JP5835925B2 - Method for producing wavelength conversion nanoparticles - Google Patents

Method for producing wavelength conversion nanoparticles Download PDF

Info

Publication number
JP5835925B2
JP5835925B2 JP2011086602A JP2011086602A JP5835925B2 JP 5835925 B2 JP5835925 B2 JP 5835925B2 JP 2011086602 A JP2011086602 A JP 2011086602A JP 2011086602 A JP2011086602 A JP 2011086602A JP 5835925 B2 JP5835925 B2 JP 5835925B2
Authority
JP
Japan
Prior art keywords
nanoparticles
ion source
solution
wavelength
mixing step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011086602A
Other languages
Japanese (ja)
Other versions
JP2012219193A (en
Inventor
高木 知己
高木  知己
正一 川井
川井  正一
進 祖父江
進 祖父江
大貴 金
大貴 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Osaka City University
Original Assignee
Denso Corp
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Osaka City University filed Critical Denso Corp
Priority to JP2011086602A priority Critical patent/JP5835925B2/en
Publication of JP2012219193A publication Critical patent/JP2012219193A/en
Application granted granted Critical
Publication of JP5835925B2 publication Critical patent/JP5835925B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、吸収した光とは異なる波長の光を発生する波長変換ナノ粒子の製造方法、及び、その製造法によって製造されたナノ粒子に関する。   The present invention relates to a method for producing wavelength-converting nanoparticles that generate light having a wavelength different from that of absorbed light, and nanoparticles produced by the production method.

吸収した光とは異なる波長の光を発生する波長変換ナノ粒子は、LEDの表面に配設されて当該LEDの発光色を変更したり、太陽電池の表面に設けられて入射光の波長を変換することにより当該太陽電池の効率を向上させたりと、種々の用途に応用されている。   Wavelength-converting nanoparticles that generate light with a wavelength different from the absorbed light are placed on the surface of the LED to change the emission color of the LED, or provided on the surface of the solar cell to convert the wavelength of incident light This improves the efficiency of the solar cell and is applied to various applications.

従来、このような波長変換ナノ粒子としては、CdSを含むものが提案されているが、Cdは廃棄処理を誤ると環境に悪影響を与えるため、ZnSe等を使用して波長変換ナノ粒子を製造することが提案されている(例えば、非特許文献1参照)。   Conventionally, as such wavelength conversion nanoparticles, those containing CdS have been proposed. However, since Cd has an adverse effect on the environment if the disposal process is mistaken, wavelength conversion nanoparticles are manufactured using ZnSe or the like. (For example, refer nonpatent literature 1).

ところが、非特許文献1に記載の製造方法では、有機溶媒中で波長変換ナノ粒子を製造しているため、その有機溶媒の廃棄処理を誤るとPRTR法に抵触する可能性がある。そこで、水系溶媒中で波長変換ナノ粒子を製造することも提案されている(例えば、非特許文献2,3参照)。   However, in the manufacturing method described in Non-Patent Document 1, since wavelength conversion nanoparticles are manufactured in an organic solvent, there is a possibility of conflicting with the PRTR method if the organic solvent is discarded. Therefore, it has also been proposed to produce wavelength conversion nanoparticles in an aqueous solvent (see, for example, Non-Patent Documents 2 and 3).

Narayan Pradhan and Xiaogang Peng,J.AM.CHEM.SOC.VOL.129,NO.11,2007,3339-3347Narayan Pradhan and Xiaogang Peng, J.AM.CHEM.SOC.VOL.129, NO.11,2007,3339-3347 Narayan Pradhan,David M. Battaglia,Yongcheng Liu, and Xiaogang Peng,Nano Lett., Vol.7,No.2,2007,312-317Narayan Pradhan, David M. Battaglia, Yongcheng Liu, and Xiaogang Peng, Nano Lett., Vol. 7, No. 2, 2007, 312-317 Abdelhay Aboulaich,Malgorzata Geszke,Lavinia Balan,Jaafar Ghanbaja,Ghouti Medjahdi,and Raphael Schneider,Inorg.Chem.,VOL.49,2010,10940-10948Abdelhay Aboulaich, Malgorzata Geszke, Lavinia Balan, Jaafar Ghanbaja, Ghouti Medjahdi, and Raphael Schneider, Inorg.Chem., VOL.49,2010,10940-10948

しかしながら、非特許文献2,3に記載の方法では、いずれも100℃以下の温度で波長変換ナノ粒子を製造しており、得られた波長変換ナノ粒子は、それほど良好な発光強度を有していなかった。そこで、本発明は、良好な発光強度を有する波長変換ナノ粒子を、水系溶媒中で製造可能とすることを目的としてなされた。   However, in the methods described in Non-Patent Documents 2 and 3, wavelength conversion nanoparticles are produced at a temperature of 100 ° C. or less, and the obtained wavelength conversion nanoparticles have a very good emission intensity. There wasn't. Then, this invention was made | formed for the purpose of enabling manufacture of the wavelength conversion nanoparticle which has favorable light emission intensity in an aqueous medium.

前記目的を達するためになされた本発明は、所望の波長の光を発生する発光中心となる金属イオンを無機ナノ粒子にドープして波長変換ナノ粒子を製造する波長変換ナノ粒子の製造方法であって、前記発光中心となる金属イオンとしてのMnイオンを提供するイオン源と、前記無機ナノ粒子を構成する原子を提供するイオン源と、前記無機ナノ粒子に配位する親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う混合工程と、前記pH調整後の前記溶液を高圧下で150℃〜250℃に加熱して波長変換ナノ粒子を生成する加熱工程と、を含み、前記無機ナノ粒子を構成する原子としてZnを含み、前記混合工程では、N−アセチル−L−システインと前記イオン源中のMnイオンとを1:1のモル比で含む溶液と、N−アセチル−L−システインと前記イオン源中のZn原子とを1:4.8のモル比で含む溶液とを、混合することを特徴とする波長変換ナノ粒子の製造方法を、要旨としている。 The present invention, which has been made to achieve the above object, is a method for producing wavelength-converting nanoparticles, which comprises doping inorganic ions with metal ions serving as emission centers for generating light of a desired wavelength to produce wavelength-converting nanoparticles. An ion source that provides Mn ions as metal ions serving as the luminescent center, an ion source that provides atoms constituting the inorganic nanoparticles, and a hydrophilic ligand that coordinates to the inorganic nanoparticles; Are mixed in an aqueous solvent and the pH of the resulting solution is adjusted, and the solution after the pH adjustment is heated to 150 ° C. to 250 ° C. under high pressure to generate wavelength conversion nanoparticles. viewed including the step, which contained Zn as atoms constituting the inorganic nanoparticles, wherein the mixing step, the Mn ions in the ion source and the N- acetyl -L- cysteine 1: comprising 1 molar ratio Solution and N The acetyl -L- cysteine and Zn atoms in the ion source 1: a solution containing a molar ratio of 4.8, a method for manufacturing a wavelength conversion nanoparticles characterized by mixing, and the gist.

本願出願人は、水系溶媒中で波長変換ナノ粒子を製造する場合であっても、150℃〜250℃に加熱して製造すると、良好な発光強度を有する波長変換ナノ粒子が得られることを発見した。これは、高温でナノ粒子を生成することにより、きれいな結晶ができるためと考えられる。但し、250℃より高温に加熱すると、自己清浄化効果によってドープの効果が低減される傾向が生じる。すなわち、波長変換ナノ粒子では、無機ナノ粒子が吸収した光のエネルギを、その無機ナノ粒子にドープされて発光中心となる金属イオンが、他の所望波長の光に変換する。しかしながら、250℃より高温で結晶を製造した場合、無機ナノ粒子の結晶から前記発光中心となる金属イオンが排除される傾向が生じるのである。また、逆に、150℃未満の温度で波長変換ナノ粒子した場合は、加熱の効果が十分に得られず、従来の方法で水系溶媒中で生成された波長変換ナノ粒子と余り発光強度の差が出ない。   The applicant of the present application has found that, even when the wavelength conversion nanoparticles are produced in an aqueous solvent, the wavelength conversion nanoparticles having good emission intensity can be obtained by heating to 150 ° C. to 250 ° C. did. This is thought to be because clean crystals can be formed by producing nanoparticles at a high temperature. However, when heated to a temperature higher than 250 ° C., the dope effect tends to be reduced due to the self-cleaning effect. That is, in the wavelength conversion nanoparticle, the energy of the light absorbed by the inorganic nanoparticle is doped into the inorganic nanoparticle, and the metal ion that becomes the emission center is converted into light having another desired wavelength. However, when a crystal is produced at a temperature higher than 250 ° C., there is a tendency that the metal ion serving as the emission center is excluded from the crystal of the inorganic nanoparticles. On the other hand, when the wavelength conversion nanoparticles are formed at a temperature of less than 150 ° C., the effect of heating cannot be sufficiently obtained, and the difference in emission intensity from the wavelength conversion nanoparticles generated in an aqueous solvent by a conventional method is excessive. Does not come out.

このような、高温下での波長変換ナノ粒子の生成は、その温度に応じた適宜の高圧下にて行われる。また、その製造は、先ず、混合工程にて、前記発光中心となる金属イオンを提供するイオン源と、前記無機ナノ粒子を構成する原子を提供するイオン源と、前記無機ナノ粒子に配位する親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整する。続いて、加熱工程にて、前記pH調整後の前記溶液を前記高圧下で150℃〜250℃に加熱してなされる。   Such generation of wavelength conversion nanoparticles under high temperature is performed under an appropriate high pressure according to the temperature. In addition, in the production, first, in the mixing step, the ion source that provides the metal ion serving as the emission center, the ion source that provides the atoms constituting the inorganic nanoparticle, and the inorganic nanoparticle are coordinated. A hydrophilic ligand is mixed in an aqueous solvent, and the pH of the resulting solution is adjusted. Subsequently, in the heating step, the pH-adjusted solution is heated to 150 ° C. to 250 ° C. under the high pressure.

なお、前記配位子は、N−アセチル−L−システインであってもよい。配位子としては、N−アセチル−L−システインの他、メルカプト酢酸,メルカプトプロピオン酸,メルカプトこはく酸等が使用可能である。   The ligand may be N-acetyl-L-cysteine. As the ligand, in addition to N-acetyl-L-cysteine, mercaptoacetic acid, mercaptopropionic acid, mercaptosuccinic acid and the like can be used.

また、本発明は、前記発光中心となる金属イオンがMnイオンであ、前記無機ナノ粒子を構成する原子としてZnを含。Znを含む無機ナノ粒子は、紫外領域の光を良好に吸収し、その無機ナノ粒子にMnイオンがドープされていると、前記紫外領域の光を可視領域の光に変換して発生することができる。従って、その場合、太陽電池の効率を向上させるなどの用途に良好に応用することができる。 Further, the present invention is a metal ion to be the luminescence center Ri Mn ions der, including Zn as atoms constituting the inorganic nanoparticles. Inorganic nanoparticles containing Zn absorb light in the ultraviolet region well, and when the inorganic nanoparticles are doped with Mn ions, they can be generated by converting the light in the ultraviolet region into light in the visible region. it can. Therefore, in that case, it can be favorably applied to uses such as improving the efficiency of solar cells.

そして、前記混合工程では、Mnイオンを提供する前記イオン源とN−アセチル−L−システインとを含む溶液と、Zn原子を提供する前記イオン源とN−アセチル−L−システインとを含む溶液とを、混合する。そのため、Znを含む無機ナノ粒子にMnイオンがドープされた波長変換ナノ粒子を、良好に製造することができる。 Solution and, before Symbol mixing step, comprising a solution containing the said ion source and N- acetyl -L- cysteine to provide a Mn ion, and the ion source and the N- acetyl -L- cysteine to provide a Zn atom theft and mixed. Therefore, the wavelength conversion nanoparticles Mn ions doped inorganic nanoparticles comprising Zn, it can be favorably manufactured.

また、本発明は、所望の波長の光を発生する発光中心となる金属イオンを無機ナノ粒子にドープして波長変換ナノ粒子を製造する波長変換ナノ粒子の製造方法であって、前記発光中心となる金属イオンを提供するイオン源と、前記無機ナノ粒子を構成する原子を提供するイオン源と、前記無機ナノ粒子に配位する親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う混合工程と、前記pH調整後の前記溶液を高圧下で150℃〜250℃に加熱して波長変換ナノ粒子を生成する加熱工程と、を含み、前記無機ナノ粒子を構成する原子として、SとSeとを含み、前記混合工程は、前記無機ナノ粒子を構成するSe以外の各原子を各々提供する前記各イオン源と、前記配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第1混合工程と、前記無機ナノ粒子を構成するS以外の各原子を各々提供する前記各イオン源と、前記配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第2混合工程と、前記第1混合工程で得られた前記pH調整後の溶液と、前記第2混合工程で得られた前記pH調整後の溶液とを混合する第3混合工程と、からなり、前記発光中心となる金属イオンを提供するイオン源は、前記第1混合工程または前記第2混合工程で前記溶液に混合されることを特徴としてもよい。 The present invention also relates to a method for producing wavelength-converting nanoparticles, wherein a metal ion serving as an emission center that generates light of a desired wavelength is doped into inorganic nanoparticles to produce wavelength-converted nanoparticles, An ion source that provides a metal ion, an ion source that provides an atom constituting the inorganic nanoparticle, and a hydrophilic ligand that coordinates to the inorganic nanoparticle are mixed in an aqueous solvent. A mixing step for adjusting the pH of the obtained solution, and a heating step for generating the wavelength conversion nanoparticles by heating the pH-adjusted solution to 150 to 250 ° C. under high pressure, the inorganic nanoparticles In the mixing step, each ion source that provides each atom other than Se constituting the inorganic nanoparticles and the ligand are contained in an aqueous solvent. P of the resulting solution A first mixing step for adjusting, each ion source for providing each atom other than S constituting the inorganic nanoparticles, and the ligand are mixed in an aqueous solvent, and the obtained solution A second mixing step for adjusting pH, a third mixing step for mixing the solution after pH adjustment obtained in the first mixing step, and the solution after pH adjustment obtained in the second mixing step. If made, the ion source to provide metal ions of the luminescent center is mixed into the solution in the first mixing step or the second mixing step may be characterized Rukoto.

無機ナノ粒子を構成する原子としてSとSeとを含む場合、混晶からなる無機ナノ粒子が生成され、SとSeとの比率を適切に調整することで前記発光強度を極めて良好に向上させることができる。ところが、SとSeとでは、そのイオン源を反応系に追加する際に適切なpHが大きく異なる。   When S and Se are included as atoms constituting the inorganic nanoparticles, inorganic nanoparticles composed of mixed crystals are generated, and the emission intensity is improved extremely well by appropriately adjusting the ratio of S and Se. Can do. However, the appropriate pH differs greatly between S and Se when the ion source is added to the reaction system.

そこで、前述のように、第1混合工程にて、無機ナノ粒子を構成するSe以外の各原子(Sも含む)を各々提供する前記各イオン源と前記配位子とを水系溶媒中で混合して得られた溶液のpHを調整し、第2混合工程にて、無機ナノ粒子を構成するS以外の各原子(Seも含む)を各々提供する前記各イオン源と前記配位子とを水系溶媒中で混合して得られた溶液のpHを調整し、それらのpH調整後の溶液を第3混合工程で混合すればよい。なお、前記発光中心となる金属イオンを提供するイオン源は、前記第1混合工程または前記第2混合工程で前記溶液に混合される。こうすることによって、前述のような混晶からなる波長変換ナノ粒子を良好に製造することができる。   Therefore, as described above, in the first mixing step, each ion source that provides each atom (including S) other than Se constituting the inorganic nanoparticles and the ligand are mixed in an aqueous solvent. The pH of the resulting solution is adjusted, and in the second mixing step, each ion source that provides each atom (including Se) other than S constituting the inorganic nanoparticles and the ligand are provided. What is necessary is just to adjust the pH of the solution obtained by mixing in an aqueous solvent, and to mix the solution after those pH adjustments at a 3rd mixing process. In addition, the ion source which provides the metal ion used as the said light emission center is mixed with the said solution by the said 1st mixing process or the said 2nd mixing process. By doing so, it is possible to satisfactorily produce wavelength conversion nanoparticles made of mixed crystals as described above.

また、前記混合工程終了後の前記溶液はpH9〜11に調整されてもよく、その場合、その溶液を高圧下で150℃〜250℃に加熱することによって、極めて良好な発光強度を有する波長変換ナノ粒子を製造することができる。   Further, the solution after completion of the mixing step may be adjusted to a pH of 9 to 11, and in that case, the wavelength conversion having a very good light emission intensity by heating the solution to 150 ° C. to 250 ° C. under high pressure. Nanoparticles can be produced.

また、本発明の波長変換ナノ粒子は、前記いずれかに記載の波長変換ナノ粒子の製造方法で製造されたことを特徴としている。このため、本発明の波長変換ナノ粒子は、極めて良好な発光強度を有している。   Moreover, the wavelength conversion nanoparticle of this invention was manufactured with the manufacturing method of the wavelength conversion nanoparticle in any one of the said. For this reason, the wavelength conversion nanoparticle of this invention has very favorable light emission intensity.

第1,第2実施例の波長変換ナノ粒子の製造方法を表す説明図である。It is explanatory drawing showing the manufacturing method of the wavelength conversion nanoparticle of a 1st, 2nd Example. その方法で製造された第1実施例の波長変換ナノ粒子の発光・吸収スペクトルを表すグラフである。It is a graph showing the emission and absorption spectrum of the wavelength conversion nanoparticle of 1st Example manufactured by the method. その第1実施例の放置による前記スペクトルの変化を表すグラフである。It is a graph showing the change of the said spectrum by neglecting the 1st Example. その第1実施例のpHによる前記スペクトルの相違を表すグラフである。It is a graph showing the difference of the said spectrum by pH of the 1st example. その第1実施例の各種パラメータによる輝度の変化を表すグラフである。It is a graph showing the change of the brightness | luminance by the various parameters of the 1st Example. 前記方法で製造された第2実施例の波長変換ナノ粒子の混成比による発光スペクトルの変化を表すグラフである。It is a graph showing the change of the emission spectrum by the hybrid ratio of the wavelength conversion nanoparticle of 2nd Example manufactured by the said method.

[第1実施例]
次に、本発明の実施の形態を、具体的実施例を挙げて説明する。図1は、第1実施例及び後述の第2実施例の波長変換ナノ粒子の製造方法を表す説明図である。図1(A)に示すように、本実施例では、先ず、Znイオン源(例えば、過塩素酸亜鉛)とN−アセチル−L−システイン(以下、NACという)とを1:4.8のモル比で含む水溶液と、Mnイオン源(例えば、過塩素酸マンガン)とNACとを1:1のモル比で含む水溶液とを混合した。なお、前者の水溶液と後者の水溶液とは10:1の割合で混合し、混合後の水溶液全体に対するMnの濃度が2mol%となるようにした。
[First embodiment]
Next, the embodiments of the present invention will be described with specific examples. FIG. 1 is an explanatory view showing a method for producing wavelength conversion nanoparticles of the first embodiment and the second embodiment described later. As shown in FIG. 1 (A), in this example, first, a Zn ion source (for example, zinc perchlorate) and N-acetyl-L-cysteine (hereinafter referred to as NAC) are 1: 4.8. An aqueous solution containing a molar ratio was mixed with an aqueous solution containing a Mn ion source (eg, manganese perchlorate) and NAC at a molar ratio of 1: 1. The former aqueous solution and the latter aqueous solution were mixed at a ratio of 10: 1 so that the Mn concentration with respect to the entire aqueous solution after mixing was 2 mol%.

続いて、その水溶液にNaOHを添加することによってpH8.5に調整し、更に、図1(B)に示すように、Seイオン源(例えばNaHSe)を1.2mmol添加した。なお、このときのZn:Seのモル比は(1:0.6)である。また、この水溶液(ZnMnSeのPrecursor)では、金属原子にNACのSH基が配位し、NACのカルボキシル基が水系溶媒への溶解を促進しているものと推定される。その水溶液に更にNaOHを添加することによって、図1(C)に示すようにpH10.5に調整した後、高圧下(例えば6気圧)で200℃に加熱することによって、波長変換ナノ粒子(ZnSe:Mn)を製造した。なお、加熱時間は10分とした。   Subsequently, pH was adjusted to 8.5 by adding NaOH to the aqueous solution, and 1.2 mmol of a Se ion source (for example, NaHSe) was further added as shown in FIG. In this case, the molar ratio of Zn: Se is (1: 0.6). In this aqueous solution (Precursor of ZnMnSe), it is presumed that the SH group of NAC is coordinated to a metal atom, and the carboxyl group of NAC promotes dissolution in an aqueous solvent. By further adding NaOH to the aqueous solution, the pH is adjusted to 10.5 as shown in FIG. 1 (C), and then heated to 200 ° C. under high pressure (for example, 6 atm), thereby converting the wavelength conversion nanoparticles (ZnSe). : Mn). The heating time was 10 minutes.

図2は、得られた波長変換ナノ粒子(ZnSe:Mn)の発光・吸収スペクトルを、前述のMnイオン源を省略して得られた無機ナノ粒子(ZnSe)の発光・吸収スペクトルと対比して表すグラフである。なお、グラフ縦軸の強度は、必ずしもカンデラ等の単位と1対1に対応するものではなく、当該グラフ中で対比された強度同士を相対的に比較した値である。また、後述のグラフにおける強度,輝度等も同様である。従って、同じ試料であっても、強度等の値は後述のグラフ等における値と必ずしも一致しない。   FIG. 2 compares the emission / absorption spectrum of the obtained wavelength conversion nanoparticle (ZnSe: Mn) with the emission / absorption spectrum of the inorganic nanoparticle (ZnSe) obtained by omitting the aforementioned Mn ion source. It is a graph to represent. The intensity on the vertical axis of the graph does not necessarily correspond to a unit such as candela, but is a value obtained by relatively comparing the intensities compared in the graph. The same applies to the intensity, brightness, and the like in the graph described later. Therefore, even for the same sample, values such as intensity do not always match values in graphs and the like described later.

図2に示すように、ZnSe系の無機ナノ粒子にMnイオンがドープされた第1実施例の波長変換ナノ粒子(ZnSe:Mn)では、540nm〜640nmの可視領域に発光強度のピークが現れた。一方、Mnイオンがドープされていない前記無機ナノ粒子(ZnSe)では、可視領域に発光強度のピークが殆ど現れなかった。また、両者の吸収スペクトルは完全に一致しており、400nm未満の紫外領域にピークを有した。このため、本実施例の波長変換ナノ粒子を太陽電池等に応用すれば、紫外線を可視光線に変換して太陽電池の効率を向上させることができる。また、本実施例の波長変換ナノ粒子では、従来の水系溶媒中で製造された波長変換ナノ粒子よりも極めて強い発光強度が得られた。これは、高温でナノ粒子を生成することにより、きれいな結晶ができるためと考えられる。   As shown in FIG. 2, in the wavelength conversion nanoparticles (ZnSe: Mn) of the first example in which Mn ions are doped into ZnSe-based inorganic nanoparticles, a peak of emission intensity appeared in the visible region of 540 nm to 640 nm. . On the other hand, in the inorganic nanoparticles (ZnSe) not doped with Mn ions, the emission intensity peak hardly appeared in the visible region. Further, the absorption spectra of both were completely coincident and had a peak in the ultraviolet region of less than 400 nm. For this reason, if the wavelength conversion nanoparticle of a present Example is applied to a solar cell etc., an ultraviolet-ray can be converted into visible light and the efficiency of a solar cell can be improved. Moreover, in the wavelength conversion nanoparticle of a present Example, the luminescence intensity extremely stronger than the wavelength conversion nanoparticle manufactured in the conventional aqueous solvent was obtained. This is thought to be because clean crystals can be formed by producing nanoparticles at a high temperature.

次に、図3は、前述のように製造された波長変換ナノ粒子を、前記溶液中で放置した場合の前記スペクトルの変化を表すグラフである。なお、図3では、製造直後の発光スペクトルは10倍している。図3に示すように、両者の吸収スペクトルは完全に一致するが、発光強度は放置によって大幅に増大することが分かった。   Next, FIG. 3 is a graph showing a change in the spectrum when the wavelength conversion nanoparticles produced as described above are left in the solution. In FIG. 3, the emission spectrum immediately after manufacture is multiplied by 10. As shown in FIG. 3, it was found that the absorption spectra of the two coincided completely, but the emission intensity increased greatly upon standing.

また、図4は、前述のように、図1(C)の工程でpH10.5に調整後に加熱して得られた第1実施例と、図1(C)の工程でpH5に調整後に加熱して得られた試料との発光・吸収スペクトルの相違を表すグラフである。図4に示すように、両者はほぼ同様のスペクトルを呈するが、pH10.5に調整後に加熱した方が広い波長領域に亘って発光強度を有することが分かる。   FIG. 4 shows the first example obtained by heating after adjusting to pH 10.5 in the step of FIG. 1C as described above, and heating after adjusting to pH 5 in the step of FIG. 1C. It is a graph showing the difference of the emission and absorption spectrum with the sample obtained by doing this. As shown in FIG. 4, both exhibit substantially the same spectrum, but it can be seen that heating after adjustment to pH 10.5 has emission intensity over a wider wavelength region.

図5(A)は、実施例1において加熱時間を変化させた場合の輝度の変化を表すグラフである。図5(A)に示すように、加熱時間を20分とした場合に、波長変換ナノ粒子の発光強度(輝度)が最も強くなることが分かった。なお、加熱温度によって、発光強度が最も強くなる加熱時間は変化する可能性がある。   FIG. 5A is a graph showing a change in luminance when the heating time is changed in Example 1. FIG. As shown in FIG. 5 (A), it was found that the emission intensity (luminance) of the wavelength conversion nanoparticles was the strongest when the heating time was 20 minutes. Note that the heating time during which the emission intensity is the strongest may vary depending on the heating temperature.

図5(B)は、加熱時間を20分に固定して製造した実施例1を、前記溶液中で放置した場合の輝度の変化を表すグラフである。図5(B)に示すように、20日放置した場合に、波長変換ナノ粒子の発光強度(輝度)が最も強くなることが分かった。なお、溶媒またはその添加物等によって、発光強度が最も強くなる放置時間は変化する可能性がある。   FIG. 5 (B) is a graph showing a change in luminance when Example 1 manufactured with the heating time fixed at 20 minutes was left in the solution. As shown in FIG. 5B, it was found that the emission intensity (luminance) of the wavelength conversion nanoparticles was the strongest when left for 20 days. Note that the standing time at which the emission intensity is strongest may change depending on the solvent or its additive.

図5(C)は、実施例1においてドーパント比(すなわち、カチオンであるZn+Mn全体のうちのMnのmol%)を変化させた場合の輝度の変化を表すグラフである。図5(C)に示すように、ドーパント比を2%とした場合に、波長変換ナノ粒子の発光強度(輝度)が最も強くなることが分かった。   FIG. 5C is a graph showing a change in luminance when the dopant ratio (that is, mol% of Mn in the whole Zn + Mn as a cation) is changed in Example 1. As shown in FIG. 5C, it was found that the emission intensity (luminance) of the wavelength conversion nanoparticles was the strongest when the dopant ratio was 2%.

図5(D)は、実施例1において図1(C)の工程で調整するpHの値を変化させた場合の輝度の変化を表すグラフである。図5(D)に示すように、pHを10.5に調整した場合に、波長変換ナノ粒子の発光強度(輝度)が最も強くなることが分かった。   FIG. 5D is a graph showing a change in luminance when the pH value adjusted in the step of FIG. 1C in Example 1 is changed. As shown in FIG. 5D, it was found that when the pH was adjusted to 10.5, the emission intensity (luminance) of the wavelength conversion nanoparticles was the strongest.

図5(E)は、実施例1において加熱温度を変化させた場合の輝度の変化を表すグラフである。図5(E)に示すように、加熱温度を200℃とした場合に、波長変換ナノ粒子の発光強度(輝度)が最も強くなることが分かった。   FIG. 5E is a graph showing a change in luminance when the heating temperature is changed in Example 1. As shown in FIG. 5E, it was found that when the heating temperature was 200 ° C., the emission intensity (luminance) of the wavelength conversion nanoparticles was the strongest.

なお、前記工程において、図1の(A)〜(C)に示した工程が混合工程に、その後の加熱処理が加熱工程に、それぞれ相当する。また、本発明は前記実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態で実施することができる。例えば、Znイオン源としては、前述の過塩素酸亜鉛の他、塩化亜鉛,酢酸亜鉛,硝酸亜鉛等が使用できる。また、Mnイオン源としては、前述の過塩素酸マンガンの他、塩化マンガン,酢酸マンガン,臭化マンガン等が使用できる。また、Seイオン源としては、前述のNaHSeの他、セレノウレア,セレン化水素ガス等が使用できる。更に、配位子としては、前述のNACの他、メルカプト酢酸,メルカプトプロピオン酸,メルカプトこはく酸等が使用できる。   1A to 1C in FIG. 1 corresponds to the mixing step, and the subsequent heat treatment corresponds to the heating step. Further, the present invention is not limited to the above-described embodiments, and can be implemented in various forms without departing from the gist of the present invention. For example, as the Zn ion source, zinc chloride, zinc acetate, zinc nitrate, etc. can be used in addition to the above-described zinc perchlorate. In addition to the above-described manganese perchlorate, manganese chloride, manganese acetate, manganese bromide, and the like can be used as the Mn ion source. Further, as the Se ion source, selenourea, hydrogen selenide gas, etc. can be used in addition to the above-mentioned NaHSe. Further, as the ligand, mercaptoacetic acid, mercaptopropionic acid, mercaptosuccinic acid and the like can be used in addition to the aforementioned NAC.

また更に、Seの代わりにSを使用してもよい。その場合も、図1(A)の工程の後にはpHを10.5に調整するのが望ましい。また、その場合、図1(B)の工程で用いるSイオン源としては、硫化ナトリウム,チオ尿素,硫化水素ガス等が使用でき、Zn:Sのモル比が1:0.6となるようにするのが望ましい。   Furthermore, S may be used instead of Se. Even in that case, it is desirable to adjust the pH to 10.5 after the step of FIG. In that case, sodium sulfide, thiourea, hydrogen sulfide gas, or the like can be used as the S ion source used in the step of FIG. 1B so that the molar ratio of Zn: S is 1: 0.6. It is desirable to do.

[第2実施例]
前述のように、無機ナノ粒子を構成するアニオンとしてSeを用いる場合とSを用いる場合とでは、図1(A)の工程の後において調整すべきpHの値が異なる。そこで、次のような方法により、アニオンとしてSeとSとの両方を用いていわゆる混晶半導体としての無機ナノ粒子をMnイオンでドープした波長変換ナノ粒子を、第2実施例として製造した。
[Second Embodiment]
As described above, the pH value to be adjusted after the step of FIG. 1A differs between when Se is used as the anion constituting the inorganic nanoparticles and when S is used. Then, the wavelength conversion nanoparticle which doped the inorganic nanoparticle as what is called a mixed crystal semiconductor with Mn ion using both Se and S as an anion with the following method was manufactured as 2nd Example.

本実施例では、前述の図1(A),(B)の工程によって製造されたZnMnSeの前駆体(Precursor)溶液と、その図1(A),(B)の工程において前述のようにSeの代わりにSを使用して製造されたZnS:Mnの前駆体溶液とを、別々に製造した。そして、pH10.5に調整の後、両者を混合して200℃で10分加熱することによって波長変換ナノ粒子を得た。この波長変換ナノ粒子では、SeとSとの比は自由に調整でき、ZnSeX1-X:Mn(0<X<1)なる一般式で表すことができる。 In the present embodiment, the ZnMnSe precursor solution prepared by the steps shown in FIGS. 1A and 1B and the Se solution in the steps shown in FIGS. 1A and 1B as described above. ZnS: Mn precursor solution prepared using S instead of was prepared separately. And after adjusting to pH10.5, both were mixed and the wavelength conversion nanoparticle was obtained by heating at 200 degreeC for 10 minutes. In this wavelength conversion nanoparticle, the ratio of Se and S can be freely adjusted, and can be expressed by the general formula ZnSe X S 1-X : Mn (0 <X <1).

図6は、第2実施例の波長変換ナノ粒子の混成比による発光スペクトルの変化を表すグラフである。図6に示すように、波長変換ナノ粒子(ZnSe:Mn)にSを加えることで、400nm近傍の発光強度のピークが減少し、600nm近傍の発光強度のピークが強くなることが分かった。従って、SeとSとの両者を用いた波長変換ナノ粒子では、一層良好な発光強度が得られ、太陽電池等に応用すればその効率を一層向上させられることが分かった。   FIG. 6 is a graph showing a change in the emission spectrum depending on the hybridization ratio of the wavelength conversion nanoparticles of the second example. As shown in FIG. 6, it was found that by adding S to the wavelength conversion nanoparticles (ZnSe: Mn), the emission intensity peak near 400 nm decreased and the emission intensity peak near 600 nm increased. Therefore, it has been found that the wavelength conversion nanoparticles using both Se and S can provide even better emission intensity and can be further improved in efficiency when applied to solar cells and the like.

なお、上記各実施の形態では、カチオンとしてZn,Mnを使用しているが、Mnの代わりにCdを用いるなど、カチオンの種類も種々に変更することができる。また、SまたはSeと、Mnと、Znとは、どういう順番で混ぜてもよい。   In each of the above embodiments, Zn and Mn are used as the cation. However, the type of cation can be variously changed, such as using Cd instead of Mn. Further, S or Se, Mn, and Zn may be mixed in any order.

Claims (7)

所望の波長の光を発生する発光中心となる金属イオンを無機ナノ粒子にドープして波長変換ナノ粒子を製造する波長変換ナノ粒子の製造方法であって、
前記発光中心となる金属イオンとしてのMnイオンを提供するイオン源と、前記無機ナノ粒子を構成する原子を提供するイオン源と、前記無機ナノ粒子に配位する親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う混合工程と、
前記pH調整後の前記溶液を高圧下で150℃〜250℃に加熱して波長変換ナノ粒子を生成する加熱工程と、
を含み、
前記無機ナノ粒子を構成する原子としてZnを含み、
前記混合工程では、N−アセチル−L−システインと前記イオン源中のMnイオンとを1:1のモル比で含む溶液と、N−アセチル−L−システインと前記イオン源中のZn原子とを1:4.8のモル比で含む溶液とを、混合することを特徴とする波長変換ナノ粒子の製造方法。
A method for producing wavelength-converting nanoparticles, comprising doping inorganic ions with metal ions that are emission centers that generate light of a desired wavelength to produce wavelength-converting nanoparticles,
An ion source that provides Mn ions as metal ions serving as the luminescent center, an ion source that provides atoms that constitute the inorganic nanoparticles, and a hydrophilic ligand that coordinates to the inorganic nanoparticles. Mixing in an aqueous solvent and adjusting the pH of the resulting solution;
A heating step in which the pH-adjusted solution is heated to 150 ° C. to 250 ° C. under high pressure to generate wavelength conversion nanoparticles;
Including
Containing Zn as an atom constituting the inorganic nanoparticles,
In the mixing step, a solution containing N-acetyl-L-cysteine and Mn ions in the ion source in a molar ratio of 1: 1; N-acetyl-L-cysteine and Zn atoms in the ion source; A method for producing wavelength-converting nanoparticles, comprising mixing a solution containing a molar ratio of 1: 4.8.
所望の波長の光を発生する発光中心となる金属イオンを無機ナノ粒子にドープして波長変換ナノ粒子を製造する波長変換ナノ粒子の製造方法であって、
前記発光中心となる金属イオンを提供するイオン源と、前記無機ナノ粒子を構成する原子を提供するイオン源と、前記無機ナノ粒子に配位する親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う混合工程と、
前記pH調整後の前記溶液を高圧下で150℃〜250℃に加熱して波長変換ナノ粒子を生成する加熱工程と、
を含み、
前記無機ナノ粒子を構成する原子として、SとSeとを含み、
前記混合工程は、
前記無機ナノ粒子を構成するSe以外の各原子を各々提供する前記各イオン源と、前記配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第1混合工程と、
前記無機ナノ粒子を構成するS以外の各原子を各々提供する前記各イオン源と、前記配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第2混合工程と、
前記第1混合工程で得られた前記pH調整後の溶液と、前記第2混合工程で得られた前記pH調整後の溶液とを混合する第3混合工程と、
からなり、
前記発光中心となる金属イオンを提供するイオン源は、前記第1混合工程または前記第2混合工程で前記溶液に混合されることを特徴とする波長変換ナノ粒子の製造方法。
A method for producing wavelength-converting nanoparticles, comprising doping inorganic ions with metal ions that are emission centers that generate light of a desired wavelength to produce wavelength-converting nanoparticles,
In an aqueous solvent, an ion source that provides a metal ion serving as the emission center, an ion source that provides an atom constituting the inorganic nanoparticle, and a hydrophilic ligand that coordinates to the inorganic nanoparticle. A mixing step of mixing and adjusting the pH of the resulting solution;
A heating step in which the pH-adjusted solution is heated to 150 ° C. to 250 ° C. under high pressure to generate wavelength conversion nanoparticles;
Including
As atoms constituting the inorganic nanoparticles, S and Se are included,
The mixing step includes
A first mixing step of adjusting the pH of the resulting solution by mixing each ion source providing each atom other than Se constituting the inorganic nanoparticles and the ligand in an aqueous solvent; ,
A second mixing step of adjusting the pH of the resulting solution by mixing each ion source that provides each atom other than S constituting the inorganic nanoparticles and the ligand in an aqueous solvent; ,
A third mixing step of mixing the solution after pH adjustment obtained in the first mixing step and the solution after pH adjustment obtained in the second mixing step;
Consists of
The method for producing wavelength-converting nanoparticles, wherein the ion source that provides the metal ions serving as the emission center is mixed with the solution in the first mixing step or the second mixing step.
前記発光中心となる金属イオンがMnイオンであることを特徴とする請求項2に記載の波長変換ナノ粒子の製造方法。   The method for producing wavelength-converting nanoparticles according to claim 2, wherein the metal ion serving as the emission center is Mn ion. 前記無機ナノ粒子を構成する原子としてZnを含むことを特徴とする請求項3に記載の波長変換ナノ粒子の製造方法。   The method for producing wavelength-converting nanoparticles according to claim 3, wherein Zn is contained as an atom constituting the inorganic nanoparticles. 前記混合工程では、N−アセチル−L−システインと前記イオン源中のMnイオンとを1:1のモル比で含む溶液と、N−アセチル−L−システインと前記イオン源中のZn原子とを1:4.8のモル比で含む溶液とを、混合することを特徴とする請求項4に記載の波長変換ナノ粒子の製造方法。   In the mixing step, a solution containing N-acetyl-L-cysteine and Mn ions in the ion source in a molar ratio of 1: 1; N-acetyl-L-cysteine and Zn atoms in the ion source; The method for producing wavelength-converting nanoparticles according to claim 4, wherein a solution containing a molar ratio of 1: 4.8 is mixed. 前記配位子がN−アセチル−L−システインであることを特徴とする請求項1〜5のいずれか1項に記載の波長変換ナノ粒子の製造方法。   The said ligand is N-acetyl- L-cysteine, The manufacturing method of the wavelength conversion nanoparticle of any one of Claims 1-5 characterized by the above-mentioned. 前記混合工程終了後の前記溶液はpH9〜11に調整されていることを特徴とする請求項1〜6のいずれか1項に記載の波長変換ナノ粒子の製造方法。   The method for producing wavelength conversion nanoparticles according to any one of claims 1 to 6, wherein the solution after completion of the mixing step is adjusted to a pH of 9 to 11.
JP2011086602A 2011-04-08 2011-04-08 Method for producing wavelength conversion nanoparticles Expired - Fee Related JP5835925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011086602A JP5835925B2 (en) 2011-04-08 2011-04-08 Method for producing wavelength conversion nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086602A JP5835925B2 (en) 2011-04-08 2011-04-08 Method for producing wavelength conversion nanoparticles

Publications (2)

Publication Number Publication Date
JP2012219193A JP2012219193A (en) 2012-11-12
JP5835925B2 true JP5835925B2 (en) 2015-12-24

Family

ID=47271062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086602A Expired - Fee Related JP5835925B2 (en) 2011-04-08 2011-04-08 Method for producing wavelength conversion nanoparticles

Country Status (1)

Country Link
JP (1) JP5835925B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570219B (en) * 2015-02-09 2017-02-11 合皓股份有限公司 Method for fabricating phosphor having maximum absorption wavelength between 410 nm and 470 nm and hving no rear earth element therein and method for generating a white light by using the phosphor
WO2019186730A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186729A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272795A (en) * 2003-11-10 2005-10-06 Fuji Photo Film Co Ltd Dope-type metal sulfide phosphor nanoparticle, dispersion of the same, and method for producing the same
CN1721585A (en) * 2005-05-24 2006-01-18 吉林大学 Preparation method of water soluble manganese added zinc sulfide nano-crystalline with high fluorescence efficiency
US8287951B2 (en) * 2005-09-29 2012-10-16 The Director General Defence Research & Development Organisation Single-source precursor for semiconductor nanocrystals
CN101139524A (en) * 2007-10-11 2008-03-12 复旦大学 Method for preparing near-infrared light-emitting tellurium cadmium sulfide quantum point
JP5115983B2 (en) * 2008-09-01 2013-01-09 国立大学法人東北大学 Synthesis of organically modified metal sulfide nanoparticles by supercritical hydrothermal synthesis

Also Published As

Publication number Publication date
JP2012219193A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
Pang et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes
Zhang et al. Core/shell metal halide perovskite nanocrystals for optoelectronic applications
Jia et al. CsPbX 3/Cs 4 PbX 6 core/shell perovskite nanocrystals
Salem et al. Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization
Molefe et al. Phase formation of hexagonal wurtzite ZnO through decomposition of Zn (OH) 2 at various growth temperatures using CBD method
Li et al. Double perovskite Cs 2 NaInCl 6 nanocrystals with intense dual-emission via self-trapped exciton-to-Tb 3+ dopant energy transfer
Wang et al. Improved ultraviolet radiation stability of Mn 2+-doped CsPbCl 3 nanocrystals via B-site Sn doping
Zhu et al. Recent Advances in Enhancing and Enriching the Optical Properties of Cl‐Based CsPbX3 Nanocrystals
Gao et al. The metal doping strategy in all inorganic lead halide perovskites: synthesis, physicochemical properties, and optoelectronic applications
JP5835925B2 (en) Method for producing wavelength conversion nanoparticles
Zhang et al. Single-phase dual emissive Cu: CdS–ZnSe core–shell nanocrystals with “zero self-absorption” and their application in white light emitting diodes
Chen et al. Room-temperature ionic-liquid-assisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs
Liu et al. Mechanism for tunable broadband white photoluminescence of one-dimensional (C4N2H14) 2Pb1-xMnxBr4 perovskite microcrystals
Biju et al. Effect of lattice strain on the polychromatic emission in ZnO nanostructures for white light emitting diode application
Hu et al. Emission tunable AgInS2 quantum dots synthesized via microwave method for white light-emitting diodes application
CN110938432A (en) Preparation method of perovskite quantum dot material
Pan et al. Stable CsPbI3 nanocrystals modified by tetra-n-butylammonium iodide for light-emitting diodes
Cao et al. Synthesis and optical properties of Mn 2+-doped Cd–In–S colloidal nanocrystals
Melendres-Sánchez et al. Zinc sulfide quantum dots coated with PVP: applications on commercial solar cells
Wang et al. Ultraviolet Emission from Cerium‐Based Organic‐Inorganic Hybrid Halides and Their Abnormal Anti‐Thermal Quenching Behavior
Manivannan et al. Effect of Gd doping on structural, surface and optical properties of ZnS prepared by chemical precipitation method
Yin et al. Optical properties and mechanical induced phase transition of CsPb2Br5 and CsPbBr3 nanocrystals
JP5770518B2 (en) Method for producing nanoparticles
JP2010053009A (en) Method for producing zinc oxide
Lu et al. Single-Phase Cu, Mn-Codoped ZnGaS/ZnS Quantum Dots for Full-Spectrum White-Light-Emitting Diodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5835925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees