JP5826149B2 - Method for producing liquid composition containing tetrahydro-4H-1,3,5-oxadiazin-4-one - Google Patents

Method for producing liquid composition containing tetrahydro-4H-1,3,5-oxadiazin-4-one Download PDF

Info

Publication number
JP5826149B2
JP5826149B2 JP2012242897A JP2012242897A JP5826149B2 JP 5826149 B2 JP5826149 B2 JP 5826149B2 JP 2012242897 A JP2012242897 A JP 2012242897A JP 2012242897 A JP2012242897 A JP 2012242897A JP 5826149 B2 JP5826149 B2 JP 5826149B2
Authority
JP
Japan
Prior art keywords
compound
reaction
mass
preferable
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242897A
Other languages
Japanese (ja)
Other versions
JP2014091701A (en
Inventor
浩司 長澤
浩司 長澤
博行 川上
博行 川上
雄亮 秋野
雄亮 秋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012242897A priority Critical patent/JP5826149B2/en
Priority to MYPI2015701393A priority patent/MY156194A/en
Priority to CN201380053417.8A priority patent/CN104718194B/en
Priority to PCT/JP2013/079692 priority patent/WO2014069620A1/en
Priority to EP13851399.9A priority patent/EP2915807B1/en
Priority to RU2015120794/04A priority patent/RU2585288C1/en
Publication of JP2014091701A publication Critical patent/JP2014091701A/en
Application granted granted Critical
Publication of JP5826149B2 publication Critical patent/JP5826149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、テトラヒドロ−4H−1,3,5−オキサジアジン−4−オンを含有する液状組成物の製造方法に関する。   The present invention relates to a method for producing a liquid composition containing tetrahydro-4H-1,3,5-oxadiazin-4-one.

水中で、尿素とホルムアルデヒドとを反応させて種々の化合物を製造することが行われている。   Various compounds are produced by reacting urea and formaldehyde in water.

例えば、特許文献1には、肥料組成物として、尿素とホルムアルデヒドのある種の反応生成物が、成長中の植物の葉上栄養供給において顕著な性質を示すことが開示されている。そして、その製造条件として、尿素:ホルムアルデヒドのモル比が約1:1以上約2:1以下の尿素とホルムアルデヒドの水性混合物を調製し、尿素とホルムアルデヒドの約0.3乃至6質量%量のアンモニアを添加し、該混合物を約75℃と沸点の間の温度で加熱し、一方該混合物のpHはホルムアルデヒドの少なくとも約90%が結合形態になり少なくとも約60%がメチロール化合物の形態になるまで強アルカリで約8.5乃至10に維持し、次にホルムアルデヒドの少なくとも50%但し約80%以下がメチレン形態になるまで、pH7乃至8.5で該加熱を継続することが開示されている。そして、反応生成物は、約80%乃至90質量%の尿素及びホルムアルデヒドの部分反応物を含有する濃厚水溶液であり、常温では少なくとも約30日間透明で、0℃でも少なくとも7日間は「塩析」即ち固体を沈殿しないことが記載されている。   For example, Patent Document 1 discloses that, as a fertilizer composition, certain reaction products of urea and formaldehyde exhibit remarkable properties in the on-leaf nutrient supply of growing plants. As the production conditions, an aqueous mixture of urea and formaldehyde having a urea: formaldehyde molar ratio of about 1: 1 or more and about 2: 1 or less is prepared. And heating the mixture at a temperature between about 75 ° C. and boiling point, while the pH of the mixture is strong until at least about 90% of the formaldehyde is in bound form and at least about 60% is in the form of a methylol compound. It is disclosed to maintain at about 8.5 to 10 with alkali and then continue the heating at pH 7 to 8.5 until at least 50% but not more than about 80% of the formaldehyde is in the methylene form. The reaction product is a concentrated aqueous solution containing about 80% to 90% by weight of urea and formaldehyde partial reactants, is transparent at room temperature for at least about 30 days, and “salting out” at 0 ° C. for at least 7 days. That is, it is described that no solid is precipitated.

また、特許文献2には、紙用湿潤薬剤として使用する際に、紙の乾燥時に尿素及びホルムアルデヒドを基礎とする従来使用した縮合物よりも僅かにホルムアルデヒド−放出をする原因となる尿素−ホルムアルデヒド−縮合物が開示されている。そして、a)尿素とトリエタノールアミンとを1〜6:1のモル比で、130〜180℃の温度で、アンモニアの分解下に反応させ、b)工程(a)で得られた反応生成物を塩基性pH範囲の水性媒体中で、ホルムアルデヒドを用いてメチロール化することが開示されている。   In addition, Patent Document 2 discloses that when used as a wet chemical for paper, urea-formaldehyde, which causes formaldehyde emission slightly when compared with conventionally used condensates based on urea and formaldehyde when paper is dried. Condensates are disclosed. Then, a) urea and triethanolamine are reacted in a molar ratio of 1 to 6: 1 at a temperature of 130 to 180 ° C. under decomposition of ammonia, and b) a reaction product obtained in step (a). Is methylolated with formaldehyde in an aqueous medium in the basic pH range.

また、メラミン−尿素樹脂の製造において、特許文献3では、得られた樹脂から放出されるホルムアルデヒドが多いことを課題として、メラミン1.0モル、尿素4.0〜4.5モル及びホルムアルデヒド5.5〜7.5モルの割合の混合物に、2−ジメチルまたは2−ジエチルアミノエタノールを添加することにより混合物をアルカリ性とし、75℃〜還流下に保持する製造方法で、2−ジメチルまたは2−ジエチルアミノエタノールを添加して反応液のpHが7.5より降下しないように保持することが開示されている。   Moreover, in manufacture of a melamine-urea resin, patent document 3 makes it a subject that there is much formaldehyde released from the obtained resin, 1.0 mol of melamine, 4.0-4.5 mol of urea, and formaldehyde 5. 2-dimethyl or 2-diethylaminoethanol is produced by adding 2-dimethyl or 2-diethylaminoethanol to a mixture at a ratio of 5 to 7.5 mol to make the mixture alkaline and maintaining at 75 ° C. to reflux. Is added to keep the pH of the reaction solution from dropping below 7.5.

また、特許文献4には、アルデヒドと尿素の反応によって形成された単量体で水溶性のヒドロキシル化されたアダクツを含む添加物を含有する水硬性セメント混合物が記載されており、例1では、かかるアダクツのうち、尿素1モルにホルムアルデヒドが1モル縮合したモノメチロール尿素を、パラホルムアルデヒド50gを水1Lに溶解し、トリエタノールアミン1g、尿素100gを加え4日間放置して製造したことが記載されている。   Patent Document 4 describes a hydraulic cement mixture containing an additive containing a water-soluble hydroxylated adduct with a monomer formed by the reaction of an aldehyde and urea. In Example 1, Among such adducts, it is described that monomethylol urea obtained by condensing 1 mol of formaldehyde with 1 mol of urea was prepared by dissolving 50 g of paraformaldehyde in 1 L of water, adding 1 g of triethanolamine and 100 g of urea, and allowing to stand for 4 days. ing.

特開昭55−71689号公報JP-A-55-71689 特表平4−503824号公報JP-T-4-503824 特開昭59−108019号公報JP 59-108019 A 特開昭48−36223号公報JP 48-36223 A

特許文献1及び2では尿素とホルムアルデヒドの反応を行っているが、樹脂の製造を目的としており、得られる縮合物には、尿素1モルに対してホルムアルデヒドが1モルないし2モル縮合した単量体の他に、尿素を2モル以上含む多量体が生成している。しかしながら、尿素をホルムアルデヒドでメチロール化した化合物を、樹脂以外の用途、例えばキレート剤等の添加剤に用いるには、単位質量当たりの分子数を増大させ、一分子当たりのキレート力を増加させるために、単量体の含有量をできるだけ多くして、多量体の含有量を少なくすることが望ましい。このような側面から、尿素をホルムアルデヒドでメチロール化するにあたり、尿素1モルに対してホルムアルデヒドが2モル縮合した単量体の収率の高い製造方法が望まれる。なかでも、尿素1モルに対してホルムアルデヒドが2モル縮合したジメチロール尿素が閉環した化合物であるテトラヒドロ−4H−1,3,5−オキサジアジン−4−オンは、医薬、農薬などの有用化合物の中間体やキレート剤としての用途が期待される化合物であるが、これを高収率で得る方法が望まれる。   In Patent Documents 1 and 2, the reaction between urea and formaldehyde is carried out, but the purpose is to produce a resin. The resulting condensate is a monomer in which 1 to 2 moles of formaldehyde are condensed to 1 mole of urea. In addition, a multimer containing 2 mol or more of urea is produced. However, in order to use a compound obtained by methylating urea with formaldehyde in applications other than resins, for example, additives such as chelating agents, to increase the number of molecules per unit mass and increase the chelating power per molecule It is desirable to increase the monomer content as much as possible to reduce the multimer content. From such an aspect, when urea is methylolated with formaldehyde, a production method with a high yield of a monomer in which 2 moles of formaldehyde are condensed with 1 mole of urea is desired. Among them, tetrahydro-4H-1,3,5-oxadiazin-4-one, which is a compound in which dimethylolurea in which 2 mol of formaldehyde is condensed with 1 mol of urea is ring-closed, is an intermediate of useful compounds such as pharmaceuticals and agricultural chemicals. It is a compound that is expected to be used as a chelating agent, and a method for obtaining it in a high yield is desired.

また、尿素をホルムアルデヒドでメチロール化した場合、メチロール化反応直後に得られる反応物の水溶液を室温で保存すると、水溶液の濁りや沈殿を生じる場合があった。特許文献1の反応生成物は保存安定性に優れるものであるが、反応生成物中に多量の尿素が含まれており、生成物中のメチロール基が尿素によりキャップされていると考えられる。メチロール基がキャップされた化合物は、キレート剤用途には適さない。特許文献4には、テトラヒドロ−4H−1,3,5−オキサジアジン−4−オンを収率よく製造し、且つ水溶液の安定性を向上させることは記載がない。   Further, when urea is methylolated with formaldehyde, the aqueous solution of the reaction product obtained immediately after the methylolation reaction may be stored at room temperature to cause turbidity or precipitation of the aqueous solution. Although the reaction product of Patent Document 1 is excellent in storage stability, it is considered that a large amount of urea is contained in the reaction product, and the methylol group in the product is capped with urea. Compounds with capped methylol groups are not suitable for chelating agents. Patent Document 4 does not describe that tetrahydro-4H-1,3,5-oxadiazin-4-one is produced with high yield and the stability of an aqueous solution is improved.

本発明の課題は、テトラヒドロ−4H−1,3,5−オキサジアジン−4−オンの収率が高く、且つ該化合物を保存安定性に優れた液状組成物として製造できる製造方法を提供することにある。   An object of the present invention is to provide a production method capable of producing a liquid composition having a high yield of tetrahydro-4H-1,3,5-oxadiazin-4-one and having excellent storage stability. is there.

本発明は、水中で、下記式(1)で表される化合物1と下記式(2)で表される化合物2を反応させる、下記式(3)で表される化合物3と水とを含有するpH10.0以上の液状組成物の製造方法であって、
化合物2と化合物1の仕込みモル比、化合物2/化合物1が0.3以上1.7以下であり、
化合物1と化合物2との反応を、15℃以上50℃以下で、アルキルジエタノールアミンの存在下、pH10.0以上で行う、
液状組成物の製造方法に関する。
The present invention comprises a compound 3 represented by the following formula (3) and water, wherein the compound 1 represented by the following formula (1) and the compound 2 represented by the following formula (2) are reacted in water. A method for producing a liquid composition having a pH of 10.0 or more,
The charged molar ratio of Compound 2 and Compound 1, Compound 2 / Compound 1 is 0.3 or more and 1.7 or less,
The reaction between Compound 1 and Compound 2 is carried out at 15 ° C. or higher and 50 ° C. or lower and in the presence of alkyldiethanolamine at pH 10.0 or higher.
The present invention relates to a method for producing a liquid composition.

Figure 0005826149
Figure 0005826149

本発明により、テトラヒドロ−4H−1,3,5−オキサジアジン−4−オン〔式(3)で表される化合物3〕の収率が高く、且つ該化合物を保存安定性に優れた液状組成物として製造できる製造方法が提供される。   According to the present invention, a liquid composition having a high yield of tetrahydro-4H-1,3,5-oxadiazin-4-one [compound 3 represented by formula (3)] and excellent storage stability of the compound. The manufacturing method which can be manufactured as is provided.

本発明の製造方法が前記効果を発現する理由は定かではないが、以下のように推定している。水溶液中における尿素とホルムアルデヒドの反応には、メチレン化反応とメチロール化反応の2つの主反応が存在することが知られている。これらの反応は、酸性水溶液中では高分子量の尿素−ホルムアルデヒド多量体縮合物を主成分とするメチレン化反応が支配的となり、アルカリ性水溶液中では単量体を含む低分子量の尿素−ホルムアルデヒド縮合物を主成分とするメチロール化反応が支配的となる。本発明では、アルキルジエタノールアミンを存在させることにより、ホルムアルデヒドのカニッツァーロ反応や尿素のアルカリ分解によるアンモニアの発生等の副反応によるpHの変動を抑制し、15℃以上50℃以下でpH10.0以上とすることでメチロール化反応を優先的に進めることができ、結果として化合物3の含有量が多く、多量体の含有量が少ない液状組成物が得られると推定される。また、多量体は多数の反応点を有するため他の多量体と架橋反応を起こしやすく、保存中に多量体が架橋反応を起こし高分子量化し不溶性の白色沈殿を生じると考えられる。そして、本発明では多量体の含有量が少なく、反応性の低い環状化合物である化合物3の含有量が多い液状組成物が得られ、化合物3はpH10以上の水溶液で安定に存在できるため保存安定性が優れると考えられる。   The reason why the production method of the present invention exhibits the effect is not clear, but is estimated as follows. It is known that the reaction of urea and formaldehyde in an aqueous solution has two main reactions, a methyleneation reaction and a methylolation reaction. These reactions are dominated by a methyleneation reaction mainly composed of a high molecular weight urea-formaldehyde condensate in an acidic aqueous solution, and a low molecular weight urea-formaldehyde condensate containing a monomer in an alkaline aqueous solution. The methylolation reaction as the main component is dominant. In the present invention, the presence of alkyldiethanolamine suppresses fluctuations in pH due to side reactions such as formaldehyde cannizzaro reaction and ammonia generation due to alkaline decomposition of urea, and the pH is set to 15 ° C. or higher and 50 ° C. or lower to 10.0 or higher. Therefore, it is presumed that a methylolation reaction can be preferentially advanced, and as a result, a liquid composition having a high content of compound 3 and a low content of multimers can be obtained. In addition, since the multimer has a large number of reaction points, it easily undergoes a cross-linking reaction with other multimers, and the multimer undergoes a cross-linking reaction during storage, resulting in a high molecular weight and an insoluble white precipitate. In the present invention, a liquid composition having a low content of multimers and a high content of compound 3, which is a cyclic compound having low reactivity, is obtained. Since compound 3 can be stably present in an aqueous solution having a pH of 10 or more, storage stability is obtained. It is considered that the property is excellent.

本発明の製造方法は、水中で、式(1)で表される化合物1と式(2)で表される化合物2を反応させ、式(3)で表される化合物3と水とを含有する液状組成物を得る。化合物1と化合物2の反応により、化合物1と化合物2の縮合物が得られる。この縮合物の一つが化合物3である。式(1)で表される化合物1は尿素である。式(2)で表される化合物2はホルムアルデヒドである。式(3)で表される化合物3はテトラヒドロ−4H−1,3,5−オキサジアジン−4−オンである。化合物1と化合物2の反応は水を溶媒として行われ、反応原料を水溶液で用いることができる。   The production method of the present invention comprises reacting compound 1 represented by formula (1) and compound 2 represented by formula (2) in water, and containing compound 3 represented by formula (3) and water. A liquid composition is obtained. By the reaction of compound 1 and compound 2, a condensate of compound 1 and compound 2 is obtained. One of the condensates is compound 3. Compound 1 represented by formula (1) is urea. Compound 2 represented by formula (2) is formaldehyde. Compound 3 represented by the formula (3) is tetrahydro-4H-1,3,5-oxadiazin-4-one. The reaction of Compound 1 and Compound 2 is carried out using water as a solvent, and the reaction raw material can be used as an aqueous solution.

本発明の製造方法における化合物2と化合物1の仕込みモル比は、化合物2/化合物1で0.3以上1.7以下であり、化合物2と化合物1の縮合物の収率を向上する観点から、0.5以上が好ましく、0.75以上がより好ましく、そして、1.5以下が好ましく、1.25以下がより好ましい。   The charged molar ratio of Compound 2 and Compound 1 in the production method of the present invention is 0.3 to 1.7 in terms of Compound 2 / Compound 1, from the viewpoint of improving the yield of the condensate of Compound 2 and Compound 1. 0.5 or more is preferable, 0.75 or more is more preferable, 1.5 or less is preferable, and 1.25 or less is more preferable.

化合物1と化合物2の仕込み量の合計量は、化合物2と化合物1の縮合物の収率を向上する観点から、原料(化合物1、化合物2、アルキルジエタノールアミン、水)の合計量100質量部に対して、3.0質量部以上が好ましく、6.0質量部以上がより好ましく、11質量部以上が更に好ましい。また化合物3の水への溶解性の観点から、25質量部以下が好ましく、20質量部以下がより好ましく、14質量部以下が更に好ましい。   From the viewpoint of improving the yield of the condensate of compound 2 and compound 1, the total amount of charged amounts of compound 1 and compound 2 is 100 parts by mass of the total amount of raw materials (compound 1, compound 2, alkyldiethanolamine, water). On the other hand, 3.0 mass parts or more are preferable, 6.0 mass parts or more are more preferable, and 11 mass parts or more are still more preferable. Moreover, from a soluble viewpoint of the compound 3 in water, 25 mass parts or less are preferable, 20 mass parts or less are more preferable, and 14 mass parts or less are still more preferable.

化合物1の仕込み量は、化合物2と化合物1の縮合物の収率を向上する観点から、原料(化合物1、化合物2、アルキルジエタノールアミン、水)の合計量100質量部に対して、1.0質量部以上が好ましく、5.0質量部以上がより好ましく、8.0質量部以上が更に好ましい。また化合物3の水への溶解性の観点から、20質量部以下が好ましく、12質量部以下がより好ましく、9.0質量部以下が更に好ましい。   From the viewpoint of improving the yield of the condensate of compound 2 and compound 1, the amount of compound 1 charged is 1.0 with respect to 100 parts by mass of the total amount of raw materials (compound 1, compound 2, alkyldiethanolamine, water). More than mass parts are preferable, 5.0 mass parts or more are more preferable, and 8.0 mass parts or more are still more preferable. Moreover, from a soluble viewpoint of the compound 3 in water, 20 mass parts or less are preferable, 12 mass parts or less are more preferable, and 9.0 mass parts or less are still more preferable.

化合物2の仕込み量は、化合物2と化合物1の縮合物の収率を向上する観点から、原料(化合物1、化合物2、アルキルジエタノールアミン、水)の合計量100質量部に対して、0.5質量部以上が好ましく、1.0質量部以上がより好ましく、3.0質量部以上が更に好ましい。また化合物3の水への溶解性の観点から、10質量部以下が好ましく、8.0質量部以下がより好ましく、5.0質量部以下が更に好ましい。   From the viewpoint of improving the yield of the condensate of compound 2 and compound 1, the amount of compound 2 charged is 0.5 with respect to 100 parts by mass of the total amount of raw materials (compound 1, compound 2, alkyldiethanolamine, water). More than mass part is preferable, 1.0 mass part or more is more preferable, and 3.0 mass part or more is still more preferable. Moreover, from a soluble viewpoint of the compound 3 in water, 10 mass parts or less are preferable, 8.0 mass parts or less are more preferable, and 5.0 mass parts or less are still more preferable.

水の仕込み量は、化合物3の水への溶解性の観点から、原料(化合物1、化合物2、アルキルジエタノールアミン、水)100質量部に対して、70質量部以上が好ましく、75質量部以上がより好ましく、80質量部以上が更に好ましい。また、化合物3の収率を向上する観点から、95質量部以下が好ましく、90質量部以下がより好ましく、88質量部以下が更に好ましい。なお、水以外の原料を水溶液で用いる場合、その水溶液により反応系中に取り込まれる水の量も反応溶媒としての水の量に算入する。   From the viewpoint of the solubility of compound 3 in water, the amount of water charged is preferably 70 parts by mass or more, and 75 parts by mass or more with respect to 100 parts by mass of the raw materials (compound 1, compound 2, alkyldiethanolamine, water). More preferred is 80 parts by mass or more. Moreover, from a viewpoint of improving the yield of the compound 3, 95 mass parts or less are preferable, 90 mass parts or less are more preferable, and 88 mass parts or less are still more preferable. When raw materials other than water are used as an aqueous solution, the amount of water taken into the reaction system by the aqueous solution is also included in the amount of water as the reaction solvent.

本発明では、アルキルジエタノールアミンの存在下に化合物1と化合物2の反応を行う。アルキルジエタノールアミンのpH緩衝作用により、反応時や保存時で液状組成物のpHを10.0以上に維持することができる。アルキルジエタノールアミンの中でも反応中のpHの低下を抑制する観点から、炭素数1以上3以下のアルキル基を有するアルキルジエタノールアミンが好ましく、炭素数1のアルキル基を有するアルキルジエタノールアミン、すなわちN−メチルジエタノールアミンがより好ましい。アルカノールアミンであっても、トリエタノールアミン、ジエタノールアミン及びモノエタノールアミンのようなアルキル基を有しないアルカノールアミンは、pHの増大作用が低い点やpH緩衝能が低く反応中のpH低下が大きいことから、化合物3の収率を向上する効果や得られる水溶液の保存安定性を向上する効果は得られない。   In the present invention, compound 1 and compound 2 are reacted in the presence of alkyldiethanolamine. Due to the pH buffering action of alkyldiethanolamine, the pH of the liquid composition can be maintained at 10.0 or more during reaction or storage. Among the alkyldiethanolamines, alkyldiethanolamine having an alkyl group having 1 to 3 carbon atoms is preferable from the viewpoint of suppressing a decrease in pH during the reaction, and alkyldiethanolamine having an alkyl group having 1 carbon atom, that is, N-methyldiethanolamine is more preferable. preferable. Alkanolamines that do not have an alkyl group, such as triethanolamine, diethanolamine, and monoethanolamine, are low in pH-increasing action and low in pH buffering ability, resulting in large pH reduction during the reaction. The effect of improving the yield of compound 3 and the effect of improving the storage stability of the resulting aqueous solution cannot be obtained.

アルキルジエタノールアミンの仕込み量は、化合物3の収率を向上する観点から、原料(化合物1、化合物2、アルキルジエタノールアミン、水)の合計量100質量部に対して、0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.5質量部以上が更に好ましい。またpH緩衝作用の飽和のため経済性の観点から5.0質量部以下が好ましく、1.0質量部以下がより好ましく、0.6質量部以下が更に好ましい。   From the viewpoint of improving the yield of compound 3, the amount of alkyldiethanolamine charged is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the total amount of raw materials (compound 1, compound 2, alkyldiethanolamine, water), 0.3 mass part or more is more preferable, and 0.5 mass part or more is still more preferable. Moreover, from the viewpoint of economy, 5.0 parts by mass or less is preferable, 1.0 parts by mass or less is more preferable, and 0.6 parts by mass or less is still more preferable because of saturation of pH buffering action.

アルキルジエタノールアミンと、化合物1と化合物2の合計との仕込みモル比〔アルキルジエタノールアミン/(化合物1と化合物2の合計)〕は、化合物3の収率を向上する観点から、0.005以上が好ましく、0.010以上がより好ましく、0.013以上が更に好ましく、そして、0.100以下が好ましく、0.050以下がより好ましく、0.025以下が更に好ましく、0.018以下がより更に好ましい。   The charged molar ratio of alkyldiethanolamine and the total of compound 1 and compound 2 [alkyldiethanolamine / (total of compound 1 and compound 2)] is preferably 0.005 or more from the viewpoint of improving the yield of compound 3. 0.010 or more is more preferable, 0.013 or more is still more preferable, 0.100 or less is preferable, 0.050 or less is more preferable, 0.025 or less is still more preferable, and 0.018 or less is still more preferable.

本発明の製造方法における反応温度は、15℃以上50℃以下である。反応速度を向上する観点から、20℃以上が好ましく、35℃以上がより好ましく、38℃以上がより更に好ましい。また、化合物3の収率を向上する観点から、45℃以下が好ましく、42℃以下がより好ましい。   The reaction temperature in the production method of the present invention is 15 ° C. or higher and 50 ° C. or lower. From the viewpoint of improving the reaction rate, 20 ° C or higher is preferable, 35 ° C or higher is more preferable, and 38 ° C or higher is even more preferable. Moreover, from a viewpoint of improving the yield of the compound 3, 45 degrees C or less is preferable and 42 degrees C or less is more preferable.

本発明の製造方法における反応pHは、反応開始から反応終了までのpHである。化合物1と化合物2の反応では、反応が進むにつれてpHが低下する傾向がある。本発明の製造方法において、反応途中でpH調整剤等を添加しない場合は、反応開始時のpHと反応終了時のpHが本発明の範囲であればよい。反応途中でpH調整剤等を添加する場合は、反応開始時のpHと反応終了時のpHに加えて、さらにpH調整剤等を添加する前と後の両方のpHが本発明の範囲であればよい。本発明の製造方法における反応pHは、化合物3の開環による架橋反応の抑制と液状組成物の保存安定性の低下抑制との観点から、10.0以上である。本発明で得られる液状組成物を利用する際の配合性の向上の観点から、pHは13.0以下が好ましく、12.0以下がより好ましく、11.5以下が更に好ましい。なお、反応pHは、反応系のpHであり、水、化合物1、化合物2及びアルキルジエタノールアミンを含む混合物のpHであってよい。また、本発明の製造方法の対象とする化合物1と化合物2の反応では、反応が進行するにつれてpHは低下していく傾向があるので、本発明では、反応開始時のpHを10.5以上にすることが好ましく、11.0以上にすることがより好ましく、そして、13.0以下が好ましく、12.5以下がより好ましく、12.0以下が更にこのましく、11.5以下がより更に好ましい。反応終了後のpHは、10.0以上であり、液状組成物の保存安定性の観点から、10.5以上にすることが好ましく、11.0以上にすることがより好ましい。アルキルジエタノールアミンの存在下、本発明所定のpH、温度で反応を行うことにより、通常、本発明の製造方法では液状組成物のpH10.0以上の液状組成物が得られるが、必要に応じて液状組成物に、酸やアルカリ等のpH調整剤を添加することもできる。本発明では、反応終了までpHを10.0以上となるようにpH調整剤で制御してもよい。   The reaction pH in the production method of the present invention is a pH from the start of the reaction to the end of the reaction. In the reaction of Compound 1 and Compound 2, the pH tends to decrease as the reaction proceeds. In the production method of the present invention, when no pH adjuster or the like is added during the reaction, the pH at the start of the reaction and the pH at the end of the reaction may be within the range of the present invention. When adding a pH adjuster or the like during the reaction, both the pH before and after the addition of the pH adjuster are within the scope of the present invention in addition to the pH at the start of the reaction and the pH at the end of the reaction. That's fine. The reaction pH in the production method of the present invention is 10.0 or more from the viewpoint of suppression of the crosslinking reaction due to ring-opening of compound 3 and suppression of decrease in storage stability of the liquid composition. From the viewpoint of improving compoundability when using the liquid composition obtained in the present invention, the pH is preferably 13.0 or less, more preferably 12.0 or less, and even more preferably 11.5 or less. The reaction pH is the pH of the reaction system, and may be the pH of a mixture containing water, compound 1, compound 2, and alkyldiethanolamine. In addition, in the reaction of Compound 1 and Compound 2 that are targets of the production method of the present invention, the pH tends to decrease as the reaction proceeds. Therefore, in the present invention, the pH at the start of the reaction is 10.5 or more. It is preferably 11.0 or more, more preferably 13.0 or less, more preferably 12.5 or less, even more preferably 12.0 or less, and more preferably 11.5 or less. Further preferred. The pH after completion of the reaction is 10.0 or more, and is preferably 10.5 or more, more preferably 11.0 or more, from the viewpoint of storage stability of the liquid composition. By carrying out the reaction at a predetermined pH and temperature of the present invention in the presence of alkyldiethanolamine, a liquid composition having a pH of 10.0 or more of the liquid composition is usually obtained in the production method of the present invention. A pH adjuster such as an acid or an alkali can be added to the composition. In the present invention, the pH may be controlled with a pH adjusting agent so that the pH becomes 10.0 or more until the end of the reaction.

本発明の製造方法における反応時間は、化合物2と化合物1の縮合物の収率を向上する観点から、1.5時間以上が好ましく、2時間以上がより好ましい。また、化合物3の収率を向上する観点から、反応時間は4.5時間以下が好ましく、3時間以下がより好ましい。   The reaction time in the production method of the present invention is preferably 1.5 hours or longer and more preferably 2 hours or longer from the viewpoint of improving the yield of the condensate of Compound 2 and Compound 1. Further, from the viewpoint of improving the yield of compound 3, the reaction time is preferably 4.5 hours or less, and more preferably 3 hours or less.

本発明では、化合物1と化合物2とが最初に接触した時点を反応開始時とし、30分間の化合物2の減少量が原料(化合物1、化合物2、アルキルジエタノールアミン、水)の合計に対して、0.3質量%以下になった時点を反応終了時とすることが好ましい。これは、化合物2がほとんど消費されず反応が実質的に進行していない状態になった時点を反応終了時とできることを意味する。試料中の化合物2の定量は、試料を塩酸ヒドロキシルアミンと反応させ、水酸化ナトリウムで滴定することにより求めることができる。また、本発明では、反応終了時に直ちに反応操作を終了してもよいが、引き続き反応操作を継続することも可能である。   In the present invention, the time when Compound 1 and Compound 2 first contact each other is regarded as the reaction start time, and the amount of decrease in Compound 2 over 30 minutes is relative to the total of the raw materials (Compound 1, Compound 2, alkyldiethanolamine, water). It is preferable to set the time when the reaction is 0.3% by mass or less as the end of the reaction. This means that the point in time when the reaction is completed can be determined when the compound 2 is hardly consumed and the reaction is not substantially progressing. The quantification of compound 2 in the sample can be determined by reacting the sample with hydroxylamine hydrochloride and titrating with sodium hydroxide. In the present invention, the reaction operation may be terminated immediately at the end of the reaction, but the reaction operation can be continued.

さらに、反応開始まで化合物2をアルカリ性溶液に触れさせずカニッツァーロ反応を抑制し化合物2と化合物1の縮合物の収率を向上する観点と、さらに多量体が生成する急激な反応を抑制し化合物3の含有量を向上する観点から、化合物1とアルキルジエタノールアミンと水を含む混合物に、化合物2を添加する方法、例えば、化合物1とアルキルジエタノールアミンと水とを反応容器に入れ、この混合物を所定温度、所定pHとした後、攪拌しつつ化合物2を含有する水溶液(ホルマリン)を滴下により添加する方法が好ましい。化合物2の添加終了後、反応温度を維持したまま攪拌を持続し熟成させることが好ましい。化合物2の水溶液を滴下する場合、滴下に要する時間は、反応の均一性による化合物3の含有量の向上の観点から、1時間以上が好ましく、1時間半以上がより好ましく、また、前記副反応を抑制する観点から、滴下に要する時間は、3時間以下が好ましく、2時間以下がより好ましい。熟成の時間は、反応の完了及び生成物の均一性の観点から、0.5時間以上が好ましく、1時間以上がより好ましく、また、前記副反応を抑制する観点から、3時間以下が好ましく、2時間以下がより好ましい。滴下と熟成の合計の時間は、化合物3の含有量の向上と、反応の完了及び生成物の均一性の観点から、1.5時間以上が好ましく、2時間以上がより好ましく、前記副反応を抑制する観点から、4.5時間以下が好ましく、3時間以下がより好ましい。   Furthermore, the compound 2 is not exposed to the alkaline solution until the reaction starts, the cannizzaro reaction is suppressed, the yield of the condensate of the compound 2 and the compound 1 is improved, and the rapid reaction that the multimer is generated is further suppressed. From the viewpoint of improving the content of the compound 1, a method of adding the compound 2 to the mixture containing the compound 1, the alkyldiethanolamine and water, for example, the compound 1, the alkyldiethanolamine and water are put in a reaction vessel, and the mixture is heated at a predetermined temperature, A method in which an aqueous solution (formalin) containing Compound 2 is added dropwise with stirring after the predetermined pH is obtained is preferable. After completion of the addition of compound 2, it is preferable to continue the stirring while aging while maintaining the reaction temperature. When the aqueous solution of Compound 2 is added dropwise, the time required for the addition is preferably 1 hour or more, more preferably 1 and a half hours or more from the viewpoint of improving the content of Compound 3 due to the uniformity of the reaction, and the side reaction From the viewpoint of suppressing the above, the time required for dropping is preferably 3 hours or less, and more preferably 2 hours or less. The aging time is preferably 0.5 hours or more from the viewpoint of completion of the reaction and the uniformity of the product, more preferably 1 hour or more, and preferably 3 hours or less from the viewpoint of suppressing the side reaction, 2 hours or less is more preferable. The total time of dripping and aging is preferably 1.5 hours or more, more preferably 2 hours or more, from the viewpoint of improvement of the content of compound 3, completion of the reaction, and product uniformity, From the viewpoint of suppression, 4.5 hours or less is preferable, and 3 hours or less is more preferable.

本発明では、本発明の効果を損なわない範囲で、反応溶媒として水以外に、極性溶媒(メタノール、エタノール等)を併用することができる。反応圧力については特に限定はなく、必要であれば加圧下又は減圧下で反応を行うこともできる。反応形式は、回分式、半回分式、連続式等のいずれも形式も採用可能である。また、本発明の効果を損なわない範囲で、仕込み原料として、消泡剤等の添加剤を用いることができる。反応溶媒中、反応時の溶媒の揮発性と温度制御の観点から、水の割合は、50質量%以上、更に70質量%以上、更に90質量%以上、更に100質量%が好ましい。   In the present invention, a polar solvent (methanol, ethanol, etc.) can be used in combination with the reaction solvent in addition to water as long as the effects of the present invention are not impaired. The reaction pressure is not particularly limited, and the reaction can be performed under pressure or reduced pressure if necessary. Any of a batch system, a semi-batch system, a continuous system, etc. can be adopted as the reaction system. In addition, an additive such as an antifoaming agent can be used as a raw material within a range not impairing the effects of the present invention. In the reaction solvent, the proportion of water is preferably 50% by mass or more, more preferably 70% by mass or more, further 90% by mass or more, and further 100% by mass from the viewpoint of the volatility of the solvent during the reaction and the temperature control.

本発明の製造方法は、反応容器中で化合物1と化合物2と水とを含む水溶液を調製し、アルキルジエタノールアミンを添加して添加量を調整してpHを10.0以上とし、温度を15℃以上50℃以下で攪拌しながら反応させる方法で行うこともできる。   In the production method of the present invention, an aqueous solution containing Compound 1, Compound 2 and water is prepared in a reaction vessel, and the addition amount is adjusted by adding alkyldiethanolamine to a pH of 10.0 or more, and the temperature is 15 ° C. It can also carry out by the method of making it react at 50 degrees C or less and stirring.

本発明の製造方法では、得られた液状組成物中、化合物3の含有量は、保存安定性の向上の観点から、1.4質量%以上が好ましく、2.0質量%以上がより好ましく、2.5質量%以上が更に好ましく、3.2質量%以上がより更に好ましく、そして、30質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、8.0質量%以下がより更に好ましい。   In the production method of the present invention, in the obtained liquid composition, the content of compound 3 is preferably 1.4% by mass or more, more preferably 2.0% by mass or more, from the viewpoint of improving storage stability. More preferably 2.5% by mass or more, more preferably 3.2% by mass or more, more preferably 30% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, and 8.0% by mass. % Or less is even more preferable.

本発明の製造方法では、固形分中の式(3)で表される化合物3の含有量が多い液状組成物が得られる。液状組成物中の固形分の量は、液状組成物を利用する際の配合性の向上の観点から、液状組成物100質量部に対して、5質量部以上が好ましく、10質量部以上がより好ましく、12質量部以上が更に好ましく、保存安定性の向上の観点から、30質量部以下が好ましく、25質量部以下がより好ましく、20質量部以下が更に好ましい。液状組成物中の水の含有量は、保存安定性の向上の観点から、液状組成物100質量部に対して、70質量部以上が好ましく、75質量部以上がより好ましく、80質量部以上が更に好ましく、また、95質量部以下が好ましく、90質量部以下がより好ましく、88質量部以下が更に好ましい。液状組成物中の化合物3の含有量は、化合物1と化合物2から得られた縮合物中、25質量%以上が好ましく、35質量%以上がより好ましく、40質量%以上が更に好ましく、45質量%以上がより更に好ましく、50質量%以上がより更に好ましく、55質量%以上がより更に好ましい。該縮合物中の化合物3の含有量は100質量%以下であり、化合物1と化合物2からの製造の容易性の観点から、75質量%以下が好ましく、60質量%以下がより好ましい。   In the production method of the present invention, a liquid composition having a high content of the compound 3 represented by the formula (3) in the solid content is obtained. The amount of the solid content in the liquid composition is preferably 5 parts by mass or more and more preferably 10 parts by mass or more with respect to 100 parts by mass of the liquid composition from the viewpoint of improving the compoundability when using the liquid composition. Preferably, 12 parts by mass or more is more preferable, and from the viewpoint of improving storage stability, 30 parts by mass or less is preferable, 25 parts by mass or less is more preferable, and 20 parts by mass or less is more preferable. The content of water in the liquid composition is preferably 70 parts by mass or more, more preferably 75 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the liquid composition from the viewpoint of improving storage stability. Furthermore, 95 mass parts or less are preferable, 90 mass parts or less are more preferable, and 88 mass parts or less are still more preferable. The content of Compound 3 in the liquid composition is preferably 25% by mass or more, more preferably 35% by mass or more, still more preferably 40% by mass or more, and 45% by mass in the condensate obtained from Compound 1 and Compound 2. % Or more is still more preferable, 50 mass% or more is further more preferable, and 55 mass% or more is still more preferable. The content of Compound 3 in the condensate is 100% by mass or less, preferably 75% by mass or less, more preferably 60% by mass or less from the viewpoint of ease of production from Compound 1 and Compound 2.

本発明は、水中で、アルキルジエタノールアミンの存在下、化合物1と化合物2とを反応させる化合物3の製造方法であって、化合物1と化合物2の仕込みモル比が化合物2/化合物1で0.3以上1.7以下であり、反応pHが10.0以上であり、反応温度が15℃以上50℃以下である、製造方法である。本発明の製造方法では、反応終了までpHを10.0以上で行うため、化合物3と水とを含有するpH10.0以上の液状の反応生成物が得られる。   The present invention is a process for producing Compound 3 in which Compound 1 and Compound 2 are reacted in water in the presence of alkyldiethanolamine, wherein the charged molar ratio of Compound 1 and Compound 2 is 0.3 for Compound 2 / Compound 1. The production method is 1.7 or less, the reaction pH is 10.0 or more, and the reaction temperature is 15 ° C. or more and 50 ° C. or less. In the production method of the present invention, since the pH is 10.0 or more until the end of the reaction, a liquid reaction product having a pH of 10.0 or more containing Compound 3 and water is obtained.

本発明の製造方法で得られる液状組成物は、式(3)で表される化合物3の含有量が多い。化合物3は開環して水酸基を2個有する化合物、すなわち、1,3−(ヒドロキシメチル)尿素(N,N’−ジメチロール尿素と表記されることもある)になる。この化合物は、洗浄剤などに配合されるキレート剤、例えば、鋼板洗浄剤のキレート剤として用いることができる。化合物3を含む液状組成物は平衡状態で1,3−(ヒドロキシメチル)尿素を含む液状組成物であるため、本発明の製造方法で得られる液状組成物は、鋼板洗浄剤、植物の肥料用組成物、抄紙用添加剤、繊維用仕上剤、耐水化剤、水硬性組成物用添加剤、塗料・インクの原料、有機合成原料、樹脂の原料等に用いることができる。   The liquid composition obtained by the production method of the present invention has a high content of compound 3 represented by formula (3). Compound 3 is ring-opened to become a compound having two hydroxyl groups, that is, 1,3- (hydroxymethyl) urea (sometimes referred to as N, N'-dimethylolurea). This compound can be used as a chelating agent blended in a cleaning agent or the like, for example, a chelating agent for a steel plate cleaning agent. Since the liquid composition containing the compound 3 is a liquid composition containing 1,3- (hydroxymethyl) urea in an equilibrium state, the liquid composition obtained by the production method of the present invention is used for a steel plate cleaner and a plant fertilizer. It can be used for compositions, papermaking additives, fiber finishes, water resistance agents, hydraulic composition additives, paint / ink raw materials, organic synthetic raw materials, resin raw materials, and the like.

例えば、化合物3を含む液状組成物は平衡状態で1,3−(ヒドロキシメチル)尿素を含む液状組成物であるため、そのまま鋼板洗浄剤のキレート剤として使用できる。このような鋼板洗浄剤として、アルカリ剤、界面活性剤、及び水を含有する洗浄剤が挙げられる。アルカリ剤として、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が挙げられる。界面活性剤としては、炭素数8以上22以下のアルコールにアルキレンオキサイドを付加した非イオン界面活性剤が挙げられる。また、鉄鋼洗浄剤に配合されるその他の成分として、消泡剤、ポリアクリル酸等の分散剤、増粘剤等が挙げられる。鋼板に付着した圧延油等の油の洗浄性の観点から、本発明により得られた液状組成物は、化合物3の量が、鋼板洗浄剤中、0.01質量%以上、更に0.1質量%以上、そして、10質量%以下、更に5.0質量%以下となるように配合されるのが好ましい。また、鋼板に付着した圧延油等の油の洗浄性の観点から、鉄鋼洗浄剤は、20℃のpHが12以上、更に13以上であることが好ましく、より更に14以上が好ましい。   For example, since the liquid composition containing the compound 3 is a liquid composition containing 1,3- (hydroxymethyl) urea in an equilibrium state, it can be used as it is as a chelating agent for a steel sheet cleaner. Examples of such a steel plate cleaning agent include a cleaning agent containing an alkali agent, a surfactant, and water. Examples of the alkali agent include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. Examples of the surfactant include a nonionic surfactant obtained by adding an alkylene oxide to an alcohol having 8 to 22 carbon atoms. Moreover, as other components mix | blended with an iron and steel cleaning agent, dispersing agents, such as an antifoamer and polyacrylic acid, a thickener, etc. are mentioned. From the viewpoint of detergency of oil such as rolling oil attached to the steel sheet, the liquid composition obtained according to the present invention has an amount of compound 3 of 0.01% by mass or more, and further 0.1 mass in the steel sheet detergent. % Or more, and preferably 10% by mass or less, and more preferably 5.0% by mass or less. In addition, from the viewpoint of cleaning properties of oil such as rolling oil attached to the steel sheet, the steel detergent preferably has a pH of 20 or higher, preferably 13 or higher, and more preferably 14 or higher.

本発明の製造方法で得られる液状組成物を用いた鋼板用洗浄剤が対象とする工程は、洗浄工程であり、連続洗浄、即ち浸漬洗浄、スプレー洗浄、ブラシ洗浄、電解洗浄等が挙げられ、圧延油等の油汚れ及び鉄粉などの固体汚れを洗浄除去することができる。鋼板用洗浄剤は、洗浄工程が浸漬ならびに電解洗浄に用いることができ、圧延された鋼板を、アルカリ浸漬洗浄槽ならびにアルカリ電解洗浄槽内にロールにより通過させる場合に好適に適用できる。   The process targeted by the steel sheet cleaning agent using the liquid composition obtained by the production method of the present invention is a cleaning process, and includes continuous cleaning, that is, immersion cleaning, spray cleaning, brush cleaning, electrolytic cleaning, and the like. Oil stains such as rolling oil and solid stains such as iron powder can be washed away. The steel sheet cleaning agent can be used for dipping and electrolytic cleaning in the cleaning process, and can be suitably applied when the rolled steel sheet is passed through an alkali immersion cleaning tank and an alkaline electrolytic cleaning tank.

実施例及び比較例
<組成物Aの製造>
尿素(化合物1)450g(7.50モル)と蒸留水3588gを容量10Lの三口フラスコに添加し、攪拌翼(3枚翼、直径70mm)を用いて200rpmで10分混合した。その後、N−メチルジエタノールアミン27.0g(0.23モル)を添加し、pHを11.3に調整した後、40℃に昇温した。続いて、37%ホルマリン305g(ホルムアルデヒド(化合物2)として3.75モル)を90分かけて滴下した。滴下終了後、1時間攪拌を継続し熟成させ、室温に冷却し、固形分13.3質量%の液状の組成物Aを得た。この時、組成物AのpHは11.0、化合物2の含有量は原料(化合物1、化合物2、アルキルジエタノールアミン、水、以下同様)の仕込み量に対して1質量%以下であった。仕込み時の化合物2と化合物1のモル比、化合物2/化合物1は0.5、仕込み原料100質量部に対する化合物1と化合物2の合計量は12.87質量部、水86.5質量部、N−メチルジエタノールアミン0.63質量部であった。なお、表中、反応開始pHは、化合物1と化合物2とが最初に接触した時点での反応系のpHであり、反応終了pHは、90分の滴下、更に1時間熟成させた後の反応系のpHであり、本例では得られた組成物のpHに相当する(以下同様)。熟成30分後と1時間後の化合物2の量を測定し、化合物2の量は、原料の合計に対して30分後で0.8質量%、1時間後で0.6質量%であった。30分間の化合物2の減少量が原料の合計に対して0.3質量%以下であることを確認し、熟成1時間の時点では反応が終了していたと判断した。
Examples and Comparative Examples <Production of Composition A>
450 g (7.50 mol) of urea (Compound 1) and 3588 g of distilled water were added to a 10 L three-necked flask and mixed at 200 rpm for 10 minutes using a stirring blade (three blades, diameter 70 mm). Thereafter, 27.0 g (0.23 mol) of N-methyldiethanolamine was added to adjust the pH to 11.3, and then the temperature was raised to 40 ° C. Subsequently, 305 g of 37% formalin (3.75 mol as formaldehyde (Compound 2)) was added dropwise over 90 minutes. After completion of the dropwise addition, stirring was continued for 1 hour for aging, followed by cooling to room temperature to obtain a liquid composition A having a solid content of 13.3% by mass. At this time, the pH of the composition A was 11.0, and the content of the compound 2 was 1% by mass or less based on the charged amount of the raw materials (compound 1, compound 2, alkyldiethanolamine, water, and so on). The molar ratio of compound 2 and compound 1 at the time of charging, compound 2 / compound 1 is 0.5, the total amount of compound 1 and compound 2 with respect to 100 parts by weight of the charged raw material is 12.87 parts by weight, water 86.5 parts by weight, The amount was 0.63 parts by mass of N-methyldiethanolamine. In the table, the reaction start pH is the pH of the reaction system when Compound 1 and Compound 2 first contact each other, and the reaction end pH is a reaction after 90 minutes of dropwise addition and further aging for 1 hour. The pH of the system, which corresponds to the pH of the composition obtained in this example (the same applies hereinafter). The amount of Compound 2 after 30 minutes and 1 hour after aging was measured, and the amount of Compound 2 was 0.8% by mass after 30 minutes and 0.6% by mass after 1 hour with respect to the total of the raw materials. It was. It was confirmed that the reduction amount of Compound 2 for 30 minutes was 0.3% by mass or less with respect to the total of the raw materials, and it was judged that the reaction was completed at the time of aging 1 hour.

<組成物B〜D及びa〜dの製造>
化合物1、化合物2、及びアルキルジエタノールアミンの量を表1の量に変えた以外は組成物Aと同様の方法で製造した。ただし、組成物Dはホルマリンを尿素と同様に予めフラスコに添加及び混合して製造した(表中の仕込み方法を「一括」と表示)。組成物Dの製造において、反応終了時点の化合物2の30分間の減少量は、原料(化合物1、化合物2、アルキルジエタノールアミン、水)の合計に対して、0.3質量%以下であった。
<Production of Compositions B to D and a to d>
It was prepared in the same manner as in Composition A except that the amounts of Compound 1, Compound 2, and alkyldiethanolamine were changed to those shown in Table 1. However, the composition D was prepared by adding and mixing formalin into the flask in advance in the same manner as urea (the charging method in the table is indicated as “collective”). In the production of Composition D, the decrease amount of Compound 2 at the end of the reaction for 30 minutes was 0.3% by mass or less with respect to the total of the raw materials (Compound 1, Compound 2, alkyldiethanolamine, water).

<組成物E、F及びe〜gの製造>
反応温度を表2の温度に変えた以外は、組成物Bと同様の方法で製造した。表2には組成物Bの条件、結果も示した。
<Production of Compositions E, F and e to g>
It was manufactured by the same method as that for Composition B except that the reaction temperature was changed to the temperature shown in Table 2. Table 2 also shows the conditions and results of Composition B.

<組成物h〜jの製造>
N−メチルジエタノールアミンを表3の化合物に変えた以外は、組成物Bと同様の方法で製造した。表3には組成物Bの条件、結果も示した。
<Manufacture of compositions hj>
Production was carried out in the same manner as in Composition B, except that N-methyldiethanolamine was changed to the compounds in Table 3. Table 3 also shows the conditions and results of Composition B.

<組成物kの製造>
粉末の1,3−ビス(ヒドロキシメチル)尿素(市販品、和光純薬工業株式会社製、試薬)13.5gを蒸留水86.5gに溶解し、固形分13.5質量%の組成物Q(20℃のpH7.4)を調製した。市販の粉末品中の化合物3の含有量は46.4質量%であった。なお、1,3−ビス(ヒドロキシメチル)尿素は化合物3の構造と組成物Q中で平衡関係にある。
<Manufacture of composition k>
13.5 g of powdered 1,3-bis (hydroxymethyl) urea (commercial product, Wako Pure Chemical Industries, Ltd., reagent) is dissolved in 86.5 g of distilled water, and composition Q having a solid content of 13.5% by mass (PH 7.4 at 20 ° C.) was prepared. The content of Compound 3 in the commercially available powder product was 46.4% by mass. 1,3-bis (hydroxymethyl) urea is in an equilibrium relationship with the structure of Compound 3 in the composition Q.

表1〜3の各化合物は以下を用いた。
・尿素:和光純薬工業株式会社製、試薬
・ホルマリン:37質量%水溶液、和光純薬工業株式会社製、試薬
・N−メチルジエタノールアミン:日本乳化剤株式会社製、アミノアルコールMDA
・トリエタノールアミン:和光純薬工業株式会社製、試薬
・ジエタノールアミン:和光純薬工業株式会社製、試薬
・モノエタノールアミン:和光純薬工業株式会社製、試薬
The following was used for each compound of Tables 1-3.
・ Urea: Wako Pure Chemical Industries, Reagent ・ Formalin: 37 mass% aqueous solution, Wako Pure Chemical Industries, reagent, N-methyldiethanolamine: Nippon Emulsifier Co., amino alcohol MDA
・ Triethanolamine: Wako Pure Chemical Industries, Reagent ・ Diethanolamine: Wako Pure Chemical Industries, Reagent ・ Monoethanolamine: Wako Pure Chemical Industries, Reagent

<化合物2と化合物1の縮合物の含有量>
カールフィッシャー法により液状組成物中の水の含有量を求め、水以外の成分の質量を固形分とした。液体クロマトグラフ法により液状組成物中の尿素の含有量を、同様に液体クロマトグラフ法により液状組成物中のホルムアルデヒドの含有量を求め、固形分の含有量から尿素及びホルムアルデヒドの含有量を差し引いた量を、液状組成物中の化合物2と化合物1の縮合物の含有量とした。
<Content of Condensate of Compound 2 and Compound 1>
The water content in the liquid composition was determined by the Karl Fischer method, and the mass of components other than water was defined as the solid content. The urea content in the liquid composition was determined by liquid chromatography, and the formaldehyde content in the liquid composition was similarly determined by liquid chromatography, and the urea and formaldehyde contents were subtracted from the solid content. The amount was the content of the condensate of compound 2 and compound 1 in the liquid composition.

<縮合物中の化合物3の含有量の測定>
得られた組成物の一部(約20g)を凍結乾燥により粉末にした。次いで粉末を1質量%の水溶液として、液体クロマトグラフィー質量分析法(LC/MS)で、化合物3であるテトラヒドロ−4H−1,3,5−オキサジアジン−4−オンの粉末中の含有量を求めた。具体的には、質量分析の化合物3の120.0(m/z)のピークと、化合物3以外の縮合物の192.1、221.9、285.9及び316.0(m/z)のピークに対応する液体クロマトグラフィーの各ピークの面積から、縮合物中の化合物3の含有量を求めた。表中の縮合物中の化合物3の含有量は、液状組成物中の前記単量体のピーク面積と、前記単量体と多量体のピーク面積の合計値の比に相当する。液状組成物中の化合物3の含有量を、液状組成物中の固形分の量、固形分中の縮合物の含有量、縮合物中の化合物3の含有量から求めた。
<Measurement of content of compound 3 in condensate>
A part (about 20 g) of the obtained composition was powdered by lyophilization. Next, the content of tetrahydro-4H-1,3,5-oxadiazin-4-one as compound 3 in the powder was determined by liquid chromatography mass spectrometry (LC / MS) using the powder as a 1 mass% aqueous solution. It was. Specifically, the peak of 120.0 (m / z) of compound 3 of mass spectrometry and 192.1, 221.9, 285.9, and 316.0 (m / z) of condensates other than compound 3 The content of compound 3 in the condensate was determined from the area of each peak of liquid chromatography corresponding to the peak of. The content of Compound 3 in the condensate in the table corresponds to the ratio of the peak area of the monomer in the liquid composition to the total value of the peak areas of the monomer and multimer. The content of Compound 3 in the liquid composition was determined from the amount of solid content in the liquid composition, the content of condensate in the solid content, and the content of Compound 3 in the condensate.

◎液体クロマトグラフィー質量分析条件
カラム:Imtakt Union UK−Amino HT(長さ150mm、内径2mm)3μ
カラム温度:40℃
移動相:A 0.01mol/L 酢酸アンモニウム水溶液、C アセトニトリル(グラジエント溶出法)
Liquid chromatography mass spectrometry condition column: Imtakt Union UK-Amino HT (length 150 mm, inner diameter 2 mm) 3 μ
Column temperature: 40 ° C
Mobile phase: A 0.01 mol / L ammonium acetate aqueous solution, C acetonitrile (gradient elution method)

<保存安定性試験>
得られた組成物を500mlのポリプロピレン製ビンに入れ40℃で保存した。保存開始から1日後、1週間後、1月後及び3ヶ月後に、目視により外観を観察し、組成物に沈殿や濁りがない場合をA、濁りがある場合をB、沈殿がある場合をCと評価した。
<Storage stability test>
The resulting composition was placed in a 500 ml polypropylene bottle and stored at 40 ° C. After 1 day, 1 week, 1 month and 3 months from the start of storage, the appearance is visually observed. If the composition is free of precipitation or turbidity, A, if turbid, B, if there is precipitation, C. It was evaluated.

Figure 0005826149
Figure 0005826149

化合物1:尿素
化合物2:ホルムアルデヒド
MDEA:N−メチルジエタノールアミン
Compound 1: Urea compound 2: Formaldehyde MDEA: N-methyldiethanolamine

化合物2と化合物1のモル比、化合物2/化合物1が0.3以上1.7以下の範囲で化合物3の収率及び保存安定性が優れることがわかる。   It can be seen that the yield and storage stability of compound 3 are excellent when the molar ratio of compound 2 and compound 1 and compound 2 / compound 1 are in the range of 0.3 to 1.7.

Figure 0005826149
Figure 0005826149

化合物1:尿素
化合物2:ホルムアルデヒド
MDEA:N−メチルジエタノールアミン
Compound 1: Urea compound 2: Formaldehyde MDEA: N-methyldiethanolamine

反応温度が15℃以上50℃以下の範囲で化合物3の収率及び保存安定性が優れることがわかる。   It can be seen that the yield and storage stability of Compound 3 are excellent when the reaction temperature is in the range of 15 ° C to 50 ° C.

Figure 0005826149
Figure 0005826149

*1 比較例のアルキルジエタノールアミンでない化合物も便宜上この欄に記載した。
*2 市販の粉末品中の化合物3の含有量を示す。
* 1 The compound which is not the alkyldiethanolamine of the comparative example is also described in this column for convenience.
* 2 Indicates the content of Compound 3 in commercially available powder products.

化合物1:尿素
化合物2:ホルムアルデヒド
MDEA:N−メチルジエタノールアミン
TEA:トリエタノールアミン
DEA:ジエタノールアミン
MEA:モノエタノールアミン
Compound 1: Urea compound 2: Formaldehyde MDEA: N-methyldiethanolamine TEA: Triethanolamine DEA: Diethanolamine MEA: Monoethanolamine

アルキルジエタノールアミンを用いて、且つ反応時のpHが10.0以上であることで、化合物3の収率及び保存安定性に優れることがわかる。   It can be seen that the yield and storage stability of compound 3 are excellent when alkyldiethanolamine is used and the pH during the reaction is 10.0 or more.

また、参考例で示した市販の粉末品の化合物3の含有量は46.4質量%であり、市販の粉末品から調製した液状組成物は、pHが7.4であり、保存安定性に劣ることがわかる。   In addition, the content of Compound 3 in the commercially available powdered product shown in the Reference Example is 46.4% by mass, and the liquid composition prepared from the commercially available powdered product has a pH of 7.4 and has excellent storage stability. You can see that it is inferior.

試験例
表4に示す成分を用いて鉄鋼洗浄剤を調製し、鋼板に対する洗浄性を評価した。
Test Example An iron and steel detergent was prepared using the components shown in Table 4, and the detergency for the steel sheet was evaluated.

<鉄鋼洗浄剤の調製>
(1)洗浄剤Aの調製
最終洗浄剤中の割合で、ポリオキシエチレン(平均2モル付加)−2−エチルヘキシルエーテル1.0質量%、ポリアクリル酸ナトリウム(重量平均分子量 6000)5.0質量%、組成物B13.0質量%(化合物3として2.0質量%相当)及び水61.0質量%を混合し、水溶液を調製した。次いで、最終洗浄剤中の割合で、水酸化ナトリウム20.0質量%を水溶液に添加及び混合し洗浄剤Aを得た。
<Preparation of steel cleaning agent>
(1) Preparation of Cleaning Agent A Polyoxyethylene (average 2 mole addition) -2-ethylhexyl ether 1.0 mass%, sodium polyacrylate (weight average molecular weight 6000) 5.0 mass in the ratio in the final cleaning agent %, Composition B 13.0 mass% (corresponding to 2.0 mass% as compound 3) and water 61.0 mass% were mixed to prepare an aqueous solution. Next, 20.0% by mass of sodium hydroxide was added to and mixed with the aqueous solution at a ratio in the final cleaning agent to obtain cleaning agent A.

(2)比較洗浄剤Bの調製
組成物Bの代わりにキレート剤として知られているエチレンジアミン四酢酸ナトリウム2.0質量%を用い、また、水の割合を72.0質量%とした以外は、洗浄剤Aと同様の方法により比較洗浄剤Bを調製した。
(2) Preparation of Comparative Cleaning Agent B Except that Composition B was replaced with 2.0% by mass of sodium ethylenediaminetetraacetate known as a chelating agent, and the ratio of water was 72.0% by mass, Comparative cleaning agent B was prepared in the same manner as cleaning agent A.

(3)比較洗浄剤Cの調製
組成物B及びエチレンジアミン四酢酸ナトリウムを配合せず、水の割合を74.0質量%にした以外は、洗浄剤Aと同様の方法により比較洗浄剤Cを調製した。
(3) Preparation of Comparative Cleaning Agent C Comparative Cleaning Agent C was prepared in the same manner as Cleaning Agent A, except that Composition B and sodium ethylenediaminetetraacetate were not blended and the proportion of water was 74.0% by mass. did.

<洗浄性の評価>
合成エステル系圧延油が付着した鋼板ピース(10cm×15cm)を、20倍に希釈した洗浄剤の水溶液に浸漬洗浄(洗浄液温度60℃、浸漬時間1秒)し、次いで電解洗浄(洗浄液温度60℃、電解時間1秒(+/−各0.5秒)、電流密度10A/dm2(初期マイナス極を洗浄鋼板とする)した後、十分量の流水により水洗した後の鋼板表面の水濡れ面積の測定し、洗浄性を評価した。水濡れ面積が100%に近いほど洗浄性が高いことを示す。
<Evaluation of detergency>
A steel plate piece (10 cm × 15 cm) to which the synthetic ester-based rolling oil is attached is immersed and washed in an aqueous solution of a cleaning agent diluted 20 times (cleaning liquid temperature 60 ° C., immersion time 1 second), and then electrolytic cleaning (cleaning liquid temperature 60 ° C.). Electrolytic time 1 second (+/- 0.5 seconds each), current density 10 A / dm 2 (the initial negative electrode is a washed steel plate), and then water-wetting area on the steel plate surface after washing with a sufficient amount of running water As the water wetted area is closer to 100%, the higher the detergency is.

Figure 0005826149
Figure 0005826149

洗浄剤Aは比較洗浄剤B及びCよりも洗浄性が優れており、本発明の製造方法による組成物は洗浄剤のキレート剤として用いることができることがわかる。   It can be seen that the cleaning agent A has better cleaning properties than the comparative cleaning agents B and C, and the composition according to the production method of the present invention can be used as a chelating agent for the cleaning agent.

Claims (3)

水中で、下記式(1)で表される化合物1と下記式(2)で表される化合物2を反応させる、下記式(3)で表される化合物3と水とを含有するpH10.0以上の液状組成物の製造方法であって、
化合物2と化合物1の仕込みモル比、化合物2/化合物1が0.3以上1.7以下であり、
化合物1と化合物2との反応を、15℃以上50℃以下で、アルキルジエタノールアミンの存在下、pH10.0以上で行う、
液状組成物の製造方法。
Figure 0005826149
In water, the compound 1 represented by the following formula (1) is reacted with the compound 2 represented by the following formula (2). The pH is 10.0 containing the compound 3 represented by the following formula (3) and water. A method for producing the above liquid composition,
The charged molar ratio of Compound 2 and Compound 1, Compound 2 / Compound 1 is 0.3 or more and 1.7 or less,
The reaction between Compound 1 and Compound 2 is carried out at 15 ° C. or higher and 50 ° C. or lower and in the presence of alkyldiethanolamine at pH 10.0 or higher.
A method for producing a liquid composition.
Figure 0005826149
アルキルジエタノールアミンと、化合物1と化合物2の合計との仕込みモル比、アルキルジエタノールアミン/(化合物1と化合物2の合計)が、0.005以上0.10以下である、請求項1記載の液状組成物の製造方法。   2. The liquid composition according to claim 1, wherein the charged molar ratio of alkyldiethanolamine to the total of compound 1 and compound 2 and alkyldiethanolamine / (total of compound 1 and compound 2) is 0.005 or more and 0.10 or less. Manufacturing method. 化合物1とアルキルジエタノールアミンと水とを含む混合物に、化合物2を添加して化合物1と化合物2の反応を行う、請求項1又は2に記載の液状組成物の製造方法。   The manufacturing method of the liquid composition of Claim 1 or 2 which adds the compound 2 to the mixture containing the compound 1, the alkyl diethanolamine, and water, and performs the reaction of the compound 1 and the compound 2.
JP2012242897A 2012-11-02 2012-11-02 Method for producing liquid composition containing tetrahydro-4H-1,3,5-oxadiazin-4-one Active JP5826149B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012242897A JP5826149B2 (en) 2012-11-02 2012-11-02 Method for producing liquid composition containing tetrahydro-4H-1,3,5-oxadiazin-4-one
MYPI2015701393A MY156194A (en) 2012-11-02 2013-11-01 Method for producing or method for storing liquid composition containing tetrahydro-4h-1,3,5-oxadiazin-4-one
CN201380053417.8A CN104718194B (en) 2012-11-02 2013-11-01 The manufacture method of the liquid composition containing tetrahydrochysene 4H 1,3,5 diazine 4 ketone or storage practice
PCT/JP2013/079692 WO2014069620A1 (en) 2012-11-02 2013-11-01 Method for producing and storing liquid composition comprising tetrahydro-4h-1,3,5-oxadiazine-4-one
EP13851399.9A EP2915807B1 (en) 2012-11-02 2013-11-01 Method for producing and storing liquid composition comprising tetrahydro-4h-1,3,5-oxadiazine-4-one
RU2015120794/04A RU2585288C1 (en) 2012-11-02 2013-11-01 Method of producing and storing liquid composition containing tetrahydro-4h-1,3,5-oxadiazin-4-one

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242897A JP5826149B2 (en) 2012-11-02 2012-11-02 Method for producing liquid composition containing tetrahydro-4H-1,3,5-oxadiazin-4-one

Publications (2)

Publication Number Publication Date
JP2014091701A JP2014091701A (en) 2014-05-19
JP5826149B2 true JP5826149B2 (en) 2015-12-02

Family

ID=50936046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242897A Active JP5826149B2 (en) 2012-11-02 2012-11-02 Method for producing liquid composition containing tetrahydro-4H-1,3,5-oxadiazin-4-one

Country Status (1)

Country Link
JP (1) JP5826149B2 (en)

Also Published As

Publication number Publication date
JP2014091701A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5583024B2 (en) Process for the production of disubstituted imidazolium salts
JP5371438B2 (en) Etherified melamine-formaldehyde condensate with high solids content and low viscosity
JP2008255408A (en) Composition for overcoat to chemical conversion coating formed on zinc or zinc alloy
JP5826149B2 (en) Method for producing liquid composition containing tetrahydro-4H-1,3,5-oxadiazin-4-one
TWI606072B (en) Method for preparing condensation resins and use thereof
RU2585288C1 (en) Method of producing and storing liquid composition containing tetrahydro-4h-1,3,5-oxadiazin-4-one
JP5826150B2 (en) Method for storing liquid composition comprising tetrahydro-4H-1,3,5-oxadiazin-4-one
JP5551673B2 (en) Low VOC polyamine
US20160107935A1 (en) Liquid dispersant composition for gypsum
US20230382845A1 (en) Chelating composition and method of forming
CN111808250B (en) Preparation method of low-formaldehyde stiffening agent
TWI551617B (en) Process for preparing condensation resins
JP2001510820A (en) Novel N-alkyl-hydroxybenzylamines, their preparation, their use, and compositions containing the compounds
JP7135366B2 (en) Divalent phosphazenium salt and method for producing the same
JP6407712B2 (en) Method for producing naphthalenesulfonic acid formaldehyde condensate
CN117142970A (en) Method of forming a chelating composition
JP3856166B2 (en) Alkyl etherified benzoguanamine formaldehyde resin
M Bondle et al. Synthesis of Hexahydro-Sym-Triazines Using PEG-400 as Superior Solvent
JP2768446B2 (en) Fluorinated arylguanamine derivatives
PL221246B1 (en) Ammonium salt of L-amino acid and a method of preparing an ammonium salt of L-amino acid
JPH04128273A (en) Alkyl etherified cyclohexanecarboguanamine
KR20180111784A (en) Methods for the preparation of chelating agents
PL218775B1 (en) Method for obtaining (m)ethoxylate melamine-formaldehyde resins
CS239963B1 (en) Processing of quartery amonium salts
PL55006B1 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150902

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150902

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151013

R151 Written notification of patent or utility model registration

Ref document number: 5826149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250