JP5828495B2 - Zinc oxide fine powder in which 3B group element is dissolved - Google Patents

Zinc oxide fine powder in which 3B group element is dissolved Download PDF

Info

Publication number
JP5828495B2
JP5828495B2 JP2014504797A JP2014504797A JP5828495B2 JP 5828495 B2 JP5828495 B2 JP 5828495B2 JP 2014504797 A JP2014504797 A JP 2014504797A JP 2014504797 A JP2014504797 A JP 2014504797A JP 5828495 B2 JP5828495 B2 JP 5828495B2
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide fine
fine powder
group
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014504797A
Other languages
Japanese (ja)
Other versions
JPWO2013137037A1 (en
Inventor
知克 早川
知克 早川
勇人 永縄
勇人 永縄
吉川 潤
潤 吉川
克宏 今井
克宏 今井
七瀧 努
七瀧  努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Nagoya Institute of Technology NUC
Original Assignee
NGK Insulators Ltd
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Nagoya Institute of Technology NUC filed Critical NGK Insulators Ltd
Priority to JP2014504797A priority Critical patent/JP5828495B2/en
Publication of JPWO2013137037A1 publication Critical patent/JPWO2013137037A1/en
Application granted granted Critical
Publication of JP5828495B2 publication Critical patent/JP5828495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

関連出願の相互参照Cross-reference of related applications

この出願は、2012年3月13日に出願された日本国特許出願2012−056183号に基づく優先権を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。   This application claims priority based on Japanese Patent Application No. 2012-056183 filed on Mar. 13, 2012, the entire disclosure of which is incorporated herein by reference.

本発明は、酸化亜鉛微細粉末に関するものであり、より詳しくは3B族元素が固溶された酸化亜鉛微細粉末に関する。   The present invention relates to a zinc oxide fine powder, and more particularly to a zinc oxide fine powder in which a group 3B element is dissolved.

電子デバイス等に用いられる透明導電膜として、インジウム錫酸化物(ITO)等が長年にわたって広く用いられている。しかしながら、近年のインジウム等のレアメタルの価格高騰といった背景もあり、その代替材料が強く望まれている。   Indium tin oxide (ITO) or the like has been widely used for many years as a transparent conductive film used for electronic devices and the like. However, due to the recent increase in the price of rare metals such as indium, an alternative material is strongly desired.

この点、酸化亜鉛(ZnO)は安価かつ資源的に豊富な材料であり、透明で導電性を有することから、透明導電材料としての利用が期待されている。特に、酸化亜鉛は、異種元素の添加により導電性が向上することが知られている。例えば、異種元素を添加した酸化亜鉛を粉末状とすることで、樹脂等への混合により導電性を付与することが提案されている。導電率の向上にはキャリア濃度の増加及び移動度の向上が効果的である。   In this respect, zinc oxide (ZnO) is an inexpensive and resource-rich material, and since it is transparent and conductive, it is expected to be used as a transparent conductive material. In particular, it is known that the conductivity of zinc oxide is improved by adding a different element. For example, it has been proposed to impart conductivity by mixing with a resin or the like by making zinc oxide added with a different element into powder. An increase in carrier concentration and an improvement in mobility are effective for improving the conductivity.

非特許文献1(J. Phys. Chem. C 2010, 114, 13477-81)には、ZnOにAlをドープしたナノ粒子が開示されている。この文献では、液相での反応後に500℃でのアニールが行われることで、一次粒子が凝集した形態(この文献のFigure 2 (b)参照)でナノ粒子が得られるため、個々の微細粒子を独立した状態で液体に分散させることは困難であった。   Non-Patent Document 1 (J. Phys. Chem. C 2010, 114, 13477-81) discloses nanoparticles in which ZnO is doped with Al. In this document, annealing is performed at 500 ° C. after reaction in the liquid phase, so that nanoparticles are obtained in a form in which primary particles are aggregated (see Figure 2 (b) in this document). It was difficult to disperse the liquid in a liquid in an independent state.

非特許文献2(Advances in Technology of Materials and Materials Processing Journal, 9[1] (2007) 21-24)には、3B族元素であるAlに加え、7B族元素であるFを共ドープさせることにより、キャリア濃度を増加させる方法が開示されている。しかしながら、この方法では成膜手法としてスパッタリングが用いられており、粉末の作製に適用できるものではなかった。   In Non-Patent Document 2 (Advances in Technology of Materials and Materials Processing Journal, 9 [1] (2007) 21-24), in addition to Al which is a 3B group element, F which is a 7B group element is co-doped. A method for increasing the carrier concentration is disclosed. However, in this method, sputtering is used as a film forming method, and it is not applicable to powder production.

J. Phys. Chem. C 2010, 114, 13477-81J. Phys. Chem. C 2010, 114, 13477-81 Advances in Technology of Materials and Materials Processing Journal, 9[1] (2007) 21-24Advances in Technology of Materials and Materials Processing Journal, 9 [1] (2007) 21-24

本発明者らは、今般、3B族元素が粒子内部にまで固溶された、キャリア濃度の高い酸化亜鉛微細粉末を提供できるとの知見を得た。   The inventors of the present invention have recently found that it is possible to provide a zinc oxide fine powder having a high carrier concentration in which a group 3B element is solid-dissolved even inside the particles.

したがって、本発明の目的は、キャリア濃度の高い酸化亜鉛微細粉末を提供することにある。   Accordingly, an object of the present invention is to provide a fine zinc oxide powder having a high carrier concentration.

本発明の一態様によれば、Al及びGaから選択される少なくとも一種の3B族元素を0.3at%以上の量で内部に固溶状態で含む酸化亜鉛結晶からなる酸化亜鉛微細粒子を複数含んでなり、体積基準D50平均粒径が200nm以下である、酸化亜鉛微細粉末が提供される。   According to one aspect of the present invention, a plurality of zinc oxide fine particles comprising zinc oxide crystals containing at least one group 3B element selected from Al and Ga in a solid solution state in an amount of 0.3 at% or more are included. A zinc oxide fine powder having a volume-based D50 average particle diameter of 200 nm or less is provided.

本発明の別の一態様によれば、溶媒と、該溶媒に分散されてなる上記酸化亜鉛微細粉末とを含んでなる、酸化亜鉛微細粉末分散液が提供される。   According to another aspect of the present invention, there is provided a zinc oxide fine powder dispersion liquid comprising a solvent and the zinc oxide fine powder dispersed in the solvent.

例4で作製された本発明による酸化亜鉛微細粒子のTEM画像である。図中、左下に白線で示されるスケールは50nmに相当する。6 is a TEM image of zinc oxide fine particles according to the present invention prepared in Example 4. In the figure, the scale indicated by the white line in the lower left corresponds to 50 nm.

酸化亜鉛微細粉末
本発明による酸化亜鉛微細粉末は、Al及びGaから選択される少なくとも一種の3B族元素を0.3at%以上の量で内部に固溶状態で含む酸化亜鉛結晶からなる酸化亜鉛微細粒子を複数又は多数含んでなる。このような量のAl及び/又はGaを酸化亜鉛粒子内にドープすることで、酸化亜鉛粉末に高いキャリア濃度を持たせることができる。その上、この酸化亜鉛粉末は体積基準D50平均粒径が200nm以下の微細粉末である。このように粒子が微細であることで、液体への分散性に優れることのみならず、他の透光性材料と混合して使用する際であっても、酸化亜鉛微細粒子による光の散乱を抑制して、より高い透明性を確保することができる。したがって、透明導電材料としての酸化亜鉛の利点を最大限に発揮させることができる。
Zinc oxide fine powder The zinc oxide fine powder according to the present invention is a zinc oxide fine powder composed of zinc oxide crystals containing at least one 3B group element selected from Al and Ga in a solid solution state in an amount of 0.3 at% or more. It comprises a plurality or many particles. By doping such amounts of Al and / or Ga into the zinc oxide particles, the zinc oxide powder can have a high carrier concentration. Moreover, this zinc oxide powder is a fine powder having a volume-based D50 average particle size of 200 nm or less. Because the particles are fine in this way, not only are they excellent in dispersibility in liquids, but even when used in combination with other light-transmitting materials, light scattering by zinc oxide fine particles is prevented. It can suppress and can ensure higher transparency. Therefore, the advantages of zinc oxide as a transparent conductive material can be maximized.

酸化亜鉛微細粒子は、Al及びGaから選択される少なくとも一種の3B族元素を0.3at%以上の量で内部に固溶状態で含み、好ましくは0.5at%以上、より好ましくは0.5〜10at%、さらに好ましくは0.8〜5at%、最も好ましくは1〜3at%である。特に好ましい3B族元素はAlである。この3B族元素の固溶量はTEM−EDS(透過型電子顕微鏡)により、例えば後述する実施例に記載される手順及び条件に従って、粒子の中心又はその近傍に対して測定することができる。このように一定量の3B族元素が粒子の内部にまで固溶していることで、溶媒への分散に適した酸化亜鉛微細粉末でありながら、高いキャリア濃度を与えることができる。   The zinc oxide fine particles contain at least one 3B group element selected from Al and Ga in a solid solution state in an amount of 0.3 at% or more, preferably 0.5 at% or more, more preferably 0.5 -10 at%, more preferably 0.8-5 at%, most preferably 1-3 at%. A particularly preferred group 3B element is Al. The solid solution amount of the group 3B element can be measured with a TEM-EDS (transmission electron microscope) with respect to the center of the particle or the vicinity thereof, for example, according to the procedure and conditions described in Examples described later. As described above, since a certain amount of the group 3B element is dissolved in the particles, a high carrier concentration can be provided while the zinc oxide fine powder is suitable for dispersion in a solvent.

ところで、結晶構造的に0.3at%以上の量のAl及び/又はGaを酸化亜鉛粒子内部に固溶させることは一般的に容易なことではない。これは、AlやGaはZnと置換固溶するが、Al3+及びGa3+のイオン半径がZn2+と比較して小さいため、AlやGaの固溶量の増加に伴って酸化亜鉛の結晶格子が収縮してしまい、AlやGaの更なる侵入が妨げられるためと考えられる。この点、本発明者らの知見によれば、酸化亜鉛結晶内にAlやGaの添加による収縮を相殺するような手段を講じることで、AlやGaの結晶構造内への固溶量を増大することができるものと考えられる。By the way, it is generally not easy to make Al and / or Ga in an amount of 0.3 at% or more in the crystal structure into a solid solution inside the zinc oxide particles. This is because Al and Ga are substituted and solid-dissolved with Zn, but since the ionic radii of Al 3+ and Ga 3+ are smaller than those of Zn 2+ , the crystal lattice of zinc oxide increases with an increase in the amount of Al or Ga dissolved. This is thought to be due to the shrinkage of the metal and prevent further penetration of Al and Ga. In this regard, according to the knowledge of the present inventors, the amount of solid solution in the crystal structure of Al or Ga is increased by taking measures to offset shrinkage due to the addition of Al or Ga in the zinc oxide crystal. It is thought that it can be done.

この目的のため、酸化亜鉛結晶は、Cl及びBrから選択される少なくとも一種の7B族元素を0.1at%以上の量で内部に固溶状態でさらに含むのが好ましく、より好ましくは0.2at%以上であり、さらに好ましくは0.2〜2.0at%である。すなわち、ClやBrはOと置換固溶するが、Cl及びBrのイオン半径はO2−と比較して大きいため、ClやBrの固溶量の増加に伴って酸化亜鉛の結晶格子は膨張する。このため、上述したAlやGaの添加による結晶格子の収縮を相殺することができる。つまり、Al及び/又はGaと、Cl及び/又はBrとを適正な割合で酸化亜鉛結晶に同時に固溶させた場合、結晶格子の膨張及び収縮が相殺されて結晶格子の変形が抑制され、その結果、3B族元素のみならず7B族元素を含めた全体のドーパント量を増大させることが可能になるものと考えられる。3B族元素及び7B族元素はいずれもキャリア濃度に寄与する元素であるため、このような高いドーパント量はキャリア濃度の増大をもたらす。なお、7B族元素をFとした場合については、Fのイオン半径がO2−と比較して小さいため、上記のような効果は生じないものと考えられる。特に好ましい7B族元素はBrである。For this purpose, the zinc oxide crystal preferably further contains at least one 7B group element selected from Cl and Br in an amount of 0.1 at% or more in a solid solution state, more preferably 0.2 at. % Or more, and more preferably 0.2 to 2.0 at%. That is, although Cl and Br are substituted for solid solution with O, since the ion radius of Cl and Br is larger than that of O 2− , the crystal lattice of zinc oxide increases as the amount of solid solution of Cl or Br increases. Expands. For this reason, the shrinkage | contraction of the crystal lattice by addition of Al and Ga mentioned above can be canceled. That is, when Al and / or Ga and Cl and / or Br are simultaneously dissolved in the zinc oxide crystal at an appropriate ratio, the expansion and contraction of the crystal lattice are offset and the deformation of the crystal lattice is suppressed. As a result, it is considered that the total dopant amount including not only the 3B group element but also the 7B group element can be increased. Since both the group 3B element and the group 7B element are elements that contribute to the carrier concentration, such a high amount of dopant causes an increase in the carrier concentration. When the group 7B element is F , the ionic radius of F is smaller than that of O 2−, and thus it is considered that the above effect does not occur. A particularly preferred group 7B element is Br.

酸化亜鉛結晶のa軸の格子定数が3.246〜3.254Åであるのが好ましく、より好ましくは3.247〜3.252Åであり、さらに好ましくは3.247〜3.251Åであり、かつ、c軸の格子定数が5.204〜5.214Åであるのが好ましく、より好ましくは5.205〜5.211Åであり、さらに好ましくは5.205〜5.209Åである。これらの格子定数はX線回折法を用いて、例えば後述する実施例に記載される手順及び条件に従って、測定することができる。このような範囲内のa軸及びc軸の格子定数は、一般的な酸化亜鉛の格子定数(ICDD36−1451によれば、a軸長が3.2498Å、c軸長が5.2066Å)に近い値であることから、3B族元素に起因する収縮を7B族元素に起因する膨張で相殺しながら、高いキャリア濃度を与えるのに有効な量の3B族元素が酸化亜鉛微細粒子の内部にまで固溶されたことを示唆する指標となりうる。   The zinc oxide crystal preferably has an a-axis lattice constant of 3.246 to 3.254 、, more preferably 3.247 to 3.252 、, still more preferably 3.247 to 3.251 、, and The c-axis lattice constant is preferably 5.204 to 5.214 Å, more preferably 5.205 to 5.211 、, and still more preferably 5.205 to 5.209 Å. These lattice constants can be measured by using an X-ray diffraction method, for example, according to procedures and conditions described in Examples described later. The lattice constants of the a-axis and c-axis within such a range are close to a general zinc oxide lattice constant (according to ICDD 36-1451, the a-axis length is 3.2498 mm and the c-axis length is 5.2066 mm). Therefore, an effective amount of the Group 3B element to give a high carrier concentration is solidified to the inside of the zinc oxide fine particles while canceling the shrinkage caused by the Group 3B element by the expansion caused by the Group 7B element. It can be an indicator to suggest that it has been dissolved.

酸化亜鉛微細粉末は、体積基準D50平均粒径(メジアン径)が200nm以下であり、好ましくは5〜150nm、より好ましくは10〜100nm、さらに好ましくは15〜80nmであり、さらに好ましくは20〜60nmである。このように粒子が微細であることで、液体への分散性に優れることのみならず、他の透光性材料と混合して使用する際であっても、酸化亜鉛微細粒子による光の散乱を抑制して、より高い透明性を確保することができる。体積基準D50平均粒径は、粒度分布測定装置によって測定することができる。   The zinc oxide fine powder has a volume-based D50 average particle diameter (median diameter) of 200 nm or less, preferably 5 to 150 nm, more preferably 10 to 100 nm, still more preferably 15 to 80 nm, still more preferably 20 to 60 nm. It is. Because the particles are fine in this way, not only are they excellent in dispersibility in liquids, but even when used in combination with other light-transmitting materials, light scattering by zinc oxide fine particles is prevented. It can suppress and can ensure higher transparency. The volume standard D50 average particle diameter can be measured by a particle size distribution measuring apparatus.

本発明の特に好ましい態様によれば、体積基準D50平均粒径が40〜50nmであり、3B族元素がAlであり、かつ、その固溶量が1.2〜1.3at%であり、7B族元素がBrであり、かつ、その固溶量が0.3〜0.4at%であり、a軸の格子定数が3.247〜3.249Åであり、c軸の格子定数が5.206〜5.208Åである、酸化亜鉛微細粉末が提供される。   According to a particularly preferred embodiment of the present invention, the volume-based D50 average particle diameter is 40 to 50 nm, the Group 3B element is Al, and the solid solution amount is 1.2 to 1.3 at%. The group element is Br, the solid solution amount is 0.3 to 0.4 at%, the a-axis lattice constant is 3.247 to 3.249 、, and the c-axis lattice constant is 5.206. A zinc oxide fine powder is provided which is ˜5.208 cm.

本発明による酸化亜鉛微細粒子は、溶媒と、この溶媒に分散されてなる酸化亜鉛微細粉末とを含んでなる、分散液の形態で提供されてもよい。後述するように、本発明の酸化亜鉛微細粒子は、液相法にて作製され、液相中に分散した分散液の状態で生成しうる。このため、分散液の形態で酸化亜鉛微細粒子を用意しておけば、乾燥や固相熱処理工程を経ることなく、次工程へそのまま供することが可能となる。これにより、乾燥に伴う酸化亜鉛微細粒子の凝集等を防止することも可能となる。この特徴は、例えば水性の導電性塗料等を作製する際に、分散が容易となる点で有用である。   The zinc oxide fine particles according to the present invention may be provided in the form of a dispersion comprising a solvent and zinc oxide fine powder dispersed in the solvent. As will be described later, the zinc oxide fine particles of the present invention are produced by a liquid phase method and can be produced in the state of a dispersion dispersed in the liquid phase. For this reason, if zinc oxide fine particles are prepared in the form of a dispersion, it can be used as it is in the next step without passing through a drying or solid-phase heat treatment step. Thereby, it is also possible to prevent aggregation of zinc oxide fine particles accompanying drying. This feature is useful in that, for example, it is easy to disperse when producing a water-based conductive paint or the like.

製造方法
上述した本発明による酸化亜鉛微細粉末は、液相法である水熱合成により、比較的低温で、再熱処理を経ることなく直接合成することにより製造することができる。こうして合成される酸化亜鉛微細粉末は、D50平均粒径が200nm以下という、極めて小さいサイズを有するという特徴がある。このように粉末が微細であることで、他の透光性材料と混合して使用する際であっても、酸化亜鉛微細粉末による光の散乱を抑制して、より高い透明性を確保することができる。また、水熱合成により作製された微細粉末は液相中に分散した状態で生成するため、乾燥や固相熱処理工程を経ることなく、次工程へ供することが可能である。これにより、乾燥に伴う酸化亜鉛微細粉末の凝集等を防止することも可能となる。この特徴は、例えば水性の導電性塗料等を作製する際に、分散が容易となる点で有用である。
Production Method The zinc oxide fine powder according to the present invention described above can be produced by direct synthesis at a relatively low temperature and without re-heat treatment by hydrothermal synthesis, which is a liquid phase method. The zinc oxide fine powder synthesized in this way is characterized by having a very small size with a D50 average particle size of 200 nm or less. As the powder is fine in this way, even when used in combination with other light-transmitting materials, the light scattering by the zinc oxide fine powder is suppressed and higher transparency is ensured. Can do. Moreover, since the fine powder produced by hydrothermal synthesis is generated in a state dispersed in the liquid phase, it can be used for the next step without passing through a drying or solid-phase heat treatment step. Thereby, it is also possible to prevent aggregation of the zinc oxide fine powder accompanying drying. This feature is useful in that, for example, it is easy to disperse when producing a water-based conductive paint or the like.

具体的には、本発明による酸化亜鉛微細粉末は、Al及びGaから選択される少なくとも一種の3B族元素のイオンと、亜鉛イオンと、カルボン酸及び/又はカルボン酸イオンとを含有する原料水溶液を130℃以上の温度で水熱合成に付することにより製造することができる。すなわち、原料水溶液は、3B族元素のイオンと、亜鉛イオンと、カルボン酸及び/又はカルボン酸イオンとを含有するものである。このような原料水溶液の代表例としては酢酸亜鉛水溶液が挙げられる。原料水溶液は有機溶媒を伴わないため、環境負荷が小さい。この原料水溶液を130℃以上の温度で水熱合成に付すると、予想外にも、再熱処理を必要とすることなく、3B族元素が固溶された酸化亜鉛微細粉末を直接生成させることができる。特に、再熱処理を経ないで本発明の方法により得られる酸化亜鉛微細粒子は、典型的にはナノオーダーの極めて微細な粒子であり、凝集が少なく、分散性が高いという特徴を有する。   Specifically, the zinc oxide fine powder according to the present invention comprises a raw material aqueous solution containing at least one group 3B element ion selected from Al and Ga, zinc ion, and carboxylic acid and / or carboxylate ion. It can manufacture by attaching | subjecting to a hydrothermal synthesis at the temperature of 130 degreeC or more. That is, the raw material aqueous solution contains a group 3B element ion, a zinc ion, and a carboxylic acid and / or a carboxylic acid ion. A representative example of such a raw material aqueous solution is a zinc acetate aqueous solution. Since the raw material aqueous solution does not involve an organic solvent, the environmental load is small. Unexpectedly, when this raw material aqueous solution is subjected to hydrothermal synthesis at a temperature of 130 ° C. or higher, it is possible to directly produce a zinc oxide fine powder in which a group 3B element is dissolved, without requiring reheating. . In particular, the zinc oxide fine particles obtained by the method of the present invention without undergoing reheat treatment are typically extremely fine particles of nano-order, and are characterized by little aggregation and high dispersibility.

上記のような方法で酸化亜鉛微細粉末が直接得られる反応メカニズムは必ずしも明らかでないが、水熱合成時に、カルボン酸又はカルボン酸イオンが熱分解してケテン類を生成すると同時に、亜鉛イオンに酸素を供給してZnOを生成させるためではないかと考えられる。なお、本発明者らの理解によれば、水熱合成ではない(すなわちオートクレーブ等の高温高圧容器中ではない)常圧下での単なる加熱においては、水溶液中に存在するカルボン酸やカルボン酸イオンが分解してケテン類を生成することはなく、上記の反応メカニズムは水熱合成特有のものと考えられる。   Although the reaction mechanism by which the zinc oxide fine powder can be obtained directly by the method as described above is not necessarily clear, during hydrothermal synthesis, carboxylic acid or carboxylate ions are thermally decomposed to produce ketenes, and at the same time oxygen is added to the zinc ions. It is thought that it may be for supplying ZnO to be supplied. According to the understanding of the present inventors, carboxylic acid and carboxylate ions present in an aqueous solution are not hydrothermal synthesis (that is, not in a high-temperature and high-pressure vessel such as an autoclave) and simply heated under normal pressure. It does not decompose to produce ketenes, and the above reaction mechanism is considered to be unique to hydrothermal synthesis.

本発明に用いる原料水溶液は、3B族元素のイオン(Al3+及び/又はGa3+)、亜鉛イオン(Zn2+)と、カルボン酸(−COOH)及び/又はカルボン酸イオン(−COO)とを含有する。3B族元素イオンの供給源は、水に溶解してアルミニウムイオン及び/又はガリウムイオンを生成可能な物質であれば特に限定されないが、硝酸アルミニウム、塩化アルミニウム、硝酸ガリウム、塩化ガリウム等の水溶性の塩が好ましい。亜鉛イオンの供給源は、亜鉛イオンを供給可能な塩であれば特に限定されないが、酢酸亜鉛、硝酸亜鉛、塩化亜鉛等が好ましく例示され、特に好ましくはカルボン酸イオンの供給源としても同時に機能する点で酢酸亜鉛が挙げられる。この点、酢酸亜鉛を使用しない場合は、他の物質によりカルボン酸又はカルボン酸イオンを反応系内に供給する必要がある。
カルボン酸の例としては、蟻酸、シュウ酸、酢酸等が挙げられる。カルボン酸を用いた場合には、アンモニア等の塩基を用いて原料水溶液のpHを3〜8に調整することが好ましい。カルボン酸イオンの供給源としては、種々のカルボン酸塩が使用可能であるが、上述した酢酸亜鉛の他、蟻酸亜鉛、シュウ酸亜鉛、蟻酸アンモニウム、シュウ酸アンモニウム、酢酸アンモニウム等が好ましく例示される。特に好ましいカルボン酸及び/又はカルボン酸イオンは酢酸及び/又は酢酸イオンである。原料水溶液の濃度は特に限定されないが、3B族元素のイオンを0.0001〜0.02Mの濃度で含み、亜鉛イオンを0.01〜2Mの濃度で含み、かつ、カルボン酸及び/又はカルボン酸イオンを0.02〜4Mの濃度で含むのが好ましい。
The raw material aqueous solution used in the present invention contains group 3B element ions (Al 3+ and / or Ga 3+ ), zinc ions (Zn 2+ ), carboxylic acid (—COOH) and / or carboxylate ions (—COO ). contains. The source of the group 3B element ions is not particularly limited as long as it is a substance that can be dissolved in water to generate aluminum ions and / or gallium ions, but water-soluble substances such as aluminum nitrate, aluminum chloride, gallium nitrate, and gallium chloride can be used. Salts are preferred. The supply source of zinc ions is not particularly limited as long as it is a salt capable of supplying zinc ions, but zinc acetate, zinc nitrate, zinc chloride and the like are preferably exemplified, and particularly preferably functions simultaneously as a supply source of carboxylate ions. In this respect, zinc acetate is mentioned. In this regard, when zinc acetate is not used, it is necessary to supply carboxylic acid or a carboxylic acid ion into the reaction system by another substance.
Examples of carboxylic acids include formic acid, oxalic acid, acetic acid and the like. When carboxylic acid is used, it is preferable to adjust the pH of the raw material aqueous solution to 3 to 8 using a base such as ammonia. As the carboxylate ion supply source, various carboxylates can be used, but in addition to the above-mentioned zinc acetate, zinc formate, zinc oxalate, ammonium formate, ammonium oxalate, ammonium acetate and the like are preferably exemplified. . Particularly preferred carboxylic acids and / or carboxylate ions are acetic acid and / or acetate ions. The concentration of the raw material aqueous solution is not particularly limited, but includes ions of Group 3B elements at a concentration of 0.0001 to 0.02M, zinc ions at a concentration of 0.01 to 2M, and carboxylic acid and / or carboxylic acid. It is preferable to contain ions at a concentration of 0.02 to 4M.

原料水溶液の液性は特に限定されないが、概ね中性〜酸性の液性域、例えばpH8.0以下であり、好ましくはpH7.0以下である。このような範囲内の液性であると、耐塩基性の反応装置を使う必要がなくなり、プロセスが大幅に簡素化され、製造コストの低減が可能となる。また、塩基性溶液を使用する必要性が無くなり、ガラス基板上に酸化亜鉛粒子を析出させて膜化させる際、ガラスの腐食を抑制することができる。   The liquidity of the raw material aqueous solution is not particularly limited, but is generally a neutral to acidic liquid range, for example, pH 8.0 or less, preferably pH 7.0 or less. When the liquidity is within such a range, it is not necessary to use a base-resistant reaction apparatus, the process is greatly simplified, and the manufacturing cost can be reduced. In addition, it is not necessary to use a basic solution, and corrosion of glass can be suppressed when zinc oxide particles are deposited on a glass substrate to form a film.

本発明における水熱合成は130℃以上、好ましくは140℃以上、より好ましくは160〜250℃の温度で行われる。水熱合成の時間は所望の微細粒子が形成されるかぎり特に限定されないが、上記温度域で1時間以上、好ましくは3〜10時間行われるのが好ましい。例えば、水熱合成は140℃以上の温度で1時間以上行われるのが好ましく、より好ましくは160〜250℃の温度で3〜10時間行われる。水熱合成は、高温の水、特に高温高圧の水の存在の下に行われる物質の合成及び結晶成長法として一般的に定義されるものであり、オートクレーブ中で行われるのが典型的であり好ましいが、それ以外の高温高圧容器を使用してもよい。   The hydrothermal synthesis in the present invention is performed at a temperature of 130 ° C. or higher, preferably 140 ° C. or higher, more preferably 160 to 250 ° C. The hydrothermal synthesis time is not particularly limited as long as desired fine particles are formed, but it is preferably 1 hour or more, preferably 3 to 10 hours in the above temperature range. For example, the hydrothermal synthesis is preferably performed at a temperature of 140 ° C. or higher for 1 hour or longer, more preferably at a temperature of 160 to 250 ° C. for 3 to 10 hours. Hydrothermal synthesis is generally defined as the synthesis and crystal growth method of materials performed in the presence of high temperature water, especially high temperature and high pressure water, and is typically performed in an autoclave. Although it is preferable, other high-temperature and high-pressure containers may be used.

本発明に用いる原料水溶液は、Cl及びBrから選択される少なくとも一種の7B族元素のイオン(Cl及び/又はBr)を更に含んでなることができ、それにより3B族元素のみならず7B族元素も酸化亜鉛結晶の内部に固溶されるのが好ましい。3B族元素及び7B族元素はいずれもキャリア濃度に寄与する元素であるため、このような高いドーパント量はキャリア濃度の増大をもたらす。7B族元素イオンの供給源は、水に溶解して塩素イオン及び/又は臭素イオンを生成可能な物質であれば特に限定されないが、塩化セチルトリメチルアンモニウム(CTAC)、塩化リチウム、塩化カリウム、臭化セチルトリメチルアンモニウム(CTAB)、臭化リチウム、臭化カリウム等が好ましく例示され、特に好ましくは界面活性剤として酸化亜鉛粒子内への取り込みを促進する点で塩化セチルトリメチルアンモニウム(CTAC)及び臭化セチルトリメチルアンモニウム(CTAB)であり、最も好ましくは臭化セチルトリメチルアンモニウム(CTAB)である。The aqueous raw material solution used in the present invention may further contain at least one 7B group element ion (Cl and / or Br ) selected from Cl and Br, whereby not only the 3B group element but also 7B It is preferable that the group element is also dissolved in the zinc oxide crystal. Since both the group 3B element and the group 7B element are elements that contribute to the carrier concentration, such a high amount of dopant causes an increase in the carrier concentration. The source of group 7B element ions is not particularly limited as long as it is a substance that can be dissolved in water to generate chlorine ions and / or bromine ions, but cetyltrimethylammonium chloride (CTAC), lithium chloride, potassium chloride, bromide Cetyltrimethylammonium chloride (CTAB), lithium bromide, potassium bromide and the like are preferably exemplified, and cetyltrimethylammonium chloride (CTAC) and cetyl bromide are particularly preferable in terms of promoting incorporation into zinc oxide particles as a surfactant. Trimethylammonium (CTAB), most preferably cetyltrimethylammonium bromide (CTAB).

本発明に用いる原料水溶液は、界面活性剤を0.01M以上の濃度で含んでなるのが好ましく、より好ましくは0.01〜2Mである。界面活性剤の存在下であると、3B族元素や7B族元素等のドーパントを酸化亜鉛粒子の内部に上手く固溶させることができる。
界面活性剤の例としては、塩化セチルトリメチルアンモニウム(CTAC)、臭化セチルトリメチルアンモニウム(CTAB)、PVA(ポリビニルアルコール)、PEG(ポリエチレングリコール)、エチレングリコール、PVP(ポリビニルピロリドン)等が挙げられる。好ましい界面活性剤は7B族元素供給源としても機能する点で塩化セチルトリメチルアンモニウム(CTAC)及び臭化セチルトリメチルアンモニウム(CTAB)であり、酸化粒子亜鉛粒子の内部に7B族元素を取り込み易くなるだけでなく、3B族元素も同時に結晶内に取り込みやすくなる。特に好ましくは臭化セチルトリメチルアンモニウム(CTAB)である。このように、3B族元素及び/又は7B族元素は、界面活性剤の存在下において、酸化亜鉛粒子の内部に上手く固溶させることができる。これらの元素が上手く固溶する理由は必ずしも明らかでないが、界面活性剤が形成したミセル内に3B族元素や7B族元素のイオンが存在し、水熱反応中の酸化亜鉛生成過程で効果的に取り込まれるためではないかと考えられる。
The aqueous raw material solution used in the present invention preferably contains a surfactant at a concentration of 0.01M or more, more preferably 0.01 to 2M. In the presence of a surfactant, a dopant such as a group 3B element or a group 7B element can be well dissolved in the zinc oxide particles.
Examples of the surfactant include cetyltrimethylammonium chloride (CTAC), cetyltrimethylammonium bromide (CTAB), PVA (polyvinyl alcohol), PEG (polyethylene glycol), ethylene glycol, PVP (polyvinylpyrrolidone) and the like. Preferred surfactants are cetyltrimethylammonium chloride (CTAC) and cetyltrimethylammonium bromide (CTAB) in that they also function as a Group 7B element source, and only facilitate the incorporation of Group 7B elements into the oxide particle zinc particles. In addition, the group 3B element is easily incorporated into the crystal at the same time. Particularly preferred is cetyltrimethylammonium bromide (CTAB). As described above, the group 3B element and / or the group 7B element can be well dissolved in the inside of the zinc oxide particles in the presence of the surfactant. The reason why these elements dissolve well is not always clear, but ions of 3B group elements and 7B group elements are present in the micelles formed by the surfactant and are effective in the process of zinc oxide formation during hydrothermal reaction. It is thought that it is because it is taken in.

上記のようにして、本発明の方法によれば、再熱処理を必要とすることなく、水熱合成により酸化亜鉛微細粒子を直接合成することができる。もっとも、こうして得られた酸化亜鉛微細粒子に所望により再熱処理を施してもよいが、再熱処理を経ないで得られる酸化亜鉛微細粒子は、典型的にはナノオーダーの極めて微細な粒子であり、凝集が少なく、分散性が高いという特徴を有する。   As described above, according to the method of the present invention, fine zinc oxide particles can be directly synthesized by hydrothermal synthesis without the need for re-heat treatment. However, the zinc oxide fine particles obtained in this way may be reheated if desired, but the zinc oxide fine particles obtained without undergoing reheat treatment are typically extremely fine particles of nano order, It is characterized by low aggregation and high dispersibility.

なお、本発明の酸化亜鉛微細粉末は、上述したような液相法に限らず、固相法を用いても製造することができる。例えば、ノンドープの酸化亜鉛ナノ粒子と、3B族元素酸化物のナノ粒子と、7B族元素化合物とを混合し、熱処理をしてもよい。この場合、7B族元素の揮発を防止し、ZnOに固溶させるため、密閉容器内において7B族元素の蒸気圧が大気圧以上となるようにしながら熱処理することが好ましい。   The fine zinc oxide powder of the present invention is not limited to the liquid phase method as described above, and can also be produced using a solid phase method. For example, non-doped zinc oxide nanoparticles, Group 3B element oxide nanoparticles, and Group 7B element compounds may be mixed and heat-treated. In this case, in order to prevent volatilization of the group 7B element and dissolve it in ZnO, it is preferable to perform heat treatment while keeping the vapor pressure of the group 7B element at atmospheric pressure or higher in the sealed container.

本発明を以下の例によってさらに具体的に説明する。   The present invention is more specifically described by the following examples.

例1(比較)
(1)酸化亜鉛粉末の作製
酢酸亜鉛二水和物(キシダ化学株式会社製)をZnの総物質量が0.01molとなるように秤量した。この酢酸亜鉛二水和物を45mLのMilli−Q水(超純水)に溶解して、混合溶液を得た。この混合溶液をオートクレーブ中において180℃で6時間加熱して、酸化亜鉛粒子群からなる試料粉末を分散液の形態で得た。得られた試料粉末に対し、X線回折法(XRD)を用いて結晶相を同定した結果、ZnO単相であった。
Example 1 (Comparison)
(1) Preparation of zinc oxide powder Zinc acetate dihydrate (manufactured by Kishida Chemical Co., Ltd.) was weighed so that the total amount of Zn was 0.01 mol. This zinc acetate dihydrate was dissolved in 45 mL of Milli-Q water (ultra pure water) to obtain a mixed solution. This mixed solution was heated in an autoclave at 180 ° C. for 6 hours to obtain a sample powder composed of zinc oxide particles in the form of a dispersion. As a result of identifying the crystal phase of the obtained sample powder using X-ray diffraction (XRD), it was a ZnO single phase.

(2)格子定数の測定
試料粉末の格子定数を、X線回折法を用いて、X線:CuKα線、管電圧:45kV、管電流:40mA、測定モード:ステップ走査、ステップ幅:0.01°、計数時間:1s/ステップ、走査範囲:27.5−40°(2θ)の条件で測定した。その際、内部標準として格子定数が既知のSiを用い、ピークトップ法により求めた酸化亜鉛の(100)及び(002)ピーク位置と、CuKα1線の波長λ=1.5418Åとを用いて、酸化亜鉛粉末の格子定数のa軸長及びc軸長をそれぞれ決定した。その結果、a軸長が3.2500Å、c軸長が5.2067Åという、両軸共に、一般的な酸化亜鉛の格子定数(ICDD36−1451によれば、a軸長が3.2498Å、c軸長が5.2066Å)に近い値が得られた。
(2) Measurement of lattice constant Using the X-ray diffraction method, the lattice constant of the sample powder was measured using X-ray: CuKα ray, tube voltage: 45 kV, tube current: 40 mA, measurement mode: step scanning, step width: 0.01 Measurement was performed under the conditions of °, counting time: 1 s / step, scanning range: 27.5-40 ° (2θ). At that time, using Si having a known lattice constant as an internal standard, using the (100) and (002) peak positions of zinc oxide determined by the peak top method and the wavelength λ = 1.5418 of the CuKα1 line, oxidation was performed. The a-axis length and c-axis length of the lattice constant of the zinc powder were determined. As a result, the a-axis length is 3.2500 mm and the c-axis length is 5.2067 mm. Both of these axes have a general zinc oxide lattice constant (according to ICDD 36-1451, the a-axis length is 3.2498 mm, the c-axis A value close to 5.2066 cm) was obtained.

(3)粒子内部の組成分析
粒子内部のAl、Ga、Cl及びBrの存在量を測定するために、TEM−EDSによるナノ領域の組成分析を以下のようにして行った。まず、試料粉末をエポキシ樹脂を用いて樹脂埋めした。これを適切なサイズに切断した後、機械研磨、ディンプリング、及びArイオンミリングにより、TEM用薄膜試料を作製した。粒子内部の組成を分析するため、粒径(粒子に内接する円の直径)が20nm以上の粒子を選び、分析位置は、粒子に内接する直径dの円と同じ中心を持つ直径が0.2dの円の内部の任意の点とした。分析装置として、日本電子製JEM−2010F型の電解放射型透過電子顕微鏡を用い、加速電圧は200kVとした。前記分析点に対し、装置付属のUTW型EDS検出器を用いて、ビーム径をφ2nmに収束させ、EDS分析を行った。分析値は前記範囲内の異なる5点の平均値とした。こうしてTEM−EDSにより粒子内部のAl、Ga、Cl及びBrの元素分析を行った結果、いずれの元素も検出されなかった。
(3) Composition analysis inside the particle In order to measure the abundance of Al, Ga, Cl and Br inside the particle, a composition analysis of the nano-region by TEM-EDS was performed as follows. First, the sample powder was filled with an epoxy resin. After cutting this into an appropriate size, a thin film sample for TEM was prepared by mechanical polishing, dimple ringing, and Ar ion milling. To analyze the composition of inside the particle, the particle size (diameter of a circle inscribed to the particle) is to select the more particles 20 nm, analysis position, diameter having the same center as the circle of diameter d 1 which is inscribed to the particle 0. Any point inside the 2d 1 circle. A JEM-2010F type electrolytic emission transmission electron microscope manufactured by JEOL Ltd. was used as the analyzer, and the acceleration voltage was 200 kV. Using the UTW type EDS detector attached to the apparatus, the beam diameter was converged to φ2 nm for the analysis point, and EDS analysis was performed. The analysis value was an average value of five different points within the above range. As a result of elemental analysis of Al, Ga, Cl, and Br inside the particles by TEM-EDS, no element was detected.

(4)粒度分布の測定
動的光散乱式粒度分布測定装置(日機装製UPA−EX150)にて試料粉末の粒度分布を測定して、体積基準D50平均粒径を求めた。その結果、試料粉末の体積基準D50平均粒径は250nmであった。
(4) by measuring the measured dynamic light scattering particle size distribution The particle size distribution of the sample powder measuring device at (manufactured by Nikkiso Co. UPA-EX150) of particle size distribution, was determined volume basis D 50 average particle size. As a result, volume-based D 50 average particle diameter of the sample powder was 250 nm.

例2(比較)
酢酸亜鉛二水和物(キシダ化学株式会社製)と硝酸アルミニウム九水和物(キシダ化学株式会社製)を、ZnとAlの総物質量が0.01molとなるように秤量した。このとき、ZnとAlの物質量比Zn:Alを95:5とした。これらの成分を45mLのMilli−Q水(超純水)に溶解して、混合溶液を得た。この混合溶液をオートクレーブ中において180℃で6時間加熱して、酸化亜鉛粒子群からなる試料粉末を分散液の形態で得た。例1と同様にして試料粉末の格子定数を測定したところ、a軸長が3.2498Å、c軸長が5.2068Åと、一般的な酸化亜鉛に近い値が得られた。例1と同様にしてTEM−EDSにより粒子内部のAl、Ga、Cl及びBrの元素分析を行った結果、いずれの元素も検出されなかった。試料粉末の体積基準D50平均粒径は195nmであった。
Example 2 (Comparison)
Zinc acetate dihydrate (Kishida Chemical Co., Ltd.) and aluminum nitrate nonahydrate (Kishida Chemical Co., Ltd.) were weighed so that the total amount of Zn and Al was 0.01 mol. At this time, the substance quantity ratio Zn: Al of Zn: Al was 95: 5. These components were dissolved in 45 mL of Milli-Q water (ultra pure water) to obtain a mixed solution. This mixed solution was heated in an autoclave at 180 ° C. for 6 hours to obtain a sample powder composed of zinc oxide particles in the form of a dispersion. When the lattice constant of the sample powder was measured in the same manner as in Example 1, an a-axis length of 3.2498 mm and a c-axis length of 5.2068 mm were obtained, which are values close to general zinc oxide. As a result of elemental analysis of Al, Ga, Cl, and Br inside the particles by TEM-EDS in the same manner as in Example 1, no element was detected. Volume-based D 50 average particle diameter of the sample powder was 195 nm.

例3(比較)
酢酸亜鉛二水和物(キシダ化学株式会社製)を、Znの総物質量が0.01molとなるように秤量した。この酢酸亜鉛二水和物を45mLのMilli−Q水(超純水)に溶解し、0.005molのCTAB(臭化セチルトリメチルアンモニウム)(キシダ化学株式会社製)を更に加えて、混合溶液を得た。この混合溶液をオートクレーブ中において180℃で6時間加熱して、酸化亜鉛粒子群からなる試料粉末を分散液の形態で得た。例1と同様にして試料粉末の格子定数を測定したところ、a軸長が3.2530Å、c軸長が5.2120Åという、一般的な酸化亜鉛と比べて大きい値が得られた。例1と同様にしてTEM−EDSにより粒子内部のAl、Ga、Cl及びBrの元素分析を行った結果、Brのみが0.35at%検出された。試料粉末の体積基準D50平均粒径は113nmであった。
Example 3 (Comparison)
Zinc acetate dihydrate (Kishida Chemical Co., Ltd.) was weighed so that the total amount of Zn was 0.01 mol. This zinc acetate dihydrate is dissolved in 45 mL of Milli-Q water (ultra pure water), 0.005 mol of CTAB (cetyltrimethylammonium bromide) (manufactured by Kishida Chemical Co., Ltd.) is further added, and the mixed solution is dissolved. Obtained. This mixed solution was heated in an autoclave at 180 ° C. for 6 hours to obtain a sample powder composed of zinc oxide particles in the form of a dispersion. When the lattice constant of the sample powder was measured in the same manner as in Example 1, a large value was obtained as compared with general zinc oxide such that the a-axis length was 3.2530 mm and the c-axis length was 5.2120 mm. As a result of elemental analysis of Al, Ga, Cl and Br inside the particles by TEM-EDS in the same manner as in Example 1, only 0.35 at% was detected. Volume-based D 50 average particle diameter of the sample powder was 113 nm.

例4
酢酸亜鉛二水和物(キシダ化学株式会社製)と硝酸アルミニウム九水和物(キシダ化学株式会社製)を、ZnとAlの総物質量が0.01molとなるように秤量した。このとき、ZnとAlの物質量比Zn:Alを95:5とした。これらの成分を45mLのMilli−Q水(超純水)に溶解し、0.005molのCTAB(臭化セチルトリメチルアンモニウム)(キシダ化学株式会社製)を更に加えて、混合溶液を得た。この混合溶液をオートクレーブ中において180℃で6時間加熱して、酸化亜鉛粒子群からなる試料粉末を分散液の形態で得た。例1と同様にして試料粉末の格子定数を測定したところ、a軸長が3.2480Å、c軸長が5.2066Åという、一般的な酸化亜鉛に近い値が得られた。例1と同様にしてTEM−EDSにより粒子内部のAl、Ga、Cl及びBrの元素分析を行った結果、Alが1.22atm%、Brが0.32at%検出され、Ga及びClは検出されなかった。試料粉末の体積基準D50平均粒径は47nmであった。粒子をTEMで観察したところ図1に示されるTEM像が得られた。
Example 4
Zinc acetate dihydrate (Kishida Chemical Co., Ltd.) and aluminum nitrate nonahydrate (Kishida Chemical Co., Ltd.) were weighed so that the total amount of Zn and Al was 0.01 mol. At this time, the substance quantity ratio Zn: Al of Zn: Al was 95: 5. These components were dissolved in 45 mL of Milli-Q water (ultra pure water), and 0.005 mol of CTAB (cetyltrimethylammonium bromide) (manufactured by Kishida Chemical Co., Ltd.) was further added to obtain a mixed solution. This mixed solution was heated in an autoclave at 180 ° C. for 6 hours to obtain a sample powder composed of zinc oxide particles in the form of a dispersion. When the lattice constant of the sample powder was measured in the same manner as in Example 1, a value close to general zinc oxide was obtained, with an a-axis length of 3.2480 mm and a c-axis length of 5.2066 mm. As a result of elemental analysis of Al, Ga, Cl and Br inside the particle by TEM-EDS in the same manner as in Example 1, Al was detected at 1.22 atm%, Br was detected at 0.32 at%, and Ga and Cl were detected. There wasn't. Volume-based D 50 average particle diameter of the sample powder was 47 nm. When the particles were observed with a TEM, a TEM image shown in FIG. 1 was obtained.

表1から分かるように、例1にあっては、ドーパントを添加しなかったため、固溶元素が検出されず、格子定数は通常のZnOと同様であった。例2にあっては、Al源(硝酸亜鉛九水和物)を原料に添加したが7B族元素(Br)を添加しなかったため、BrのみならずAlも粒子内部に固溶しなかった。例3にあっては、CTABの使用によりBrが粒子内部に固溶したが、BrはOと比較してイオン半径大きいため、格子定数が増大した。例4にあっては、Al源とBr源の両方を使用した結果、Al及びBrが共に粒子内部に固溶し、Brに起因する膨張とAlに起因する収縮との相殺により、格子定数は通常のZnOと同程度になり、その結果、多量のAlを酸化亜鉛粒子内部に固溶させることができた。   As can be seen from Table 1, in Example 1, since no dopant was added, no solid solution element was detected, and the lattice constant was the same as that of ordinary ZnO. In Example 2, since an Al source (zinc nitrate nonahydrate) was added to the raw material, but no Group 7B element (Br) was added, not only Br but also Al did not dissolve in the particles. In Example 3, by using CTAB, Br was dissolved in the inside of the particle, but since Br had a larger ionic radius than O, the lattice constant increased. In Example 4, as a result of using both the Al source and the Br source, both Al and Br are solid-solved inside the particles, and the lattice constant is given by the offset between the expansion caused by Br and the shrinkage caused by Al. As a result, a large amount of Al could be dissolved in the zinc oxide particles.

Claims (12)

Al及びGaから選択される少なくとも一種の3B族元素を0.3at%以上の量及びCl及びBrから選択される少なくとも一種の7B族元素を0.1at%以上の量で内部に固溶状態で含む酸化亜鉛結晶からなる酸化亜鉛微細粒子を複数含んでなり、体積基準D50平均粒径が200nm以下である、酸化亜鉛微細粉末。At least one 3B group element selected from Al and Ga in an amount of 0.3 at% or more and at least one 7B group element selected from Cl and Br in a solid solution state in an amount of 0.1 at% or more. A zinc oxide fine powder comprising a plurality of zinc oxide fine particles comprising zinc oxide crystals and having a volume-based D50 average particle size of 200 nm or less. 前記酸化亜鉛結晶のa軸の格子定数が3.246〜3.254Åであり、前記酸化亜鉛結晶のc軸の格子定数が5.204〜5.214Åである、請求項1に記載の酸化亜鉛微細粉末。The zinc oxide according to claim 1, wherein the zinc oxide crystal has an a-axis lattice constant of 3.246 to 3.254 、, and the zinc oxide crystal has a c-axis lattice constant of 5.204 to 5.214 結晶. Fine powder. 前記酸化亜鉛結晶のa軸の格子定数が3.247〜3.252Åであり、前記酸化亜鉛結晶のc軸の格子定数が5.205〜5.211Åである、請求項1又は3に記載の酸化亜鉛微細粉末。The lattice constant of the a axis of the zinc oxide crystal is 3.247 to 3.252 、, and the lattice constant of the c axis of the zinc oxide crystal is 5.205 to 5.211 Å. Zinc oxide fine powder. 体積基準D50平均粒径が10〜100nmである、請求項1、3及び4のいずれか一項に記載の酸化亜鉛微細粉末。The zinc oxide fine powder according to any one of claims 1, 3, and 4, wherein the volume-based D50 average particle diameter is 10 to 100 nm. 前記3B族元素の固溶量が0.5at%以上である、請求項1及び3〜5のいずれか一項に記載の酸化亜鉛微細粉末。The zinc oxide fine powder according to any one of claims 1 and 3 to 5, wherein a solid solution amount of the group 3B element is 0.5 at% or more. 前記3B族元素の固溶量が0.5〜10at%である、請求項1及び3〜6のいずれか一項に記載の酸化亜鉛微細粉末。The zinc oxide fine powder according to any one of claims 1 and 3 to 6, wherein a solid solution amount of the group 3B element is 0.5 to 10 at%. 前記3B族元素がAlである、請求項1及び3〜7のいずれか一項に記載の酸化亜鉛微細粉末。The zinc oxide fine powder according to any one of claims 1 and 3 to 7, wherein the group 3B element is Al. 前記7B族元素の固溶量が0.2at%以上である、請求項1及び3〜8のいずれか一項に記載の酸化亜鉛微細粉末。The zinc oxide fine powder according to any one of claims 1 and 3 to 8, wherein a solid solution amount of the 7B group element is 0.2 at% or more. 前記7B族元素の固溶量が0.2〜2.0at%である、請求項1及び3〜8のいずれか一項に記載の酸化亜鉛微細粉末。The zinc oxide fine powder according to any one of claims 1 and 3 to 8, wherein a solid solution amount of the 7B group element is 0.2 to 2.0 at%. 前記7B族元素がBrである、請求項1及び3〜8のいずれか一項に記載の酸化亜鉛微細粉末。The zinc oxide fine powder according to any one of claims 1 and 3 to 8, wherein the 7B group element is Br. 体積基準D50平均粒径が40〜50nmであり、
前記3B族元素がAlであり、かつ、その固溶量が1.2〜1.3at%であり、
前記7B族元素がBrであり、かつ、その固溶量が0.3〜0.4at%であり、
a軸の格子定数が3.247〜3.249Åであり、c軸の格子定数が5.206〜5.208Åである、請求項1及び3〜9のいずれか一項に記載の酸化亜鉛微細粉末。
The volume-based D50 average particle size is 40-50 nm,
The 3B group element is Al, and its solid solution amount is 1.2 to 1.3 at%,
The 7B group element is Br, and the solid solution amount is 0.3 to 0.4 at%,
10. The zinc oxide fine particle according to claim 1, wherein the a-axis lattice constant is 3.247 to 3.249 Å, and the c-axis lattice constant is 5.206 to 5.208 Å. Powder.
溶媒と、該溶媒に分散されてなる請求項1及び3〜12のいずれか一項に記載の酸化亜鉛微細粉末とを含んでなる、酸化亜鉛微細粉末分散液。A zinc oxide fine powder dispersion comprising a solvent and the zinc oxide fine powder according to any one of claims 1 and 3 to 12 dispersed in the solvent.
JP2014504797A 2012-03-13 2013-03-04 Zinc oxide fine powder in which 3B group element is dissolved Expired - Fee Related JP5828495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014504797A JP5828495B2 (en) 2012-03-13 2013-03-04 Zinc oxide fine powder in which 3B group element is dissolved

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012056183 2012-03-13
JP2012056183 2012-03-13
JP2014504797A JP5828495B2 (en) 2012-03-13 2013-03-04 Zinc oxide fine powder in which 3B group element is dissolved
PCT/JP2013/055791 WO2013137037A1 (en) 2012-03-13 2013-03-04 Fine zinc oxide powder in which group 3b element forms solid solution

Publications (2)

Publication Number Publication Date
JPWO2013137037A1 JPWO2013137037A1 (en) 2015-08-03
JP5828495B2 true JP5828495B2 (en) 2015-12-09

Family

ID=49160950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014504797A Expired - Fee Related JP5828495B2 (en) 2012-03-13 2013-03-04 Zinc oxide fine powder in which 3B group element is dissolved

Country Status (2)

Country Link
JP (1) JP5828495B2 (en)
WO (1) WO2013137037A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050430A1 (en) * 2008-10-27 2010-05-06 国立大学法人名古屋工業大学 Columnar zno particle manufacturing method and columnar zno particles obtained using the same
JP5956710B2 (en) * 2009-03-12 2016-07-27 株式会社日本触媒 Method for producing metal oxide nanoparticles

Also Published As

Publication number Publication date
WO2013137037A1 (en) 2013-09-19
JPWO2013137037A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
Shohany et al. Doped ZnO nanostructures with selected elements-Structural, morphology and optical properties: A review
Ahmed et al. Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles
Zheng et al. Facile hydrothermal synthesis and luminescent properties of large-scale GdVO4: Eu3+ nanowires
Stanulis et al. Sol–gel (combustion) synthesis and characterization of different alkaline earth metal (Ca, Sr, Ba) stannates
Niu et al. Controllable synthesis and up-conversion properties of tetragonal BaYF5: Yb/Ln (Ln= Er, Tm, and Ho) nanocrystals
Gerigk et al. Nanoparticle shape anisotropy and photoluminescence properties: Europium containing ZnO as a Model Case
Singh et al. Reddish emission of europium doped zinc oxide nanophosphor prepared through precipitation route using sodium borohydride
Xu et al. Solvothermal synthesis of monodisperse nanocrystals
Chandekar et al. Facile synthesis of Mn-doped ZnO nanoparticles by flash combustion route and their characterizations for optoelectronic applications
Rios et al. Synthesis and characterization of manganese-cobalt solid solutions prepared at low temperature
González Mancebo et al. Enhancing luminescence and X-ray absorption capacity of Eu3+: LaF3 nanoparticles by Bi3+ codoping
WO2020045165A1 (en) Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
Catalano et al. Upconverting Er 3+, Yb 3+ activated β-NaYF 4 thin films: a solution route using a novel sodium β-diketonate polyether adduct
Li et al. A facile hydrothermal approach to the synthesis of nanoscale rare earth hydroxides
Sagadevan et al. Influence of Mn doping on the properties of Tin oxide nanoparticles prepared by Co-precipitation method
JP2012532820A (en) Method for producing and treating nanosized doped zinc oxide particles
JP5828495B2 (en) Zinc oxide fine powder in which 3B group element is dissolved
Nannuri et al. Microwave-assisted synthesis and upconversion luminescence of NaYF4: Yb, Gd, Er and NaYF4: Yb, Gd, Tm nanorods
Verma et al. Enhanced luminescence by tunable coupling of Eu 3+ and Tb 3+ in ZnAl 2 O 4: Eu 3+: Tb 3+ phosphor synthesized by solution combustion method
Wang et al. Preparation of Gd2O2S: Yb3+, Er3+, Tm3+ sub-micro phosphors by sulfurization of the oxides derived from sol-gel method and the upconversion luminescence properties
Zhang et al. Defects driven photoluminescence property of Sm-doped ZnO porous nanosheets via a hydrothermal approach
JP5807886B2 (en) Method for producing zinc oxide fine particles and / or zinc oxide film
Yan et al. Hydrothermal synthesis and luminescent properties of GdVO4: Eu3+ nanophosphors
Taunk et al. A comparative analysis of x-ray diffraction, morphology, and optical properties of sonochemically synthesized cupric oxide nanostructures
Fuentes et al. Synthesis, characterization and optical properties of ZnO nanoparticles doped with Er and Yb

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151014

R150 Certificate of patent or registration of utility model

Ref document number: 5828495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees