring device
WO2020031622A1 (en) Ultrasonic flow meter
KR100719814B1 (en) Methode of measuring delayed time in ultrasonic flowmeter and Methode of measuring prpagation time of ultrasonic waves in fluid using the same
CN111788480A (en) Fluidic component, ultrasonic measuring device having such a fluidic component, and use of an ultrasonic measuring device
JP5369940B2 (en) Ultrasonic flow meter
JP6982737B2 (en) Ultrasonic flow meter
JP3922078B2 (en) Ultrasonic flow measuring device
JP6229144B2 (en) Flow measuring device
JP2021124358A (en) Ultrasonic flowmeter
JP2006072460A5 (en)
JPH09318411A (en) Ultrasonic flowmeter
JP6632901B2 (en) Flow control device
JP6209732B2 (en) Ultrasonic flow measuring device
JPH109913A (en) Ultrasonic flowmeter
JP2007033032A (en) Ultrasonic flowmeter
JP2006072515A5 (en)
JP2019196968A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R151 Written notification of patent or utility model registration

Ref document number: 5838292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151