JP5829472B2 - Endoscope system and operating method thereof - Google Patents
Endoscope system and operating method thereof Download PDFInfo
- Publication number
- JP5829472B2 JP5829472B2 JP2011225141A JP2011225141A JP5829472B2 JP 5829472 B2 JP5829472 B2 JP 5829472B2 JP 2011225141 A JP2011225141 A JP 2011225141A JP 2011225141 A JP2011225141 A JP 2011225141A JP 5829472 B2 JP5829472 B2 JP 5829472B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- image
- blue
- illumination
- fine structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011017 operating method Methods 0.000 title claims description 3
- 230000008719 thickening Effects 0.000 claims description 64
- 238000005286 illumination Methods 0.000 claims description 61
- 238000003384 imaging method Methods 0.000 claims description 29
- 239000004065 semiconductor Substances 0.000 claims description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 7
- 230000005284 excitation Effects 0.000 description 29
- 210000004204 blood vessel Anatomy 0.000 description 28
- 239000002344 surface layer Substances 0.000 description 19
- 239000010410 layer Substances 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 210000004400 mucous membrane Anatomy 0.000 description 14
- 230000000875 corresponding effect Effects 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 230000003902 lesion Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 238000000295 emission spectrum Methods 0.000 description 4
- 210000004088 microvessel Anatomy 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000012327 Endoscopic diagnosis Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003748 differential diagnosis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Landscapes
- Endoscopes (AREA)
Description
本発明は、生体組織上に形成されるピットパターンなどの微細構造や肥厚などの凹凸パターンを明瞭に観察することができる内視鏡システム、内視鏡システムのプロセッサ装置、及び画像生成方法に関する。 The present invention relates to an endoscope system capable of clearly observing a fine structure such as a pit pattern formed on a biological tissue and a concavo-convex pattern such as a thickening, a processor device of the endoscope system, and an image generation method.
近年の医療においては、内視鏡装置を用いた診断等が広く行われている。この内視鏡診断では、被検体内の照明光として広帯域光の白色光を用いる通常光観察の他、特定波長の特殊光を照明光として用いることによって、ガンなどの病変部を他の部位よりも明瞭化したり、また、病変部の位置や大きさを直感的に把握し易くする特殊光観察も行われるようになってきている。 In recent medical treatments, diagnosis using an endoscope apparatus is widely performed. In this endoscopic diagnosis, in addition to normal light observation using broadband white light as illumination light in the subject, special light of a specific wavelength is used as illumination light, so that lesions such as cancer can be seen from other parts. In addition, special light observation that makes it easier to intuitively grasp the position and size of a lesion is also being performed.
例えば、特許文献1では、生体組織の深さ方向への深達度及び血中ヘモグロビンの吸光特性が波長依存性を有すること利用し、短波長の青色狭帯域光で、生体組織表層に形成される微細血管やピットパターンなどの微細構造の明瞭化するとともに、青色狭帯域光よりも長波長の緑色狭帯域光で、生体組織の中深層に位置する太い血管を明瞭化している。これら表層〜中深層の血管や表層微細構造は、ガンの鑑別や深達度診断をする際の重要な手がかりとなることから、青色狭帯域光や緑色狭帯域光で明瞭化することによって、鑑別等の精度を飛躍的に向上させることができる。 For example, in Patent Document 1, the depth of the living tissue in the depth direction and the light absorption characteristics of blood hemoglobin have wavelength dependency, and are formed on the surface of the living tissue with a short wavelength blue narrow band light. In addition to clarifying fine structures such as fine blood vessels and pit patterns, thick blood vessels located in the middle and deep layers of biological tissues are clarified with green narrow-band light having a longer wavelength than blue narrow-band light. These superficial-medium-deep blood vessels and superficial microstructures are important clues for cancer differentiation and depth diagnosis. Etc. can be improved dramatically.
また、特許文献2では、自家蛍光を励起するための励起光を生体組織に照射したときには、ガンなどの病変によって肥厚している病変部位からの自家蛍光は、肥厚していない正常部位からの自家蛍光よりも光量が減少するという特性を利用することで、病変部位と正常部位との境界の明確化を図っている。このように病変部位との境界を明確化することで、スクリーニング時のように遠景状態から観察を行う場合に、病変部の位置や大きさの把握が容易になる。 Further, in Patent Document 2, when the living tissue is irradiated with excitation light for exciting autofluorescence, autofluorescence from a lesion site thickened by a lesion such as a cancer is caused by autofluorescence from a normal site that is not thickened. By utilizing the characteristic that the amount of light is reduced compared to fluorescence, the boundary between the lesioned part and the normal part is clarified. By clarifying the boundary with the lesion site in this way, the position and size of the lesion site can be easily grasped when observing from a distant view as in screening.
近年では、ガンの鑑別方法や深達度診断の方法は多岐にわたっている。したがって、表層微細血管や中深層血管などの血管パターンと、表層微細構造や肥厚などの凹凸パターンの両方から、ガン診断を行う場合の他、凹凸パターンのみに着目して診断を行う場合もある。このように凹凸パターンのみに着目して診断を行う場合には、凹凸パターンの視認性を向上させる一方で、血管パターンの視認性を低下させる必要がある。 In recent years, there are a wide variety of methods for cancer discrimination and depth diagnosis. Therefore, in addition to performing cancer diagnosis from both blood vessel patterns such as superficial fine blood vessels and middle-deep blood vessels and concave / convex patterns such as superficial fine structures and thickening, there are also cases in which diagnosis is performed by paying attention only to the concave / convex patterns. In this way, when making a diagnosis by paying attention only to the concavo-convex pattern, it is necessary to improve the visibility of the concavo-convex pattern while reducing the visibility of the blood vessel pattern.
この凹凸パターンのみの明瞭化については、特許文献1には記載及び示唆がない。また、特許文献2によれば、凹凸パターンのうち肥厚の明瞭化を行うことができる。しかしながら、肥厚の検出に用いる自家蛍光は微弱であるため、これを感度良く捉えるためには、EMCCDのような高感度の撮像素子が別途必要となってしまう。 Patent Document 1 does not describe or suggest the clarification of only the uneven pattern. Moreover, according to patent document 2, thickening can be clarified among uneven | corrugated patterns. However, since the autofluorescence used for the detection of thickening is weak, in order to capture this with high sensitivity, a high-sensitivity image sensor such as EMCCD is required separately.
本発明は、表層微細構造や肥厚などの生体組織上の凹凸のみを明瞭化することができる内視鏡システム及びその作動方法を提供することを目的とする。 The present invention aims to provide an endoscope system及 beauty its operating method capable of clarity only the irregularities on the living body tissue, such as the surface layer microstructure and thickening.
本発明の内視鏡システムは、青色帯域において狭帯域化された第1の照明光を発する第1の半導体光源と、前記第1の照明光とは波長域が異なる第2の照明光を発する第2の半導体光源と、前記第2の照明光のうち一部の光を吸収して緑色光及び赤色光を発し、前記第2の照明光のうち前記一部の光以外のその他の光と前記緑色光及び赤色光とによって白色光を生成する波長変換部材と、前記第1の照明光及び前記白色光で照明された被検体を撮像することにより得られた画像信号に基づいて、肥厚を少なくとも含む被検体画像を生成する画像生成部と、前記被検体画像について色特性値に応じてコントラストを調整することによって、前記肥厚のみを強調した肥厚強調画像を得るコントラスト調整部とを備えることを特徴とする。 An endoscope system of the present invention emits a first semiconductor light source that emits first illumination light that is narrowed in a blue band, and second illumination light that has a wavelength range different from that of the first illumination light. A second semiconductor light source; and a part of the second illumination light that absorbs light to emit green light and red light; and the other light other than the part of the second illumination light. Based on the wavelength conversion member that generates white light by the green light and red light, and the image signal obtained by imaging the subject illuminated by the first illumination light and the white light , thickening is performed. an image generating unit that generates a subject image at least containing said by adjusting the contrast according to the color characteristic value for the object image, further comprising a contrast adjustment section to obtain a thickening emphasized image that emphasizes the thickening only Features.
本発明の内視鏡システムは、青色帯域において狭帯域化された第1の照明光を発する第1の半導体光源と、前記第1の照明光とは波長域が異なる第2の照明光を発する第2の半導体光源と、前記第2の照明光のうち一部の光を吸収して緑色光及び赤色光を発し、前記第2の照明光のうち前記一部の光以外のその他の光と前記緑色光及び赤色光とによって白色光を生成する波長変換部材と、前記第1の照明光及び前記白色光で照明された被検体を撮像することにより得られた画像信号に基づいて、微細構造を少なくとも含む被検体画像を生成する画像生成部と、前記被検体画像について色特性値に応じてコントラストを調整することによって、前記微細構造のみを強調した微細構造強調画像を得るコントラスト調整部とを備えることを特徴とする。 An endoscope system of the present invention emits a first semiconductor light source that emits first illumination light that is narrowed in a blue band, and second illumination light that has a wavelength range different from that of the first illumination light. A second semiconductor light source; and a part of the second illumination light that absorbs light to emit green light and red light; and the other light other than the part of the second illumination light. A wavelength conversion member that generates white light by the green light and red light, and a fine structure based on an image signal obtained by imaging the subject illuminated by the first illumination light and the white light. An image generation unit that generates a subject image including at least a contrast image, and a contrast adjustment unit that obtains a fine structure-enhanced image in which only the fine structure is emphasized by adjusting a contrast of the subject image according to a color characteristic value. It is characterized by having .
本発明の内視鏡システムは、青色帯域において狭帯域化された第1青色光を発する青色光光源と、前記第1青色光よりも長波長側にある第2青色光と、緑色光と、赤色光とを発して白色光を生成する白色光光源と、前記第2青色光の光量が前記第1青色光の光量よりも大きくなるように、前記第1青色光及び前記第2青色光の光量を制御する光源制御部と、前記第1青色光及び前記白色光で照明された被検体を撮像して得られた画像信号に基づいて、肥厚を少なくとも含む中深層強調画像を生成する画像生成部と、前記中深層強調画像の色特性値に応じてコントラストを調整することによって、前記肥厚のみを強調した肥厚強調画像を得るコントラスト調整部とを備えることを特徴とする。An endoscope system of the present invention includes a blue light source that emits first blue light that is narrowed in a blue band, a second blue light that is on a longer wavelength side than the first blue light, a green light, A white light source that emits red light to generate white light, and the first blue light and the second blue light so that a light amount of the second blue light is larger than a light amount of the first blue light. A light source control unit that controls the amount of light, and image generation that generates a mid-deep layer emphasized image including at least thickening based on an image signal obtained by imaging the subject illuminated with the first blue light and the white light And a contrast adjustment unit that obtains a thickening-enhanced image in which only the thickening is enhanced by adjusting the contrast according to the color characteristic value of the middle-deep layer-enhanced image.
本発明の内視鏡システムは、青色帯域において狭帯域化された第1青色光を発する青色光光源と、前記第1青色光よりも長波長側にある第2青色光と、緑色光と、赤色光とを発して白色光を生成する白色光光源と、前記第1青色光の光量が前記第2青色光の光量よりも大きくなるように、前記第1青色光及び前記第2青色光の光量を制御する光源制御部と、前記第1青色光及び前記白色光で照明された被検体を撮像して得られた画像信号に基づいて、微細構造を少なくとも含む表層強調画像を生成する画像生成部と、前記表層強調画像の色特性値に応じてコントラストを調整することによって、前記微細構造のみを強調した微細構造強調画像を得るコントラスト調整部とを備えることを特徴とする。An endoscope system of the present invention includes a blue light source that emits first blue light that is narrowed in a blue band, a second blue light that is on a longer wavelength side than the first blue light, a green light, A white light source that emits red light to generate white light, and the first blue light and the second blue light so that a light quantity of the first blue light is larger than a light quantity of the second blue light. A light source control unit that controls the amount of light, and image generation that generates a surface-enhanced image including at least a fine structure based on an image signal obtained by imaging the subject illuminated with the first blue light and the white light And a contrast adjusting unit that obtains a fine structure emphasized image in which only the fine structure is emphasized by adjusting contrast according to a color characteristic value of the surface layer emphasized image.
前記第1の照明光は中心波長が405nmであり、前記第2の照明光は中心波長が445nmであり、前記白色光は460〜700nmの波長範囲を有していることが好ましい。前記波長変換部材は蛍光体であることが好ましい。前記肥厚強調画像を表示する表示手段を備えることが好ましい。または、前記微細構造強調画像を表示する表示手段を備えることが好ましい。 Preferably, the first illumination light has a center wavelength of 405 nm, the second illumination light has a center wavelength of 445 nm, and the white light has a wavelength range of 460 to 700 nm. The wavelength conversion member is preferably a phosphor. It is preferable to provide a display means for displaying the thickened strong tone image. Or it is preferable to provide the display means which displays the said fine structure emphasis image.
本発明の内視鏡システムの作動方法は、第1の半導体光源が、青色帯域において狭帯域化された第1の照明光を発するステップと、第2の半導体光源が、前記第1の照明光とは波長域が異なる第2の照明光を発するステップと、波長変換部材が、前記第2の照明光のうち一部の光を吸収して緑色光及び赤色光を発し、前記第2の照明光のうち前記一部の光以外のその他の光と前記緑色光及び赤色光とによって白色光を生成するステップと、前記第1の照明光及び前記白色光で照明された被検体を電子内視鏡が撮像することによって得られた画像信号に基づいて、画像生成部が、肥厚を少なくとも含む被検体画像を生成するステップと、コントラスト調整部が、前記被検体画像について色特性値に応じてコントラストを調整することによって、前記肥厚のみを強調した肥厚強調画像を得るステップと、を備えることを特徴とする。The operation method of the endoscope system according to the present invention includes a step in which a first semiconductor light source emits first illumination light narrowed in a blue band, and a second semiconductor light source emits the first illumination light. Emitting a second illumination light having a wavelength range different from that of the second illumination light, and the wavelength converting member absorbs a part of the second illumination light to emit green light and red light, and emits the second illumination light. A step of generating white light from the light other than the part of the light and the green light and the red light; and an electronic illumination of the object illuminated by the first illumination light and the white light. The image generation unit generates a subject image including at least thickening based on the image signal obtained by imaging by the mirror, and the contrast adjustment unit contrasts the subject image according to a color characteristic value. By adjusting Obtaining a thickening emphasized image that emphasizes the serial thickening only, characterized in that it comprises a.
本発明の内視鏡システムの作動方法は、第1の半導体光源が、青色帯域において狭帯域化された第1の照明光を発するステップと、第2の半導体光源が、前記第1の照明光とは波長域が異なる第2の照明光を発するステップと、波長変換部材が、前記第2の照明光のうち一部の光を吸収して緑色光及び赤色光を発し、前記第2の照明光のうち前記一部の光以外のその他の光と前記緑色光及び赤色光とによって白色光を生成するステップと、前記第1の照明光及び前記白色光で照明された被検体を電子内視鏡が撮像することによって得られた画像信号に基づいて、画像生成部が、微細構造を少なくとも含む被検体画像を生成するステップと、コントラスト調整部が、前記被検体画像について色特性値に応じてコントラストを調整することによって、前記微細構造のみを強調した微細構造強調画像を得るステップと、を備えることを特徴とする。The operation method of the endoscope system according to the present invention includes a step in which a first semiconductor light source emits first illumination light narrowed in a blue band, and a second semiconductor light source emits the first illumination light. Emitting a second illumination light having a wavelength range different from that of the second illumination light, and the wavelength converting member absorbs a part of the second illumination light to emit green light and red light, and emits the second illumination light. A step of generating white light from the light other than the part of the light and the green light and the red light; and an electronic illumination of the object illuminated by the first illumination light and the white light. The image generation unit generates a subject image including at least a fine structure based on an image signal obtained by imaging by the mirror, and the contrast adjustment unit determines the subject image according to a color characteristic value. By adjusting the contrast Characterized by comprising the steps of: obtaining only emphasized microstructure enhanced image the microstructure.
本発明によれば、凹凸強調画像生成手段で得られる凹凸強調画像は、青色帯域において狭帯域化された第1の照明光と波長変換部材で白色光を励起するための第2の照明光との光量比に応じて、被検体画像の色特性値を調整して得られた画像であるため、この凹凸強調画像では、表層微細構造や肥厚などの生体組織上の凹凸のみが明瞭化されている。 According to the present invention, the unevenness-enhanced image obtained by the unevenness-enhanced image generating unit includes the first illumination light narrowed in the blue band and the second illumination light for exciting white light with the wavelength conversion member. Since this image is obtained by adjusting the color characteristic value of the subject image according to the light quantity ratio, only the unevenness on the living tissue such as the surface fine structure and thickening is clarified in this unevenness enhanced image. Yes.
図1及び図2に示すように、内視鏡システム10は、被検体内を撮像する電子内視鏡11と、電子内視鏡11で撮像した画像に各種画像処理を施すプロセッサ装置12と、被検体を照明する光を電子内視鏡11に供給する光源装置13と、プロセッサ装置12で各種画像処理が施された画像を表示するモニタ14とを備えている。
As shown in FIGS. 1 and 2, an
電子内視鏡11は、被検体内に挿入される可撓性の挿入部16と、挿入部16の基端部分に設けられた操作部17と、操作部17とプロセッサ装置12及び光源装置13との間を連結するユニバーサルコード18とを備えている。挿入部16の先端には、複数の湾曲駒を連結した湾曲部19が形成されている。湾曲部19は、操作部17のアングルノブ21を操作することにより、上下左右方向に湾曲動作する。湾曲部19の先端には、体腔内撮影用の光学系等を内蔵した先端部16aが設けられている。先端部16aは、湾曲部19の湾曲動作によって被検体内の所望の方向に向けられる。
The
また、操作部17には、各種モードに切り替えるためのモード切替SW15が設けられている。モードは、白色光で照明された被検体を撮像することで得られる通常光画像をモニタ14に表示する通常観察モードと、生体組織の表層上に形成された微細構造を強調した微細構造強調画像をモニタ14に表示する微細構造観察モードと、生体組織において表層から中深層にかけて厚みを帯びた肥厚を強調した肥厚強調画像をモニタ14に表示する肥厚観察モードと、微細構造及び肥厚の両方を微細構造・肥厚強調画像をモニタ14に表示する微細構造・肥厚観察モードとの合計3つのモードで構成される。
Further, the
ユニバーサルコード18には、プロセッサ装置12および光源装置13側にコネクタ24が取り付けられている。コネクタ24は、通信用コネクタと光源用コネクタからなる複合タイプのコネクタであり、電子内視鏡11は、このコネクタ24を介して、プロセッサ装置12および光源装置13に着脱自在に接続される。
A
光源装置13は、特定波長の励起光ELを発する励起光光源30と、青色帯域において特定波長に狭帯域化された青色狭帯域光BNを発する青色狭帯域光源31と、励起光光源30からの励起光ELが入射する励起光用光ファイバ32と、青色狭帯域光源31からの青色狭帯域光BNが入射する青色狭帯域光用光ファイバ33と、これら光ファイバ32,33と電子内視鏡内のライトガイド43とを光学的に連結するカプラー35と、励起光光源30及び青色狭帯域光源31のON・OFFを切り替えるための光源切替部36と、励起光光源30及び青色狭帯域光源31の光量を調整する光量制御部37を備えている。
The
励起光光源30はレーザーダイオードなどの半導体光源で構成され、中心波長445nmの励起光ELを発する(図3A〜D参照)。この励起光ELは、励起光用光ファイバ32、カプラー35及びライトガイド43を介して、電子内視鏡11の先端部16aに設けられた蛍光体40に照射される。蛍光体40では、励起光ELの一部を吸収して緑色〜赤色(460〜700nm)の蛍光FLを励起発光する複数種の蛍光物質(例えばYAG系蛍光物質、或いはBAM(BaMgAl10O17)等の蛍光物質)を含んで構成される。蛍光体40で励起発光した蛍光FLは、蛍光体40により吸収されず透過した励起光ELと合波することで、白色光Wが生成される(図3A〜D参照)。この白色光Wは、表層から中深層に至るまでの大きい深達度を有していることから、肥厚などの検出に用いられる。
The
青色狭帯域光源31はレーザーダイオードなどの半導体光源で構成され、中心波長405nmの青色狭帯域光BNを発する(図3A〜D参照)。この青色狭帯域光BNは、生体組織の表層にまで深達度を有していることから、生体組織の表層にある表層微細血管や微細構造を明るく光らせるために用いられる。
The blue narrow band
光源切替部36はプロセッサ装置内のコントローラー59に接続されており、設定されているモードに応じて、励起光光源30及び青色狭帯域光源31のON(点灯)、OFF(消灯)を切り替える。通常観察モードに設定されている場合には、励起光光源30が常時ONにされる一方で、青色狭帯域光源31は常時OFFにされる。したがって、被検体には白色光Wのみが常時照射される。一方、微細構造観察モード、肥厚観察モード、又は微細構造・肥厚観察モードに設定されている場合には、励起光光源30と青色狭帯域光源31の両方が常時ONにされる。これにより、白色光W及び青色狭帯域光BNの両方が、被検体に照射される。
The light
光量制御部37はプロセッサ装置内のコントローラー59に接続されており、設定されているモードに応じて、励起光光源30及び青色狭帯域光源31の光量を調整する。通常観察モードに設定されている場合には、図3Aに示すように、励起光ELは光量ELcに調整される。通常観察モード以外のモードでは、この光量ELcを基準に、励起光EL及び青色狭帯域光BNの光量の調整が行われる。微細構造観察モードに設定されている場合には、図3Bに示すように、励起光ELを光量ELcよりも小さい光量ELsに調整することにより、白色光W全体の光量を減少させる。一方、青色狭帯域光BNは光量ELcよりも大きい光量BNsに調整される。即ち、励起光ELと青色狭帯域光BNの光量比において、青色狭帯域光BNの割合の方が高くなるように調整される。
The light
肥厚観察モードに設定されている場合には、図3Cに示すように、励起光ELを光量ELcよりも大きい光量ELdに調整することにより、白色光W全体の光量を増加させる。一方、青色狭帯域光BNは光量ELcよりも小さい光量BNdに調整される。即ち、励起光ELと青色狭帯域光BNの光量比において、励起光ELの割合の方が高くなるように調整される。微細構造・肥厚観察モードに設定されている場合には、図3Dに示すように、励起光ELを光量ELcよりも大きい光量ELbに調整することで白色光W全体の光量を増加させるとともに、青色狭帯域光BNも光量ELcよりも大きい光量BNbに調整される。また、光量の調整時には、励起光ELと青色狭帯域光BNの光量比が1:1となるように、それぞれの光量が調整される。 When the thickening observation mode is set, as shown in FIG. 3C, the light amount of the entire white light W is increased by adjusting the excitation light EL to a light amount ELd larger than the light amount ELc. On the other hand, the blue narrow band light BN is adjusted to a light amount BNd smaller than the light amount ELc. That is, the ratio of the excitation light EL is adjusted to be higher in the light amount ratio between the excitation light EL and the blue narrow band light BN. When the fine structure / thickness observation mode is set, as shown in FIG. 3D, the excitation light EL is adjusted to a light amount ELb larger than the light amount ELc to increase the light amount of the entire white light W and The narrow band light BN is also adjusted to a light quantity BNb larger than the light quantity ELc. Further, when adjusting the light amount, the respective light amounts are adjusted so that the light amount ratio between the excitation light EL and the blue narrow-band light BN is 1: 1.
図2に示すように、電子内視鏡11は、ライトガイド43、CCD44、アナログ処理回路45(AFE:Analog Front End)、撮像制御部46、倍率制御部47を備えている。ライトガイド43は大口径光ファイバ、バンドルファイバなどであり、入射端が光源装置内のカプラー35に挿入されており、出射端が蛍光体40に向けられている。ライトガイド43内で導光された光は、蛍光体40、ズームレンズ48a、照射レンズ48b、及び照明窓49を通して、被検体内に照射される。
As shown in FIG. 2, the
ズームレンズ48aには、このズームレンズ48aを光軸方向に移動させるアクチュエータ48cが取り付けられている。アクチュエータ48cは、コントローラ59に接続された倍率制御部47によって駆動制御される。倍率制御部47は、ズーム操作部20で設定された倍率に応じた位置にズームレンズ48aが移動するように、アクチュエータ48cを制御する。スクリーニング時のように、被検体内の全体的な様子を観察する必要がある場合には、ズームレンズ48aをワイド位置にセットして、図4Aのような非拡大画像をモニタ14に表示させる。一方、癌の鑑別診断時のように、観察部位の詳細構造を観察する必要がある場合には、ズームレンズ48aをテレ位置にセットして、図4Bのような拡大画像をモニタ14に表示させる。
An actuator 48c for moving the zoom lens 48a in the optical axis direction is attached to the zoom lens 48a. The
なお、通常観察モード時、肥厚観察モード時には、被検体内の全体的な様子を観察することが多いことから、ズームレンズ48aをワイド位置にセットすることが多い。一方、微細構造観察モード時には、観察対象を拡大して観察することが多いことから、ズームレンズ48aをテレ位置にセットすることが多い。 In the normal observation mode and the thickening observation mode, the entire state in the subject is often observed, so the zoom lens 48a is often set at a wide position. On the other hand, in the fine structure observation mode, since the observation target is often enlarged and observed, the zoom lens 48a is often set at the tele position.
図2に示すように、観察窓50は、被検体からの戻り光を受光する。受光した光は、集光レンズ51を介してCCD44に入射する。CCD44は、集光レンズ51からの光が入射する撮像面44aを有しており、この撮像面44aで受光した光を光電変換して信号電荷を蓄積する。蓄積された信号電荷は撮像信号として読み出され、AFE45に送られる。CCD44はカラーCCDであり、撮像面44aには、B色のカラーフィルタが設けられたB画素、G色のカラーフィルタが設けられたG画素、R色のカラーフィルターが設けられたR画素の3色の画素が配列されている。これらB色、G色、R色のカラーフィルターは、図5に示す曲線52,53,54で示される分光透過率を有している。
As shown in FIG. 2, the
AFE45は、相関二重サンプリング回路(CDS)、自動ゲイン制御回路(AGC)、及びアナログ/デジタル変換器(A/D)(いずれも図示省略)から構成されている。CDSは、CCD44からの撮像信号に対して相関二重サンプリング処理を施し、CCD44の駆動により生じたノイズを除去する。AGCは、CDSによりノイズが除去された撮像信号を増幅する。A/Dは、AGCで増幅された撮像信号を、所定のビット数のデジタルな撮像信号に変換してプロセッサ装置12に入力する。
The
撮像制御部46は、プロセッサ装置12内のコントローラー59に接続されており、コントローラー59から指示がなされたときにCCD44に対して駆動信号を送る。CCD44は、撮像制御部46からの駆動信号に基づいて、所定のフレームレートで撮像信号をAFE45に出力する。
The
通常観察モードに設定されている場合には、図6Aに示すように、1フレーム期間内で、白色光Wの像光を光電変換して信号電荷を蓄積するステップと、蓄積した信号電荷として読み出すステップとが行なわれる。この撮像制御は、通常観察モードに設定されている間、繰り返し行なわれる。なお、このモードにおいては、CCD44のB画素、G画素、R画素からは、それぞれ青色信号Bc、緑色信号Gc、赤色信号Rcが出力される。
When the normal observation mode is set, as shown in FIG. 6A, a step of photoelectrically converting the image light of the white light W and accumulating signal charges within one frame period, and reading out the accumulated signal charges Steps are performed. This imaging control is repeatedly performed while the normal observation mode is set. In this mode, a blue signal Bc, a green signal Gc, and a red signal Rc are output from the B pixel, G pixel, and R pixel of the
一方、微細構造観察モード、肥厚観察モード、微細構造・肥厚モードに設定されている場合には、図6Bに示すように、1フレーム期間内で、白色光W及び青色狭帯域光BNの像光を光電変換して信号電荷を蓄積するステップと、蓄積した信号電荷として読み出すステップとが行なわれる。この撮像制御は、微細構造観察モード、肥厚観察モード、微細構造・肥厚モードに設定されている間、繰り返し行なわれる。 On the other hand, when the fine structure observation mode, the thickening observation mode, and the fine structure / thickness mode are set, as shown in FIG. 6B, the image light of the white light W and the blue narrow band light BN within one frame period. Are photoelectrically converted to accumulate signal charges and read as accumulated signal charges. This imaging control is repeatedly performed while the fine structure observation mode, the thickening observation mode, and the fine structure / thickening mode are set.
なお、微細構造観察モード時には、CCD44のB画素、G画素、R画素から、それぞれ青色信号Bs、緑色信号Gs、赤色信号Rsが出力される。また、肥厚観察モード時には、CCD44のB画素、G画素、R画素から、それぞれ青色信号Bd、緑色信号Gd、赤色信号Rdが出力される。また、微細構造・肥厚観察モード時には、CCD44のB画素、G画素、R画素から、それぞれ青色信号Bb、緑色信号Gb、赤色信号Rbが出力される。
In the fine structure observation mode, a blue signal Bs, a green signal Gs, and a red signal Rs are output from the B pixel, the G pixel, and the R pixel of the
図2に示すように、プロセッサ装置12は、通常光画像生成部55と、フレームメモリ56と、特殊光画像生成部57と、表示制御回路58を備えており、コントローラー59が各部を制御している。通常光画像生成部55は、白色光Wの像光を電子内視鏡11で撮像して得られる信号Bc、Gc、Rcから、通常光画像画像を作成する。生成された通常光画像はフレームメモリ56に一時的に記憶される。
As shown in FIG. 2, the
図7に示すように、特殊光画像生成部57は、微細構造強調画像生成部61と、肥厚強調画像生成部62と、微細構造・強調画像生成部63とを備えている。微細構造強調画像生成部61は、生体組織表層に形成される微細孔が多数集まったピットパターンなどから構成される表層微細構造などを強調した表層強調画像を生成する画像生成部61aと、表層強調画像のコントラストを調整して、表層微細構造のみを強調した微細構造強調画像を生成するコントラスト調整部61bとを備えている。
As shown in FIG. 7, the special light
画像生成部61aは、微細構造観察モード時に取得した信号Bs、Gs、Rsに基づいて、表層強調画像を生成する。信号Bsは、白色光Wの成分よりも青色狭帯域光BNの成分が多く含まれている。この青色狭帯域光BNは、ピットパターンの微細孔に、白色光や青色狭帯域光BNが入り込んで多重散乱現象を生じさせることによって、ピットパターンを明るく光らせる。したがって、ピットパターンがある微細構造の領域の画素値は極めて高くなっている。また、青色狭帯域光BNは生体組織表層にまで深達度を有し、ヘモグロビンの吸光係数が高い波長域に含まれている。そのため、表層強調画像においては表層微細血管が有る領域の画素値は他の領域と比べて小さくなっている。
The
コントラスト調整部61bは、表層強調画像中で微細構造を強調表示するために、表層強調画像のコントラストを調整する。コントラスト調整に際しては、まず、表層強調画像を色相、彩度、明度の色空間に変換する。色空間変換後の表層強調画像68では、図8(A)に示すように、微細構造70の色相は白色に対応する値となり、微細血管71の色相は黒味を帯びた色に対応する値となり、微細構造70及び微細血管71以外の粘膜72の色相は青味を帯びた色に対応する値となる。
The
これら色相から、表層強調画像68における微細構造70、微細血管71、粘膜72の位置を特定する。それらの位置が特定されたら、微細構造70の明度を大きくする一方で、微細血管71及び粘膜72の明度を小さくする。これにより、図8(B)に示すように、微細構造70が強調表示される一方で、微細血管71及び粘膜72の表示が抑制された微細構造強調画像74が得られる。この微細構造強調画像74は、色空間からRGBの画像に変換された後に、表示制御回路58によってモニタ14に表示される。なお、コントラスト調整部61bでは明度の増減によって微細構造のコントラストを向上させたが、明度以外の各種色特性値に応じて微細構造及びそれ以外のコントラストを調整してもよい。
From these hues, the positions of the
以上のように、微細構造観察モードにおいて、微細構造70が白色で表示され、微細血管71は黒味を帯びた色で表示され、粘膜72が青味を帯びた色で表示されるのは、以下の理由からである。微細構造観察モードで被検体に照射される光は、青色狭帯域光BNの成分を多く含んでいるため、青味を帯びた白色光となっている。この青味を帯びた白色光が照明されたときには、ピットパターンなどの微細構造では、微細孔に入り込んだ光が多重散乱現象を起こして白く光る。そのため、微細構造は白色に表示される。また、微細血管は、青色帯域の光に対して高い吸光特性を示すため、微細血管で反射する光の量は減少する。そのため、微細血管は黒味を帯びた色で表示される。これに対して、粘膜は単に反射するだけであるので、青味を帯びて表示される。
As described above, in the fine structure observation mode, the
肥厚強調画像生成部62は、生体組織表層から隆起した部位によって表層から中深層にかけて厚みを帯びた肥厚などを強調した中深層強調画像を生成する画像生成部62aと、中深層強調画像のコントラストを調整するコントラスト調整部62bとを備えている。
The thickening emphasized
画像生成部62aは、肥厚観察モード時に取得した信号Bd、Gd、Rdに基づいて、中深層強調画像を生成する。信号Gd、Rdには、青色狭帯域光BNよりも白色光Wの成分が多く含まれている。この白色光Wを肥厚部分に照射したときには、肥厚部分からの反射光は、肥厚でない部分の反射光と比較して、光量が落ちている。したがって、肥厚がある領域の画素値は低くなっている。また、白色光Wは生体組織の中深層にまで深達度を有してことから、中深層部分に血管がある場合には、その血管部分の画素値は、肥厚がある領域よりも更に低くなっている。以上から、中深層強調画像においては、肥厚していない領域、肥厚している領域、血管領域の順に、画素値が低くなっている。
The
コントラスト調整部62bは、中深層強調画像中で肥厚を強調表示するために、中深層強調画像のコントラストを調整する。コントラストの調整に際しては、まず、コントラスト調整部61bと同様、中深層強調画像を色相、彩度、明度の色空間に変換する。色空間変換後の中深層強調画像78では、図9(A)に示すように、肥厚80の色相は灰色を帯びた色に対応する値となり、中深層血管81の色相は黒味を帯びた色に対応する値となり、肥厚80及び中深層血管81以外の粘膜82の色相は黄色を帯びた色に対応する値となる。
The
これら色相から、中深層強調画像78における肥厚80、中深層血管81、粘膜82の位置を特定する。それらの位置が特定されたら、肥厚80の明度を大きくする一方で、中深層血管81及び粘膜82の明度を小さくする。これにより、図9(B)に示すように、肥厚80が強調表示される一方で、中深層血管81及び粘膜82の表示が抑制された肥厚強調画像84が得られる。この肥厚強調画像84は、色空間からRGBの画像に変換された後、表示制御回路58によってモニタ14に表示される。なお、コントラスト調整部62bでは明度の増減によって肥厚のコントラストを向上させたが、明度以外の各種色特性値に応じて微細構造及びそれ以外のコントラストを調整してもよい。
From these hues, the positions of the thickening 80, the intermediate
以上のように、肥厚観察モードにおいて、肥厚80が灰色で表示され、中深層血管81は黒味を帯びた色で表示され、粘膜82が黄味を帯びた色で表示されるのは、以下の理由からである。肥厚観察モードで被検体に照射される光は、白色光Wの成分のうち蛍光FLの成分を多く含んでいるため、黄味を帯びた白色光となっている。この黄味を帯びた白色光が照明されたときには、肥厚80は反射光の光量が落ちる特性があるため、灰色で表示される。同様にして、中深層血管81は肥厚よりも更に反射光の光量が落ちる特性があるため、黒味を帯びた色で表示される。これに対して、粘膜82は、反射光の光量が落ちることが無いので、黄味を帯びた色で表示される。
As described above, in the thickening observation mode, the thickening 80 is displayed in gray, the
微細構造・肥厚強調画像生成部63は、微細構造・肥厚観察モード時に取得した信号Bb、Gb、Rbに基づいて、微細構造とともに肥厚を強調した微細構造・肥厚強調画像を生成する。生成された微細構造・肥厚強調画像は、表示制御回路58によってモニタ14に表示される。信号Bbには通常観察モード時の光量ELcよりも大きい光量ELbを有する青色狭帯域光BNの成分が含まれているとともに、信号Gb、Rbには通常観察モード時よりも大きい光量を有する白色光Wの成分が含まれている。したがって、微細構造・肥厚強調画像においては、ピットパターンがある微細構造の領域の画素値は極めて高くなっている一方、肥厚している領域は低くなっているため、微細構造及び肥厚部分はそれぞれ強調表示されている。
Based on the signals Bb, Gb, and Rb acquired in the fine structure / thickness observation mode, the fine structure / thickness emphasized
次に、微細構造観察モードにおける一連の流れを、図10に示すフローチャートを用いて説明する。なお、肥厚観察モードや微細構造・肥厚観察モード時における一連の流れも略同様であるので、説明を省略する。 Next, a series of flows in the fine structure observation mode will be described using the flowchart shown in FIG. Note that a series of flows in the thickening observation mode and the fine structure / thickness observation mode are substantially the same, and thus the description thereof is omitted.
モード切替SW15により微細構造観察モードに切り替えられると、既に点灯している励起光光源30に加えて、青色狭帯域光源31が点灯する。また、励起光ELは通常観察モード時の光量ELcよりも小さい光量ELsに設定されるとともに、青色狭帯域光BNの光量は光量ELcよりも大きいELsに設定される。光量が設定された励起光EL及び青色狭帯域光BNは、ライトガイド43等を介して、蛍光体40に照射される。蛍光体40では、励起光ELによって白色光Wが発せられる一方、青色狭帯域光BNはそのまま透過する。蛍光体40を経た白色光W及び青色狭帯域光BNは、被検体に向けて同時に照射される。白色光及び青色狭帯域光BNで照明された被検体をカラーのCCD44で撮像することにより、CCD44から青色信号Bs、緑色信号Gs、赤色信号Rsが出力される。
When switched to the fine structure observation mode by the
次に、青色信号Bs、緑色信号Gs、赤色信号Rsに基づいて、表層強調画像を生成する。表層強調画像では、ピットパターンの微細孔に青色狭帯域光BNが入り込んで多重散乱現象が生じることによって、ピットパターンを明るく表示されている。一方、青色狭帯域光BNは表層の微細血管が強調表示されている。したがって、表層強調画像では、ピットパターンなどの微細構造だけでなく、表層の微細血管も明瞭化しているれている。 Next, a surface-emphasized image is generated based on the blue signal Bs, the green signal Gs, and the red signal Rs. In the surface enhanced image, the blue narrow band light BN enters the fine holes of the pit pattern and the multiple scattering phenomenon occurs, so that the pit pattern is displayed brightly. On the other hand, in the blue narrow band light BN, the fine blood vessels on the surface layer are highlighted. Therefore, in the surface-enhanced image, not only the fine structure such as the pit pattern but also the fine blood vessels in the surface layer are clarified.
次に、表層強調画像において、微細構造のみを強調表示させるために、コントラストの調整を行う。まず、表層強調画像を、色相、彩度、明度の色空間に変換し、色相の値から、微細構造、微細血管、粘膜の位置を特定する。それらの位置が特定されたら、微細構造の明度を大きくする一方で、微細血管及び粘膜の明度を小さくする。これにより、微細構造70のみが強調表示された微細構造強調画像が得られる。この微細構造強調画像は、色空間からRGBの画像に変換された後に、表示制御回路58によってモニタ14に表示される。
Next, contrast adjustment is performed to highlight only the fine structure in the surface layer emphasized image. First, the surface-enhanced image is converted into a color space of hue, saturation, and brightness, and the positions of the fine structure, fine blood vessel, and mucous membrane are specified from the hue value. Once their location is specified, the brightness of the microstructure is increased while the brightness of the microvessels and mucous membranes is decreased. As a result, a fine structure emphasized image in which only the
10 内視鏡システム
32 励起光光源
33 青色狭帯域光源
40 蛍光体
61 微細構造強調画像生成部
61a,62a 画像生成部
62 肥厚強調画像生成部
61b,62b コントラスト調整部
74 微細構造強調画像
84 肥厚強調画像
DESCRIPTION OF
Claims (10)
前記第1の照明光とは波長域が異なる第2の照明光を発する第2の半導体光源と、
前記第2の照明光のうち一部の光を吸収して緑色光及び赤色光を発し、前記第2の照明光のうち前記一部の光以外のその他の光と前記緑色光及び赤色光とによって白色光を生成する波長変換部材と、
前記第1の照明光及び前記白色光で照明された被検体を撮像することにより得られた画像信号に基づいて、肥厚を少なくとも含む被検体画像を生成する画像生成部と、
前記被検体画像について色特性値に応じてコントラストを調整することによって、前記肥厚のみを強調した肥厚強調画像を得るコントラスト調整部とを備えることを特徴とする内視鏡システム。 A first semiconductor light source that emits first illumination light narrowed in the blue band;
A second semiconductor light source that emits second illumination light having a wavelength range different from that of the first illumination light;
A part of the second illumination light is absorbed to emit green light and red light, and other light of the second illumination light other than the part of light and the green light and red light. A wavelength conversion member that generates white light by:
An image generation unit that generates a subject image including at least thickening based on an image signal obtained by imaging the subject illuminated with the first illumination light and the white light;
The endoscope system characterized in that it comprises by adjusting the contrast according to the color characteristic value for the object image, and a contrast adjustment unit to obtain a thickening emphasized image that emphasizes the thickening only.
前記第1の照明光とは波長域が異なる第2の照明光を発する第2の半導体光源と、
前記第2の照明光のうち一部の光を吸収して緑色光及び赤色光を発し、前記第2の照明光のうち前記一部の光以外のその他の光と前記緑色光及び赤色光とによって白色光を生成する波長変換部材と、
前記第1の照明光及び前記白色光で照明された被検体を撮像することにより得られた画像信号に基づいて、微細構造を少なくとも含む被検体画像を生成する画像生成部と、
前記被検体画像について色特性値に応じてコントラストを調整することによって、前記微細構造のみを強調した微細構造強調画像を得るコントラスト調整部とを備えることを特徴とする内視鏡システム。 A first semiconductor light source that emits first illumination light narrowed in the blue band;
A second semiconductor light source that emits second illumination light having a wavelength range different from that of the first illumination light;
A part of the second illumination light is absorbed to emit green light and red light, and other light of the second illumination light other than the part of light and the green light and red light. A wavelength conversion member that generates white light by:
An image generation unit that generates a subject image including at least a fine structure based on an image signal obtained by imaging the subject illuminated with the first illumination light and the white light ;
An endoscope system comprising: a contrast adjustment unit that obtains a fine structure-enhanced image in which only the fine structure is emphasized by adjusting a contrast of the subject image according to a color characteristic value.
前記第1青色光よりも長波長側にある第2青色光と、緑色光と、赤色光とを発して白色光を生成する白色光光源と、A white light source that emits white light by emitting second blue light, green light, and red light that is on a longer wavelength side than the first blue light;
前記第2青色光の光量が前記第1青色光の光量よりも大きくなるように、前記第1青色光及び前記第2青色光の光量を制御する光源制御部と、A light source control unit that controls the light amounts of the first blue light and the second blue light so that the light amount of the second blue light is larger than the light amount of the first blue light;
前記第1青色光及び前記白色光で照明された被検体を撮像して得られた画像信号に基づいて、肥厚を少なくとも含む中深層強調画像を生成する画像生成部と、An image generation unit that generates a mid-deep layer emphasized image including at least thickening based on an image signal obtained by imaging the subject illuminated with the first blue light and the white light;
前記中深層強調画像の色特性値に応じてコントラストを調整することによって、前記肥厚のみを強調した肥厚強調画像を得るコントラスト調整部とを備えることを特徴とする内視鏡システム。An endoscope system comprising: a contrast adjustment unit that obtains a thickening-enhanced image in which only the thickening is emphasized by adjusting contrast according to a color characteristic value of the middle-deep layer-enhanced image.
前記第1青色光よりも長波長側にある第2青色光と、緑色光と、赤色光とを発して白色光を生成する白色光光源と、A white light source that emits white light by emitting second blue light, green light, and red light that is on a longer wavelength side than the first blue light;
前記第1青色光の光量が前記第2青色光の光量よりも大きくなるように、前記第1青色光及び前記第2青色光の光量を制御する光源制御部と、A light source control unit that controls the light amounts of the first blue light and the second blue light so that the light amount of the first blue light is larger than the light amount of the second blue light;
前記第1青色光及び前記白色光で照明された被検体を撮像して得られた画像信号に基づいて、微細構造を少なくとも含む表層強調画像を生成する画像生成部と、An image generation unit that generates a surface-enhanced image including at least a fine structure based on an image signal obtained by imaging the subject illuminated with the first blue light and the white light;
前記表層強調画像の色特性値に応じてコントラストを調整することによって、前記微細構造のみを強調した微細構造強調画像を得るコントラスト調整部とを備えることを特徴とする内視鏡システム。An endoscope system comprising: a contrast adjustment unit that obtains a fine structure emphasized image in which only the fine structure is emphasized by adjusting contrast according to a color characteristic value of the surface emphasized image.
第2の半導体光源が、前記第1の照明光とは波長域が異なる第2の照明光を発するステップと、
波長変換部材が、前記第2の照明光のうち一部の光を吸収して緑色光及び赤色光を発し、前記第2の照明光のうち前記一部の光以外のその他の光と前記緑色光及び赤色光とによって白色光を生成するステップと、
前記第1の照明光及び前記白色光で照明された被検体を電子内視鏡が撮像することによって得られた画像信号に基づいて、画像生成部が、肥厚を少なくとも含む被検体画像を生成するステップと、
コントラスト調整部が、前記被検体画像について色特性値に応じてコントラストを調整することによって、前記肥厚のみを強調した肥厚強調画像を得るステップと、を備えることを特徴とする内視鏡システムの作動方法。 A step of the first semiconductor light source, to calling the first illumination light narrowing in the blue band,
And Step second semiconductor light source, for emitting a second illumination light wavelength range different from the first illumination light,
The wavelength conversion member absorbs a part of the second illumination light to emit green light and red light, and the other light other than the part of the second illumination light and the green light Generating white light by light and red light ;
An image generation unit generates a subject image including at least thickening based on an image signal obtained by an electronic endoscope imaging the subject illuminated with the first illumination light and the white light. Steps,
An operation of an endoscope system , comprising: a contrast adjustment unit that obtains a thickening emphasized image in which only the thickening is emphasized by adjusting a contrast of the subject image according to a color characteristic value. Method.
第2の半導体光源が、前記第1の照明光とは波長域が異なる第2の照明光を発するステップと、
波長変換部材が、前記第2の照明光のうち一部の光を吸収して緑色光及び赤色光を発し、前記第2の照明光のうち前記一部の光以外のその他の光と前記緑色光及び赤色光とによって白色光を生成するステップと、
前記第1の照明光及び前記白色光で照明された被検体を電子内視鏡が撮像することによって得られた画像信号に基づいて、画像生成部が、微細構造を少なくとも含む被検体画像を生成するステップと、
コントラスト調整部が、前記被検体画像について色特性値に応じてコントラストを調整することによって、前記微細構造のみを強調した微細構造強調画像を得るステップと、を備えることを特徴とする内視鏡システムの作動方法。 A first semiconductor light source emitting first illumination light narrowed in a blue band;
A second semiconductor light source emitting second illumination light having a wavelength range different from that of the first illumination light;
The wavelength conversion member absorbs a part of the second illumination light to emit green light and red light, and the other light other than the part of the second illumination light and the green light Generating white light by light and red light ;
Based on an image signal obtained by an electronic endoscope imaging the subject illuminated with the first illumination light and the white light, the image generation unit generates a subject image including at least a fine structure. And steps to
An endoscopic system comprising: a contrast adjusting unit that obtains a fine structure-enhanced image in which only the fine structure is emphasized by adjusting a contrast of the subject image according to a color characteristic value. Operating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011225141A JP5829472B2 (en) | 2011-10-12 | 2011-10-12 | Endoscope system and operating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011225141A JP5829472B2 (en) | 2011-10-12 | 2011-10-12 | Endoscope system and operating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013081709A JP2013081709A (en) | 2013-05-09 |
JP5829472B2 true JP5829472B2 (en) | 2015-12-09 |
Family
ID=48527544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011225141A Active JP5829472B2 (en) | 2011-10-12 | 2011-10-12 | Endoscope system and operating method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5829472B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017221335A1 (en) * | 2016-06-21 | 2017-12-28 | オリンパス株式会社 | Image processing device, image processing method, and program |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3607857B2 (en) * | 2000-07-27 | 2005-01-05 | オリンパス株式会社 | Endoscope device |
JP3894762B2 (en) * | 2001-09-27 | 2007-03-22 | フジノン株式会社 | Electronic endoscope device |
JP5360464B2 (en) * | 2008-06-12 | 2013-12-04 | 富士フイルム株式会社 | IMAGING DEVICE, IMAGING DEVICE OPERATING METHOD, AND PROGRAM |
EP2384686B8 (en) * | 2009-04-21 | 2013-01-16 | Olympus Medical Systems Corp. | Fluorescence image device and fluorescence image acquiring method |
JP5767775B2 (en) * | 2009-07-06 | 2015-08-19 | 富士フイルム株式会社 | Endoscope device |
-
2011
- 2011-10-12 JP JP2011225141A patent/JP5829472B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013081709A (en) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5911496B2 (en) | ENDOSCOPE SYSTEM, PROCESSOR DEVICE THEREOF, AND METHOD FOR OPERATING ENDOSCOPY SYSTEM | |
JP5303012B2 (en) | Endoscope system, processor device for endoscope system, and method for operating endoscope system | |
US9596982B2 (en) | Endoscope system and composite image generation method | |
JP5395725B2 (en) | Electronic endoscope system | |
JP5815426B2 (en) | Endoscope system, processor device for endoscope system, and image processing method | |
JP5389612B2 (en) | Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system | |
JP5274591B2 (en) | Endoscope system, processor device for endoscope system, and method for operating endoscope system | |
JP5789232B2 (en) | Endoscope system and operating method thereof | |
US9629527B2 (en) | Endoscope system, processor device of endoscope system, and image processing method | |
JP5667917B2 (en) | Endoscope system, processor device for endoscope system, and method for operating endoscope system | |
US9788709B2 (en) | Endoscope system and image generation method to generate images associated with irregularities of a subject | |
US20120302847A1 (en) | Endoscope system and method for assisting in diagnostic endoscopy | |
JP5914496B2 (en) | ENDOSCOPE SYSTEM, PROCESSOR DEVICE, AND METHOD FOR OPERATING ENDOSCOPE SYSTEM | |
JP5757891B2 (en) | Electronic endoscope system, image processing apparatus, operation method of image processing apparatus, and image processing program | |
JP2012130629A (en) | Endoscopic diagnosis system | |
JP5147538B2 (en) | Fluorescence image acquisition device and method of operating fluorescence image acquisition device | |
WO2014156604A1 (en) | Endoscope system, operational method therefor and processor device | |
JP5467970B2 (en) | Electronic endoscope system | |
JP5829472B2 (en) | Endoscope system and operating method thereof | |
JP2015231576A (en) | Endoscope system, processor device of endoscope system, and image processing method | |
JP3946985B2 (en) | Fluorescence imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140502 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151014 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151022 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5829472 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |