JP5835259B2 - Mandrel bar manufacturing method - Google Patents

Mandrel bar manufacturing method Download PDF

Info

Publication number
JP5835259B2
JP5835259B2 JP2013065457A JP2013065457A JP5835259B2 JP 5835259 B2 JP5835259 B2 JP 5835259B2 JP 2013065457 A JP2013065457 A JP 2013065457A JP 2013065457 A JP2013065457 A JP 2013065457A JP 5835259 B2 JP5835259 B2 JP 5835259B2
Authority
JP
Japan
Prior art keywords
mandrel bar
cooling
mandrel
bar
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013065457A
Other languages
Japanese (ja)
Other versions
JP2014189829A (en
Inventor
俊輔 佐々木
俊輔 佐々木
勝村 龍郎
龍郎 勝村
井口 貴朗
貴朗 井口
敬治 森井
敬治 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013065457A priority Critical patent/JP5835259B2/en
Publication of JP2014189829A publication Critical patent/JP2014189829A/en
Application granted granted Critical
Publication of JP5835259B2 publication Critical patent/JP5835259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、マンドレルバーの製造方法に関し、詳しくは、マンドレル圧延において使用される内面工具(=マンドレル圧延用内面工具)であるマンドレルバーの製造方法に関する。   The present invention relates to a method for manufacturing a mandrel bar, and more particularly to a method for manufacturing a mandrel bar which is an inner surface tool (= inner surface tool for mandrel rolling) used in mandrel rolling.

継目無鋼管の製造方法の1つにマンドレル圧延法と称されるプロセスがある。このプロセス(=マンドレル圧延プロセス)は、加熱炉で加熱された丸鋼片に穿孔機で穿孔を施した素管に対して、肉厚を減ずるために前記内面工具であるマンドレルバーを内面側に挿入した状態で、左右一対の孔型ロールを装備したスタンドを複数直列配置してなるマンドレルミルでタンデム圧延を施し、該圧延後の鋼管からマンドレルバーを引抜くというものである。   One of the methods for producing seamless steel pipes is a process called a mandrel rolling method. In this process (= mandrel rolling process), the mandrel bar, which is the inner surface tool, is disposed on the inner surface side in order to reduce the wall thickness of the raw tube in which a round steel piece heated in a heating furnace is perforated with a perforator. In the inserted state, tandem rolling is performed by a mandrel mill in which a plurality of stands equipped with a pair of left and right hole-type rolls are arranged in series, and the mandrel bar is pulled out from the rolled steel pipe.

このマンドレル圧延法では、前記マンドレルバーと前記孔型ロールとの間で素管を圧延し肉厚を減じるが、その際に前記マンドレルバーには圧延荷重、熱応力、磨耗等の負荷が発生し、表面円周方向に割れが発生する。前記マンドレルバーの円周方向割れは圧延時や引抜き時の鋼管内面疵や前記マンドレルバーと鋼管の焼付きの原因となり不適合品の発生を引起こすため、ある程度割れが進行した時点で前記マンドレルバーは工具寿命に達したと判断され廃却される。   In this mandrel rolling method, the raw tube is rolled between the mandrel bar and the perforated roll to reduce the wall thickness. At that time, the mandrel bar is subjected to loads such as rolling load, thermal stress, and wear. Cracks occur in the surface circumferential direction. Circumferential cracking of the mandrel bar causes the occurrence of non-conforming products that cause seizure of the inner surface of the steel pipe and the mandrel bar and the steel pipe at the time of rolling or drawing, so when the crack progresses to some extent, It is judged that the tool life has been reached and is discarded.

近年、鋼管の高強度化や耐腐食性向上を目的としてCrやNi等の合金元素を多く含んだ鋼管の製造が増加している。これらの鋼管は熱間強度が高いことから圧延時に一般鋼と比較して大きな圧延荷重が発生し、内面工具への負荷も大きくなる。前記マンドレルバーの鋼種には一般的にJISに規定するSKD6やSKD61などの熱間工具鋼が使用されるが、材料強度不足から、先述した円周方向割れの発生が増加し寿命が短くなる問題が発生している。尚、前記SKD6及びSKD61の鋼組成(質量%;残部はFe及び不可避的不純物である)を表1に示す。   In recent years, the production of steel pipes containing a large amount of alloy elements such as Cr and Ni has been increasing for the purpose of increasing the strength of steel pipes and improving corrosion resistance. Since these steel pipes have high hot strength, a large rolling load is generated during rolling compared to general steel, and the load on the inner surface tool is also increased. Hot tool steels such as SKD6 and SKD61 specified in JIS are generally used as the mandrel bar steel grade. However, due to insufficient material strength, the occurrence of the aforementioned circumferential cracks increases and the life is shortened. Has occurred. Table 1 shows the steel compositions of SKD6 and SKD61 (mass%; the balance is Fe and inevitable impurities).

この問題に対して、特許文献1には合金元素が多く含まれた鋼管の製造前に低合金の一般鋼を圧延することでマンドレルバー表面に酸化スケールを付着させ、マンドレルバーと鋼管の摩擦係数を減じて工具負荷を減らす方法が提案されている。また、特許文献2ではマンドレルバー製造段階で表面にあらかじめ硬質なクロム皮膜を形成させて硬度と耐磨耗性を向上させている。   To deal with this problem, Patent Document 1 rolls low-alloy general steel before manufacturing a steel pipe containing a large amount of alloy elements, thereby attaching an oxide scale to the surface of the mandrel bar, and the friction coefficient between the mandrel bar and the steel pipe. There has been proposed a method for reducing the tool load by reducing the tool load. In Patent Document 2, a hard chromium film is formed on the surface in advance at the mandrel bar manufacturing stage to improve the hardness and wear resistance.

Figure 0005835259
Figure 0005835259

特許第4900385号公報Japanese Patent No. 4900385 特許第3395715号公報Japanese Patent No. 3395715

しかし、特許文献1に記載の方法では合金元素を多く含む鋼種を圧延する際には前もって低合金鋼を圧延する必要があるため圧延スケジュールが複雑になることに加えて、収益性の低い低合金鋼を合わせて注文をとる必要があるため、収益性の悪化を招く。また、特許文献2に記載の方法では、マンドレルバー製造工程においてメッキ処理が必要であり、多大な投資が必要である。   However, in the method described in Patent Document 1, when rolling a steel type containing a large amount of alloy elements, it is necessary to roll low alloy steel in advance, so that the rolling schedule becomes complicated, and low profitability low alloy Since it is necessary to place an order with steel, profitability deteriorates. Further, the method described in Patent Document 2 requires a plating process in the mandrel bar manufacturing process, and requires a great investment.

以上の様に、従来の技術では、マンドレルバーの工具寿命を延長させようとすると収益性の悪化や多大な投資を伴うという課題があった。   As described above, in the conventional technique, there is a problem that if the tool life of the mandrel bar is extended, the profitability is deteriorated and a great investment is involved.

発明者らは、前記課題を解決する為に鋭意検討し、その結果、前記マンドレルバーの製造に用いる熱処理プロセス(焼入れ-焼戻し)の最終段階である焼戻しを行う際に、被処理材を焼戻し温度に加熱後、特定の冷却速度で加速冷却することで、前記マンドレルバーの硬度を維持しながら靭性値を向上させ、円周方向の疲労進展や不安定進展を抑制し、工具寿命を向上させると共に、鋼管製品の内面品質を向上させうることを知見し、本発明を成した。   The inventors have intensively studied to solve the above problems, and as a result, when performing tempering, which is the final stage of the heat treatment process (quenching-tempering) used in the manufacture of the mandrel bar, After being heated to a specific speed, accelerated cooling at a specific cooling rate improves the toughness value while maintaining the hardness of the mandrel bar, suppresses fatigue progress and unstable progress in the circumferential direction, and improves tool life. As a result, the present inventors have found that the inner surface quality of steel pipe products can be improved.

即ち本発明は、熱間工具鋼であるSKD6またはSKD61からなるマンドレルバー形状の半製品であるバー素材に最終熱処理を施してマンドレルバーとなすマンドレルバーの製造方法であって、前記最終熱処理時に、前記バー素材を625℃以上の焼戻し温度に加熱後、該焼戻し温度から100℃までの冷却速度が10.0℃/分以上35℃/分以下になる加速冷却を施し、硬度を維持しながら靱性を向上させ、かつ、冷却終了後のマンドレルバーの反りを防止することを特徴とするマンドレルバーの製造方法である That is, the present invention is a method for producing a mandrel bar that is subjected to a final heat treatment to a bar material that is a semi-finished product of a mandrel bar shape made of SKD6 or SKD61, which is a hot tool steel . after heating the bar material to 625 ° C. or higher tempering temperature, and facilities the accelerated cooling the cooling rate is 35 ° C. / min or less 10.0 ° C. / min or more from該焼return temperature to 100 ° C., while maintaining the hardness A mandrel bar manufacturing method characterized by improving toughness and preventing warpage of a mandrel bar after completion of cooling .

本発明によれば、マンドレルバーの製造工程の最終段階である焼戻し工程において、焼戻し温度からの冷却を前記加速冷却としたことにより、収益性の悪化や多大な投資を伴うことなく、マンドレルバーの硬さを維持しながら靭性値を向上し、円周方向割れの疲労進展や不安定進展を抑制し、工具寿命を向上させると共に、鋼管製品の内面品質を向上させうるという効果を奏する。   According to the present invention, in the tempering process, which is the final stage of the mandrel bar manufacturing process, the cooling from the tempering temperature is the accelerated cooling, so that the mandrel bar can be manufactured without deteriorating profitability and enormous investment. While maintaining the hardness, the toughness value is improved, the fatigue progress and unstable progress of the circumferential crack are suppressed, the tool life is improved, and the inner surface quality of the steel pipe product can be improved.

マンドレル圧延プロセス中のマンドレルバー表面からの距離とマンドレルバー水冷時に働く円周方向引張応力の関係を示すグラフである。It is a graph which shows the relationship between the distance from the mandrel bar surface in a mandrel rolling process, and the circumferential direction tensile stress which acts at the time of a mandrel bar water cooling. マンドレル圧延荷重負荷解析により見出されたマンドレルバーの引張応力発生部と其処における応力値を示す模式図である。It is a schematic diagram which shows the stress value in the tensile stress generation | occurrence | production part of a mandrel bar found by the mandrel rolling load analysis. 再現熱サイクル付与実験結果のまとめを示すグラフである。It is a graph which shows the summary of the reproduction | regeneration thermal cycle provision experiment result. 焼戻し温度からのミスト冷却中のバー素材の表面応力状態を解析した結果を示す線図である。It is a diagram which shows the result of having analyzed the surface stress state of the bar raw material in the mist cooling from tempering temperature.

以下、本発明の作用効果及び実施形態について説明する。
本発明の製造対象であるマンドレルバーは、前記マンドレル圧延法で使用される内面工具である。
前記マンドレルバーをなす材料の鋼種は従来と同様、前記SKD6あるいは前記SKD61である。
Hereinafter, the operational effects and embodiments of the present invention will be described.
The mandrel bar which is the production target of the present invention is an inner surface tool used in the mandrel rolling method.
The steel type of the material forming the mandrel bar is the SKD6 or the SKD61 as in the conventional case.

前記マンドレル圧延に使用中の前記マンドレルバーの表面には、圧延本数が増加すると円周方向に割れが発生し鋼管内面疵の発生を引起こす。本発明者らは、この工具損傷メカニズムについて詳細に検討した結果、そのメカニズムを解明し、割れの発生抑制方法を着想した。
マンドレル圧延プロセスにおいて前記マンドレルバーは、高温(1000〜1300℃程度)に加熱された丸鋼片を穿孔してなる前記素管に挿入される際に入熱を受け、その後抜き取られた後、水により急冷される。その際、マンドレルバー表面から深さ方向に対して温度差が発生し熱応力が発生する。該熱応力によるマンドレルバーの負荷を定量的に解明するため有限要素法を用いて前記マンドレルバー水冷時の熱応力を計算(解析)した。
On the surface of the mandrel bar being used for the mandrel rolling, when the number of rolling is increased, cracks occur in the circumferential direction, causing the occurrence of flaws on the inner surface of the steel pipe. As a result of detailed examination of the tool damage mechanism, the present inventors have elucidated the mechanism and have come up with a method for suppressing the occurrence of cracks.
In the mandrel rolling process, the mandrel bar receives heat when it is inserted into the raw tube formed by punching a round steel piece heated to a high temperature (about 1000 to 1300 ° C.), and then is extracted and then water Is cooled rapidly. At that time, a temperature difference occurs in the depth direction from the mandrel bar surface, and a thermal stress is generated. In order to quantitatively elucidate the load on the mandrel bar due to the thermal stress, the thermal stress during water cooling of the mandrel bar was calculated (analyzed) using a finite element method.

前記解析の結果の1例を図1に示す。図1はマンドレルバー表面からの距離とマンドレルバー水冷時に働く円周方向引張応力の関係をグラフで示している。図1に示される様に、マンドレルバー水冷時のマンドレルバー表面には690MPa程度の引張応力が発生していることが分かった。一方で、150MPa程度以上の高い引張応力の発生する深さは表面から300μm程度と浅いことが分かった。   An example of the result of the analysis is shown in FIG. FIG. 1 is a graph showing the relationship between the distance from the mandrel bar surface and the circumferential tensile stress that acts during water cooling of the mandrel bar. As shown in FIG. 1, it was found that a tensile stress of about 690 MPa was generated on the mandrel bar surface during water cooling. On the other hand, it was found that the depth at which a high tensile stress of about 150 MPa or more occurs was as shallow as about 300 μm from the surface.

また、マンドレル圧延プロセスにおける圧延荷重負荷の影響を定量的に評価するため、有限要素法を用いてマンドレル圧延荷重負荷解析を行った。その結果、図2に示すように、ロール(孔型ロール)2との協働で被圧延材5をマンドレル圧延加工中のマンドレルバー1には、ロール下死点4をなすロールフランジ部3付近に、円周方向割れを進展させる長手方向に高い引張応力の発生域である引張応力発生部6が形成していることが分かった。また、この引張応力発生部6はマンドレルバー1の表面から深さ15mm程度までの範囲に形成しており、そこでの応力値は一般鋼(JIS SS400相当鋼種)の場合よりも、合金元素の多い鋼種(13Cr鋼等)の様に、変形抵抗が大きな鋼種ほど大きな値を示した。   In addition, in order to quantitatively evaluate the influence of the rolling load load in the mandrel rolling process, a mandrel rolling load load analysis was performed using a finite element method. As a result, as shown in FIG. 2, the mandrel bar 1 during the mandrel rolling process of the material 5 to be rolled in cooperation with the roll (hole-type roll) 2, in the vicinity of the roll flange portion 3 forming the roll bottom dead center 4. In addition, it was found that a tensile stress generating portion 6 which is a region where a high tensile stress is generated in the longitudinal direction in which the circumferential crack is developed is formed. Further, the tensile stress generating portion 6 is formed in a range from the surface of the mandrel bar 1 to a depth of about 15 mm, and the stress value there is more alloy elements than in the case of general steel (JIS SS400 equivalent steel type). Like steel grades (13Cr steel etc.), steel grades with higher deformation resistance showed larger values.

これらのことから、マンドレルバーの円周方向の大きな割れが発生するメカニズムは、まず熱応力により亀裂の起点が表面から300μm程度の深さまでの範囲内に発生し、そして前記発生した起点からの亀裂が圧延中に働く長手方向引張応力による疲労で進展し、該進展した亀裂(疲労亀裂)がある長さに達すると材料の持つ破壊靭性値では耐えられなくなり脆性的に亀裂が進展する不安定破壊により大きく割れると云うメカニズムであると考えられる。したがって、斯かるメカニズムによりマンドレルバーの円周方向に大きな割れが発生するのを抑制するには、靭性値と破壊靭性値を向上させ、疲労亀裂の進展速度の抑制と不安定破壊に至る限界破壊応力値を向上させる必要がある。一方で、マンドレルバーはマンドレル圧延中に鋼管との相対滑り摩擦によって磨耗するため硬度を維持する必要がある。   From these facts, the mechanism of the occurrence of large cracks in the circumferential direction of the mandrel bar is that cracks originate from the surface within a range from the surface to a depth of about 300 μm. Unstable fracture in which the fracture progresses by fatigue due to the longitudinal tensile stress acting during rolling, and when the developed crack (fatigue crack) reaches a certain length, the fracture toughness value of the material cannot withstand and the brittle crack progresses It is thought that this is a mechanism that cracks greatly. Therefore, in order to suppress the occurrence of large cracks in the circumferential direction of the mandrel bar by such a mechanism, it is possible to improve the toughness value and fracture toughness value, to limit the growth rate of fatigue cracks and to limit fracture leading to unstable fracture It is necessary to improve the stress value. On the other hand, since the mandrel bar is worn due to relative sliding friction with the steel pipe during mandrel rolling, it is necessary to maintain the hardness.

本発明によれば、マンドレルバーの製造工程の最終段階である焼戻し工程において、焼戻し温度からの冷却を前記加速冷却としたことで、硬さを維持しつつ靭性を向上させることができるのである。
次に、本発明の実施形態について説明する。前記バー素材の鋼種として熱間工具鋼である前記SKD6やSKD61(表1参照)を使用する点では通常と同様である。これらの材料は合金元素としてV、Mo、Mn、Cr等が添加されたものであり、前記最終熱処理の過程でこれらを炭化物として析出させることで熱間強度を高めている。これらの炭化物は前記焼戻し時の焼戻し温度により析出する種類が変化し、それに応じた特性を発揮する。マンドレルバーは靭性値重視の観点から625℃以上の高い焼戻し温度を採用している。しかし、SKD6,61をはじめとする工具鋼の中には400〜550℃付近においてS,Pが粒界偏析を引起こす場合や、炭化物の析出による二次硬化により硬度が向上し靭性が低下する領域がある。マンドレルバーは前記焼戻し温度からの冷却過程において、従来行われている放冷(大気中での自然冷却)では、400〜550℃の温度域を通過する時間が長いため、靭性が低下している可能性がある。つまり、脆化を引起こす因子の形成所要時間を下回ることに対応する冷却速度とされる必要がある。
According to the present invention, in the tempering process that is the final stage of the mandrel bar manufacturing process, the cooling from the tempering temperature is the accelerated cooling, so that the toughness can be improved while maintaining the hardness.
Next, an embodiment of the present invention will be described. It is the same as usual in that the SKD6 and SKD61 (see Table 1), which are hot tool steels, are used as the steel material of the bar material. These materials are made by adding V, Mo, Mn, Cr, or the like as alloy elements, and the hot strength is increased by precipitating them as carbides in the course of the final heat treatment. These carbides change the kind of precipitation depending on the tempering temperature at the time of tempering, and exhibit characteristics corresponding thereto. The mandrel bar employs a high tempering temperature of 625 ° C. or higher from the viewpoint of emphasizing the toughness value. However, in tool steels such as SKD6, 61, when S and P cause grain boundary segregation in the vicinity of 400 to 550 ° C., or the secondary hardening by precipitation of carbides increases the hardness and decreases the toughness. There is an area. In the cooling process from the tempering temperature, the mandrel bar has a low toughness because it takes a long time to pass through a temperature range of 400 to 550 ° C. in the conventional cooling (natural cooling in the atmosphere). there is a possibility. That is, it is necessary to set the cooling rate to be less than the time required for forming the factor causing embrittlement.

斯かる冷却速度の下限の存在を確認する為に、再現熱処理実験を行い、前記SKD6及びSKD61の2通りの鋼種の試験片に対し焼戻し温度を常用範囲内から選んだ複数水準、該焼戻し温度からの冷却履歴を放冷〜水冷の範囲内から選んだ複数水準にとって評価した。評価方法は、前記再現熱処理実験後の試験片からシャルピー試験片及びビッカース硬さ試験片を採取して夫々試験するものとした。前記シャルピー試験では試験温度=25℃として靭性値(衝撃吸収エネルギー)を測定した。その結果をグラフにまとめて図3に示す。   In order to confirm the existence of such a lower limit of the cooling rate, a reproducible heat treatment experiment was conducted, and a plurality of tempering temperatures were selected from the normal range for the test pieces of the two steel types SKD6 and SKD61. The cooling history was evaluated for multiple levels selected from the range of cooling to water cooling. In the evaluation method, Charpy test pieces and Vickers hardness test pieces were collected from the test pieces after the reproducible heat treatment experiment and tested. In the Charpy test, the toughness value (impact absorption energy) was measured at a test temperature of 25 ° C. The results are summarized in a graph and shown in FIG.

図3において、横軸は焼戻し温度〜100℃間の冷却速度CR(=[焼戻し温度−100℃]/焼戻し温度から100℃までの冷却時間)であり、縦軸は靭性値E、ビッカース硬さHvの2通りであり、縦横両軸とも任意尺度である。図3より、2鋼種とも夫々、HvはCR変域内で略同じレベルを維持し、一方、Eは、CR=10.0℃/分を境として低CR側では低Eレベル、高CR側では高Eレベルとなっており、したがって、前記400〜550℃の温度域を通過する時間が、前記偏析形成所要時間を下回ることに対応する冷却速度の下限がCR変域内のCR=10.0℃/分のところに存在すると云える。   In FIG. 3, the horizontal axis is the cooling rate CR (= [tempering temperature−100 ° C.] / Cooling time from the tempering temperature to 100 ° C.) between the tempering temperature and 100 ° C., and the vertical axis is the toughness value E, Vickers hardness. There are two types of Hv, and both the vertical and horizontal axes are arbitrary scales. From Fig. 3, Hv maintains approximately the same level in the CR range for both of the two steel grades, while E is low E level on the low CR side and CR on the high CR side at CR = 10.0 ° C / min. Therefore, the lower limit of the cooling rate corresponding to the time required to pass through the temperature range of 400 to 550 ° C. being lower than the time required for segregation formation is CR = 10.0 ° C. within the CR region. It can be said that it exists at / min.

前記実験結果に基づき、本発明では、前記加速冷却の冷却速度を、焼戻し温度〜100℃間で10.0℃/分以上と限定した。この限定要件は、前記バー素材の断面全体に亘って満足されるべきものである。前記断面内で最も冷却速度が遅いのは断面中心部(詳しくは、バー素材の尖った先端部を除いた残りの長さ部分である定径部の断面中心部)であるから、該断面中心部におけるCRが10.0℃/分以上であれば前記限定要件は満たされる。   Based on the experimental results, in the present invention, the cooling rate of the accelerated cooling is limited to 10.0 ° C./min or more between the tempering temperature and 100 ° C. This limiting requirement should be satisfied over the entire cross section of the bar material. The slowest cooling rate in the cross section is the center of the cross section (specifically, the center of the cross section of the constant diameter portion which is the remaining length excluding the sharp tip of the bar material). If the CR in the part is 10.0 ° C./min or more, the above-mentioned limiting requirement is satisfied.

又、前記加速冷却の実行手段としては、水冷(水スプレー、水シャワー、水中浸漬などと云った水のみによる冷却)、ミスト冷却(気水混合流体による冷却)の何れであってもよい。但し、冷却速度が過大(例えば50℃/分超、場合によっては35℃/分超)となると、所望の材質は得られるものの、冷却終了後に圧縮側の残留応力により反り等が発生しがちとなるので、前記加速冷却の冷却速度は、CR≦35℃/分とするのが好ましい。   The accelerated cooling execution means may be water cooling (cooling only with water such as water spray, water shower, or immersion in water) or mist cooling (cooling with an air-water mixed fluid). However, if the cooling rate is excessive (for example, over 50 ° C./min, in some cases over 35 ° C./min), the desired material can be obtained, but warping or the like tends to occur due to the residual stress on the compression side after cooling is completed. Therefore, the cooling rate of the accelerated cooling is preferably CR ≦ 35 ° C./min.

マンドレルバー製造時の最終焼戻し工程において、表2に示す鋼種Aのバー素材(定径部の長さ=22000mm、直径=100mmφ)への焼戻し温度からの冷却を、放冷、水冷(ここでは水シャワー冷却)、ミスト冷却の各冷却方法で行った。前記水冷、ミスト冷却の夫々は、焼戻し炉から抽出したバー素材をターニングローラで支持してバー軸芯周りの回転を加えつつ、上方に配設した夫々専用のノズルからバー素材表面に冷媒を吹き付ける形態とした。前記冷却を終えてなるマンドレルバーの断面中心部から採取した試験片を用いてシャルピー試験(試験温度=同前)による靭性値測定、及びビッカース硬さ測定を行った。その結果を表3に示す。表3には、靭性値E、ビッカース硬さHvとも、放冷の場合に対する百分率で表した指数を示した。表3中のCR(前記定径部断面中心における焼戻し温度〜100℃間の冷却速度)は、実測温度との一致が極めて良好な計算温度を出力するように材料物性値及び表面熱伝達係数の最適化がなされた伝熱計算モデルを用いて算出した計算値である。   In the final tempering process at the time of manufacturing the mandrel bar, cooling from the tempering temperature to the bar material of steel type A shown in Table 2 (the length of the constant diameter portion = 22000 mm, the diameter = 100 mmφ) is allowed to stand by cooling, water cooling (here, water It was performed by each cooling method of shower cooling) and mist cooling. In each of the water cooling and the mist cooling, the bar material extracted from the tempering furnace is supported by a turning roller, and the coolant is blown onto the surface of the bar material from the dedicated nozzles arranged above while rotating around the bar axis. Form. A toughness value measurement by a Charpy test (test temperature = same as above) and a Vickers hardness measurement were performed using a test piece taken from the center of the cross section of the mandrel bar after the cooling. The results are shown in Table 3. Table 3 shows the toughness value E and the Vickers hardness Hv in terms of percentages with respect to the case of cooling. The CR in Table 3 (the tempering temperature at the center of the constant diameter section to the cooling rate between 100 ° C.) is the material property value and the surface heat transfer coefficient so as to output a calculated temperature with a very good agreement with the measured temperature. It is a calculated value calculated using a heat transfer calculation model that has been optimized.

表3より、本発明例である水冷とミスト冷却の何れにおいても、従来例である放冷と比べて、硬さを維持しつつ靭性値を120〜140%に向上できたことが分る。   From Table 3, it can be seen that, in both water cooling and mist cooling, which are examples of the present invention, the toughness value can be improved to 120 to 140% while maintaining the hardness as compared with the conventional cooling.

Figure 0005835259
Figure 0005835259

Figure 0005835259
Figure 0005835259

図4は、前記本発明例のミスト冷却時のバー素材の表面応力状態を解析した結果を示す線図である。図4より、ミスト冷却では最大でも85MPa程度の応力であり、冷却終了後のマンドレルバー表面に残留応力の発生は無いことが分る。
前記本発明例のミスト冷却にて製造されたマンドレルバー(全15本)は、継目無鋼管の実生産ラインにおいてマンドレル圧延用内面工具として繰り返し使用された。それらの工具寿命(使用開始から使用不能となるまでの繰り返し使用回数)を調査した結果、対従来例比で121〜201%の範囲であり、本発明によってマンドレルバーの耐用性が従来よりも向上したことが確認された。
FIG. 4 is a diagram showing the result of analyzing the surface stress state of the bar material during the mist cooling of the example of the present invention. From FIG. 4, it is found that the maximum stress is about 85 MPa in the mist cooling, and no residual stress is generated on the mandrel bar surface after the cooling.
The mandrel bars (15 in total) manufactured by the mist cooling of the example of the present invention were repeatedly used as an inner surface tool for mandrel rolling in an actual production line of seamless steel pipes. As a result of investigating their tool life (the number of repeated use from the start of use until they become unusable), it is in the range of 121-201% compared to the conventional example, and the durability of the mandrel bar is improved by the present invention than before. It was confirmed that

1 マンドレルバー
2 ロール(孔型ロール)
3 ロールフランジ部
4 ロール下死点
5 被圧延材
6 引張応力発生部
1 Mandrel bar 2 Roll (hole type roll)
3 Roll flange 4 Roll bottom dead center 5 Rolled material 6 Tensile stress generator

Claims (1)

熱間工具鋼であるSKD6またはSKD61からなるマンドレルバー形状の半製品であるバー素材に最終熱処理を施してマンドレルバーとなすマンドレルバーの製造方法であって、前記最終熱処理時に、前記バー素材を625℃以上の焼戻し温度に加熱後、該焼戻し温度から100℃までの冷却速度が10.0℃/分以上35℃/分以下になる加速冷却を施し、硬度を維持しながら靱性を向上させ、かつ、冷却終了後のマンドレルバーの反りを防止することを特徴とするマンドレルバーの製造方法。 A mandrel bar manufacturing method for subjecting a bar material which is a mandrel bar-shaped semi-finished product made of SKD6 or SKD61, which is a hot tool steel, to a mandrel bar, wherein the bar material is 625 at the time of the final heat treatment. after heating ° C. above the tempering temperature, and facilities the accelerated cooling the cooling rate is 35 ° C. / min or less 10.0 ° C. / min or more from該焼return temperature to 100 ° C., to improve the toughness while maintaining the hardness, And the manufacturing method of the mandrel bar characterized by preventing the curvature of the mandrel bar after completion | finish of cooling .
JP2013065457A 2013-03-27 2013-03-27 Mandrel bar manufacturing method Active JP5835259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013065457A JP5835259B2 (en) 2013-03-27 2013-03-27 Mandrel bar manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013065457A JP5835259B2 (en) 2013-03-27 2013-03-27 Mandrel bar manufacturing method

Publications (2)

Publication Number Publication Date
JP2014189829A JP2014189829A (en) 2014-10-06
JP5835259B2 true JP5835259B2 (en) 2015-12-24

Family

ID=51836403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065457A Active JP5835259B2 (en) 2013-03-27 2013-03-27 Mandrel bar manufacturing method

Country Status (1)

Country Link
JP (1) JP5835259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567924A (en) * 2016-03-07 2016-05-11 江苏大学 Method for improving tensile strength of Cr-Ni-Mo-V high-hardenability high-strength steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567924A (en) * 2016-03-07 2016-05-11 江苏大学 Method for improving tensile strength of Cr-Ni-Mo-V high-hardenability high-strength steel

Also Published As

Publication number Publication date
JP2014189829A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP4475429B2 (en) Ni-base alloy tube and method for manufacturing the same
RU2644089C2 (en) Thermomechanical processing of high-strength non-magnetic corrosion-resistant material
JP4513807B2 (en) Fe-Ni alloy tube and method of manufacturing the same
JP6156574B2 (en) Thick and high toughness high strength steel sheet and method for producing the same
US9175360B2 (en) Method for manufacturing seamless steel pipe for line pipe and seamless steel pipe for line pipe
JP6278125B2 (en) Steel tube for composite container pressure accumulator liner and method for manufacturing steel tube for composite container pressure accumulator liner
JP5751012B2 (en) Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5751013B2 (en) Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP7399855B2 (en) Metal ring formed from beryllium-copper alloy
JP5796351B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
JP5803270B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
JP6805639B2 (en) Manufacturing method of stainless steel pipe
JP6421883B2 (en) Pressure accumulator steel pipe, pressure accumulator steel pipe manufacturing method, and composite container pressure accumulator liner
JPWO2019087510A1 (en) Piercer plug and manufacturing method thereof
JP5835259B2 (en) Mandrel bar manufacturing method
JP6102860B2 (en) Mandrel bar manufacturing apparatus row and manufacturing method
US9429255B2 (en) Hollow seamless pipe for high-strength spring
JP6274452B2 (en) Manufacturing method of martensitic high Cr steel seamless steel pipe
JP2010172947A (en) Method of super-high temperature hot forging
Zwierzchowski Factors affecting the wear resistance of forging tools
US11207721B2 (en) Roll for hot rolling process and method for manufacturing same
Plewiński et al. Spinning and flow forming hard-to-deform metal alloys
JP2009120875A (en) High alloy seamless tube and manufacturing method therefor
JP5874290B2 (en) Steel material for welded joints excellent in ductile crack growth characteristics and method for producing the same
MX2016008907A (en) Rolling rod as an inner tool in the production of seamless metal hollow bodies and method for producing a metal hollow body.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5835259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250