JP5831459B2 - ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE - Google Patents

ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE Download PDF

Info

Publication number
JP5831459B2
JP5831459B2 JP2012547891A JP2012547891A JP5831459B2 JP 5831459 B2 JP5831459 B2 JP 5831459B2 JP 2012547891 A JP2012547891 A JP 2012547891A JP 2012547891 A JP2012547891 A JP 2012547891A JP 5831459 B2 JP5831459 B2 JP 5831459B2
Authority
JP
Japan
Prior art keywords
group
organic
ring
light
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012547891A
Other languages
Japanese (ja)
Other versions
JPWO2012077714A1 (en
Inventor
隼 古川
隼 古川
黒木 孝彰
孝彰 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012547891A priority Critical patent/JP5831459B2/en
Publication of JPWO2012077714A1 publication Critical patent/JPWO2012077714A1/en
Application granted granted Critical
Publication of JP5831459B2 publication Critical patent/JP5831459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/80Composition varying spatially, e.g. having a spatial gradient

Description

本発明は、発光波長の異なる複数の燐光発光ドーパントを含有し、特に、白色発光を呈する有機エレクトロルミネッセンス素子及びそれを用いた照明装置に関するものである。   The present invention relates to an organic electroluminescence element that contains a plurality of phosphorescent dopants having different emission wavelengths, and particularly emits white light, and an illumination device using the same.

発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDと略記する)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子(以下、無機EL素子ともいう)や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機EL素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。   As a light-emitting electronic display device, there is an electroluminescence display (hereinafter abbreviated as ELD). As a constituent element of ELD, an inorganic electroluminescence element (hereinafter also referred to as an inorganic EL element) and an organic electroluminescence element (hereinafter also referred to as an organic EL element) can be given. Inorganic EL elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.

一方、有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄型の完全固体素子でアるため、省スペース、携帯性等の観点から注目されている。   On the other hand, an organic electroluminescence device has a structure in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode, and excitons (exciton) are injected by injecting electrons and holes into the light emitting layer and recombining them. ), Which emits light by using light emission (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several V to several tens of V, and further self-emission. Since it is a mold, it has a wide viewing angle, high visibility, and a thin, completely solid element, and thus has attracted attention from the viewpoints of space saving and portability.

また、有機エレクトロルミネッセンス素子は、従来実用に供されてきた主要な光源、例えば、発光ダイオードや冷陰極管と異なり、面光源であることも大きな特徴である。この特性を有効に活用できる用途として、照明用光源や様々なディスプレイのバックライトが挙げられる。特に、近年、需要の増加が著しい液晶フルカラーディスプレイのバックライトとして用いることも好適である。   Another major feature of the organic electroluminescence element is that it is a surface light source, unlike main light sources that have been put to practical use, such as light-emitting diodes and cold-cathode tubes. Applications that can effectively utilize this characteristic include illumination light sources and various display backlights. In particular, it is also suitable for use as a backlight of a liquid crystal full color display whose demand has been increasing in recent years.

有機エレクトロルミネッセンス素子をこのような照明用光源、あるいはディスプレイのバックライトとして用いる場合には、白色、若しくは、所謂電球色(以下、総合して白色と称す)を呈する光源として用いることになる。有機エレクトロルミネッセンス素子で白色発光を得るには、一つの素子中に発光波長の異なる複数の発光ドーパントを調整し、混色により白色を得る方法、多色の発光画素、例えば、青・緑・赤の三色を塗りわけて同時に発光させることにより、混色して白色を得る方法、色変換色素を用いて白色を得る方法(例えば、青発光材料と色変換蛍光色素の組み合わせ)などが挙げられる。   When the organic electroluminescence element is used as such an illumination light source or a display backlight, it is used as a light source that exhibits white or a so-called light bulb color (hereinafter collectively referred to as white). In order to obtain white light emission with an organic electroluminescence element, a method of adjusting a plurality of light emitting dopants having different emission wavelengths in one element and obtaining white color by mixing, a multicolor light emitting pixel, for example, blue, green, red Examples of the method include obtaining a white color by mixing three colors and emitting light simultaneously, and obtaining a white color using a color conversion dye (for example, a combination of a blue light emitting material and a color conversion fluorescent dye).

しかしながら、低コスト、高生産性、簡便な駆動方法など、照明用光源やバックライト用途に求められる様々な要求から判断すると、一つの素子中に発光波長の異なる複数の発光ドーパントを調整し、混色により白色を得る方法が、これらの用途には有効であり、近年、その方式による研究開発が精力的に進められている。   However, judging from various demands required for light sources for illumination and backlights, such as low cost, high productivity, and simple driving method, a plurality of light emitting dopants having different light emission wavelengths are adjusted in one element to mix colors. The method of obtaining a white color is effective for these applications, and in recent years, research and development by this method has been vigorously advanced.

上述の方法により白色光を得る方法について更に詳細すれば、素子中に補色の関係にある二色の発光ドーパント、例えば、青色発光ドーパントと黄色発光ドーパントを用い混色方式で白色を得る方法、青・緑・赤の三色の発光ドーパントを用い、混色方式で白色を得る方法等が挙げられる。   The method for obtaining white light by the above-described method will be described in more detail. A method for obtaining white by a mixed color method using two-color light emitting dopants having complementary colors in the element, for example, a blue light emitting dopant and a yellow light emitting dopant, For example, a method of obtaining white color by a mixed color method using three or more luminescent dopants of green and red.

例えば、効率の高い青、緑、赤の三色の蛍光体を発光材料としてドープすることによって、白色の有機エレクトロルミネッセンス素子を得る方法が開示されている(例えば、特許文献1、2参照。)。   For example, a method for obtaining a white organic electroluminescent element by doping high-efficiency phosphors of blue, green, and red as a light emitting material is disclosed (for example, see Patent Documents 1 and 2). .

また、白色発光を呈する有機エレクトロルミネッセンス素子において、発光色の異なる層を各々別個の層にするのではなく、2色以上の発光ドーパントを1層中に共存させ、高発光エネルギーの発光ドーパントから相対的に効率の低い発光ドーパントへのエネルギー移動により、多色を発光させる方式がある。この方式は、有機層数を削減できること、また発光ドーパントの使用量を減少できることから、白色発光の有機EL素子を得るにあたり有力な方法の一つである。例えば、特許文献3には、陽極から赤色発光層及び青色発光層が順次設けられた構成を有し、かつ赤色発光層は少なくとも一つの緑色発光ドーパントを含有することを特徴とする有機電界発光素子が開示されている。   In addition, in an organic electroluminescence device that emits white light, the layers having different emission colors are not separated from each other, but two or more colors of luminescent dopants are allowed to coexist in one layer, and relative to the luminescent dopant having high emission energy. There is a method of emitting multiple colors by energy transfer to a light emitting dopant with low efficiency. This method is one of the effective methods for obtaining a white light-emitting organic EL device because the number of organic layers can be reduced and the amount of light-emitting dopant used can be reduced. For example, Patent Document 3 discloses an organic electroluminescent device having a configuration in which a red light emitting layer and a blue light emitting layer are sequentially provided from an anode, and the red light emitting layer contains at least one green light emitting dopant. Is disclosed.

ところで、近年、蛍光材料に対し、より高輝度の有機エレクトロルミネッセンス素子が得られる燐光発光ドーパントの開発が精力的に進められている(例えば、特許文献4、非特許文献1、2参照。)。従来の蛍光材料からの発光は、励起一重項からの発光であり、一重項励起子と三重項励起子の生成比が1:3であるため、発光性励起種の生成確率は25%であるのに対し、励起三重項からの発光を利用する燐光発光ドーパントの場合には、励起子生成比率と一重項励起子から三重項励起子への内部変換により、内部量子効率の上限が100%となるため、蛍光発光ドーパントの場合に比べ、原理的に発光効率が最大4倍となる。   By the way, in recent years, a phosphorescent dopant capable of obtaining a higher-luminance organic electroluminescence device has been actively developed for fluorescent materials (see, for example, Patent Document 4 and Non-Patent Documents 1 and 2). The light emission from the conventional fluorescent material is light emission from the excited singlet, and the generation ratio of the singlet exciton and the triplet exciton is 1: 3. Therefore, the generation probability of the luminescent excited species is 25%. On the other hand, in the case of a phosphorescent dopant using light emission from an excited triplet, the upper limit of the internal quantum efficiency is 100% due to the exciton generation ratio and the internal conversion from a singlet exciton to a triplet exciton. Therefore, in principle, the luminous efficiency is up to four times that in the case of the fluorescent luminescent dopant.

しかしながら、燐光発光ドーパントを用いて、2色以上の発光ドーパントを1層に共存させ、高発光エネルギーの発光ドーパントから相対的に効率の低いドーパントにエネルギー移動により多色を発光させることにより、白色発光の有機エレクトロルミネッセンス素子を得ようとした場合、発光色の異なる複数層を積層して白色を得る場合に比し、比較的色度の駆動条件、環境に対する安定性を確保するのが容易ではあるが、駆動条件やデバイスの駆動経時、或いは保存経時に対する色度の安定性が必ずしも十分なレベルにはないことが判ってきた。とりわけ、照明用光源用途においては、発光色の安定性に対する要求は厳しく、有機エレクトロルミネッセンス素子を照明光源用途として実用化するには、如何に色度の安定性を確保するかが重要な課題となっている。   However, by using a phosphorescent dopant, two or more colors of luminescent dopants can coexist in one layer, and a multicolor light is emitted by energy transfer from a luminescent dopant having a high luminescence energy to a dopant having a relatively low efficiency. When it is intended to obtain an organic electroluminescent element, it is easier to ensure relatively high chromaticity driving conditions and environmental stability, compared with the case of obtaining a white color by laminating a plurality of layers having different emission colors. However, it has been found that the stability of chromaticity with respect to driving conditions, device driving aging or storage aging is not necessarily at a sufficient level. In particular, in lighting light source applications, there is a strict requirement for the stability of the emission color, and in order to put an organic electroluminescence element into practical use as an illumination light source, how to ensure chromaticity stability is an important issue. It has become.

例えば、特許文献5には、発光層中で発光材濃度を変化させることで電荷移動を容易とし低電圧化、高発光効率化する方法が開示されている、また、特許文献6にも同様の方法が開示されているが、青色に発光する燐光発光材料を使用した白色素子での構成例は開示されていない。特許文献7には、青燐光ドーパントの濃度勾配に関する記載はあるが、白色素子、及び白色素子における色度安定性についての記載や示唆は全くなく、また本発明における燐光発光材料のHOMO準位との関係についても記載はない。   For example, Patent Document 5 discloses a method for facilitating charge transfer by changing the concentration of the light emitting material in the light emitting layer, thereby reducing the voltage and increasing the light emission efficiency. Although a method is disclosed, a configuration example of a white element using a phosphorescent material that emits blue light is not disclosed. In Patent Document 7, there is a description regarding the concentration gradient of the blue phosphorescent dopant, but there is no description or suggestion regarding the chromaticity stability in the white element and the white element, and the HOMO level of the phosphorescent material in the present invention is There is no description about the relationship.

特開平6−207170号公報JP-A-6-207170 特開2004−235168号公報JP 2004-235168 A 国際公開第2004/077886号パンフレットInternational Publication No. 2004/077786 Pamphlet 米国特許第6,097,147号明細書US Pat. No. 6,097,147 特許第3786023号公報Japanese Patent No. 3778623 特許第4181795号公報Japanese Patent No. 4181895 特表2010−515255号公報Special table 2010-515255

M.A.Baldo et al.,nature、395巻、151〜154頁(1998年)M.M. A. Baldo et al. , Nature, 395, 151-154 (1998) M.A.Baldo et al.,nature、403巻、17号、750〜753頁(2000年)M.M. A. Baldo et al. , Nature, 403, 17, 750-753 (2000)

本発明は、上記問題に鑑みなされたものであり、その解決しようとする課題は、発光波長の異なる複数の燐光発光ドーパントを有し、白色発光を呈する有機エレクトロルミネッセンス素子において、電力効率及び保存安定性に優れ、かつ駆動電圧、高温保存及び連続駆動における色度安定性に優れた白色燐光発光の有機エレクトロルミネッセンス素子と、それを用いた照明装置を提供することにある。   The present invention has been made in view of the above problems, and the problem to be solved is that in an organic electroluminescence device having a plurality of phosphorescent dopants having different emission wavelengths and emitting white light, power efficiency and storage stability. Another object of the present invention is to provide a white phosphorescent organic electroluminescence element which is excellent in operability and excellent in driving voltage, high-temperature storage and chromaticity stability in continuous driving, and a lighting device using the same.

本発明の上記課題は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.対向する電極間に、480nm以下の短波長域に少なくとも一つの発光極大を有する少なくとも1種の燐光発光ドーパントA、及び580nm以上の長波長域に発光極大を有する少なくとも1種の燐光発光ドーパントBを同一層内に含有する発光層を有し、前記燐光発光ドーパントAが、下記一般式(A)〜(C)で表される化合物から選ばれる少なくとも1つの化合物であり、前記燐光発光ドーパントAが前記発光層の陽極側において高濃度に含有されており、陰極側へ向けて低濃度となるように濃度分布を持って含有され、かつ該燐光発光ドーパントAの陽極側端部での含有量が、発光層の陽極側端部の全質量の60質量%以上、100質量%未満であることを特徴とする有機エレクトロルミネッセンス素子。 1. At least one phosphorescent dopant A having at least one emission maximum in a short wavelength region of 480 nm or less and at least one phosphorescent dopant B having an emission maximum in a long wavelength region of 580 nm or more between opposed electrodes. The phosphorescent light-emitting dopant A has a light-emitting layer contained in the same layer, and the phosphorescent light-emitting dopant A is at least one compound selected from the compounds represented by the following general formulas (A) to (C). It is contained at a high concentration on the anode side of the light emitting layer, is contained with a concentration distribution so as to become a low concentration toward the cathode side, and the content of the phosphorescent dopant A at the end on the anode side is An organic electroluminescence device characterized by being 60 mass% or more and less than 100 mass% of the total mass of the anode side end of the light emitting layer.

Figure 0005831459
〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rcは各々水素原子、アルキル基、アリール基、アルコキシル基またはハロゲン原子を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
Figure 0005831459
〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rc、Rb、Rcは各々水素原子を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
Figure 0005831459
〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rcは各々水素原子またはアルキル基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
2.前記燐光発光ドーパントAの最高電子占有準位が、5.3eVより浅いことを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
Figure 0005831459
[Wherein, Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, Rb and Rc each represents a hydrogen atom, an alkyl group, an aryl group, an alkoxyl group or a halogen atom, and A1 represents an aromatic ring. Alternatively, it represents a residue necessary for forming an aromatic heterocyclic ring, and M represents Ir or Pt. X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. ]
Figure 0005831459
[Wherein, Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, Rb, Rc, Rb 1 and Rc 1 each represent a hydrogen atom, and A1 represents an aromatic ring or an aromatic heterocyclic ring. Represents the residue necessary to form, M represents Ir or Pt. X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. ]
Figure 0005831459
[In the formula, Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, Rb and Rc each represent a hydrogen atom or an alkyl group, and A1 forms an aromatic ring or an aromatic heterocyclic ring. And M represents Ir or Pt. X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. ]
2. 2. The organic electroluminescence device according to 1 above, wherein the phosphorescent dopant A has a highest electron occupation level shallower than 5.3 eV.

3.前記燐光発光ドーパントA及びBを含有する発光層が、500nm以上、580nm未満の波長域に発光極大を有する少なくとも1種の燐光発光ドーパントCを含有することを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子。   3. 3. The light emitting layer containing the phosphorescent dopants A and B contains at least one phosphorescent dopant C having an emission maximum in a wavelength range of 500 nm or more and less than 580 nm, Organic electroluminescence device.

4.前記燐光発光ドーパントA及びBを含有する発光層が、下記一般式(a)で表されるホスト化合物を含有することを特徴とする前記1から3のいずれか一項に記載の有機エレクトロルミネッセンス素子。   4). 4. The organic electroluminescent device according to any one of 1 to 3, wherein the light emitting layer containing the phosphorescent dopants A and B contains a host compound represented by the following general formula (a): .

Figure 0005831459
〔式中、Xは、NR′、O、S、CR′R″またはSiR′R″を表す。R′、R″は、各々水素原子、アルキル基または芳香族炭化水素基を表す。Arは芳香族環を表す。nは0から8の整数を表す。〕
5.前記580nm以上の長波長域に発光極大を有する少なくとも1種の燐光発光ドーパントBの濃度が、発光層の膜厚方向で一定濃度であることを特徴とする前記1から4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
.前記1からのいずれか1項に記載の有機エレクトロルミネッセンス素子を用いることを特徴とする照明装置。
Figure 0005831459
[Wherein, X represents NR ′, O, S, CR′R ″ or SiR′R ″. R ′ and R ″ each represent a hydrogen atom, an alkyl group or an aromatic hydrocarbon group. Ar represents an aromatic ring. N represents an integer of 0 to 8.]
5. Any one of 1 to 4 above, wherein the concentration of the at least one phosphorescent dopant B having an emission maximum in a long wavelength region of 580 nm or more is a constant concentration in the film thickness direction of the light emitting layer. The organic electroluminescent element of description.
6 . 6. An illuminating device using the organic electroluminescence element according to any one of 1 to 5 above.

本発明により、発光波長の異なる複数の燐光発光ドーパントを有し、特に白色発光を呈する有機エレクトロルミネッセンス素子において、電力効率及び保存安定性に優れ、かつ駆動電圧、高温保存時及び連続駆動時の色度安定性に優れた白色燐光発光の有機エレクトロルミネッセンス素子と、それを用いた照明装置を提供することができる。   According to the present invention, in an organic electroluminescent device having a plurality of phosphorescent dopants having different emission wavelengths, and particularly emitting white light, it is excellent in power efficiency and storage stability, and has a driving voltage, color at high temperature storage and continuous driving. It is possible to provide a white phosphorescent organic electroluminescence element excellent in temperature stability and a lighting device using the same.

本発明の有機EL素子を組み込んだ照明装置の一例を示す概略図である。It is the schematic which shows an example of the illuminating device incorporating the organic EL element of this invention. 本発明の有機EL素子を組み込んだ照明装置の一例を示す断面図である。It is sectional drawing which shows an example of the illuminating device incorporating the organic EL element of this invention.

以下、本発明の白色燐光発光の有機エレクトロルミネッセンス素子(以下、本発明の有機EL素子ともいう)の各構成要素の詳細について、順次説明する。   Hereinafter, details of each component of the white phosphorescent organic electroluminescence device of the present invention (hereinafter also referred to as the organic EL device of the present invention) will be described in order.

《有機エレクトロルミネッセンス素子の白色色度》
本発明における白色表示素子としての好ましい色度は、相関色温度が2500K〜7000K、かつCIE1931表色系において、各色温度での黒体輻射線上からのy値乖離幅が、0.1以下である。
<< White chromaticity of organic electroluminescence element >>
The preferred chromaticity as the white display element in the present invention is that the correlated color temperature is 2500 K to 7000 K, and in the CIE1931 color system, the y value deviation width from the black body radiation at each color temperature is 0.1 or less. .

本発明の有機EL素子や該素子に係る化合物の発光色は、例えば、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果を、CIE色度座標に当てはめたときの色で決定される。   The emission color of the organic EL device of the present invention and the compound related to the device is, for example, as shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). The result of measurement with a luminance meter CS-1000 (manufactured by Konica Minolta Sensing) is determined by the color when applied to the CIE chromaticity coordinates.

《有機EL素子の層構成》
次に、本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Layer structure of organic EL element >>
Next, although the preferable specific example of the layer structure of the organic EL element of this invention is shown below, this invention is not limited to these.

(i)陽極/発光層ユニット/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層ユニット/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
本発明の有機EL素子においては、発光層ユニットは、本発明で規定する要件を満たす構成を有する発光層を少なくとも1層有していれば、何層でもよいが、好ましくは本発明の規定を満たす要件を有する発光層1層のみから構成されるものである。
(I) Anode / light emitting layer unit / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer unit / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer unit / hole blocking Layer / electron transport layer / cathode (iv) anode / hole transport layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) anode / anode buffer layer / hole transport layer / light emission Layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode In the organic EL device of the present invention, the light emitting layer unit has at least one light emitting layer having a configuration satisfying the requirements defined in the present invention. Any number of layers may be used as long as it is present, but it is preferably composed of only one light emitting layer having a requirement satisfying the provisions of the present invention.

《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成には特に制限はない。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer. The structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.

発光層の膜厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性向上の観点から、5〜200nmの範囲に調整することが好ましく、更に好ましくは20〜150nmの範囲に調整される。また、本発明で規定される構成からなる発光層の膜厚としては、5〜200nmの範囲に調整することが好ましく、更に好ましくは、20〜150nmの範囲に調整することである。   The total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. From a viewpoint, it is preferable to adjust to the range of 5-200 nm, More preferably, it adjusts to the range of 20-150 nm. Moreover, as a film thickness of the light emitting layer which consists of a structure prescribed | regulated by this invention, it is preferable to adjust to the range of 5-200 nm, More preferably, it is adjusting to the range of 20-150 nm.

発光層を形成する方法としては、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア−ブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コータ法等の公知の薄膜形成法により製膜して形成することができる。   As a method for forming the light emitting layer, a light emitting dopant or a host compound described later can be used, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget method), an ink jet method, a spray method, a printing method, The film can be formed by a known thin film forming method such as a slot type coater method.

本発明においては、同一発光層中に480nm以下の短波長域に少なくとも一つの発光極大を有する少なくとも1種の燐光発光ドーパントA、及び580nm以上の長波長域に発光極大を有する少なくとも一種の燐光発光ドーパントBを含有する発光層を少なくとも一層有し、前記燐光発光ドーパントAが、前記一般式(A)〜(C)から選ばれる少なくとも一つの部分構造を有することを特徴とし、更に前記燐光発光ドーパントAが前記発光層の陽極側において高濃度に含有されており、陰極側へ向けて低濃度となるように濃度分布を持って含有されていることを特徴とする。   In the present invention, in the same light emitting layer, at least one phosphorescent dopant A having at least one emission maximum in a short wavelength region of 480 nm or less, and at least one phosphorescence emission having an emission maximum in a long wavelength region of 580 nm or more. It has at least one light emitting layer containing the dopant B, and the phosphorescent dopant A has at least one partial structure selected from the general formulas (A) to (C), and further the phosphorescent dopant. A is contained in a high concentration on the anode side of the light emitting layer, and is contained with a concentration distribution so that the concentration becomes low toward the cathode side.

本発明の有機EL素子においては、発光層は二層以上有していてもよいが、前記記載の発光層一層のみからなることが好ましい。   In the organic EL device of the present invention, the light emitting layer may have two or more layers, but preferably comprises only one light emitting layer described above.

前記燐光発光ドーパントA及びBを含有する発光層には、更に500nm以上、580nm未満の波長域に発光極大を有する少なくとも一種の燐光発光ドーパントCを有することが、演色性を高める上で好ましい。該発光層における、燐光発光ドーパントAと燐光発光ドーパントBないしCとのモル濃度比率は、燐光発光ドーパントAが燐光発光ドーパントBまたはCの10倍以上であることが好適な白色発光を得る上で好ましい。   The light emitting layer containing the phosphorescent dopants A and B preferably further includes at least one phosphorescent dopant C having an emission maximum in a wavelength region of 500 nm or more and less than 580 nm in order to improve color rendering. In the light emitting layer, the phosphorescent dopant A and the phosphorescent dopants B to C have a molar concentration ratio in which the phosphorescent dopant A is 10 times or more of the phosphorescent dopant B or C in order to obtain suitable white light emission. preferable.

次に、前記燐光発光ドーパントAの前記発光層内における濃度分布について説明する。   Next, the concentration distribution of the phosphorescent dopant A in the light emitting layer will be described.

本発明においては、発光ドーパントAは、前記発光層の陽極側において高濃度に含有されており、陰極側へ向けて低濃度となるように濃度勾配を持って分布する。発光層の陽極側端部から発光層中央部までの部分の燐光発光ドーパントA平均含有量が、陰極側端部から発光層中央部までの平均含有量より多ければよいが、好ましくは陽極側端部が最も高濃度であり、陽極側端部から陰極側端部へかけて単調に減少していくのが好ましい。単調に減少するとは該発光層の陽極側端部を除き、極大濃度部分を有しないということである。本発明において、陽極側端部とは該発光層の陽極側界面から5nm、もしくは該発光層全体の1/20の厚さのうち、薄い方の厚さの領域を指し、陰極側端部とは該発光層の陰極側界面から5nm、もしくは該発光層全体の1/20の厚さのうち、薄い方の厚さの領域を指す。   In the present invention, the light-emitting dopant A is contained at a high concentration on the anode side of the light-emitting layer, and is distributed with a concentration gradient so that the concentration decreases toward the cathode side. The phosphorescent light emitting dopant A average content in the portion from the anode side end portion to the light emitting layer central portion of the light emitting layer may be larger than the average content from the cathode side end portion to the light emitting layer central portion, preferably the anode side end. It is preferable that the portion has the highest concentration and monotonously decreases from the anode side end portion to the cathode side end portion. Monotonically decreasing means that there is no maximum concentration portion except for the anode side end of the light emitting layer. In the present invention, the anode side end portion refers to a region of the thinner one of the thickness of 5 nm from the anode side interface of the light emitting layer or 1/20 of the entire light emitting layer, Denotes a region having a smaller thickness of 5 nm from the cathode side interface of the light emitting layer or 1/20 of the thickness of the entire light emitting layer.

該発光層における陽極側端部の燐光発光ドーパントAの含有量としては、60質量%以上、100質量%未満であることを特徴の一つとする。燐光発光ドーパントAの含有量が60質量%未満であると電力効率が低下し、また駆動経時における色度安定性も劣る傾向にある。100質量%であると、デバイスの保存経時や駆動電圧の変化における色度安定性が劣る傾向にある。   One content of the phosphorescent dopant A at the end on the anode side in the light emitting layer is 60% by mass or more and less than 100% by mass. When the content of the phosphorescent light-emitting dopant A is less than 60% by mass, the power efficiency is lowered, and the chromaticity stability over time of driving tends to be inferior. When the content is 100% by mass, the chromaticity stability tends to be inferior in the storage time of the device and the change in driving voltage.

本発明で規定する構成の発光層により、電力効率に優れ、かつ色度の対駆動電圧、対駆動経時、また対デバイス保存での安定性に優れた白色燐光発光の有機エレクトロルミネッセンス素子が得られる。本発明の効果をもたらす作用機構については、必ずしも解明されている訳ではなく、推測の域を出ないが、燐光発光層、特に青発光を呈する燐光発光層はエネルギーギャップが大きく、電子または正孔等の電荷の発光層への注入に大きな障壁があることが予想される。本発明の構成はこの電荷の発光層への注入を改善しているものと期待されるが、どのような材料との組み合わせにおいても本発明の効果が得られるわけではなく、特に本発明の燐光発光ドーパントA、更にはホスト化合物との組み合わせにおいて顕著な効果が得られることを見出した。   The light-emitting layer having the structure defined in the present invention provides a white phosphorescent organic electroluminescence device that is excellent in power efficiency and excellent in chromaticity versus drive voltage, versus drive aging, and in stability during device storage. . The mechanism of action that brings about the effects of the present invention is not necessarily elucidated and is not speculative. However, phosphorescent layers, particularly phosphorescent layers that emit blue light, have a large energy gap, and electrons or holes. It is expected that there will be a large barrier to the injection of such charges into the light emitting layer. The structure of the present invention is expected to improve the injection of this charge into the light-emitting layer, but the effect of the present invention is not obtained in any combination with any material, and the phosphorescence of the present invention is not particularly effective. It has been found that a remarkable effect can be obtained in combination with the light emitting dopant A and further with the host compound.

例えば、特許第3786023号公報には、発光層中で発光材濃度を変化させることで電荷移動を容易とし低電圧化、高発光効率化する方法が開示されている、また、特許第4181795号公報にも同様の方法が開示されているが、青色に発光する燐光発光材料を使用した白色素子での構成例は開示されておらず、特に色度安定性に関する本発明の効果を予見できるものではない。更には、本発明で規定する燐光材料との組み合わせにおける格段の効果を予見できるものではない。特表2010−515255号公報には、青燐光ドーパントの濃度勾配に関する記載はあるが、白色素子、及び白色素子における色度安定性についての記載はなく、また本発明における燐光発光材料のHOMO準位との関係における格段の効果を予見するものではない。   For example, Japanese Patent No. 3786023 discloses a method for facilitating charge transfer by changing the concentration of the light emitting material in the light emitting layer to lower the voltage and increase the light emission efficiency. A similar method is disclosed, but a configuration example of a white element using a phosphorescent material that emits blue light is not disclosed, and in particular, the effect of the present invention regarding chromaticity stability cannot be predicted. Absent. Furthermore, the remarkable effect in combination with the phosphorescent material prescribed | regulated by this invention cannot be foreseen. JP-T-2010-515255 discloses the concentration gradient of the blue phosphorescent dopant, but does not describe the white element and the chromaticity stability in the white element, and the HOMO level of the phosphorescent material in the present invention. It does not foresee any significant effect on the relationship.

〈ドーパント分布の測定方法〉
ドーパントの深さ方向の分布を計測する方法はいくつかあるが、特定の元素がある場合、動的二次イオン質量分析法(D−SIMS)が好ましい。D−SIMSは膜内の元素の量を高感度で分析可能でかつ深さ方向の元素の濃度変化を追うことができる。二次イオン質量分析法については、例えば、日本表面科学会「二次イオン質量分析法(表面科学技術選書)」(丸善)等を参考にすることができる。
<Measurement method of dopant distribution>
There are several methods for measuring the distribution of the dopant in the depth direction, but dynamic secondary ion mass spectrometry (D-SIMS) is preferred when there are specific elements. D-SIMS can analyze the amount of elements in the film with high sensitivity and can follow the concentration change of elements in the depth direction. As for secondary ion mass spectrometry, for example, Japanese Society for Surface Science “Secondary ion mass spectrometry (Surface Science and Technology Selection)” (Maruzen) can be referred to.

動的二次イオン質量分析法は、1×10−8Pa程度の高真空下で一次イオンと呼ばれるイオンビームを試料表面に照射しスパッタリングを行う。それにより放出された構成粒子の中で二次イオンを質量分析することにより表面に存在する元素を分析する方法である。表面をスパッタし、削り取っていくので破壊分析ではあるが、表面からμmオーダー以上の深さまでの元素の濃度変化を分析することが可能である。In dynamic secondary ion mass spectrometry, a sample surface is irradiated with an ion beam called primary ions under a high vacuum of about 1 × 10 −8 Pa to perform sputtering. This is a method of analyzing elements present on the surface by mass spectrometry of secondary ions in the constituent particles released thereby. Although the surface is sputtered and scraped off, it is possible to analyze the change in element concentration from the surface to a depth of the order of μm or more, although it is a destructive analysis.

一次イオンとしては、例えば、Cs、O 等の金属イオン種が好ましいが、どのイオン種を用いるのが好ましいかは、測定対象元素によって使い分けられる。As the primary ions, for example, metal ion species such as Cs + and O 2 + are preferable, but which ion species is preferably used depends on the element to be measured.

化合物そのものを計測したい場合は、飛行時間型二次イオン質量分析(ToF−SIMS)法が好ましい。この場合、有機層を斜めに削り取り、削り取った斜め断面部分について、化合物から得られるフラグメントイオンの分布を計測することにより、ドーパント化合物の深さ方向の分布を知ることができる。斜めに削る方法としては電子顕微鏡の試料作製に用いるウルトラミクロトームを用いる方法、ダイプラウインテス製サイカスNN型などの精密斜め切削装置を用いる方法が挙げられる。ToF−SIMS法については、例えば、日本表面科学会「二次イオン質量分析法(表面科学技術選書)」(丸善)等を参考にすることができる。ToF−SIMS法は、1×10−8Pa程度の高真空下で、一次イオンと呼ばれるイオンビームを試料表面に照射しスパッタリングを行う。一次イオンビームを非常に低電流とし、かつパルス状にすることにより、非常に穏やかなスパッタリングが生じ、それにより放出された二次イオンを質量分析することにより、表面に存在する化合物分析する方法である。一次イオンを走査しながら測定することにより、スパッタリングで放出された二次イオンの分布を計測することができる。一次イオンとしては、例えば、Ga、In、Bi、Au等の金属イオン種やそのクラスターイオンが好ましいが、どのイオン種を用いるのが好ましいかは、測定対象元素によって使い分けられる。When it is desired to measure the compound itself, the time-of-flight secondary ion mass spectrometry (ToF-SIMS) method is preferable. In this case, the distribution of the dopant compound in the depth direction can be known by measuring the distribution of fragment ions obtained from the compound in the oblique cross-section portion that has been cut off obliquely and the shaved cross-section. Examples of the oblique cutting method include a method using an ultramicrotome used for preparing a sample for an electron microscope, and a method using a precision oblique cutting device such as a die-plautes Cycus NN type. Regarding the ToF-SIMS method, for example, the Japan Surface Science Society “Secondary Ion Mass Spectrometry (Surface Science and Technology Selection)” (Maruzen) can be referred to. In the ToF-SIMS method, sputtering is performed by irradiating the sample surface with an ion beam called primary ions under a high vacuum of about 1 × 10 −8 Pa. By making the primary ion beam very low current and pulsed, very gentle sputtering occurs, and by analyzing the compounds present on the surface by mass analysis of the secondary ions emitted by it, is there. By measuring while scanning the primary ions, the distribution of secondary ions emitted by sputtering can be measured. As the primary ions, for example, metal ion species such as Ga + , In + , Bi + , and Au + and their cluster ions are preferable. Which ion species is preferably used depends on the element to be measured.

例えば、蒸着法により形成するとき、発光ドーパントの濃度勾配は、他の共蒸着成分との蒸着比を変えることで形成するが、形成後、上記の方法により深さ方向のスパッタリングを行うことで、深さ方向の分布を測定することができる。   For example, when forming by vapor deposition, the concentration gradient of the light-emitting dopant is formed by changing the vapor deposition ratio with other co-deposition components, but after formation, by performing sputtering in the depth direction by the above method, The distribution in the depth direction can be measured.

〔ホスト化合物〕
次に、発光層に含まれるホスト化合物、発光ドーパント(以下、発光ホスト化合物、発光ドーパント化合物ともいう)について説明する。
[Host compound]
Next, a host compound and a light emitting dopant (hereinafter also referred to as a light emitting host compound and a light emitting dopant compound) contained in the light emitting layer will be described.

本発明の有機EL素子の発光層に含まれるホスト化合物とは、室温(25℃)における燐光発光の燐光量子収率が、0.1未満の化合物であることが好ましく、更に好ましくは燐光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の中で、その層中での質量比が20質量%以上であることが好ましい。   The host compound contained in the light emitting layer of the organic EL device of the present invention is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1, more preferably phosphorescence quantum yield. A compound with a rate of less than 0.01. Moreover, in the compound contained in a light emitting layer, it is preferable that the mass ratio in the layer is 20 mass% or more.

ホスト化合物としては、ホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。   As a host compound, a host compound may be used independently or may be used in combination of multiple types.

本発明に用いられる発光ホスト化合物としては、構造的には特に制限はないが、代表的な化合物としては、カルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。   The luminescent host compound used in the present invention is not particularly limited in terms of structure, but representative compounds include carbazole derivatives, triarylamine derivatives, aromatic borane derivatives, nitrogen-containing heterocyclic compounds, thiophene derivatives, Those having a basic skeleton such as a furan derivative or an oligoarylene compound, or a carboline derivative or a diazacarbazole derivative (here, a diazacarbazole derivative is at least one carbon of a hydrocarbon ring constituting a carboline ring of a carboline derivative) Represents an atom substituted with a nitrogen atom.) And the like.

本発明に係る発光層に用いられる発光ホスト化合物としては、前記一般式(a)で表される化合物が好ましい。   As the light emitting host compound used in the light emitting layer according to the present invention, the compound represented by the general formula (a) is preferable.

前記一般式(a)において、Xは、NR′、O、S、CR′R″またはSiR′R″を表し、R′、R″は各々水素原子、アルキル基または芳香族炭化水素基を表す。Arは芳香環を表す。nは0から8の整数を表す。   In the general formula (a), X represents NR ′, O, S, CR′R ″ or SiR′R ″, and R ′ and R ″ each represents a hydrogen atom, an alkyl group or an aromatic hydrocarbon group. Ar represents an aromatic ring, and n represents an integer of 0 to 8.

一般式(a)におけるXにおいて、R′、R″で各々表されるアルキル基、芳香族炭化水素基の具体例としては、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられ、芳香族炭化水素基(芳香族炭素環基、アリール等ともいう)としては、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。   Specific examples of the alkyl groups and aromatic hydrocarbon groups represented by R ′ and R ″ in X in the general formula (a) include alkyl groups such as methyl, ethyl, propyl, and isopropyl. Group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group and the like, and as an aromatic hydrocarbon group (also called aromatic carbocyclic group, aryl, etc.) Is, for example, phenyl, p-chlorophenyl, mesityl, tolyl, xylyl, naphthyl, anthryl, azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl, biphenylyl, etc. It is done.

これらの基は、下記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。   These groups may be further substituted with the following substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.

置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1−プロペニル基、2−ブテニル基、1,3−ブタジエニル基、2−ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。   Examples of the substituent include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), Cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, isopropenyl group) Etc.), alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon group (also called aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, Xylyl, naphthyl, anthryl, azulenyl, acenaphthenyl, fluorenyl Phenanthryl, indenyl, pyrenyl, biphenylyl, etc.), aromatic heterocyclic groups (eg, furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, pyrazolyl, thiazolyl) Group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), phthalazinyl group, etc. Ring groups (eg, pyrrolidyl, imidazolidyl, morpholyl, oxazolidyl, etc.), alkoxy groups (eg, methoxy, ethoxy, propyloxy, pentyloxy, hexyloxy, octyloxy, dodecyloxy, etc.) ), A cycloalkoxy group ( For example, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, Dodecylthio group etc.), cycloalkylthio group (eg cyclopentylthio group, cyclohexylthio group etc.), arylthio group (eg phenylthio group, naphthylthio group etc.), alkoxycarbonyl group (eg methyloxycarbonyl group, ethyloxycarbonyl group, Butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfur Amoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthyl) Aminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, Phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, Tilcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (eg, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group) Group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, Dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl Group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexyl) Ureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexyl) Sulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, Acetylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridyl group) Sulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group) Etc.), halogen atoms (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon groups (eg fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group etc.), shear Group, nitro group, hydroxy group, a mercapto group, a silyl group (e.g., trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, a phenyl diethyl silyl group and the like), a phosphono group, and the like.

一般式(a)において、Xとして好ましくはNR′またはOであり、R′としては芳香族炭化水素基が特に好ましい。   In the general formula (a), X is preferably NR ′ or O, and R ′ is particularly preferably an aromatic hydrocarbon group.

一般式(a)において、Arで表される芳香族環としては、芳香族炭化水素環または芳香族複素環が挙げられる。また、該芳香族環は単環でもよく、縮合環でもよく、更に未置換でも、後述するような置換基を有していてもよい。   In the general formula (a), examples of the aromatic ring represented by Ar include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. Further, the aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent as described later.

一般式(a)において、Arで表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は更に置換基を有していてもよい。   In the general formula (a), examples of the aromatic hydrocarbon ring represented by Ar include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, Examples include a pyranthrene ring and anthraanthrene ring. These rings may further have a substituent.

一般式(a)において、Arで表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。これらの環は更に置換基を有していてもよい。   In the general formula (a), examples of the aromatic heterocycle represented by Ar include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring. , Benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indazole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline Ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, diazacarbazole ring (showing a ring in which one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is further substituted with a nitrogen atom), etc. Can be mentioned. These rings may further have a substituent.

上記の中でも、一般式(a)において、Arで表される芳香族環として好ましく用いられるのは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環であり、特に好ましく用いられるのは、カルバゾール環、カルボリン環、ベンゼン環である。上記の中でも、置換基を有するベンゼン環が好ましく、特に好ましくは、カルバゾリル基を有するベンゼン環が好ましい。   Among these, in the general formula (a), the aromatic ring represented by Ar is preferably a carbazole ring, a carboline ring, a dibenzofuran ring, or a benzene ring, and particularly preferably used is a carbazole ring, A carboline ring or a benzene ring. Among these, a benzene ring having a substituent is preferable, and a benzene ring having a carbazolyl group is particularly preferable.

また、一般式(a)において、Arで表される芳香族環としては、下記に示すような、各々3環以上の縮合環が好ましい一態様であり、3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。尚、これらの環は更に、置換基を有していてもよい。   In the general formula (a), the aromatic ring represented by Ar is preferably a condensed ring having three or more rings, as shown below, and is an aromatic hydrocarbon in which three or more rings are condensed. Specific examples of the condensed ring include naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, chrysene ring, benzochrysene ring, acenaphthene ring, acenaphthylene ring, Triphenylene ring, coronene ring, benzocoronene ring, hexabenzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthoperylene ring, pentabenzoperylene ring, benzoperylene ring, pentaphen ring, picene ring, pyranthrene ring, coronene ring , Naphthocoronene ring, Ovalene ring, Anse Antoren ring and the like. In addition, these rings may further have a substituent.

また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。尚、これらの環は更に置換基を有していてもよい。   Specific examples of the aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, A Tiger thiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, such as thio fan Tren ring (naphthaldehyde thiophene ring), and the like. In addition, these rings may further have a substituent.

ここで、一般式(a)において、Arで表される芳香族環が有してもよい置換基は、R′、R″で、各々表される置換基と同義である。   Here, in the general formula (a), the substituents that the aromatic ring represented by Ar may have are the same as the substituents represented by R ′ and R ″.

また、一般式(a)において、nは0〜8の整数を表すが、0〜2であることが好ましく、特にXがO、Sである場合には1または2であることが好ましい。   In the general formula (a), n represents an integer of 0 to 8, preferably 0 to 2, and particularly preferably 1 or 2 when X is O or S.

以下に、一般式(a)で表される発光ホスト化合物及び本発明において好ましく用いることができるその他の発光ホスト化合物の具体例を示すが、これらに限定されるものではない。   Specific examples of the luminescent host compound represented by the general formula (a) and other luminescent host compounds that can be preferably used in the present invention are shown below, but are not limited thereto.

Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
また、本発明に用いるホスト化合物は、低分子化合物でも、繰り返し単位を有する高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
The host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .

ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。   As the host compound, a compound having a hole transporting ability and an electron transporting ability, which prevents emission of longer wavelengths and has a high Tg (glass transition temperature) is preferable.

従来公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が好適である。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等が挙げられる。   As specific examples of conventionally known host compounds, compounds described in the following documents are suitable. For example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787 gazette, 2002-15871 gazette, 2002-334788 gazette, 2002-43056 gazette, 2002-334789 gazette, 2002-75645 gazette, 2002-338579 gazette. No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. 2002-302516, 2002-305083, 2002-305084, 2002-308837, and the like.

本発明においては、複数の発光層を有する場合には、ホスト化合物は発光層ごとに異なっていてもよいが、同一の化合物であることが優れた駆動寿命特性が得られることから好ましい。   In the present invention, in the case of having a plurality of light emitting layers, the host compound may be different for each light emitting layer, but the same compound is preferable because excellent driving life characteristics are obtained.

また、前記ホスト化合物は、その最低励起3重項エネルギー(T1)が、2.7eVより大きいことが、より高い発光効率を得られることから好ましい。本発明でいう最低励起3重項エネルギーとは、ホスト化合物を溶媒に溶解し、液体窒素温度において観測した燐光発光スペクトルの最低振動バンド間遷移に対応する発光バンドのピークエネルギーを言う。   The host compound preferably has a minimum excited triplet energy (T1) larger than 2.7 eV because higher luminous efficiency can be obtained. The lowest excited triplet energy as used in the present invention refers to the peak energy of an emission band corresponding to the transition between the lowest vibrational bands of a phosphorescence emission spectrum observed at a liquid nitrogen temperature after dissolving a host compound in a solvent.

本発明においては、ガラス転移点が90℃以上の化合物が好ましく、更には130℃以上の化合物が優れた駆動寿命特性を得られることから好ましい。   In the present invention, a compound having a glass transition point of 90 ° C. or higher is preferable, and a compound having a glass transition temperature of 130 ° C. or higher is preferable because excellent driving life characteristics can be obtained.

ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値である。   Here, the glass transition point (Tg) is a value obtained by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).

本発明の有機EL素子においては、ホスト材料はキャリアの輸送を担うため、キャリア輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機材料のキャリア移動度は、一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は、正孔と電子注入・輸送バランスを崩しやすい為、中間層材料、ホスト材料は、移動度の電界強度依存性の少ない材料を用いることが好ましい。   In the organic EL device of the present invention, since the host material is responsible for carrier transport, a material having carrier transport capability is preferable. Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance of hole and electron injection / transport, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.

〔発光ドーパント〕
次いで、本発明に係る発光ドーパントについて説明する。
[Luminescent dopant]
Next, the light emitting dopant according to the present invention will be described.

本発明に係る発光ドーパントとしては、燐光発光ドーパント(以下、燐光発光体、燐光性化合物、燐光発光性化合物ともいう)を用いることを特徴とする。   As the light-emitting dopant according to the present invention, a phosphorescent dopant (hereinafter also referred to as a phosphorescent emitter, a phosphorescent compound, or a phosphorescent compound) is used.

(燐光発光体)
本発明に係る燐光発光体は、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にて燐光発光する化合物であり、燐光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。
(Phosphorescent emitter)
The phosphorescent material according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25 ° C. In this case, the phosphorescence quantum yield is preferably 0.1 or more.

上記燐光量子収率は、例えば、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明に係る燐光発光体は、任意の溶媒のいずれかにおいても、上記燐光量子収率(0.01以上)が達成されればよい。   The phosphorescent quantum yield can be measured by, for example, the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitter according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.

燐光発光体の発光の原理としては、2タイプが挙げられ、一つのタイプはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光体に移動させることで燐光発光体からの発光を得るというエネルギー移動型、もう一つのタイプは、燐光発光体がキャリアトラップとなり、燐光発光体上でキャリアの再結合が生じ、燐光発光体からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、燐光発光体の励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。   There are two types of phosphorescent light emitting principles. One type is the recombination of carriers on the host compound to which carriers are transported, and an excited state of the host compound is generated. In another type, the phosphorescent emitter becomes a carrier trap, and carrier recombination occurs on the phosphorescent emitter, resulting in emission from the phosphorescent emitter. Although it is a carrier trap type in which light emission can be obtained, in any case, the energy of the excited state of the phosphorescent emitter is required to be lower than the energy of the excited state of the host compound.

燐光発光体は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。   The phosphorescent luminescent material can be appropriately selected from known materials used for the light emitting layer of the organic EL device.

本発明に係る燐光発光体としては、好ましくは元素の周期表で8族〜10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。   The phosphorescent emitter according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound). ), Rare earth complexes, and most preferred are iridium compounds.

本発明に係る燐光発光ドーパントのうち、燐光発光ドーパントBまたは燐光発光ドーパントCについては、これらのうちから選択される。以下に、燐光発光体、即ち燐光発光ドーパントBまた燐光発光ドーパントCとして用いられる化合物の具体例を示すが、これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。   Among the phosphorescent dopants according to the present invention, the phosphorescent dopant B or the phosphorescent dopant C is selected from these. Specific examples of compounds used as phosphorescent emitters, that is, phosphorescent dopant B or phosphorescent dopant C, are shown below. These compounds are described in, for example, Inorg. Chem. 40, 1704-1711, and the like.

Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
(一般式(A)〜(C)で表される部分構造)
本発明においては、前記燐光発光ドーパントAが、前記一般式(A)〜(C)で表される化合物から選ばれる少なくとも1つの化合物であることを特徴とする。
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
(Partial structure represented by formulas (A) to (C))
In the present invention, the phosphorescent dopant A is at least one compound selected from the compounds represented by the general formulas (A) to (C).

前記一般式(A)において、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rcは各々水素原子、アルキル基、アリール基、アルコキシル基またはハロゲン原子を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。In the general formula (A), Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, Rb and Rc each represents a hydrogen atom, an alkyl group, an aryl group, an alkoxyl group or a halogen atom, and A1 Represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring, and M represents Ir or Pt. X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3.

また、前記一般式(B)において、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rc、Rb、Rcは各々水素原子を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。In the general formula (B), Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, Rb, Rc, Rb 1 and Rc 1 each represents a hydrogen atom, and A1 represents an aromatic ring. Alternatively, it represents a residue necessary for forming an aromatic heterocyclic ring, and M represents Ir or Pt. X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3.

また、前記一般式(C)において、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rcは各々水素原子またはアルキル基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。In the general formula (C), Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, Rb and Rc each represents a hydrogen atom or an alkyl group, and A1 represents an aromatic ring or an aromatic group. It represents a residue necessary for forming a heterocyclic ring, and M represents Ir or Pt. X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3.

一般式(A)〜(C)において、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Raで表される脂肪族基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、イソペンチル基、2−エチル−ヘキシル基、オクチル基、ウンデシル基、ドデシル基、テトラデシル基)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基)が挙げられ、芳香族基としては、例えば、フェニル基、トリル基、アズレニル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、ナフタセニル基、o−テルフェニル基、m−テルフェニル基、p−テルフェニル基、アセナフテニル基、コロネニル基、フルオレニル基、ペリレニル基等を挙げることができ、これらの基はそれぞれ置換基を有していてもよい。複素環基としては、例えば、ピロリル基、インドリル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、インドリジニル基、キノリニル基、カルバゾリル基、インドリニル基、チアゾリル基、ピリジル基、ピリダジニル基、チアジアジニル基、オキサジアゾリル基、ベンゾキノリニル基、チアジアゾリル基、ピロロチアゾリル基、ピロロピリダジニル基、テトラゾリル基、オキサゾリル基、クロマニル基等を挙げることができ、これらの基はそれぞれ置換基を有していてもよい。   In the general formulas (A) to (C), Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, and the aliphatic group represented by Ra includes an alkyl group (for example, a methyl group, an ethyl group, Group, propyl group, butyl group, pentyl group, isopentyl group, 2-ethyl-hexyl group, octyl group, undecyl group, dodecyl group, tetradecyl group), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group), and the like. As the aromatic group, for example, phenyl group, tolyl group, azulenyl group, anthranyl group, phenanthryl group, pyrenyl group, chrysenyl group, naphthacenyl group, o-terphenyl group, m-terphenyl group, p-terphenyl group, Examples include acenaphthenyl group, coronenyl group, fluorenyl group, perylenyl group, etc. It may have. As the heterocyclic group, for example, pyrrolyl group, indolyl group, furyl group, thienyl group, imidazolyl group, pyrazolyl group, indolizinyl group, quinolinyl group, carbazolyl group, indolinyl group, thiazolyl group, pyridyl group, pyridazinyl group, thiadiazinyl group, An oxadiazolyl group, a benzoquinolinyl group, a thiadiazolyl group, a pyrrolothiazolyl group, a pyrrolopyridazinyl group, a tetrazolyl group, an oxazolyl group, a chromanyl group, and the like can be mentioned, and these groups each may have a substituent.

一般式(A)において、Rb、Rcは各々水素原子、アルキル基、アリール基、アルコキシル基またはハロゲン原子を表し、具体的には、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられ、アリール基としては、例えば、フェニル基、ナフチル基等が挙げられ、アルコキシル基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等が挙げられ、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。   In the general formula (A), Rb and Rc each represent a hydrogen atom, an alkyl group, an aryl group, an alkoxyl group or a halogen atom. Specifically, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, An isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group and the like can be mentioned. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the alkoxyl group include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, A bromine atom etc. are mentioned.

また、一般式(B)においては、Rb、Rc、Rb、Rcは各々水素原子を表す。In the general formula (B), Rb, Rc, Rb 1 and Rc 1 each represent a hydrogen atom.

また、一般式(C)においては、Rb、Rcは各々水素原子またはアルキル基を表し、具体的には、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。   In the general formula (C), Rb and Rc each represent a hydrogen atom or an alkyl group. Specifically, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and tert-butyl. Group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group and the like.

置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、ナフチル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシル基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシル基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基(フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシル基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。   Examples of the substituent include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), A cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), an alkenyl group (eg, vinyl group, allyl group, etc.), an alkynyl group (eg, ethynyl group, propargyl group, etc.), an aryl group (eg, phenyl group, naphthyl group). Etc.), aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, phthalazinyl group, etc.), complex A cyclic group (for example, pyrrolidyl group, imidazolidyl group, Ruphoryl group, oxazolidyl group, etc.), alkoxyl group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxyl group (eg, cyclopentyloxy group) Cyclohexyloxy group etc.), aryloxy group (eg phenoxy group, naphthyloxy group etc.), alkylthio group (eg methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group etc.), A cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), an arylthio group (eg, phenylthio group, naphthylthio group, etc.), an alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxy) Rubonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylamino) Sulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group) An acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbo group) Nyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group) , Dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2- Ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoy Groups (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, Phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group) Naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group) Cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl) Group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group (phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, Butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (for example, Fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxyl group, mercapto Group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.).

一般式(A)〜(C)において、A1は芳香族環、芳香族複素環を形成するのに必要な残基を表し、該芳香族環としてはベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられ、該芳香族複素環としては、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。   In the general formulas (A) to (C), A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring. Examples of the aromatic ring include a benzene ring, a biphenyl ring, a naphthalene ring, and an azulene ring. , Anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring Naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene ring, etc., and the aromatic heterocycle includes furan ring, thiophene ring, pyridine ring, pyridazine ring , Pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring Imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, carboline ring, diazacarbazole ring (carbonization constituting carboline ring) A ring in which one of the carbon atoms of the hydrogen ring is further substituted with a nitrogen atom).

上記一般式(A)〜(C)において、X、Xは各々炭素原子、窒素原子または酸素原子を表す。LはX及びXと共に2座の配位子を形成する原子群を表す。X−L−Xで表される2座の配位子の具体例としては、例えば、それぞれ置換または無置換の、フェニルピリジン基、フェニルピラゾール基、フェニルイミダゾール基、フェニルトリアゾール基、フェニルテトラゾール基、ピラザボール基、ピコリン酸、アセチルアセトン基等が挙げられる。これらの基は、上記に示した置換基により更に置換されていてもよい。In the general formulas (A) to (C), X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom. L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . Specific examples of the bidentate ligand represented by X 1 -L 1 -X 2 include, for example, a substituted or unsubstituted phenylpyridine group, phenylpyrazole group, phenylimidazole group, phenyltriazole group, phenyl, respectively. Examples thereof include a tetrazole group, a pyrazaball group, a picolinic acid, and an acetylacetone group. These groups may be further substituted with the substituents shown above.

m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。更には、m2は0である場合が好ましい。   m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. Furthermore, it is preferable that m2 is 0.

一般式(A)〜(C)において、MはIr、Ptを表し、特にIrが好ましい。また、一般式(A)〜(C)ので表される化合物としてはトリス体が好ましい。   In the general formulas (A) to (C), M represents Ir or Pt, and Ir is particularly preferable. Moreover, as a compound represented by general formula (A)-(C), a tris body is preferable.

以下、本発明に係る発光ドーパントの前記一般式(A)〜(C)で表される化合物を例示するが、これらに限定されるものではない。   Hereinafter, although the compound represented by the said general formula (A)-(C) of the light emission dopant which concerns on this invention is illustrated, it is not limited to these.

Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
更に、本発明においては、前記発光ドーパントのイオン化ポテンシャルエネルギーが5.3eVより小さいものであることが、高効率かつ色度の安定性を良好にする上で好ましい。即ち、燐光発光ドーパントAの最高電子占有準位が、5.3eVより浅いことが好ましい。
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459
Furthermore, in the present invention, it is preferable that the ionization potential energy of the light emitting dopant is smaller than 5.3 eV from the viewpoint of high efficiency and good chromaticity stability. That is, it is preferable that the highest electron occupation level of the phosphorescent dopant A is shallower than 5.3 eV.

なお、燐光発光ドーパントAの最高電子占有準位(HOMO)レベル(またはイオン化ポテンシャルとも呼ぶ)は、例えば、紫外光電子分光法(UPS)等を用いることで求めることができる。即ち、これらの化合物の単体膜を、ガラス基板上に成膜した薄膜のUPSを測定することで、HOMOレベルを測定することができる。   The highest electron occupation level (HOMO) level (also referred to as ionization potential) of the phosphorescent dopant A can be obtained by using, for example, ultraviolet photoelectron spectroscopy (UPS). That is, the HOMO level can be measured by measuring the UPS of a single film of these compounds formed on a glass substrate.

具体的には、例えば、アルバック−ファイ(株)製のESCA 5600 UPS(ultraviolet photoemission spectroscopy)にて測定される値を用いることができる。   Specifically, for example, the value measured by ESCA 5600 UPS (ultraviolet photoemission spectroscopy) manufactured by ULVAC-PHI Co., Ltd. can be used.

《中間層》
本発明の有機EL素子においては、複数の発光層を有する場合には、発光層間に非発光性の中間層(非ドープ領域ともいう)を設けてもよい。
《Middle layer》
In the organic EL device of the present invention, when a plurality of light emitting layers are provided, a non-light emitting intermediate layer (also referred to as an undoped region) may be provided between the light emitting layers.

非発光性の中間層の膜厚としては、1〜50nmの範囲にあるのが好ましく、更には3〜10nmの範囲にあることが、隣接発光層間のエネルギー移動など相互作用を抑制し、かつ有機EL素子の電流電圧特性に大きな負荷を与えないということから好ましい。   The film thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 50 nm, and more preferably in the range of 3 to 10 nm, which suppresses interaction such as energy transfer between adjacent light emitting layers and is organic. This is preferable because a large load is not applied to the current-voltage characteristics of the EL element.

この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一でも異なっていてもよいが、隣接する2つの発光層の少なくとも一方の発光層のホスト材料と同一であることが好ましい。   The material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host material of at least one of the adjacent light emitting layers. preferable.

非発光性の中間層は、非発光各発光層と共通の化合物(例えば、ホスト化合物等)を含有していてもよく、各々共通ホスト材料(ここで、共通ホスト材料が用いられるとは、燐光発光エネルギー、ガラス転移点等の物理化学的特性が同一である場合やホスト化合物の分子構造が同一である場合等を示す)を含有することにより、発光層と非発光層との層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の注入バランスが保ちやすいという効果を得ることができる。更に、非ドープ発光層に各発光層に含まれるホスト化合物と同一の物理的特性または同一の分子構造を有するホスト材料を用いることにより、従来の有機EL素子作製の大きな問題点である素子作製の煩雑さをも併せて解消することができる。   The non-light emitting intermediate layer may contain a compound (for example, a host compound) common to the non-light emitting layers, and each of the common host materials (here, the common host material is used) means phosphorescence. (In which the physicochemical characteristics such as luminescence energy and glass transition point are the same, or the host compound has the same molecular structure, etc.) Thus, even if the voltage (current) is changed, the hole and electron injection balance can be easily maintained. Furthermore, by using a host material having the same physical characteristics or the same molecular structure as the host compound contained in each light-emitting layer in the undoped light-emitting layer, device fabrication, which is a major problem in conventional organic EL device fabrication, is achieved. Complexity can also be eliminated.

また、正孔や電子の注入バランスを最適に調整するためには、非発光性の中間層は、後述する阻止層、すなわち正孔阻止層、電子阻止層として機能することも好ましい態様として挙げられる。   Further, in order to optimally adjust the injection balance of holes and electrons, it is also preferable that the non-light emitting intermediate layer functions as a blocking layer described later, that is, a hole blocking layer and an electron blocking layer. .

《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設けることができ、陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer can be provided as necessary, and may exist between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.

注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設ける層のことで、例えば、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)にその詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。   An injection layer is a layer provided between an electrode and an organic layer in order to lower drive voltage and improve light emission luminance. For example, “Organic EL element and its forefront of industrialization (November 30, 1998, NTS Corporation) Issue) ”, Chapter 2, Chapter 2,“ Electrode Materials ”(pages 123-166), which is described in detail, and has a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer). .

陽極バッファー層(正孔注入層)としては、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。また、特表2003−519432号公報に記載される材料を使用することも好ましい。   Details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like. As a specific example, copper phthalocyanine Phthalocyanine buffer layer typified by (1), oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene, and the like. Moreover, it is also preferable to use the material described in Japanese translations of PCT publication No. 2003-519432 gazette.

陰極バッファー層(電子注入層)としては、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。   Details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. .

上記バッファー層(注入層)はごく薄い膜であることが望ましく、使用する素材にもよるが、その膜厚は0.1nm〜5μmの範囲が好ましい。   The buffer layer (injection layer) is preferably a very thin film, and although it depends on the material used, the film thickness is preferably in the range of 0.1 nm to 5 μm.

《阻止層:正孔阻止層、電子阻止層》
阻止層は、有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258, 11-204359, and “Organic EL elements and their forefront of industrialization” (issued by NTT, Inc. on November 30, 1998). There is a hole blocking (hole blocking) layer.

正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。   The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.

本発明の有機EL素子に設ける正孔阻止層は、発光層に隣接して設けられていることが好ましい。   The hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.

一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。   On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.

本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5nm〜30nmの範囲である。   The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 nm to 30 nm.

《正孔輸送層》
正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.

正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。   The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.

正孔輸送材料としては上記のものを使用することができるが、更には、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。   The above-mentioned materials can be used as the hole transport material, but it is further preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.

芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。   Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' − (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and two more described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.

更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。   Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.

また、特開平4−297076号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)、特表2003−519432号公報に記載されているような、いわゆるp型半導体的性質を有するとされる正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。   JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), JP-A-11-251067, J. MoI. Huang et. al. It is also possible to use a hole transport material that has a so-called p-type semiconducting property as described in the literature (Applied Physics Letters 80 (2002), p. 139), JP 2003-519432 A. it can. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.

正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア−ブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コータ法等の公知の薄膜形成法により製膜して形成することができる。正孔輸送層の膜厚については、特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmの範囲である。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   For the hole transport layer, the hole transport material may be selected from, for example, vacuum deposition method, spin coating method, casting method, LB method (Langmuir-Blodget method), ink jet method, spray method, printing method, slot type coater method, etc. The film can be formed by a known thin film forming method. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is the range of 5 nm-200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.

《電子輸送層》
電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.

従来、単層の電子輸送層、及び複数層とする場合は、発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。   Conventionally, when a single electron transport layer and a plurality of layers are used, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. As long as it has a function of transmitting the generated electrons to the light-emitting layer, any material selected from conventionally known compounds can be selected and used. For example, nitro-substituted fluorene derivatives, diphenylquinone Derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.

また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。   In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and similarly to the hole injection layer and the hole transport layer, inorganic such as n-type-Si and n-type-SiC can be used. A semiconductor can also be used as an electron transport material.

電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア−ブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コータ法等の公知の薄膜形成法により製膜して形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μmの範囲であり、好ましくは5〜200nmの範囲である。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   For the electron transport layer, the above-mentioned electron transport material may be a known material such as a vacuum deposition method, a spin coat method, a cast method, an LB method (Langmuir-Blodget method), an ink jet method, a spray method, a printing method, or a slot type coater method. The film can be formed by a thin film forming method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, it is the range of 5 nm-5 micrometers, Preferably it is the range of 5-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたn型半導体的性質を有するとされる電子輸送材料を用いることもできる。その例としては、特開平4−297076号公報、特開平10−270172号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)などに記載されたものが挙げられる。   In addition, an electron transport material that has n-type semiconductor properties doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなn型半導体的性質を有するとされる電子輸送材料を用いることもより低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use an electron transport material having such n-type semiconductor properties because an element with lower power consumption can be produced.

《支持基板》
本発明の有機EL素子に適用する支持基板(以下、基体、基板、基材、支持体等ともいう)としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、例えば、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) applied to the organic EL element of the present invention is not particularly limited in the type of glass, plastic, etc., and may be transparent. It may be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度が、0.01g/(m・24h・atm)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1992に準拠した方法で測定された酸素透過度が、1×10−3g/(m・24h)以下、水蒸気透過度が、1×10−3g/(m・24h)以下の高バリア性フィルムであることが好ましく、前記の水蒸気透過度、酸素透過度がいずれも1×10−5g/(m・24h)以下であることが、更に好ましい。Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned. An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and the water vapor permeability measured by a method according to JIS K 7129-1992 is 0.01 g / (m 2 · 24 h · atm) or less, and the oxygen permeability measured by a method according to JIS K 7126-1992 is 1 × 10 −3 g / (m 2 · 24 h. ) Hereinafter, a high barrier film having a water vapor permeability of 1 × 10 −3 g / (m 2 · 24 h) or less is preferable, and both the water vapor permeability and the oxygen permeability are 1 × 10 −5. More preferably, it is g / (m 2 · 24h) or less.

バリア膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。   As a material for forming the barrier film, any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.

バリア膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものも好ましい。   The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma. A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is also preferable.

不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板・フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。   Examples of the opaque support substrate include metal plates / films such as aluminum and stainless steel, opaque resin substrates, ceramic substrates, and the like.

《封止》
本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.

封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。   The sealing member may be disposed so as to cover the display area of the organic EL element, and may be concave or flat. Moreover, transparency and electrical insulation are not particularly limited.

具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウムおよびタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。   Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.

本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、酸素透過度が1×10−3g/(m・24h)以下、水蒸気透過度が1×10−3g/(m・24h)以下のものであることが好ましい。また、前記の水蒸気透過度、酸素透過度がいずれも1×10−5g/(m・24h)以下であることが、更に好ましい。In the present invention, a polymer film and a metal film can be preferably used because the organic EL element can be thinned. Furthermore, the polymer film may have an oxygen permeability of 1 × 10 −3 g / (m 2 · 24 h) or less and a water vapor permeability of 1 × 10 −3 g / (m 2 · 24 h) or less. preferable. Further, it is more preferable that both the water vapor permeability and the oxygen permeability are 1 × 10 −5 g / (m 2 · 24 h) or less.

封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化および熱硬化型接着剤、2−シアノアクリル酸エステルなどの湿気硬化型等の接着剤を挙げることができる。また、エポキシ系などの熱および化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。   For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used. Specific examples of the adhesive include photocuring and thermosetting adhesives having a reactive vinyl group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylate. be able to. Moreover, the heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.

なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。   In addition, since an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.

また、有機層を挟み支持基板と対向する側の電極の外側に、該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とする方法も好ましい方法である。この場合、該封止膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることができる。更に該封止膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの封止膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができる。   Also preferred is a method of forming an inorganic or organic layer on the outside of the electrode on the side facing the support substrate with the organic layer interposed therebetween, and forming an inorganic or organic layer in contact with the support substrate to form a sealing film It is. In this case, the material for forming the sealing film may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like is used. be able to. Furthermore, in order to improve the brittleness of the sealing film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these sealing films is not particularly limited. For example, a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, a large polymerization method, and the like. An atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.

封止部材と有機EL素子の表示領域との間隙には、気相および液相では、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。   In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase and the liquid phase. Is preferred. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.

吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば過塩素酸バリウム、過塩素酸マグネシウム等)等があげられ、硫酸塩、金属ハロゲン化物および過塩素酸類においては無水塩が好適に用いられる。   Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, barium perchlorate) , Magnesium perchlorate, etc.), and anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.

《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween. In particular, when sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.

《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm〜1000nm、好ましくは10nm〜200nmの範囲で選ばれる。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such an electrode substance include conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.

《陰極》
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.

また、陰極に上記金属を1nm〜20nmの範囲の膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。   In addition, a transparent or semi-transparent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness in the range of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.

《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法について説明する。
<< Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.

まず適当な支持基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の順に有機化合物薄膜を形成させる。   First, a desired electrode material, for example, a thin film made of an anode material is formed on an appropriate support substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm. Is made. Next, an organic compound thin film is formed on the organic EL element material in this order: a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer.

この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法、LB法(ラングミュア−ブロジェット法)、スプレー法、印刷法、スロット型コータ法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法、スロット型コータ法が特に好ましい。更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度が50℃〜450℃の範囲、真空度が1×10−6〜1×10−2Paの範囲、蒸着速度が0.01〜50nm/秒の範囲、基板温度が−50〜300℃の範囲、膜厚が0.1nm〜5μmの範囲、好ましくは5nm〜200nmの範囲で適宜選ぶことが望ましい。これらの層を形成した後、その上に陰極用物質からなる薄膜を、1μm以下、好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより、所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。As a method for thinning the organic compound thin film, as described above, the vapor deposition method, the wet process (spin coating method, casting method, ink jet method, printing method, LB method (Langmuir-Blodgett method), spray method, printing method, However, vacuum deposition, spin coating, ink-jet, printing, and slot-type coater methods are particularly preferred from the standpoint that a homogeneous film is easily obtained and pinholes are not easily formed. preferable. Further, different film forming methods may be applied for each layer. When the vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 ° C. to 450 ° C., and the degree of vacuum is 1 × 10 −6 to 1 × 10 −. 2 Pa, the deposition rate is 0.01 to 50 nm / second, the substrate temperature is −50 to 300 ° C., and the film thickness is 0.1 to 5 μm, preferably 5 to 200 nm. It is desirable. After forming these layers, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 to 200 nm. By providing, a desired organic EL element can be obtained. The organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.

また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2V〜40V程度の範囲で印加すると、発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。   In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage in the range of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.

有機エレクトロルミネッセンス素子は、空気よりも屈折率の高い(屈折率1.6〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。   An organic electroluminescence element emits light inside a layer having a higher refractive index than air (refractive index of about 1.6 to 2.1), and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said that there is no. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.

この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62−172691号公報)、基板と発光体の間に基板よりも低い屈折率を持つ平坦層を導入する方法(例えば、特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)などが挙げられる。   As a technique for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, JP-A-63-314795), a method for forming a reflective surface on a side surface of an element (for example, JP-A-1-220394), a substrate, etc. A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the light emitting body and the light emitting body (for example, Japanese Patent Application Laid-Open No. 62-172691), lower refraction than the substrate between the substrate and the light emitting body A method of introducing a flat layer having a refractive index (for example, Japanese Patent Application Laid-Open No. 2001-202827), and a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside world) ( JP 1 No. -283751 Publication), and the like.

本発明においては、これらの方法を、本発明の有機エレクトロルミネッセンス素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。   In the present invention, these methods can be used in combination with the organic electroluminescence device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or the substrate A method of forming a diffraction grating between any layers of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.

本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。   In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.

透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。   When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. .

低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。   Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.

また、低屈折率媒質の厚みは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。   The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.

全反射を起こす界面または、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。   The method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction. The light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.

導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。   The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.

しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。   However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.

回折格子を導入する位置としては、いずれかの層間、もしくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2〜3倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、2次元的に配列が繰り返されることが好ましい。   The position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.

本発明の有機エレクトロルミネッセンス素子は、支持基板(基板)の光取出し側に、例えば、マイクロレンズアレイ上の構造を設けるように加工する方法、あるいは、所謂集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高める方法を適用することができる。   The organic electroluminescent device of the present invention is formed in a specific direction by combining, for example, a so-called condensing sheet or a method of processing so as to provide a structure on a microlens array on the light extraction side of a support substrate (substrate). For example, a method of increasing the luminance in a specific direction by condensing light in the front direction with respect to the element light emitting surface can be applied.

マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmの範囲が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。   As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably in the range of 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.

集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製の輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。   As the condensing sheet, for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Co., Ltd. can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.

また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製の拡散フィルム(ライトアップ)などを用いることができる。   Moreover, in order to control the light emission angle from an organic EL element, you may use a light-diffusion plate and a film together with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.

《表示装置》
次いで、本発明の有機EL素子を適用した表示装置について説明する。
<Display device>
Next, a display device to which the organic EL element of the present invention is applied will be described.

本発明の有機EL素子は、多色または白色の表示装置に用いられる。多色または白色の表示装置の場合は、発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法、スロット型コータ法等で膜を形成できる。発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを用いたパターニングが好ましい。   The organic EL element of the present invention is used for a multicolor or white display device. In the case of a multicolor or white display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, slot coater, or the like. When patterning is performed only on the light-emitting layer, the method is not limited, but a vapor deposition method, an inkjet method, and a printing method are preferable. In the case of using a vapor deposition method, patterning using a shadow mask is preferable.

また、作製順序を逆にして陰極、電子輸送層、正孔阻止層、発光層ユニット(上記の発光層A、B及びCの少なくとも3層を有し、各発光層間に非発光性の中間層を有していてもよい)、正孔輸送層、陽極の順に作製することも可能である。このようにして得られた多色または白色の表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。   Further, the cathode, the electron transport layer, the hole blocking layer, and the light emitting layer unit (having at least three layers of the above light emitting layers A, B, and C, and a non-light emitting intermediate layer between the light emitting layers) It is also possible to produce the hole transport layer and the anode in this order. When a DC voltage is applied to the multicolor or white display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.

《照明装置》
次いで、本発明の有機EL素子を適用した照明装置について説明する。
《Lighting device》
Next, an illumination device to which the organic EL element of the present invention is applied will be described.

本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。   The organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image. (Display) may be used. The driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.

本発明に用いられる白色の有機エレクトロルミネッセンス素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよい。発光層に用いる発光ドーパントとしては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルタ)特性に対応した波長範囲に適合するように、本発明に係る白金錯体、また公知の発光ドーパントの中から任意のものを選択して組み合わせて、または光取り出しまたは集光シートと組み合わせて、白色化すればよい。   In the white organic electroluminescent element used for this invention, you may pattern by a metal mask, the inkjet printing method, etc. as needed at the time of film forming. When patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned. The light emitting dopant used in the light emitting layer is not particularly limited. For example, in the case of a backlight in a liquid crystal display element, the platinum complex according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Any one of known luminescent dopants may be selected and combined, or combined with a light extraction or light collecting sheet to be whitened.

このように、本発明の白色の有機EL素子は、CF(カラーフィルタ)と組み合わせて、また、CF(カラーフィルタ)パターンに合わせ素子及び駆動トランジスタ回路を配置することで、有機エレクトロルミネッセンス素子から取り出される白色光をバックライトとして、青色フィルタ、緑色フィルタ、赤色フィルタを介して青色光、緑色光、赤色光を得ることで、低駆動電圧で長寿命のフルカラーの有機エレクトロルミネッセンスディスプレイができ、好ましい。   As described above, the white organic EL element of the present invention is taken out from the organic electroluminescence element by combining the CF (color filter) and arranging the element and the driving transistor circuit in accordance with the CF (color filter) pattern. Using white light as a backlight, blue light, green light, and red light are obtained through a blue filter, a green filter, and a red filter, so that a full-color organic electroluminescence display with a low driving voltage and a long life can be obtained.

《本発明の有機EL素子を適用した産業分野》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特にカラーフィルタや光拡散板、光取り出しフィルムなどと組み合わせた各種表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<< Industrial field to which the organic EL element of the present invention is applied >>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. Examples of light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Although it is not limited to this, it can be effectively used for backlights of various display devices combined with color filters, light diffusion plates, light extraction films, etc., and as a light source for illumination.

本発明の有機EL素子の特徴を活かして、以下に示すような様々な照明器具や発光表示体等への適用が可能である。   Taking advantage of the characteristics of the organic EL device of the present invention, it can be applied to various lighting fixtures and light emitting displays as shown below.

〔商品展示・ディスプレイ用〕
商品展示・ディスプレイ用としては、店舗の商品ディスプレイ、冷凍・冷蔵ショーケース、博物館・美術館・展示会場などの展示品のライトアップ、自動販売機、遊戯台、交通広告などがある。
[For product display and display]
For product display and display, there are store product display, freezer / refrigerated showcase, light up of exhibits in museums, art galleries, exhibition halls, vending machines, play tables, traffic advertisements, etc.

店舗の商品ディスプレイは店舗自体の装飾的なディスプレイやショーケース、POPやサインなどがある。店舗の中でも高級ブランドショップや貴金属、ファッション系、高級飲食店など、そのブランドイメージを重視するような店舗では照明が与える店舗イメージへの影響は非常に大きいことから、強い拘りをもって照明が選択されている分野である。有機ELを用いることによって、今までは直接光源が見えないよう建築物の構造に工夫を凝らすことで雰囲気を作り出していた間接照明の分野で光源・機器分のスペースが省略でき複雑な構造が不要になり、インテリアやサインなどで拡散光を作り出す際に光源の形が透けて見えないために必要な光源と拡散板の間のスペースが省略できるなど、施工性があがることが挙げられる。また、店舗のイメージを変える際のツールとしても、ディスプレイ棚、床、什器として組み込むなどスペースを取らず、軽量な光源であるという特徴を活かし、デザイン自由度があり、施工性がよく、手軽に採用できるという利点がある。   Store merchandise displays include decorative displays, showcases, POPs and signs for the store itself. Among stores, high-end brand shops, precious metals, fashion, high-end restaurants, and other stores that place emphasis on the brand image have a great influence on the store image that lighting gives, so lighting has been selected with strong attention This is a field. By using organic EL, the space for the light source and equipment can be omitted in the field of indirect lighting, which has created an atmosphere by devising the structure of the building so that the light source can not be seen directly, and no complicated structure is required When creating diffused light for interiors and signs, the shape of the light source cannot be seen through, so the space between the necessary light source and the diffuser can be omitted, and workability is improved. Also, as a tool for changing the image of the store, it takes advantage of the feature that it is a light source that does not take up space such as display shelves, floors, fixtures, etc., and it has design freedom, easy workability, and easy There is an advantage that it can be adopted.

冷凍・冷蔵ショーケースは、スーパーやコンビニエンスストアなどに置かれ、野菜や果物、鮮魚、精肉などの鮮食品を“美しさ”や“鮮度”にあふれる商品として、より見やすく、鮮やかに、取りやすくするために照明設備も重要な部品の1つである。有機EL光源を用いることによって、低温発光のため冷却機能への影響が小さく、薄型であるので光源スペースを大幅に削減ことができることから収納スペースを拡大でき、スマートなデザインで食品を選びやすく、取りやすくすることができる。また、食品の良さが判りやすい色光で消費者に自然とアピールすることができ、売上に貢献できる。   Frozen and refrigerated showcases are placed in supermarkets and convenience stores to make fresh foods such as vegetables, fruits, fresh fish, and meats full of beauty and freshness. Therefore, the lighting equipment is one of the important parts. By using an organic EL light source, low temperature emission has little effect on the cooling function, and since it is thin, the light source space can be greatly reduced, so the storage space can be expanded, and it is easy to select food with a smart design. It can be made easier. In addition, it can appeal to consumers with colored light that makes it easy to understand the goodness of food, contributing to sales.

博物館・美術館・展示会場などでの展示品のライトアップでは、展示物への視認や日焼けなどの観点から使用条件に適した光源を選ぶ必要があり、退色防止型で紫外線比率の低い蛍光ランプが開発されている。有機EL光源は紫外線を含まないこと、発熱量が低いことから展示物に悪影響がなく、面光源で均一に光ることによりグレアがなく、高い演色性によって展示物のありのままを忠実に鑑賞することができる。また、大きな光源器具を必要としないため、視界に余計な機材の出っ張りが入ることなく、展示物だけに注目することができる。またショーなど大規模な展示会場においては、注目を集める大型電飾装飾もその軽量・薄型という特徴から比較的簡易に組み立てることができる。   In order to light up exhibits at museums, art galleries, exhibition halls, etc., it is necessary to select a light source that is suitable for the conditions of use from the viewpoint of visual recognition and sunburn. Has been developed. Since the organic EL light source does not contain ultraviolet rays and the calorific value is low, there is no adverse effect on the exhibit, it is uniform glare with the surface light source, and it is possible to faithfully appreciate the display as it is with high color rendering. it can. In addition, since a large light source device is not required, it is possible to focus only on the exhibits without the need for extra equipment protruding in the field of view. Also, in large-scale exhibition halls such as shows, large-sized electric decorations that attract attention can be assembled relatively easily due to their lightweight and thin features.

自動販売機では、押しボタン、商品サンプル、販売機前面のポスター部に光源が使われている。機器全体の大きさに対し、取り込みたい追加機能の為のスペースと収納スペースの取り合いとなっていることから、薄く光源のスペースをとらない有機ELの利点が活かせる分野であり、特に取り出し口上のポスタースペースでニーズが高い。また、近年は販売と共に当たり/はずれなどゲーム性を持たせた機器も多く見られ、前面のポスターに部分に画素コントロール機能を持たせた光源(動画ディスプレイ)を搭載することで更にメリットを活かすことができる。   Vending machines use light sources for push buttons, product samples, and posters on the front of the vending machine. It is a field where the advantage of organic EL that does not take up a thin light source space can be utilized because the space for the additional function to be taken in and the storage space are combined with the size of the entire device, especially on the outlet Needs are high in poster space. In recent years, there are many devices that have game characteristics such as hit / miss along with sales, and it is possible to make further use of the benefits by installing a light source (video display) with a pixel control function on the front poster. Can do.

遊戯台にはパチンコ・パチスロなどがある。これら遊戯台では、利用者にアミューズメント性(ゲーム性・ギャンブル性など)を体感し、楽しんでいただくことが最も重要である。光源を薄くする事で1台の機器の厚みを低減できる薄さのメリットもあるが、自動販売機同様、画素コントロール機能を持たせた光源(動画ディスプレイ)を搭載することで更にメリットを活かすことができる。   There are pachinko and pachislots at the playground. In these playgrounds, it is most important for users to experience and enjoy amusement (games, gambling, etc.). Although there is a merit of thinness that can reduce the thickness of one device by thinning the light source, like the vending machine, it can make further use of the merit by installing a light source (video display) with a pixel control function. Can do.

交通広告には公共スペースにあるポスターや看板、電車・バスなどの社内のポスターや画面、車体に張られている広告などがある。特にポスターや看板は蛍光灯をバックライトとして用いたボックスタイプのものがあり、有機ELに替えることでボックス自体を薄く、軽量化することができる。   Traffic advertisements include posters and signboards in public spaces, internal posters and screens such as trains and buses, and advertisements on the body. In particular, posters and billboards are of a box type using a fluorescent lamp as a backlight, and the box itself can be made thinner and lighter by replacing it with an organic EL.

また、吊り下げ看板についてはボックスを薄くすることで、埃、ゴミの蓄積がなくなることや鳥による糞害の防止にもなる。   In addition, by thinning the box for hanging signboards, dust and dirt can be prevented from being accumulated, and bird damage caused by birds can be prevented.

〔インテリア・家具・建築材料用の組み込み照明〕
建築関係では、床・壁・天井などと照明とを融合して一体化したものは「建築化照明」と呼ばれる。「建築化照明」の代表的なものとしては、その方式により、コーニス照明、トロファ照明、コーブ照明、光天井、ルーバ天井などがある。これらは照明光源が天井・壁・床に組み込まれ、照明としての存在や気配を消し、建築素材自体が光を発することを求めている。
[Built-in lighting for interior, furniture and building materials]
In terms of architecture, a combination of floors, walls, ceilings, etc. and lighting is called “architectural lighting”. Typical examples of “architectural lighting” include cornice lighting, troffer lighting, cove lighting, light ceiling, and louver ceiling, depending on the method. These require lighting sources to be built into the ceiling, walls and floors, extinguish their presence and signs as lighting, and the building materials themselves to emit light.

有機EL素子を用いた光源は、「建築化照明」に対して、その薄さ、軽さ、色調整、デザイン可変性から最も適した光源であり、さらにインテリア、家具、什器にまで適用が可能である。従来は店舗や美術館のみで用いられてきたこのような建築化照明を、有機EL光源の展開によって一般住宅にまで広げることができ、新たな需要を発掘することができる。   Light sources using organic EL elements are the most suitable light sources for “architecture lighting” due to their thinness, lightness, color adjustment, and design variability, and can be applied to interiors, furniture, and fixtures. It is. Conventionally, such architectural lighting, which has been used only in stores and museums, can be extended to ordinary houses by developing organic EL light sources, and new demand can be found.

商業施設においては、半地下店舗、アーケードの天井などに有機EL光源を採用し、照明の明るさや色温度を変化させることで、天候や昼夜に左右されない最適な商業空間を構築することができる。   In commercial facilities, organic EL light sources are used in semi-underground stores, arcade ceilings, etc., and by changing the brightness and color temperature of illumination, it is possible to construct an optimal commercial space that is not affected by the weather or day and night.

インテリア・什器・家具の一例としては、机や椅子、食器棚・靴箱・ロッカーなどの収納、洗面化粧台、仏壇・祭壇、ベッドライト、フットライト、手すり、ドア、障子・襖などが挙げられるが、それに限定されるものではない。   Examples of interior / furniture / furniture include desks and chairs, storage of cupboards / shoeboxes / lockers, vanities, altars, bed lights, footlights, handrails, doors, shoji screens, shojis, etc. It is not limited to that.

一方で、有機EL光源に透明な電極を用い、消灯/発光させることで、透明/不透明を切り替えることもできる。それによって、あらゆる窓、ドア、カーテンやブラインド、パーテーションとしての利用も可能となる。   On the other hand, transparent / opaque can be switched by using a transparent electrode for the organic EL light source and turning it off / emitting light. As a result, it can be used as any window, door, curtain, blind, and partition.

〔自動車用照明、発光表示体〕
自動車用としては、外部の照明器具や発光表示体、車内の照明器具や発光表示体などに、有機EL素子が利用できる。前者は、前部に(小分類)ヘッドランプ、補助灯、車幅灯、フォッグランプ、方向指示灯など、後部にはリアコンビネーションランプとしてストップランプ、車幅灯、バック灯、方向指示灯、およびナンバープレート灯などがある。特に、有機EL素子を用いてリアコンビネーションランプを1枚で形成し、後部に貼り付けることによって、後部ランプのためのスペースを削減して、トランクルームを広くすることが可能となる。また、雨や霧で見通しが悪い時には、車幅灯やストップランプの面積を広くして、視認性を高めることもできる。一方、ホイールを有機EL素子で発光させることによって、側面からの視認性を高めることもできる。さらには、ボデイ全体を有機EL素子で形成して発光させ、ボデイカラーやデザインに新たな発想を盛り込むことが可能となる。
[Automotive lighting, luminous display]
For automobiles, organic EL elements can be used for external lighting fixtures and light emitting display bodies, in-vehicle lighting fixtures and light emitting display bodies, and the like. The former is a front (sub-classification) headlamp, auxiliary light, vehicle width light, fog lamp, direction indicator light, etc., and the rear is a rear combination lamp as stop lamp, vehicle width light, back light, direction indicator light, and There are license plate lights. In particular, by forming a single rear combination lamp using an organic EL element and attaching it to the rear part, it is possible to reduce the space for the rear lamp and widen the trunk room. In addition, when the visibility is poor due to rain or fog, the visibility of the vehicle can be increased by widening the area of the vehicle width lights and stop lamps. On the other hand, the visibility from the side surface can be enhanced by causing the wheel to emit light with the organic EL element. Furthermore, the entire body can be made of organic EL elements to emit light, and new ideas can be incorporated into the body color and design.

後者の車内の照明器具や発光表示体としては、室内灯、マップライト、ドア下部の乗降ライト、メーター類表示、カーナビゲーションディスプレイ、警告灯などがある。特に、有機EL素子の透明性を活かして、昼間はサンルーフとし、夜間は発光させて面光源の穏やかな室内灯とすることもできる。またタクシーなどでは、前部座席の背面に有機EL素子からなる照明器具を貼り付けることによって、ドライバーの運転に支障なく、かつ室内空間を犠牲にすることなく、顧客が利用しやすい手元照明システムを構築できる。   Examples of the latter in-vehicle lighting fixtures and light-emitting displays include indoor lights, map lights, boarding lights at the bottom of doors, meter displays, car navigation displays, warning lights, and the like. In particular, taking advantage of the transparency of the organic EL element, a sunroof can be used during the daytime and light can be emitted during the nighttime to provide a room light with a gentle surface light source. For taxis, etc., a lighting system consisting of organic EL elements is pasted on the back of the front seat, creating a handy lighting system that is easy for customers to use without hindering driver driving and sacrificing indoor space. Can be built.

〔公共交通機関〕
電車、地下鉄、バス、航空機、船舶などの公共交通機関における車内の照明や表示体において、本発明の有機ELは、その特徴を活かすことができる。
〔Public transport〕
The characteristics of the organic EL of the present invention can be utilized in lighting and display bodies in vehicles in public transportation such as trains, subways, buses, airplanes, and ships.

航空機には多くの照明器具が搭載されているが、機体内部に搭載されている客室照明、貨物室照明、操縦室照明などのうち、特に客室の間接照明については有機EL照明のメリットが充分発揮される。   Although many lighting fixtures are installed in aircraft, among the cabin lighting, cargo cabin lighting, cockpit lighting, etc. mounted inside the aircraft, the benefits of organic EL lighting are fully demonstrated, especially for cabin indirect lighting. Is done.

客室照明には蛍光灯や電球が使われているが、これらは天井の側面に反射させた間接照明が使われており、客室に落ち着いた雰囲気を与えると共に万が一のトラブルの際にも割れてガラス破片が客席に降りかからないような工夫がされている。   Fluorescent lamps and light bulbs are used for room lighting, but these use indirect lighting reflected on the side of the ceiling, which gives the room a calm atmosphere and breaks into glass in the event of a trouble. The device is designed to prevent debris from falling on the audience seats.

有機EL光源を用いれば、その薄さから間接照明が作りやすくなり、また直接照明にした場合でも割れて破片が飛び散る危険がなく、拡散光で落ち着いた雰囲気をつくることもできる。   If an organic EL light source is used, it is easy to make indirect illumination because of its thinness, and even if it is directly illuminated, there is no risk of cracking and scattering of fragments, and it is possible to create a calm atmosphere with diffuse light.

また、航空機には電力消費量や機体軽量化が重要である面を考慮しても、消費電力が小さく、軽量な有機EL光源は好ましい。このようなメリットは、お客様を照らすだけでなく、手荷物収納内の照明でも発揮され、荷物の取り残しの低減に貢献することもできる。   In addition, even in consideration of the importance of power consumption and weight reduction for aircraft, a light-weight organic EL light source with low power consumption is preferable. These benefits not only illuminate the customer, but are also demonstrated in the lighting inside the baggage storage, and can contribute to the reduction of leftovers.

公共交通機関に付属する駅やバス停、空港などの施設にも、顧客を誘導するための表示や照明が利用できる。また、夜間、屋外のバス停などにおいては、バス待ちの人を検出して照明を明るくし、防犯に寄与することもできる。   Display and lighting to guide customers can also be used at facilities such as stations, bus stops, and airports attached to public transportation. In addition, at night or at an outdoor bus stop, a person waiting for the bus can be detected to brighten the lighting, thereby contributing to crime prevention.

〔OA機器用光源〕
OA機器用光源としては、読み取り用センサーが搭載されているファクシミリ、複写機、スキャナ、プリンタ、それらの複合機などが挙げられる。
[Light source for OA equipment]
Examples of light sources for office automation equipment include facsimiles, copying machines, scanners, printers, and multi-function machines equipped with reading sensors.

読み取り用センサーは、等倍光学系と組合せる密着型センサー(CIS)と、縮小光学系と組み合わせる縮小型センサー(CCDリニア)とに分かれる。   The reading sensor is divided into a contact type sensor (CIS) combined with an equal magnification optical system and a reduction type sensor (CCD linear) combined with a reduction optical system.

CISについてはメーカーによっては定義が異なり、センサ・ロッドレンズアレイ・LED基盤をモジュール化したものをCISと呼ぶ場合や、モジュール化したものをCISM(コンタクトイメージセンサモジュール)と呼び、モジュールの中に入っているセンサチップをCISと呼ぶ場合もある。それらの光源にはLED、キセノン、CCFLランプ、LDなどが使われている。   The definition of CIS varies depending on the manufacturer. When the sensor, rod lens array, and LED base are modularized, the module is called CIS, or the modularized module is called CISM (contact image sensor module). The sensor chip is sometimes called CIS. For these light sources, LEDs, xenon, CCFL lamps, LDs and the like are used.

OA機器としては、更なる小型化、低電圧駆動の要望があり、有機ELの厚みがなく、低発熱量・低電圧で駆動可能であるという特徴は、それらの要望にこたえることが可能である。   There is a demand for further miniaturization and low-voltage driving as an OA device, and the feature that the organic EL has no thickness and can be driven with a low calorific value and low voltage can meet these demands. .

〔産業用検査システム〕
製造会社では、かつては目視による検品工程に多くの工数と人力をかけていたが、それを、撮影画像を利用し欠品判定することで自動化をはかっている。CCDカメラでとらえた対象物の画像をデジタル信号に変換し、種々の演算処理を行なうことで、対象物の面積、長さ、個数、位置などの特徴を抽出し、設定された基準をもとに判定結果を出力するものが、その画像撮影の為に光源が必要。このような検査システムはパッケージや形状サイズ検査、マイクロ部品の検査などでも利用される。
[Industrial inspection system]
In the past, manufacturing companies used a lot of man-hours and manpower for the visual inspection process, but this is automated by using a photographed image to determine the shortage. The image of the object captured by the CCD camera is converted into a digital signal, and various arithmetic processes are performed to extract features such as the area, length, number, and position of the object. The one that outputs the result of the determination is that a light source is required to capture the image. Such an inspection system is also used for package, shape size inspection, micro component inspection, and the like.

画像センサー用に使用される照明光源には、蛍光灯、LED、ハロゲンなどがある。その中でも、透明容器やリードフレームなどを背景から照らすバックライトとしては面状で均一な光が必要である。   Illumination light sources used for image sensors include fluorescent lamps, LEDs, and halogens. Among them, a planar and uniform light is required as a backlight for illuminating a transparent container or a lead frame from the background.

また、シートの汚れ検出には直線状に均一な光でシートの幅方向前面を照らせる光が必要であるなど、検査する物品により光源への要求内容が異なる。   In addition, the detection content of the light source varies depending on the article to be inspected. For example, light for illuminating the front surface in the width direction of the sheet with linearly uniform light is necessary for detecting the contamination of the sheet.

この分野に有機EL光源を採用することによって、例えば、ボトリングの工程などではボトル周囲360度全方位に照明を配置し、一度に照明し撮影することも可能となり、短時間での検品が可能となる。また検査機器内で光源自体に取られるスペースを大幅に小さくすることができる。また、面光源であることで、光反射により撮影画像が判定しにくくなることによる検知ミスを回避可能である。   By adopting an organic EL light source in this field, for example, in the bottling process, it is possible to illuminate all 360 degrees around the bottle and illuminate and shoot at once, enabling inspection in a short time Become. Moreover, the space taken by the light source itself in the inspection equipment can be greatly reduced. Further, since the surface light source is used, it is possible to avoid a detection error due to difficulty in determining a captured image due to light reflection.

〔農産物栽培用光源〕
植物工場とは『環境制御や自動化などハイテクを利用した植物の周年生産システム』である。植物栽培の環境をコンピューターにより制御することで、天候に左右されることなく、人手を必要とせずに作物を自動的に生産する技術。今後の世界の人口増、環境問題を考えると、農業にハイテクを導入することで、安定な食糧生産につながる、いわゆる農業の工業化が必要になる。最近はLED、LDが、植物栽培の光源としての可能性が高まってきた。従来からよく使われている高圧ナトリウムランプなどの光源は、赤色光と青色光のスペクトルバランスが悪く、また多量の熱放射が空調負荷を大きくし、植物との距離を十分にとる必要があるために、施設が大型化する欠点がある。
[Light source for agricultural products]
The plant factory is “an annual plant production system using high technology such as environmental control and automation”. A technology that automatically produces crops by controlling the plant cultivation environment with a computer, without being affected by the weather, and without the need for manpower. Considering the world's population growth and environmental issues in the future, the introduction of high technology in agriculture will require so-called agricultural industrialization that leads to stable food production. Recently, LED and LD have been increasingly used as light sources for plant cultivation. Light sources such as high-pressure sodium lamps that are often used in the past have poor spectral balance between red light and blue light, and a large amount of heat radiation increases the air conditioning load and requires a sufficient distance from the plant. In addition, there is a drawback that the facility becomes larger.

有機EL光源は光源の厚みがなく、多くの棚を設置でき、また発熱量が少ないことから植物に近接させことで高効率であり栽培量を増やすことができる。   Since the organic EL light source has no light source thickness, many shelves can be installed, and since the calorific value is small, it is highly efficient and can increase the amount of cultivation by bringing it close to the plant.

また、一般家庭においても省スペースのメリットを活かし、キッチンなど室内の狭い場所に家庭菜園を作ることができ、庭やベランダ、屋上などの屋外スペースのみで可能であった家庭菜園の概念を変えて、広く人々が楽しむことを可能とする。   Also, taking advantage of space-saving in ordinary households, you can create a kitchen garden in a small indoor space such as a kitchen, changing the concept of a kitchen garden that was possible only in outdoor spaces such as gardens, verandas, and rooftops. It allows people to enjoy widely.

〔避難用照明〕
消防法や建築基準法で規定されている防災照明設備は、建築物火災に際して避難の為の出口や経路を示す誘導灯と、避難経路の明るさを確保し、迅速な避難を担保する非常灯とがある。
[Evacuation lighting]
The emergency lighting equipment stipulated in the Fire Service Law and Building Standard Law is a guide light that indicates the exit and route for evacuation in the event of a building fire, and an emergency light that ensures the brightness of the evacuation route and ensures quick evacuation. There is.

FA・民生用に用いられるシグナルや誘導灯・非常灯などは、見やすいことが前提となるが、その為の大型化は設置場所によっては建物と不釣合いになり、建築化やデザイナーから指摘されることが多かった。その対策として、一目で分かる表示のプクトグラフ化や、光源で誘目効果を高める対処が取られている。従来、誘導灯の光源には、蛍光ランプが用いられることが多いが、最近ではLEDを使用した誘導灯も出てきている。   Signals, guide lights, emergency lights, etc. used for FA / consumer use are premised on being easy to see, but the enlargement for that is unbalanced with the building depending on the installation location, and it is pointed out by architects and designers There were many things. As countermeasures, measures are taken to make the display a practicable graph at a glance and to increase the attractive effect with a light source. Conventionally, a fluorescent lamp is often used as a light source of a guide lamp, but recently, a guide lamp using an LED has also come out.

これらの誘導灯に有機EL光源を用いることで、輝度班、角度特性による輝度低下がなく、視認性を向上でき、低電力で、薄型であるために特別な工事の必要がなく設置が容易で、従来の蛍光灯を使うタイプに比べ交換の必要がなく、メンテナンスを容易することができる。また発熱も少ない為発光面の色焼けも少ない。したがって、避難経路の床、階段の手すり、防火扉など、多くの場所に設置して安全性を高めることができる。また現在、蛍光灯で問題視されている水銀の問題もなく、割れにくく、安全性に優れている。更に省スペース薄型設計で美観を損ねることなく、誘目効果を高めることができる光源と言える。   By using an organic EL light source for these guide lights, there is no reduction in brightness due to brightness spots and angular characteristics, visibility can be improved, and low power consumption and thinness make it easy to install without special work. Compared to conventional fluorescent lamp types, there is no need for replacement, and maintenance can be facilitated. In addition, since there is little heat generation, there is little color burn on the light emitting surface. Therefore, it can be installed in many places such as floors of evacuation routes, stairs handrails, fire doors, etc. to improve safety. In addition, there is no problem of mercury, which is currently regarded as a problem with fluorescent lamps, it is difficult to break, and it has excellent safety. Furthermore, it can be said that it is a light source that can enhance the attractive effect without impairing the beauty of the space-saving thin design.

〔撮影用照明〕
写真館やスタジオ、照明写真ボックスなどで使われる光源には、ハロゲン、タングステン、ストロボ、蛍光灯などが用いられている。これらの光源を被写体に直接直線的に当て陰影を強くつける、もしくは光を拡散させ、あまり陰影のない柔らかな光をつくるという、大きくは2つの光の種類を色々な角度から組み合わせて1つの絵がつくられている。光を拡散させるためには、光源と被写体の間にディフューザーを挟むこと、または他の面(レフ板など)に当てた反射光を用いるなどの方法がある。
[Lighting for shooting]
Halogen, tungsten, strobe light, fluorescent light, etc. are used as light sources used in photo studios, studios, and lighting photo boxes. Applying these light sources directly to the subject to add a strong shadow, or diffuse light to create soft light with little shadow, a combination of two types of light from various angles. Is made. In order to diffuse light, there are methods such as sandwiching a diffuser between a light source and a subject, or using reflected light applied to another surface (reflective plate or the like).

有機EL光源は拡散光であり、この後者に対応する光を、ディフューザーを用いることなく発光することができる。その際には、既存光源で必要な光源とディフューザーの間の空間が不用になることや、レフ板などで光の向きを微妙な角度で調整し、細かな陰影を調整していたものをフレキシブルタイプの有機EL自体を曲げることで実施することができるなどのメリットがある。   The organic EL light source is diffused light, and light corresponding to the latter can be emitted without using a diffuser. In that case, the space between the light source and the diffuser required by the existing light source becomes unnecessary, and the light that has been adjusted with a fine angle by adjusting the direction of the light with a reflex plate etc. is flexible There is an advantage that it can be implemented by bending the type of organic EL itself.

撮影で利用される光源には、演色性が求められることがある。太陽光線で見たときとの色の見え方の差が大きいと演色性が悪く、その差が少なければ演色性が良いと評価される。一般家庭で使用されている蛍光灯は、その波長特性から撮影には好ましいとは言えず、光があたっている部分が緑色に偏る傾向がある。肌やメイキャップ、髪、着物、宝石などの色は、そのもの自体の色で写ることが求められる場合が多く、演色性はライトにとって重要なファクターの1つである。有機EL光源は演色性に優れ、前述のような色の忠実さが求められる撮影に好ましい。この特徴は印刷・染色関連など色を忠実に評価したい場所でも同様に活かされる。   A color rendering property may be required for a light source used for photographing. If the difference in the color appearance when viewed with sunlight is large, the color rendering is poor, and if the difference is small, the color rendering is evaluated as good. Fluorescent lamps used in general households are not preferable for photographing because of their wavelength characteristics, and the portions that are exposed to light tend to be green. The color of skin, makeup, hair, kimono, jewelry, etc. is often required to be reflected in its own color, and color rendering is one of the important factors for light. An organic EL light source is excellent in color rendering, and is preferable for photographing that requires color fidelity as described above. This feature is also used in places where it is desired to faithfully evaluate colors such as printing and dyeing.

有機EL光源のような面光源をスタジオの天井一面に配置することによって、子供やペットの撮影などでは子供やペットを室内で自由に遊ばせておき、自由・自然な表情を光源移動のわずらわしさなく、自然な色で撮影することができる。   By placing a surface light source, such as an organic EL light source, on the ceiling of the studio, children and pets can freely play indoors when shooting children and pets, etc., and free and natural expressions can be moved without the hassle of moving light sources Can shoot with natural colors.

〔家電製品〕
家電製品には細部の見易さ、作業のしやすさ、デザインの為、光源がつけられている場合が多い。一例を挙げると、ミシン、電子レンジ、食器洗浄乾燥機、冷蔵庫、AV機器などは、従来から光源が付いているが、新しいものでは洗濯乾燥機は横型モデルで取り残しが増えたことから光源が付けられるようになった。既存のものには白熱電球やLEDがつけられている場合が多い。今後、掃除機の先端に照明を設置して家具などの影の部分の清掃状況を確認したり、シェーバーに特定波長光の光源を設置して、髭剃り状況を確認したりするなど、色々と展開が考えられる。
〔Home appliances〕
Household appliances are often equipped with light sources for ease of viewing details, ease of work, and design. For example, sewing machines, microwave ovens, dishwashers / dryers, refrigerators, AV equipment, etc. have traditionally been equipped with light sources, but newer models have a light source because they are left behind in the horizontal model. It came to be able to. In many cases, incandescent bulbs and LEDs are attached to existing ones. In the future, we will install lighting at the tip of the vacuum cleaner to check the cleaning status of shadow parts such as furniture, install a light source of specific wavelength light on the shaver, and check the shaving status, etc. Development is possible.

このような家電製品は、全体を軽量・小型化し、更に収納スペースが大きいことが求められ、光源部分はできるだけスペースをとらずに全体を照明できることが求められる。有機ELの薄い面光源はその要望に充分こたえることができる。   Such home appliances are required to be light and small as a whole and have a large storage space, and the light source part is required to be able to illuminate the whole without taking up as much space as possible. The thin surface light source of organic EL can fully meet the demand.

〔遊技施設〕
スケートリンクの氷の下に有機ELを用いた照明を配置することによって、上からのスポットライトとは異なる演出が可能である。有機ELは発光温度が低いので特に有利である。また、スケーターの位置を検知して、その動きに合わせて発光させるようなことも可能である。スポットライトとの組み合わせ効果や、音楽のリズムに連動させた発光などもショーアップに有効である。
[Amusement facilities]
By arranging lighting using organic EL under the ice of the skating rink, it is possible to produce an effect different from the spotlight from above. Organic EL is particularly advantageous because of its low emission temperature. It is also possible to detect the position of the skater and emit light according to the movement of the skater. Combination effects with spotlights and light emission linked to the rhythm of music are also effective for show-ups.

プラネタリウムにおいては、従来のような下からの投影ではなく、ドーム全体に有機ELの微細ピクセルを配置して、ドームそのものが星々を発光する方式が可能であり、投影機のないプラネタリウムが実現できる。   In the planetarium, instead of the conventional projection from the bottom, a system in which fine pixels of organic EL are arranged on the entire dome and the dome itself emits stars is possible, and a planetarium without a projector can be realized.

〔イルミネーション用照明〕
一般的にイルミネーションというと樹木へのイルミネーションのことを指していることが大半であったが、近年環境保護の観点から家屋や門、垣根などの造形物への装飾に移行する事例も数多くなっている。これは点光源を多数利用、ライン状に装飾したものが主流であり、LEDの出現により一層広がりを見せると考えられている。
[Illumination lighting]
In general, the term “illumination” generally refers to illumination of trees, but in recent years there have been many cases of transition to decoration of objects such as houses, gates, and fences from the viewpoint of environmental protection. Yes. The mainstream of this is the use of a large number of point light sources, decorated in a line shape, and it is thought that the appearance of LEDs will further expand.

この分野に有機EL照明を用いることによって、今までは点光源をつなげることでの表現のみであったものが、同じ樹木へのイルミネーションにおいても、葉形の照明をつけることや、樹木に巻きつけ樹木全体を光らせる、また逆に定型面モジュールとして点光源同様につなぎ合わせ、様々な色に光らせるカクテルパレットとして用いて全体として文字や絵を映し出すなどのバリエーションが出せ、より一層照明による演出効果を高めることが可能となる。   By using organic EL lighting in this field, what was previously expressed only by connecting point light sources, it is possible to use leaf-shaped lighting or wrap around trees for illumination of the same tree. Light up the whole tree, or conversely, connect it like a point light source as a standard surface module, and use it as a cocktail palette to shine in various colors to project characters and pictures as a whole, further enhancing the lighting effect by lighting It becomes possible.

〔持ち物・衣服につける照明〕
夜間屋外の歩行や運動で自動車・バイクなどから認識されやすくする目的で、自分の持ち物や靴、衣服に添付し、ヘッドライトの光を反射することで歩行者の安全を守る反射材製品(反射シートなど)が販売、利用されている。
[Lighting for belongings and clothes]
Reflective products that protect the safety of pedestrians by reflecting the light from the headlights attached to their belongings, shoes, and clothes for the purpose of making it easier to be recognized by cars and motorcycles during night walking and exercise. Sheet etc.) are sold and used.

ガラスビーズタイプの場合、細かなガラスビーズが表面に存在し入ってきた光がこのレンズの役目で光源の方向に再帰反射し、車からヘッドライトの光があたるとドライバーの目の位置に光が帰っていき強く輝いて見える。プリズムタイプの場合も機能は同じだがレンズの構造が異なる。ガラスビーズタイプとプリズムタイプの特長は、ガラスビーズタイプは、斜めからの光に対して高い反射効果があり、プリズムタイプは正面からの光に対しては、ガラスビーズタイプより反射するが、斜めからの光には比較的反射効果が低いことがある。また、貼り付ける場所によって、素材と接着方法を選ぶこともできる。従来の場合はいずれにしても、歩行者を認識させるためには、光が当たることが必要であり、設置場所なども、下に向いたヘッドライトができるだけ早く当たり認識してもらうために足に貼り付けるなどの工夫が必要であった。   In the case of the glass bead type, fine glass beads are present on the surface, and the incoming light is retroreflected in the direction of the light source by the role of this lens. It seems to shine strongly when I return. The prism type also has the same function but a different lens structure. The glass bead type and the prism type feature that the glass bead type has a high reflection effect on light from an oblique direction, and the prism type reflects light from the front than the glass bead type, but from an oblique direction. The light may have a relatively low reflection effect. In addition, the material and the bonding method can be selected depending on the location to be pasted. In any case, in order to make pedestrians aware of light, it is necessary to be exposed to light. It was necessary to devise such as pasting.

これらの代替に有機EL光源を用いることで、ヘッドライトがあたる範囲になる前から、運転者に歩行者を認識させることができ、より安全を確保できる。また他の光源に対しては軽量で薄くシート状にできる点からも、シールのメリットを維持したままで効果を上げることができる。これらは人間だけでなく、ペットの衣服などにも利用できる。また、歩くことで発電して衣服などを発光させることも、低消費電力の有機ELであれば可能である。特に、人物特定用衣服に応用することもでき、例えば、徘徊者の早期保護に役立てることもできる。ダイビング用のウェットスーツを発光させることによって、ダイバーの所在確認や、鮫などから身を守ることにも可能性がある。もちろん、ショーなどでの舞台衣装、ウェデイングドレスなどにも利用できる。   By using an organic EL light source for these alternatives, the driver can be made to recognize the pedestrian before the headlight hits the area, and safety can be ensured. In addition, the light source can be made light and thin with respect to other light sources, and the effect can be improved while maintaining the merit of the seal. These can be used not only for humans but also for pet clothes. In addition, it is possible to generate electricity by walking to emit light from clothes, etc., with an organic EL with low power consumption. In particular, the present invention can be applied to clothing for specifying a person, and can be used for early protection of a deaf person, for example. By making the wet suit for diving emit light, there is a possibility of confirming the location of the diver and protecting himself from the trap. Of course, it can also be used for stage costumes and wedding dresses at shows.

〔通信用光源〕
有機EL素子を用いた発光体は、可視光を使って簡単なメッセージや情報などを送る「可視光タグ」にも有効に活用できる。すなわち、極めて短時間の明滅による信号を発光させることによって、それを受信する側に多量の情報を送ることができる。
[Communication light source]
Luminescent bodies using organic EL elements can be effectively used in “visible light tags” that send simple messages and information using visible light. That is, by emitting a signal due to blinking for an extremely short time, a large amount of information can be sent to the receiving side.

発光体が信号を発光させていても、極めて短時間であることから、人間の視覚上は単なる照明として認識される。道路、店舗、展示場、ホテル、アミューズメントパークなど、場所毎に設置された照明が、それぞれ場所特有の情報信号を発信して、必要な情報を受信者に提供できる。また有機ELの場合は、1つの発光体中に波長の異なる複数の発光ドーパントを組み込んでおいて、異なる波長ごとに異なる信号を発生させることによって、1つの発光体が複数の異なる情報を提供することもできる。この場合も、発光波長や色調が安定している有機EL素子は優位である。   Even if the illuminant emits a signal, since it is extremely short time, it is recognized as simple illumination in human vision. Lighting installed at each location, such as roads, stores, exhibition halls, hotels, and amusement parks, can send information signals specific to each location and provide necessary information to the receiver. In the case of organic EL, a single light emitter provides a plurality of different information by incorporating a plurality of light emitting dopants having different wavelengths into one light emitter and generating different signals for different wavelengths. You can also. Also in this case, an organic EL element having a stable emission wavelength and color tone is superior.

音声、電波、赤外光などによる情報提供と異なり、「可視光タグ」は照明設備として一緒に組み込めるので、煩雑な追加設置工事なども不要である。   Unlike providing information by voice, radio waves, infrared light, etc., the “visible light tag” can be incorporated together as a lighting facility, so there is no need for complicated additional installation work.

〔医療用光源〕
現在はハロゲンランプなどが使用されている内視鏡や、ワイヤーを挿入して手術する腹腔手術用の照明などに有機EL素子を利用することによって、小型、軽量化、用途拡大に貢献する。特に、近年注目されている体内検査や治療に用いられる内視鏡カプセル(飲む内視鏡)などにも利用の可能で期待されている。
[Medical light source]
The use of organic EL elements for endoscopes that currently use halogen lamps and for lighting for abdominal surgery in which wires are inserted for surgery contributes to miniaturization, weight reduction, and application expansion. In particular, it is expected to be applicable to endoscope capsules (drinking endoscopes) used for in-vivo examinations and treatments that have attracted attention in recent years.

〔その他〕
更に、本発明の有機EL素子を組み込んだ発光体は、色調を容易に選択でき、蛍光灯のような明滅がなく、低消費電力で色調が安定しているので、特開2001−269105号公報に示されるような害虫防除装置として、特開2001−286373号公報に示されるような鏡用の照明として、特開2003−288995号公報に示されるような浴室照明システムとして、特開2004−321074号公報に示される植物育成用人工光源として、特開2004−354232号公報に示されるような水質汚れ測定装置の発光体として、特開2004−358063号公報に示されるような光感受性薬剤を用いた治療用被着体として、特開2005−322602号公報に示されるような医療用無影灯として、有用である。
[Others]
Furthermore, a light-emitting body incorporating the organic EL element of the present invention can easily select a color tone, does not flicker like a fluorescent lamp, and has a stable color tone with low power consumption. Japanese Patent Application Laid-Open No. 2001-269105 As a pest control device as shown in JP-A-2001-286373, as a mirror illumination as shown in JP-A-2001-286373, as a bathroom lighting system as shown in JP-A-2003-28895, as JP-A-2004-321074 As an artificial light source for plant growth shown in Japanese Laid-Open Patent Publication No. 2004-354232, a light-sensitive agent as shown in Japanese Laid-Open Patent Publication No. 2004-358063 is used as a light emitter of a water pollution measuring apparatus as shown in Japanese Laid-Open Patent Publication No. 2004-354232. It is useful as a medical surgical light as disclosed in Japanese Patent Application Laid-Open No. 2005-322602.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。尚、以下で用いた化合物の具体的な構造については、実施例の最後にまとめて示した。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented. The specific structures of the compounds used below are summarized at the end of the examples.

なお、下記記載のBD−1〜BD−5の発光極大波長は、いずれも480nm以下に有り、GD−1の発光極大波長は500nm以上〜580nm未満の範囲にあり、RD−1の発光極大波長は580nm以上の領域にあった。   Note that the emission maximum wavelengths of BD-1 to BD-5 described below are all below 480 nm, the emission maximum wavelength of GD-1 is in the range of 500 nm to less than 580 nm, and the emission maximum wavelength of RD-1 Was in the region of 580 nm or more.

実施例1
《有機EL素子の作製》
〔有機EL素子1の作製〕
陽極として、30mm×30mm、厚さ0.7mmのガラス基板上に、ITO(インジウムチンオキシド)を110nmの厚さで成膜した支持基板にパターニングを行った後、このITO透明電極を付けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定した。
Example 1
<< Production of organic EL element >>
[Production of Organic EL Element 1]
As a positive electrode, after patterning a support substrate in which an ITO (indium tin oxide) film having a thickness of 110 nm is formed on a glass substrate having a thickness of 30 mm × 30 mm and a thickness of 0.7 mm, this ITO transparent electrode is attached to the transparent substrate. The support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then this transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.

真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を各々の素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。   Each of the crucibles for vapor deposition in the vacuum vapor deposition apparatus was filled with an optimum amount of the constituent material of each layer for manufacturing each element. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.

次いで、真空度を1×10−4Paまで減圧した後、m−MTDATAの入った前記蒸着用るつぼを通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、厚さ20nmの正孔注入層を設けた。次いで、α−NPDの入った前記蒸着用るつぼを同様にして加熱、蒸着して、厚さ30nmの正孔輸送層を設けた。Next, after reducing the degree of vacuum to 1 × 10 −4 Pa, the deposition crucible containing m-MTDATA was energized and heated, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided. Next, the evaporation crucible containing α-NPD was heated and evaporated in the same manner to provide a hole transport layer having a thickness of 30 nm.

次いで、化合物BD−1、化合物RD−1及び化合物M−1を、化合物BD−1含有量が発光層の全領域で20%の均一濃度となるようにし、化合物RD−1は、正面色度がx=0.45±0.03、y=0.42±0.03(CIE1931)になるように最適な濃度で、蒸着速度0.1nm/秒で共蒸着し、厚さ70nmの燐光発光層を形成した。なお、下記全ての有機EL素子1〜8の作製においては、化合物RD−1の濃度は、発光層の膜厚に依存せず、かつ正面色度がx=0.45±0.03、y=0.42±0.03(CIE1931)になるような条件を適宜調整した。   Next, the compound BD-1, the compound RD-1, and the compound M-1 are adjusted so that the content of the compound BD-1 becomes a uniform concentration of 20% in the entire region of the light emitting layer, and the compound RD-1 has a front chromaticity. Is co-evaporated at a deposition rate of 0.1 nm / second at an optimum concentration so that x = 0.45 ± 0.03 and y = 0.42 ± 0.03 (CIE 1931), and phosphorescence emission with a thickness of 70 nm A layer was formed. In the preparation of all the organic EL elements 1 to 8 below, the concentration of the compound RD-1 does not depend on the thickness of the light emitting layer, and the front chromaticity is x = 0.45 ± 0.03, y = 0.42 ± 0.03 (CIE1931) was adjusted as appropriate.

その後、化合物M−2を厚さ30nmに蒸着して電子輸送層を形成し、更にフッ化カリウム(KF)を厚さ2nmで形成した。更に、アルミニウムを厚さ110nmで蒸着して陰極を形成した。   Thereafter, Compound M-2 was deposited to a thickness of 30 nm to form an electron transport layer, and potassium fluoride (KF) was further formed to a thickness of 2 nm. Further, aluminum was deposited with a thickness of 110 nm to form a cathode.

次いで、上記素子の非発光面をガラスケースで覆い、図1、図2に示す構成からなる有機EL素子1を作製した。   Subsequently, the non-light-emitting surface of the element was covered with a glass case, and an organic EL element 1 having the configuration shown in FIGS. 1 and 2 was produced.

図1は、有機EL素子の概略図を示したものであり、有機EL素子101は、ガラスカバー102で覆われている。尚、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。図2は有機EL素子の断面図を示し、図2において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。尚、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。   FIG. 1 shows a schematic diagram of an organic EL element. The organic EL element 101 is covered with a glass cover 102. The sealing operation with the glass cover was performed in a glove box (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere. FIG. 2 shows a cross-sectional view of the organic EL element. In FIG. 2, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.

〔有機EL素子2の作製〕
上記有機EL素子1の作製と同様にして、正孔輸送層まで形成した。
[Production of Organic EL Element 2]
It carried out similarly to preparation of the said organic EL element 1, and formed to the positive hole transport layer.

次いで、化合物BD−1、化合物RD−1、及び化合物M−1を、化合物BD−1が陽極側から膜厚方向に対し線形に67%から36%の濃度になるように、化合物BD−1の蒸着比率を順次変化させ、蒸着速度0.1nm/秒で厚さ25nmになるよう共蒸着した。   Next, Compound BD-1, Compound RD-1, and Compound M-1 are combined so that Compound BD-1 has a concentration of 67% to 36% linearly with respect to the film thickness direction from the anode side. The vapor deposition ratio was sequentially changed, and co-deposition was performed at a deposition rate of 0.1 nm / second to a thickness of 25 nm.

次いで、化合物BD−1、化合物RD−1、及び化合物M−1を、青燐光発光化合物BD−1が陽極側から膜厚に対し線形に36%から19%の濃度になるように、化合物BD−1の蒸着比率を順次変化させ、蒸着速度0.1nm/秒で厚さ45nmになるように共蒸着し、全体として厚さ70nmの発光層を形成した。   Next, the compound BD-1, the compound RD-1, and the compound M-1 are combined with the compound BD so that the blue phosphorescent compound BD-1 has a concentration of 36% to 19% linearly with respect to the film thickness from the anode side. The vapor deposition ratio of −1 was sequentially changed and co-evaporated to a thickness of 45 nm at a vapor deposition rate of 0.1 nm / second to form a light emitting layer having a thickness of 70 nm as a whole.

その後、有機EL素子1と同様にして、電子輸送層、KF層、アルミニウム層(陰極)を形成した。   Thereafter, in the same manner as in the organic EL element 1, an electron transport layer, a KF layer, and an aluminum layer (cathode) were formed.

次いで、有機EL素子1と同様にして上記有機EL素子の非発光面をガラスケースで覆い、有機EL素子2を作製した。   Next, in the same manner as in the organic EL element 1, the non-light-emitting surface of the organic EL element was covered with a glass case to produce an organic EL element 2.

〔有機EL素子3の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−28を用いた以外は同様にして、有機EL素子3を作製した。
[Production of Organic EL Element 3]
In the production of the organic EL element 1, an organic EL element 3 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子4の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−28を用いた以外は同様にして、有機EL素子4を作製した。
[Production of Organic EL Element 4]
In the production of the organic EL element 2, an organic EL element 4 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子5の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−82を用いた以外は同様にして、有機EL素子5を作製した。
[Production of Organic EL Element 5]
In the production of the organic EL element 1, an organic EL element 5 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子6の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−82を用いた以外は同様にして、有機EL素子6を作製した。
[Production of Organic EL Element 6]
In the production of the organic EL element 2, an organic EL element 6 was produced in the same manner except that instead of the compound BD-1, the exemplified compound D-82 was used as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子7の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−85を用いた以外は同様にして、有機EL素子7を作製した。
[Production of Organic EL Element 7]
In the production of the organic EL element 1, an organic EL element 7 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子8の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−85を用いた以外は同様にして、有機EL素子8を作製した。
[Production of Organic EL Element 8]
In the production of the organic EL element 2, an organic EL element 8 was produced in the same manner except that the example compound D-85 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子9の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−86を用いた以外は同様にして、有機EL素子9を作製した。
[Production of Organic EL Element 9]
In the production of the organic EL element 1, an organic EL element 9 was produced in the same manner except that the exemplified compound D-86 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子10の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−86を用いた以外は同様にして、有機EL素子10を作製した。
[Production of Organic EL Element 10]
In the production of the organic EL element 2, the organic EL element 10 was produced in the same manner except that the exemplified compound D-86 was used in place of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子11の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−12を用いた以外は同様にして、有機EL素子11を作製した。
[Production of Organic EL Element 11]
In the production of the organic EL device 1, an organic EL device 11 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子12の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−12を用いた以外は同様にして、有機EL素子12を作製した。
[Production of Organic EL Element 12]
In the production of the organic EL element 2, the organic EL element 12 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子13の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−13を用いた以外は同様にして、有機EL素子13を作製した。
[Production of Organic EL Element 13]
In the production of the organic EL element 1, an organic EL element 13 was produced in the same manner except that instead of the compound BD-1, the exemplified compound D-13 was used as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子14の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−13を用いた以外は同様にして、有機EL素子14を作製した。
[Production of Organic EL Element 14]
In the production of the organic EL element 2, an organic EL element 14 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子15の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−15を用いた以外は同様にして、有機EL素子15を作製した。
[Production of Organic EL Element 15]
In the production of the organic EL element 1, an organic EL element 15 was produced in the same manner except that instead of the compound BD-1, the exemplified compound D-15 was used as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子16の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−15を用いた以外は同様にして、有機EL素子16を作製した。
[Production of Organic EL Element 16]
In the production of the organic EL element 2, an organic EL element 16 was produced in the same manner except that instead of the compound BD-1, the exemplified compound D-15 was used as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子17の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−18を用いた以外は同様にして、有機EL素子17を作製した。
[Production of Organic EL Element 17]
In the production of the organic EL element 1, an organic EL element 17 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子18の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−18を用いた以外は同様にして、有機EL素子18を作製した。
[Production of Organic EL Element 18]
In the production of the organic EL element 2, an organic EL element 18 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子19の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−25を用いた以外は同様にして、有機EL素子19を作製した。
[Production of Organic EL Element 19]
In the production of the organic EL element 1, an organic EL element 19 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子20の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−25を用いた以外は同様にして、有機EL素子20を作製した。
[Production of Organic EL Element 20]
In the production of the organic EL element 2, an organic EL element 20 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子21の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−31を用いた以外は同様にして、有機EL素子21を作製した。
[Production of Organic EL Element 21]
In the production of the organic EL element 1, an organic EL element 21 was produced in the same manner except that the exemplified compound D-31 was used in place of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子22の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−31を用いた以外は同様にして、有機EL素子22を作製した。
[Production of Organic EL Element 22]
In the production of the organic EL element 2, an organic EL element 22 was produced in the same manner except that the compound BD-1 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子23の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−37を用いた以外は同様にして、有機EL素子23を作製した。
[Production of Organic EL Element 23]
In the production of the organic EL element 1, an organic EL element 23 was produced in the same manner except that the exemplified compound D-37 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子24の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−37を用いた以外は同様にして、有機EL素子24を作製した。
[Production of Organic EL Element 24]
In the production of the organic EL element 2, an organic EL element 24 was produced in the same manner except that the exemplified compound D-37 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子25の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−43を用いた以外は同様にして、有機EL素子25を作製した。
[Production of Organic EL Element 25]
In the production of the organic EL element 1, an organic EL element 25 was produced in the same manner except that the exemplified compound D-43 was used in place of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子26の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−43を用いた以外は同様にして、有機EL素子26を作製した。
[Production of Organic EL Element 26]
In the production of the organic EL element 2, an organic EL element 26 was produced in the same manner except that the exemplified compound D-43 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子27の作製〕
上記有機EL素子1の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−52を用いた以外は同様にして、有機EL素子27を作製した。
[Production of Organic EL Element 27]
In the production of the organic EL element 1, an organic EL element 27 was produced in the same manner except that the example compound D-52 was used instead of the compound BD-1 as the blue phosphorescent compound used in the light emitting layer.

〔有機EL素子28の作製〕
上記有機EL素子2の作製において、発光層に用いる青燐光発光化合物として、化合物BD−1に代えて、例示化合物D−52を用いた以外は同様にして、有機EL素子28を作製した。
[Production of Organic EL Element 28]
In the production of the organic EL element 2, an organic EL element 28 was produced in the same manner except that instead of the compound BD-1, the exemplified compound D-52 was used as the blue phosphorescent compound used in the light emitting layer.

《有機EL素子の評価》
〔電力効率の測定〕
分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いて、各有機EL素子の正面輝度及び輝度角度依存性を測定し、正面輝度1000cd/mにおける電力効率を求め、得られた結果を表1に示す。なお、表1には各青燐光発光化合物の濃度分布の有無の組合せについて、各々濃度分布が無い有機EL素子(有機EL素子1、3、5、7、9、11、13、15、17、19、21、23、25、27)の効率を100とした相対値で表示した。電力効率は高い値ほど効率が高く好ましい。
<< Evaluation of organic EL elements >>
(Measurement of power efficiency)
Using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.), the front luminance and luminance angle dependency of each organic EL element were measured, and the power efficiency at the front luminance of 1000 cd / m 2 was obtained. Is shown in Table 1. Table 1 shows organic EL elements having no concentration distribution (organic EL elements 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27) are expressed as relative values with the efficiency as 100. The higher the power efficiency, the higher the efficiency and the better.

〔駆動電圧に対する色度変動幅の測定〕
分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いて、駆動電圧を変化させた際の色度変動幅を求めた。色度変動幅は、駆動電圧を変化させ輝度を変調させた際の、正面輝度500cd/m〜2000cd/mにおけるCIE1931x、y値の変動最大距離ΔEとして下式(1)で求めた。表1には各青燐光発光化合物の濃度分布の有無の組合せについて、各々濃度分布が無い有機EL素子(有機EL素子1、3、5、7、9)のΔEを100とした差異の相対値を表1に示す。ΔEは小さい値ほど色度変動が小さく、駆動電圧に対する色度安定性に優れていることを表す。
[Measurement of chromaticity variation with respect to driving voltage]
A spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.) was used to determine the chromaticity fluctuation range when the drive voltage was changed. Chromaticity variation range, when obtained by modulating the intensity by changing the driving voltage was determined by the following equation (1) as the fluctuation maximum distance ΔE of CIE 1931 x, y values in the front luminance 500cd / m 2 ~2000cd / m 2 . Table 1 shows the relative value of the difference when ΔE of organic EL elements having no concentration distribution (organic EL elements 1, 3, 5, 7, 9) is set to 100 for combinations of the presence or absence of concentration distribution of each blue phosphorescent compound. Is shown in Table 1. ΔE indicates that the smaller the value, the smaller the chromaticity variation and the better the chromaticity stability with respect to the drive voltage.

式(1)
ΔE=(Δx+Δy1/2

Figure 0005831459
表1に示されるように、本発明の分子構造を有する青燐光発光化合物を含有する有機EL素子は、発光層内で濃度分布を付与させることにより電力効率、駆動電圧に対する色度安定性が共に改善されている。一方、本発明外の分子構造の青燐光発光化合物を含有する有機EL素子2は、発光層内に濃度分布を有することにより電力効率、駆動電圧に対する色度安定性がむしろ劣化している。Formula (1)
ΔE = (Δx 2 + Δy 2 ) 1/2
Figure 0005831459
As shown in Table 1, the organic EL device containing the blue phosphorescent compound having the molecular structure of the present invention has both power efficiency and chromaticity stability with respect to driving voltage by providing a concentration distribution in the light emitting layer. It has been improved. On the other hand, the organic EL element 2 containing a blue phosphorescent compound having a molecular structure outside of the present invention has rather deteriorated power efficiency and chromaticity stability with respect to driving voltage due to the concentration distribution in the light emitting layer.

また、本発明の分子構造を有する青燐光発光化合物において、青燐光発光性化合物の最高電子占有準位が5.3eVより小さい化合物を用いた方が、該化合物が濃度分布を有する場合の性能の向上幅が大きいことが分かる。   In addition, in the blue phosphorescent compound having the molecular structure of the present invention, it is better to use a compound having a maximum electron occupation level of less than 5.3 eV of the blue phosphorescent compound when the compound has a concentration distribution. It can be seen that the improvement range is large.

実施例2
《有機EL素子の作製》
〔有機EL素子29の作製〕
実施例1に記載の有機EL素子1の作製方法と同様にして、正孔輸送層まで設けた。
Example 2
<< Production of organic EL element >>
[Production of Organic EL Element 29]
The hole transport layer was provided in the same manner as in the method for producing the organic EL element 1 described in Example 1.

次いで、例示化合物D−28、化合物RD−1、及び化合物M−1を、例示化合物D−28が陽極側から膜厚に対し線形に50%から36%になるように濃度を変化させ、蒸着速度0.1nm/秒で厚さ25nmになるよう共蒸着した。   Next, the concentration of Exemplified Compound D-28, Compound RD-1, and Compound M-1 was varied by changing the concentration so that Exemplified Compound D-28 was linearly 50% to 36% of the film thickness from the anode side. Co-evaporation was performed at a rate of 0.1 nm / second to a thickness of 25 nm.

次いで、例示化合物D−28、化合物RD−1、及び化合物M−1を、例示化合物D−28が陽極側から膜厚に対し線形に36%から19%になるように濃度を変化させ、蒸着速度0.1nm/秒で厚さ45nmになるように共蒸着し、全体として厚さ70nmの発光層を形成した。なお、化合物RD−1、及び化合物M−1の蒸着量は、実施例1に記載の有機EL素子1の作製条件と同一とした。   Next, the concentration of Exemplified Compound D-28, Compound RD-1, and Compound M-1 was varied by changing the concentration so that Exemplified Compound D-28 was linearly 36% to 19% of the film thickness from the anode side. Co-evaporation was performed so that the thickness was 45 nm at a speed of 0.1 nm / second, and a light emitting layer having a thickness of 70 nm was formed as a whole. In addition, the vapor deposition amount of the compound RD-1 and the compound M-1 was made the same as the preparation conditions of the organic EL element 1 described in Example 1.

その後、実施例1に記載の有機EL素子1の作製と同様にして、電子輸送層、KF層、アルミニウム層(陰極)を形成した。   Thereafter, in the same manner as in the production of the organic EL element 1 described in Example 1, an electron transport layer, a KF layer, and an aluminum layer (cathode) were formed.

次いで、実施例1に記載の有機EL素子1の作製と同様にして、上記素子の非発光面をガラスケースで覆い、有機EL素子29を作製した。   Next, in the same manner as in the production of the organic EL element 1 described in Example 1, the non-light emitting surface of the element was covered with a glass case, and an organic EL element 29 was produced.

〔有機EL素子30の作製〕
実施例1に記載の有機EL素子1の作製方法と同様にして、正孔輸送層まで設けた。
[Production of Organic EL Element 30]
The hole transport layer was provided in the same manner as in the method for producing the organic EL element 1 described in Example 1.

次いで、例示化合物D−28、化合物RD−1、及び化合物M−1を、例示化合物D−28が陽極側から膜厚に対し線形に84%から36%になるように濃度を変化させ、蒸着速度0.1nm/秒で厚さ25nmになるよう共蒸着した。   Next, the concentration of Exemplified Compound D-28, Compound RD-1, and Compound M-1 was varied by changing the concentration so that Exemplified Compound D-28 was linearly 84% to 36% with respect to the film thickness from the anode side. Co-evaporation was performed at a rate of 0.1 nm / second to a thickness of 25 nm.

次いで、例示化合物D−28、化合物RD−1、及び化合物M−1を、例示化合物D−28が陽極側から膜厚に対し線形に36%から19%になるように濃度を変化させ、蒸着速度0.1nm/秒で厚さ45nmになるように共蒸着し、全体として厚さ70nmの発光層を形成した。なお、化合物RD−1、及び化合物M−1の蒸着量は、実施例1に記載の有機EL素子1の作製条件と同一とした。   Next, the concentration of Exemplified Compound D-28, Compound RD-1, and Compound M-1 was varied by changing the concentration so that Exemplified Compound D-28 was linearly 36% to 19% of the film thickness from the anode side. Co-evaporation was performed so that the thickness was 45 nm at a speed of 0.1 nm / second, and a light emitting layer having a thickness of 70 nm was formed as a whole. In addition, the vapor deposition amount of the compound RD-1 and the compound M-1 was made the same as the preparation conditions of the organic EL element 1 described in Example 1.

その後、実施例1に記載の有機EL素子1の作製と同様にして、電子輸送層、KF層、アルミニウム層(陰極)を形成した。   Thereafter, in the same manner as in the production of the organic EL element 1 described in Example 1, an electron transport layer, a KF layer, and an aluminum layer (cathode) were formed.

次いで、実施例1に記載の有機EL素子1の作製と同様にして、上記素子の非発光面をガラスケースで覆い、有機EL素子30を作製した。   Next, in the same manner as the production of the organic EL element 1 described in Example 1, the non-light-emitting surface of the element was covered with a glass case, and the organic EL element 30 was produced.

〔有機EL素子31の作製〕
実施例1に記載の有機EL素子1の作製方法と同様にして、正孔輸送層まで設けた。
[Production of Organic EL Element 31]
The hole transport layer was provided in the same manner as in the method for producing the organic EL element 1 described in Example 1.

次いで、例示化合物D−28、化合物RD−1、及び化合物M−1を、例示化合物D−28が陽極側から膜厚に対し線形に100%から36%になるように濃度を変化させ、蒸着速度0.1nm/秒で厚さ25nmになるよう共蒸着した。   Next, the concentration of Exemplified Compound D-28, Compound RD-1, and Compound M-1 was changed by changing the concentration so that Exemplified Compound D-28 was linearly 100% to 36% with respect to the film thickness from the anode side. Co-evaporation was performed at a rate of 0.1 nm / second to a thickness of 25 nm.

次いで、例示化合物D−28、化合物RD−1、及び化合物M−1を、例示化合物D−28が陽極側から膜厚に対し線形に36%から19%になるように濃度を変化させ、蒸着速度0.1nm/秒で厚さ45nmになるように共蒸着し、全体として厚さ70nmの発光層を形成した。なお、化合物RD−1、及び化合物M−1の蒸着量は、実施例1に記載の有機EL素子1の作製条件と同一とした。   Next, the concentration of Exemplified Compound D-28, Compound RD-1, and Compound M-1 was varied by changing the concentration so that Exemplified Compound D-28 was linearly 36% to 19% of the film thickness from the anode side. Co-evaporation was performed so that the thickness was 45 nm at a speed of 0.1 nm / second, and a light emitting layer having a thickness of 70 nm was formed as a whole. In addition, the vapor deposition amount of the compound RD-1 and the compound M-1 was made the same as the preparation conditions of the organic EL element 1 described in Example 1.

その後、実施例1に記載の有機EL素子1の作製と同様にして、電子輸送層、KF層、アルミニウム層を形成した。   Thereafter, in the same manner as in the production of the organic EL element 1 described in Example 1, an electron transport layer, a KF layer, and an aluminum layer were formed.

次いで、実施例1に記載の有機EL素子1の作製と同様にして、上記素子の非発光面をガラスケースで覆い、有機EL素子31を作製した。   Next, in the same manner as in the production of the organic EL element 1 described in Example 1, the non-light-emitting surface of the element was covered with a glass case to produce an organic EL element 31.

次いで、実施例1と同様にして電力効率及び駆動電圧に対する色度変動幅を測定した。   Next, in the same manner as in Example 1, the chromaticity fluctuation range with respect to the power efficiency and the driving voltage was measured.

得られた結果を表2に示す。なお、表2に記載の数値は、有機EL素子3の電力効率、色度変動幅を100とする相対値で示す。   The obtained results are shown in Table 2. In addition, the numerical value of Table 2 is shown by the relative value which sets the power efficiency of the organic EL element 3 and the chromaticity fluctuation range as 100.

Figure 0005831459
表2に示されるように、本発明の好ましい態様である発光層の陽極側端部の青発光材料含有量が60%以上100%未満の有機EL素子は、60%より低い素子に比較して、電力効率が高く、色度変動も小さいことが判る。また、発光層の陽極側端部の青発光材料含有量が100%になると電力効率はむしろ濃度分布を有しない素子と比較しても低下しており、また、色度の変動も大きくなり、好ましくないことが分かる。
Figure 0005831459
As shown in Table 2, the organic EL device having a blue light emitting material content of 60% or more and less than 100% in the anode side end of the light emitting layer, which is a preferred embodiment of the present invention, is compared with a device having a lower content than 60%. It can be seen that the power efficiency is high and the chromaticity variation is small. In addition, when the content of the blue light emitting material at the anode side end of the light emitting layer becomes 100%, the power efficiency is rather lowered as compared with an element having no concentration distribution, and the variation in chromaticity also increases. It turns out that it is not preferable.

実施例3
《有機EL素子の作製》
〔有機EL素子32の作製〕
実施例1に記載の有機EL素子1の作製方法と同様にして、正孔輸送層まで設けた。
Example 3
<< Production of organic EL element >>
[Production of Organic EL Element 32]
The hole transport layer was provided in the same manner as in the method for producing the organic EL element 1 described in Example 1.

次いで、例示化合物D−28、化合物GD−1、化合物RD−1、及び化合物M−1を、例示化合物D−28が陽極側から膜厚に対し線形に67%から36%になるように濃度を変化させ、蒸着速度0.1nm/秒で厚さ25nmになるよう共蒸着した。   Next, the concentration of Exemplified Compound D-28, Compound GD-1, Compound RD-1, and Compound M-1 was such that Illustrative Compound D-28 was linear from 67% to 36% with respect to the film thickness from the anode side. , And co-deposited to a thickness of 25 nm at a deposition rate of 0.1 nm / second.

次いで、例示化合物D−28、化合物GD−1、化合物RD−1、及び化合物M−1を、例示化合物D−28が陽極側から膜厚に対し線形に36%から19%になるように濃度を変化させ、蒸着速度0.1nm/秒で厚さ45nmになるように共蒸着し、全体として厚さ70nmの発光層を形成した。なお、化合物GD−1及び化合物RD−1の濃度は、発光層の膜厚に依存せず、かつ正面色度がx=0.45±0.03、y=0.42±0.03(CIE1931)になるような条件を適宜調整した。   Next, the concentration of Exemplified Compound D-28, Compound GD-1, Compound RD-1, and Compound M-1 was such that Exemplified Compound D-28 was linearly 36% to 19% with respect to the film thickness from the anode side. Was changed and co-evaporated to a thickness of 45 nm at a deposition rate of 0.1 nm / second to form a light emitting layer having a thickness of 70 nm as a whole. The concentrations of Compound GD-1 and Compound RD-1 do not depend on the film thickness of the light emitting layer, and the front chromaticity is x = 0.45 ± 0.03, y = 0.42 ± 0.03 ( Conditions such as CIE1931) were appropriately adjusted.

その後、実施例1に記載の有機EL素子1の作製と同様にして、電子輸送層、KF層、アルミニウム層(陰極)を形成した。   Thereafter, in the same manner as in the production of the organic EL element 1 described in Example 1, an electron transport layer, a KF layer, and an aluminum layer (cathode) were formed.

次いで、実施例1に記載の有機EL素子1の作製と同様にして、上記素子の非発光面をガラスケースで覆い、有機EL素子32を作製した。   Next, in the same manner as the production of the organic EL element 1 described in Example 1, the non-light-emitting surface of the element was covered with a glass case, and the organic EL element 32 was produced.

次いで、実施例1と同様にして電力効率及び駆動電圧に対する色度変動幅を測定し、得られた結果を表3に示す。なお、表4においては、有機EL素子4の電力効率、色度変動幅をそれぞれ100とする相対値で示す。   Next, the chromaticity variation width with respect to the power efficiency and the driving voltage was measured in the same manner as in Example 1, and the obtained results are shown in Table 3. In Table 4, the power efficiency and the chromaticity variation range of the organic EL element 4 are shown as relative values, each being 100.

Figure 0005831459
表3に記載の結果より明らかなように、有機EL素子4に対し、緑燐光発光化合物を加えた有機EL素子32は、電力効率、駆動電圧に対する色度安定性(ΔE相対値)が更に改善された良好な結果を示している。
Figure 0005831459
As is clear from the results shown in Table 3, the organic EL element 32 in which the green phosphorescent compound is added to the organic EL element 4 further improves the power efficiency and the chromaticity stability (ΔE relative value) with respect to the driving voltage. Shows good results.

実施例4
《有機EL素子の作製》
〔有機EL素子33の作製〕
実施例3に記載の有機EL素子32の作製方法と同様にして、正孔輸送層まで設けた。
Example 4
<< Production of organic EL element >>
[Production of Organic EL Element 33]
The hole transport layer was provided in the same manner as in the method for manufacturing the organic EL element 32 described in Example 3.

次いで、例示化合物D−28、化合物GD−1、化合物RD−1、及び化合物M−1を、例示化合物D−28が67%の均一濃度になるように、蒸着速度0.1nm/秒で厚さ10nmになるよう共蒸着した。   Next, the exemplary compound D-28, the compound GD-1, the compound RD-1, and the compound M-1 were thickened at a deposition rate of 0.1 nm / second so that the exemplary compound D-28 had a uniform concentration of 67%. Co-deposited to a thickness of 10 nm.

次いで、例示化合物D−28、化合物GD−1、化合物RD−1、及び化合物M−1を、例示化合物D−28が36%の均一濃度になるように、蒸着速度0.1nm/秒で厚さ20nmになるよう共蒸着した。   Next, the exemplary compound D-28, the compound GD-1, the compound RD-1, and the compound M-1 were thickened at a deposition rate of 0.1 nm / second so that the exemplary compound D-28 had a uniform concentration of 36%. Co-deposited to a thickness of 20 nm.

次いで、例示化合物D−28、化合物GD−1、化合物RD−1、及び化合物M−1を、例示化合物D−28が19%の均一濃度になるように、蒸着速度0.1nm/秒で厚さ40nmになるように共蒸着し、全体として厚さ70nmの発光層を形成した。なお、化合物GD−1、化合物RD−1、及び化合物M−1の蒸着条件は、実施例3に記載の表示素子32の作製と同条件とした。   Next, the exemplary compound D-28, the compound GD-1, the compound RD-1, and the compound M-1 were thickened at a deposition rate of 0.1 nm / second so that the exemplary compound D-28 had a uniform concentration of 19%. Co-evaporation was performed to a thickness of 40 nm to form a light emitting layer having a thickness of 70 nm as a whole. The vapor deposition conditions for the compound GD-1, the compound RD-1, and the compound M-1 were the same as those for the display element 32 described in Example 3.

その後、実施例3に記載の有機EL素子32の作製と同様にして、電子輸送層、KF層、アルミニウム層(陰極)を形成した。   Thereafter, an electron transport layer, a KF layer, and an aluminum layer (cathode) were formed in the same manner as in the production of the organic EL element 32 described in Example 3.

次いで、実施例3に記載の有機EL素子32の作製と同様にして、上記素子の非発光面をガラスケースで覆い、有機EL素子33を作製した。   Next, in the same manner as the production of the organic EL element 32 described in Example 3, the non-light-emitting surface of the element was covered with a glass case, and the organic EL element 33 was produced.

次いで、実施例1に記載の方法と同様にして、電力効率及び駆動電圧に対する色度変動幅を測定した。   Next, in the same manner as in the method described in Example 1, the chromaticity variation width with respect to the power efficiency and the driving voltage was measured.

また、有機EL素子の耐久性を見積もるため、強制劣化条件として85℃環境下に300時間保存した後での正面色度を測定し、保存前の正面色度との変動幅ΔE(表4には、「ΔE相対値 85℃保存」と表示)を、前記式(1)と同様にして求めた。   In addition, in order to estimate the durability of the organic EL element, the front chromaticity after storage for 300 hours in an 85 ° C. environment as a forced deterioration condition was measured, and the fluctuation width ΔE (refer to Table 4) with the front chromaticity before storage. Was expressed in the same manner as in the above formula (1).

以上により得られた結果を表4に示す。なお、有機EL素子32の電力効率、駆動電圧に対する色度安定性(表4には、「ΔE相対値 対駆動電圧」と表示)、85℃保存前後での正面色度の変動幅ΔEをそれぞれ100とする相対値で示す。   Table 4 shows the results obtained as described above. In addition, the power efficiency of the organic EL element 32, the chromaticity stability with respect to the driving voltage (shown as “ΔE relative value versus driving voltage” in Table 4), and the fluctuation range ΔE of the front chromaticity before and after storage at 85 ° C., respectively. The relative value is 100.

Figure 0005831459
表4に記載した結果より明らかなように、本発明の好ましい態様である発光層の青燐光発光化合物の濃度を連続的に変化させた有機EL素子32は、青燐光発光化合物の濃度を階段状に変化させた有機EL素子33と比較し、電力効率、駆動電圧に対する色度安定性は同等であるものの、素子を85℃で保存した前後での色度変動が小さく、総合的に優れた性能を有していることが分かる。
Figure 0005831459
As is clear from the results shown in Table 4, the organic EL element 32 in which the concentration of the blue phosphorescent compound in the light emitting layer, which is a preferred embodiment of the present invention, was continuously changed, the concentration of the blue phosphorescent compound was changed stepwise. Compared with the organic EL element 33 changed to, the chromaticity stability with respect to power efficiency and driving voltage is equivalent, but the chromaticity fluctuation before and after storing the element at 85 ° C. is small, and overall excellent performance It can be seen that

実施例5
《有機EL素子の作製》
〔有機EL素子34の作製〕
実施例1に記載の有機EL素子4の作製において、発光層に用いる材料として、化合物M−1に代えて化合物M−3を用いた以外は同様にして、有機EL素子34を作製した。
Example 5
<< Production of organic EL element >>
[Production of Organic EL Element 34]
In the production of the organic EL element 4 described in Example 1, an organic EL element 34 was produced in the same manner except that the compound M-3 was used instead of the compound M-1 as a material used for the light emitting layer.

〔有機EL素子35の作製〕
上記有機EL素子16の作製において、発光層に用いる材料として、化合物M−3に代えて、化合物M−4を用いた以外は同様にして、有機EL素子35を作製した。
[Production of Organic EL Element 35]
In the production of the organic EL element 16, an organic EL element 35 was produced in the same manner except that the compound M-4 was used instead of the compound M-3 as the material used for the light emitting layer.

〔有機EL素子36の作製〕
上記有機EL素子16の作製において、発光層に用いる材料として、化合物M−3に代えて、化合物M−5を用いた以外は同様にして、有機EL素子36を作製した。
[Production of Organic EL Element 36]
In the production of the organic EL element 16, an organic EL element 36 was produced in the same manner except that the compound M-5 was used instead of the compound M-3 as a material used for the light emitting layer.

次いで、実施例1に記載の方法と同様にして、電力効率及び駆動電圧に対する色度変動幅を測定した。   Next, in the same manner as in the method described in Example 1, the chromaticity variation width with respect to the power efficiency and the driving voltage was measured.

また、初期輝度8000cd/mで、輝度が50%低下するまで連続駆動させ、連続駆動前と駆動後の正面色度の変動幅ΔE(表5には、「ΔE相対値 対連続駆動」と表示)を、前記式(1)に従って求めた。Further, continuous driving was performed at an initial luminance of 8000 cd / m 2 until the luminance decreased by 50%, and the variation width ΔE of front chromaticity before and after continuous driving (in Table 5, “ΔE relative value vs. continuous driving” Display) was determined according to the equation (1).

以上により得られた結果を表5に示す。なお、表5においては、有機EL素子4の電力効率、駆動電圧に対する色度安定性(表5には、「ΔE相対値 対駆動電圧」と表示)及び連続駆動時の色度安定性(表5には、「ΔE相対値 対連続駆動」と表示)のそれぞれを100とする相対値で示す。   Table 5 shows the results obtained as described above. In Table 5, the power efficiency of the organic EL element 4, the chromaticity stability with respect to the driving voltage (in Table 5, “ΔE relative value vs. driving voltage”) and the chromaticity stability during continuous driving (Table In FIG. 5, “ΔE relative value vs. continuous driving”) is indicated as a relative value with 100 as each.

Figure 0005831459
表5に記載の結果より明らかなように、本発明の好ましいホスト化合物を用いた有機EL素子4及び34は、有機EL素子35及び36に比較し優れた性能を示していることが分かる。
Figure 0005831459
As is clear from the results shown in Table 5, it can be seen that the organic EL elements 4 and 34 using the preferred host compound of the present invention show superior performance compared to the organic EL elements 35 and 36.

以下に、実施例1〜5において、各有機EL素子の作製に用いた化合物の構造を示す。   Below, in Examples 1-5, the structure of the compound used for preparation of each organic EL element is shown.

Figure 0005831459
Figure 0005831459
Figure 0005831459
Figure 0005831459

本発明の有機エレクトロルミネッセンス素子は、電力効率に優れ、かつ色度の対駆動電圧、対駆動経時、対デバイス保存での安定性に優れており、表示デバイス、ディスプレイ、各種発光光源として好適に利用できる。   The organic electroluminescence device of the present invention is excellent in power efficiency and excellent in stability in chromaticity versus driving voltage, versus driving time and device storage, and is suitably used as a display device, a display, and various light-emitting light sources. it can.

101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
DESCRIPTION OF SYMBOLS 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with a transparent electrode 108 Nitrogen gas 109 Water catching agent

Claims (6)

対向する電極間に、480nm以下の短波長域に少なくとも一つの発光極大を有する少なくとも1種の燐光発光ドーパントA、及び580nm以上の長波長域に発光極大を有する少なくとも1種の燐光発光ドーパントBを同一層内に含有する発光層を有し、前記燐光発光ドーパントAが、下記一般式(A)〜(C)で表される化合物から選ばれる少なくとも1つの化合物であり、前記燐光発光ドーパントAが前記発光層の陽極側において高濃度に含有されており、陰極側へ向けて低濃度となるように濃度分布を持って含有され、かつ該燐光発光ドーパントAの陽極側端部での含有量が、発光層の陽極側端部の全質量の60質量%以上、100質量%未満であることを特徴とする有機エレクトロルミネッセンス素子。
Figure 0005831459
〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rcは各々水素原子、アルキル基、アリール基、アルコキシル基またはハロゲン原子を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
Figure 0005831459
〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rc、Rb、Rcは各々水素原子を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
Figure 0005831459
〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rcは各々水素原子またはアルキル基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
At least one phosphorescent dopant A having at least one emission maximum in a short wavelength region of 480 nm or less and at least one phosphorescent dopant B having an emission maximum in a long wavelength region of 580 nm or more between opposed electrodes. The phosphorescent light-emitting dopant A has a light-emitting layer contained in the same layer, and the phosphorescent light-emitting dopant A is at least one compound selected from the compounds represented by the following general formulas (A) to (C). It is contained at a high concentration on the anode side of the light emitting layer, is contained with a concentration distribution so as to become a low concentration toward the cathode side, and the content of the phosphorescent dopant A at the end on the anode side is An organic electroluminescence device characterized by being 60% by mass or more and less than 100% by mass of the total mass of the anode side end of the light emitting layer.
Figure 0005831459
[Wherein, Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, Rb and Rc each represents a hydrogen atom, an alkyl group, an aryl group, an alkoxyl group or a halogen atom, and A1 represents an aromatic ring. Alternatively, it represents a residue necessary for forming an aromatic heterocyclic ring, and M represents Ir or Pt. X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. ]
Figure 0005831459
[Wherein, Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, Rb, Rc, Rb 1 and Rc 1 each represent a hydrogen atom, and A1 represents an aromatic ring or an aromatic heterocyclic ring. Represents the residue necessary to form, M represents Ir or Pt. X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. ]
Figure 0005831459
[In the formula, Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, Rb and Rc each represent a hydrogen atom or an alkyl group, and A1 forms an aromatic ring or an aromatic heterocyclic ring. And M represents Ir or Pt. X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. ]
前記燐光発光ドーパントAの最高電子占有準位が5.3eVより浅いことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to claim 1, wherein the phosphorescent dopant A has a highest electron occupation level shallower than 5.3 eV. 前記燐光発光ドーパントA及びBを含有する発光層に、500nm以上580nm未満の波長域に発光極大を有する少なくとも1種の燐光発光ドーパントCを含有することを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。   The light emitting layer containing the phosphorescent dopants A and B contains at least one phosphorescent dopant C having an emission maximum in a wavelength region of 500 nm or more and less than 580 nm. Organic electroluminescence device. 前記燐光発光ドーパントA及びBを含有する発光層が、下記一般式(a)で表されるホスト化合物を含有することを特徴とする請求項1から3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure 0005831459
〔式中、Xは、NR′、O、S、CR′R″またはSiR′R″を表す。R′、R″は、各々水素原子、アルキル基または芳香族炭化水素基を表す。Arは芳香族環を表す。nは0から8の整数を表す。〕
4. The organic electroluminescence according to claim 1, wherein the light emitting layer containing the phosphorescent dopants A and B contains a host compound represented by the following general formula (a). 5. element.
Figure 0005831459
[Wherein, X represents NR ′, O, S, CR′R ″ or SiR′R ″. R ′ and R ″ each represent a hydrogen atom, an alkyl group or an aromatic hydrocarbon group. Ar represents an aromatic ring. N represents an integer of 0 to 8.]
前記580nm以上の長波長域に発光極大を有する少なくとも1種の燐光発光ドーパントBの濃度が、発光層の膜厚方向で一定濃度であることを特徴とする請求項1から4のいずれか一項に記載の有機エレクトロルミネッセンス素子。5. The concentration of at least one phosphorescent dopant B having an emission maximum in a long wavelength region of 580 nm or longer is a constant concentration in the film thickness direction of the light emitting layer. The organic electroluminescent element of description. 請求項1からのいずれか一項に記載の有機エレクトロルミネッセンス素子を用いることを特徴とする照明装置。 Lighting device characterized by use of an organic electroluminescent device according to any one of claims 1 to 5.
JP2012547891A 2010-12-09 2011-12-07 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE Active JP5831459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012547891A JP5831459B2 (en) 2010-12-09 2011-12-07 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010274488 2010-12-09
JP2010274488 2010-12-09
PCT/JP2011/078307 WO2012077714A1 (en) 2010-12-09 2011-12-07 Organic electroluminescent element and illumination device
JP2012547891A JP5831459B2 (en) 2010-12-09 2011-12-07 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE

Publications (2)

Publication Number Publication Date
JPWO2012077714A1 JPWO2012077714A1 (en) 2014-05-22
JP5831459B2 true JP5831459B2 (en) 2015-12-09

Family

ID=46207200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012547891A Active JP5831459B2 (en) 2010-12-09 2011-12-07 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE

Country Status (2)

Country Link
JP (1) JP5831459B2 (en)
WO (1) WO2012077714A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143243A (en) * 2015-11-16 2017-08-17 ザ レジェンツ オブ ザ ユニバーシティ オブ ミシガン Electroluminescent materials and devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101874657B1 (en) 2011-02-07 2018-07-04 이데미쓰 고산 가부시키가이샤 Biscarbazole derivative and organic electroluminescent element using same
CN113402542A (en) * 2021-05-25 2021-09-17 吉林奥来德光电材料股份有限公司 Compound for packaging film, ink composition containing compound and film packaging structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006102A (en) * 2002-05-31 2004-01-08 Canon Inc Electroluminescent element
WO2007004563A1 (en) * 2005-07-06 2007-01-11 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008035595A1 (en) * 2006-09-19 2008-03-27 Konica Minolta Holdings, Inc. Organic electroluminescent devices
WO2008132965A1 (en) * 2007-04-17 2008-11-06 Konica Minolta Holdings, Inc. White organic electroluminescent device and illuminating device
JP2009032990A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Organic electroluminescent element
WO2009084413A1 (en) * 2007-12-28 2009-07-09 Konica Minolta Holdings, Inc. Organic electroluminescent device and method for manufacturing organic electroluminescent device
JP2012023127A (en) * 2010-07-13 2012-02-02 Konica Minolta Holdings Inc Organic electroluminescent element, method for manufacturing the same, and lighting system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006102A (en) * 2002-05-31 2004-01-08 Canon Inc Electroluminescent element
WO2007004563A1 (en) * 2005-07-06 2007-01-11 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008035595A1 (en) * 2006-09-19 2008-03-27 Konica Minolta Holdings, Inc. Organic electroluminescent devices
WO2008132965A1 (en) * 2007-04-17 2008-11-06 Konica Minolta Holdings, Inc. White organic electroluminescent device and illuminating device
JP2009032990A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Organic electroluminescent element
WO2009084413A1 (en) * 2007-12-28 2009-07-09 Konica Minolta Holdings, Inc. Organic electroluminescent device and method for manufacturing organic electroluminescent device
JP2012023127A (en) * 2010-07-13 2012-02-02 Konica Minolta Holdings Inc Organic electroluminescent element, method for manufacturing the same, and lighting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143243A (en) * 2015-11-16 2017-08-17 ザ レジェンツ オブ ザ ユニバーシティ オブ ミシガン Electroluminescent materials and devices

Also Published As

Publication number Publication date
WO2012077714A1 (en) 2012-06-14
JPWO2012077714A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5522230B2 (en) White organic electroluminescence element and lighting device
JP5532605B2 (en) Multicolor phosphorescent organic electroluminescence device and lighting device
US7745990B2 (en) White light emitting organic electroluminescent element and lighting device
WO2012153603A1 (en) Phosphorescent organic electroluminescent element and lighting device
WO2012137640A1 (en) Organic electroluminescent element and lighting device
JP5194456B2 (en) Method for manufacturing organic electroluminescence element and method for manufacturing lighting device
JP5381992B2 (en) Surface emitting panel
JP5261755B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP5870782B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND DISPLAY DEVICE
EP2677561B1 (en) Organic electroluminescent element, lighting device, and display device
JP2007180148A (en) Organic electroluminescence element, material thereof, display and illumination apparatus
JP4962113B2 (en) LIGHTING DEVICE USING OPTICAL MEMBER AND ORGANIC ELECTROLUMINESCENCE ELEMENT
JP5018211B2 (en) Organic electroluminescence panel and lighting device using the same
JP5771965B2 (en) Multicolor phosphorescent organic electroluminescence device and lighting device
JP2008159741A (en) Light emitting body
JP2007059688A (en) Organic electroluminescence element, display device using same, and illuminator using same
JP5831459B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP5760415B2 (en) Organic electroluminescence device
JP5772835B2 (en) Multicolor phosphorescent organic electroluminescence device, method for producing the same, and lighting device
JP2010080473A (en) Organic electroluminescent element
JP2013008492A (en) Organic electroluminescent element
JP2011211216A (en) Organic electroluminescent element, display device using the same, and lighting fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5831459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350