JP5825668B2 - Impermeable purification system for sea surface waste disposal site - Google Patents

Impermeable purification system for sea surface waste disposal site Download PDF

Info

Publication number
JP5825668B2
JP5825668B2 JP2011229800A JP2011229800A JP5825668B2 JP 5825668 B2 JP5825668 B2 JP 5825668B2 JP 2011229800 A JP2011229800 A JP 2011229800A JP 2011229800 A JP2011229800 A JP 2011229800A JP 5825668 B2 JP5825668 B2 JP 5825668B2
Authority
JP
Japan
Prior art keywords
steel pipe
water
disposal site
waste
waste disposal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011229800A
Other languages
Japanese (ja)
Other versions
JP2013087512A (en
Inventor
真哉 稲積
真哉 稲積
Original Assignee
真哉 稲積
真哉 稲積
宮 忠男
宮 忠男
宍戸 賢一
宍戸 賢一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 真哉 稲積, 真哉 稲積, 宮 忠男, 宮 忠男, 宍戸 賢一, 宍戸 賢一 filed Critical 真哉 稲積
Priority to JP2011229800A priority Critical patent/JP5825668B2/en
Publication of JP2013087512A publication Critical patent/JP2013087512A/en
Application granted granted Critical
Publication of JP5825668B2 publication Critical patent/JP5825668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、鋼管相互を鋼管継手により嵌合してなる鋼管矢板を用いた海面廃棄物処分場の遮水浄化システムに関する。   The present invention relates to a water-impervious purification system for a sea surface waste disposal site using a steel pipe sheet pile formed by fitting steel pipes together with a steel pipe joint.

従来より、各鋼管をH形鋼で嵌合する鋼管矢板壁が知られている。   Conventionally, a steel pipe sheet pile wall in which each steel pipe is fitted with an H-shaped steel is known.

この種の鋼管矢板壁は、鋼管の相互を各鋼管の周面にフランジ端縁が結合するH形鋼で一体的に連結するもので、かかる相互連結と反対側には雄継手、雌継手を設けられている。雄継手と雌継手の嵌合は、雌継手のフランジの間に雄継手のフランジが入り込み、さらにフランジの先端は雌継手に近接し、囲繞された密閉空間が形成されるようになっている。そして、この密閉空間にトレミー管を用いてコンクリートやモルタル等の充填材を充填して、雌雄の継手と充填材により雌雄の継手同士の結合力、および継手部分における耐力を向上させるというものであった(たとえば、特許文献1)。   This type of steel pipe sheet pile wall is an integral connection of steel pipes with H-shaped steel with flange edges joined to the peripheral surface of each steel pipe. Male and female joints are provided on the opposite side of the mutual connection. Is provided. In the fitting of the male joint and the female joint, the flange of the male joint enters between the flanges of the female joint, and the tip of the flange is close to the female joint so that an enclosed sealed space is formed. Then, this sealed space is filled with a filler such as concrete or mortar using a tremy tube, and the joint between the male and the male and the filler are used to improve the bond strength between the male and female joints and the proof stress at the joint. (For example, Patent Document 1).

2008−19608号公報2008-19608 publication

しかしながら、特許文献1の鋼管矢板壁では、継手部分の施工不良などにより水みちが生じた場合に、継手の深度方向に対してモルタル等が充填されているために、水みちの発生箇所を発見するのが困難であった。また、仮に水みちの発生箇所をセンサー等により特定できたとしても、水みちに対する補修作業が困難であるという問題もあった。   However, in the steel pipe sheet pile wall of Patent Document 1, when a water channel occurs due to poor construction of the joint part, etc., the mortar is filled in the depth direction of the joint. It was difficult to do. In addition, even if the location of the water path can be specified by a sensor or the like, there is a problem that it is difficult to repair the water path.

本発明は上記問題点に鑑みてなされたもので、水みちの発見および補修作業の困難さをなくし、遮水性能の長期的な管理およびそれに伴う補修を容易に行うことができる海面廃棄物処分場の遮水浄化システムを提供することを目的とする。   The present invention has been made in view of the above problems, eliminates the difficulty of finding and repairing water paths, and makes it possible to easily perform long-term management of water-blocking performance and repairs associated therewith. The purpose is to provide an on-site impermeable purification system.

上記課題を解決し上記目的を達成するために、本発明のうち第1の態様に係るものは、
鋼管相互を鋼管継手により嵌合してなる鋼管矢板を用いた海面廃棄物処分場の遮水浄化システムであって、海面と廃棄物処分場の境界に廃棄物埋立護岸として構築され、H形鋼とH形鋼を用いた鋼管継手を相互に嵌合させて連結し、嵌合される互いの鋼管継手の重なり部分に形成される隙間のみに膨潤性止水材を充填させた鋼管矢板壁と、相互に嵌合された鋼管矢板の鋼管継手の内壁により形成された空洞空間に注入される液体と、を有し、鋼管矢板の鋼管継手の内壁および膨潤性止水材により四方密閉された空洞空間に注入される液体の水位は、鋼管矢板壁と接する廃棄物処分場の廃棄物の高さより低いものである。
In order to solve the above problems and achieve the above object, the first aspect of the present invention provides:
A water shield purification system of sea waste disposal site with a steel pipe sheet piles formed by fitting the steel each other by steel joint is constructed as a waste landfill seawall at the boundary sea and waste disposal sites, H-section steel and a steel pipe joint using the H-shaped steel linked fitted to each other, the fitting is the gap only swellable water stopping material filling is not steel pipe sheet pile wall formed on overlapping portions of another of the steel pipe fittings And a liquid which is injected into a cavity space formed by the inner wall of the steel pipe joint of the steel pipe sheet pile fitted to each other, and is a four-side sealed cavity by the inner wall of the steel pipe joint of the steel pipe sheet pile and the swellable water stop material level of the liquid that is injected into the space is the low potato than the height of the waste landfill site in contact with the steel pipe sheet pile wall.

本発明によれば、鋼管継手を相互に嵌合させ、該嵌合される互いの鋼管継手の重なり部分に形成される隙間に膨潤性止水材を充填させた鋼管矢板壁を備えているので、従来のように水みちの発見および補修作業の困難さを生ずるものでなく、また仮に鋼管継手の重なり部分に形成される隙間に充填されている膨潤性止水材が劣化し遮水性能が低下しても、その遮水性能の長期的な管理およびそれに伴う補修も容易に行うことができる。すなわち、遮水性能の長期的な管理については、空洞空間の水位をモニタリングし、空洞空間の水位が著しく上昇することにより、鋼管矢板壁の海域側および処分場側の鋼管継手部両方あるいは片方の遮水性能の劣化を発見することができる。さらに、空洞空間に注入される液体の水位を鋼管矢板壁と接する廃棄物処分場の廃棄物の高さより低くしているので、空洞空間に流入する廃棄物層からの浸出水量が増加し、その流入した浸出水をポンプなどで集排水することにより遮水することが可能となるとともに、水溶性有害物質を含有し得る廃棄物層からの浸出水を揚水装置に排水することにより、廃棄物層の有害物質の浄化を図ることができる。   According to the present invention, since the steel pipe joints are fitted with each other, and the steel pipe sheet pile wall filled with the swellable waterstop material in the gap formed in the overlapping portion of the fitted steel pipe joints is provided. However, unlike the conventional case, it does not cause difficulty in finding and repairing the water channel, and the swellable water blocking material filled in the gap formed in the overlapping portion of the steel pipe joint is deteriorated and the water shielding performance is deteriorated. Even if it falls, the long-term management of the water shielding performance and the accompanying repair can be easily performed. In other words, for long-term management of the water-blocking performance, the water level in the cavity space is monitored, and the water level in the cavity space rises significantly, so that the steel pipe sheet pile wall on the sea area side and the disposal site side on the steel pipe joint part or on one side. Deterioration of water shielding performance can be found. Furthermore, the level of liquid injected into the hollow space is lower than the height of the waste disposal site in contact with the steel pipe sheet pile wall, so that the amount of leachate from the waste layer flowing into the hollow space increases. The infiltrated leachate can be shut off by collecting and draining with a pump, etc., and the leachate from the waste layer that can contain water-soluble harmful substances is drained to the pumping device. It is possible to purify harmful substances.

本発明のうち第2の態様に係るものは、第1の態様に係る海面廃棄物処分場の遮水浄化システムであって、廃棄物処分場側の鋼管矢板の鋼管継手の透水係数は、1.0×10−11m/s以上にしたことを特徴とするものである。 The second aspect of the present invention relates to a water-impervious purification system for a sea surface waste disposal site according to the first aspect, wherein the water permeability coefficient of the steel pipe joint of the steel pipe sheet pile on the waste disposal site side is 1 0.0 × 10 −11 m / s or more.

本発明によれば、廃棄物処分場側の鋼管矢板の鋼管継手の透水係数を1.0×10−11m/s以上といった高い透水係数にしているので、空洞空間に流入する廃棄物層からの浸出水ともに移流する有害物質量が増加し、廃棄物層からの有害物質の浄化を広い範囲で行うことができるとともに、浄化促進性能も向上させることができる。 According to the present invention, the hydraulic conductivity of the steel pipe joint of the steel pipe sheet pile on the waste disposal site side is set to a high hydraulic conductivity of 1.0 × 10 −11 m / s or more, and therefore, from the waste layer flowing into the hollow space The amount of harmful substances advancing with both leachable water increases, and it is possible to purify the harmful substances from the waste layer in a wide range and improve the purification promotion performance.

本発明のうち第3の態様に係るものは、第1の態様に係る海面廃棄物処分場の遮水浄化システムであって、廃棄物処分場側の鋼管矢板の鋼管継手の透水係数は、廃棄物処分場の廃棄物の透水係数と略同一以下にしたことを特徴とするものである。   A third aspect of the present invention relates to a water-impervious purification system for a sea surface waste disposal site according to the first aspect, wherein the water permeability coefficient of the steel pipe joint of the steel pipe sheet pile on the waste disposal site side is the disposal It is characterized by having the same or less than the hydraulic conductivity of waste at the landfill site.

廃棄物層からの空洞空間に流入する浸出水量は、鋼管継手の透水係数と廃棄物層の透水係数の高い方の影響を受ける。本発明によれば、廃棄物処分場側の鋼管矢板の鋼管継手の透水係数を廃棄物処分場の廃棄物の透水係数と略同一以下にしているので、廃棄物層からの有害物質の浄化促進性能を向上させることができる。   The amount of leachate flowing into the hollow space from the waste layer is affected by the higher one of the permeability coefficient of the steel pipe joint and the permeability coefficient of the waste layer. According to the present invention, the water permeability coefficient of the steel pipe sheet pile joint on the waste disposal site side is set to be substantially equal to or less than the water permeability coefficient of the waste disposal site waste, thereby promoting the purification of harmful substances from the waste layer. Performance can be improved.

本発明のうち第4の態様に係るものは、第1〜第3のいずれかの態様に係る海面廃棄物処分場の遮水浄化システムであって、廃棄物処分場の廃棄物底部の粘土層の透水係数は、1.0×10−10m/s以下にしたことを特徴とするものである。 A fourth aspect of the present invention relates to a water-impermeable purification system for a sea surface waste disposal site according to any one of the first to third aspects, wherein the clay layer is located at the bottom of the waste disposal site. The water permeability coefficient is set to 1.0 × 10 −10 m / s or less.

本発明によれば、廃棄物処分場の廃棄物底部の粘土層の透水係数を1.0×10−10m/s以下といった低い透水係数にしているので、廃棄物底部の粘土層から移流する有害物質が低減するため、有害物質を廃棄物処分場に封じ込めることができる。これにより、廃棄物底部から移流する有害物質が少ない場合は、廃棄物層に存在する有害物質は唯一の流出経路となる鋼管継手に集中するので、結果として、浄化促進性能を向上させることができる。 According to the present invention, the permeability coefficient of the clay layer at the bottom of the waste disposal site is set to a low permeability coefficient of 1.0 × 10 −10 m / s or less, so that the advection from the clay layer at the bottom of the waste is performed. Because hazardous substances are reduced, hazardous substances can be contained in waste disposal sites. As a result, when there are few harmful substances advancing from the bottom of the waste, the harmful substances present in the waste layer concentrate on the steel pipe joint that is the only outflow path, and as a result, the purification promotion performance can be improved. .

本発明によれば、空洞空間に注入される液体の水位を鋼管矢板壁と接する廃棄物処分場の廃棄物の高さより低くしているので、空洞空間に流入する廃棄物層からの浸出水量が増加し、その流入した浸出水をポンプなどで集排水することにより遮水することが可能となるとともに、水溶性有害物質を含有し得る廃棄物からの浸出水を揚水装置に排水することにより、廃棄物層の有害物質の浄化を図ることができる。   According to the present invention, since the water level of the liquid injected into the hollow space is lower than the height of the waste at the waste disposal site in contact with the steel sheet pile wall, the amount of leachate from the waste layer flowing into the hollow space is reduced. By increasing the amount of leachate that has flowed in and collecting it with a pump, etc., it is possible to shut off the water, and by draining leachate from waste that may contain water-soluble harmful substances to the pumping device, It is possible to purify hazardous substances in the waste layer.

本発明の一実施形態における海面廃棄物処分場の斜視図である。It is a perspective view of the sea surface waste disposal site in one embodiment of the present invention. 本発明の一実施形態における鋼管矢板壁の鋼管と鋼管の連結部分の上面図である。It is a top view of the connection part of the steel pipe and steel pipe of the steel pipe sheet pile wall in one Embodiment of this invention. 同連結部分の鋼管継手の重なり部分に形成される隙間に充填された膨潤性止水材の説明図である。It is explanatory drawing of the swelling water stop material with which the clearance gap formed in the overlap part of the steel pipe joint of the connection part was filled. 図2のA−A断面を示す図である。It is a figure which shows the AA cross section of FIG. 鋼管矢板の鋼管継手の内部に形成された空洞空間に保持される水位と有害物質の質量フラックスの関係を示す図である。It is a figure which shows the relationship between the water level hold | maintained in the cavity space formed inside the steel pipe joint of a steel pipe sheet pile, and the mass flux of a harmful substance. 廃棄物処分場側の鋼管矢板の鋼管継手の透水係数を変化させた場合の廃棄物の有害物質の濃度分布時刻暦を示す図である。It is a figure which shows the concentration distribution time calendar of the hazardous | toxic substance of a waste at the time of changing the water permeability coefficient of the steel pipe joint of the steel pipe sheet pile at a waste disposal site side. 廃棄物処分場側の鋼管矢板の鋼管継手の透水係数と有害物質の質量フラックスの関係を示す図である。It is a figure which shows the relationship between the water permeability of the steel pipe joint of the steel pipe sheet pile of a waste disposal site side, and the mass flux of a harmful substance. 廃棄物層の透水係数と浄化断面における有害物質の質量フラックスの関係を示すである。It is a relationship between the permeability coefficient of the waste layer and the mass flux of harmful substances in the purification section. 廃棄物処分場の廃棄物底部の粘土層の透水係数と有害物質の質量フラックスの関係を示すである。It shows the relationship between the hydraulic conductivity of the clay layer at the bottom of the waste disposal site and the mass flux of harmful substances. 廃棄物処分場の廃棄物底部の粘土層の透水係数と濃度測定断面における有害物質の濃度の関係を示す図である。It is a figure which shows the relationship between the hydraulic conductivity of the clay layer of the waste bottom of a waste disposal site, and the density | concentration of a harmful substance in a density | concentration measurement cross section.

以下、本発明の海面廃棄物処分場の遮水浄化システムの一実施形態について図面を参照にしながら説明する。図1は本発明の一実施形態における海面廃棄物処分場の斜視図である。   Hereinafter, an embodiment of a water-impermeable purification system for a sea surface waste disposal site according to the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a sea surface waste disposal site according to an embodiment of the present invention.

廃棄物処分場1は、海面と隣接する位置に建設され、廃棄物2の周囲を鋼管矢板壁3で包囲している(図1参照)。廃棄物処分場1の底部には粘土層4が堆積され、この廃棄物処分場1の廃棄物底部の粘土層4により底面が遮水されている。鋼管矢板壁3は、円柱形状した鋼管5相互を鋼管継手6により連結させている。ここで
鋼管5と鋼管継手6とは溶接により結合されている。なお、本実施形態では、H形鋼とH形鋼を用いた鋼管継手について説明するが、これに限らず、P形鋼とT形鋼と用いた鋼管継手、L形鋼とT形鋼と用いた鋼管継手などであってもよい。
The waste disposal site 1 is constructed at a position adjacent to the sea surface, and surrounds the waste 2 with a steel pipe sheet pile wall 3 (see FIG. 1). A clay layer 4 is deposited at the bottom of the waste disposal site 1, and the bottom surface is shielded by the clay layer 4 at the bottom of the waste disposal site 1. The steel pipe sheet pile wall 3 connects the cylindrical steel pipes 5 to each other by a steel pipe joint 6. Here, the steel pipe 5 and the steel pipe joint 6 are joined together by welding. In addition, although this embodiment demonstrates the steel pipe joint using H-section steel and H-section steel, it is not restricted to this, Steel pipe joint using P-section steel and T-section steel, L-section steel and T-section steel The steel pipe joint used may be used.

次に、鋼管矢板壁3について、図2および図3を用いて詳述する。図2は本発明の一実施形態における鋼管矢板壁の鋼管と鋼管の連結部分の上面図であり、図3は同連結部分の鋼管継手の重なり部分に形成される隙間に充填された膨潤性止水材の説明図である。   Next, the steel pipe sheet pile wall 3 will be described in detail with reference to FIGS. 2 and 3. FIG. 2 is a top view of the steel pipe sheet pile wall connecting portion of the steel pipe sheet pile wall according to one embodiment of the present invention, and FIG. 3 is a swellable stopper filled in a gap formed in the overlapping portion of the steel pipe joint of the connecting portion. It is explanatory drawing of a water material.

鋼管矢板壁3は、海面と廃棄物処分場1の境界に構築され、鋼管継手6を相互に嵌合させて鋼管5が連結されたものである(図2参照)。具体的には、一方の鋼管5の周辺には鋼管継手6の雌継手8(幅300mm、高さ300mm(図3参照))が溶接により結合され、また他方の鋼管5の周辺には鋼管継手6の雌継手8より小形の雄継手9(幅250mm、高さ250mm(図3参照))が溶接により結合され、その雄継手9の端縁が雌継手8の端縁に嵌入することにより、鋼管5が相互に結合される。そして、この連結された互いの鋼管継手6の重なり部分の隙間には、膨潤性止水材12が充填させている(図3参照)。この膨潤性止水材12は、鋼管継手6の重なり部分に塗布した後膨潤する。これにより、重なり部分の隙間が膨潤性止水材12により充填される。このように、雌継手8と雄継手9との重なり部分の隙間のそれぞれの接触面に膨潤性止水材12を塗布することにより遮水機能が担保されている。そして、雌継手8と雄継手9により、相互に嵌合された鋼管継手6の内部に空洞空間11が形成される。このように、鋼管継手6を相互に嵌合させて連結され、該連結される互いの鋼管継手6の重なり部分に形成される隙間に膨潤性止水材12を充填させた鋼管矢板壁3を備えているので、従来のように水みちの発見および補修作業の困難さを生ずるものでなく、また仮に鋼管継手6の重なり部分に形成される隙間に充填されている膨潤性止水材12が劣化し遮水性能が低下しても、その遮水性能の長期的な管理およびそれに伴う補修も容易に行うことができる。すなわち、遮水性能の長期的な管理については、空洞空間11の水位をモニタリングし、空洞空間11の水位が著しく上昇することにより、鋼管矢板壁3の海域側および処分場側の鋼管継手6の両方あるいは片方の遮水性能の劣化を発見することができる。   The steel pipe sheet pile wall 3 is constructed at the boundary between the sea surface and the waste disposal site 1, and is connected to the steel pipe 5 by fitting the steel pipe joints 6 to each other (see FIG. 2). Specifically, a female joint 8 (width 300 mm, height 300 mm (see FIG. 3)) of the steel pipe joint 6 is joined by welding around one steel pipe 5, and a steel pipe joint is joined around the other steel pipe 5. A male joint 9 (width 250 mm, height 250 mm (see FIG. 3)) smaller than the female joint 8 of 6 is joined by welding, and the end of the male joint 9 is fitted into the end of the female joint 8. Steel pipes 5 are connected to each other. And the swelling water stop material 12 is filled in the clearance gap of the connected part of the mutually connected steel pipe joint 6 (refer FIG. 3). The swellable waterstop material 12 swells after being applied to the overlapping portion of the steel pipe joint 6. Thereby, the gap of the overlapping portion is filled with the swellable waterstop material 12. Thus, the water-blocking function is ensured by applying the swellable water-stopping material 12 to each contact surface of the gap between the overlapping portions of the female joint 8 and the male joint 9. The female joint 8 and the male joint 9 form a hollow space 11 inside the steel pipe joint 6 fitted to each other. In this way, the steel pipe sheet pile wall 3 in which the steel pipe joints 6 are connected to each other and connected to each other, and the gap formed in the overlapping portion of the connected steel pipe joints 6 is filled with the swellable waterproofing material 12 is provided. Thus, there is no difficulty in finding and repairing the water channel as in the prior art, and the swellable water-stopping material 12 filled in the gap formed in the overlapping portion of the steel pipe joint 6 is provided. Even if the water shielding performance deteriorates due to deterioration, the long-term management of the water shielding performance and the accompanying repair can be easily performed. That is, for long-term management of the water shielding performance, the water level of the hollow space 11 is monitored, and the water level of the hollow space 11 rises significantly, so that the steel pipe joint 6 on the sea area side of the steel pipe sheet pile wall 3 and the disposal site side. It is possible to detect the deterioration of the water shielding performance of both or one.

次に、空洞空間11を活用した遮水・浄化技術について、図4および図5を用いて説明する。図4は図2のA−A断面を示す図であり、図5は鋼管矢板の鋼管継手の内部に形成された空洞空間に保持される水位と有害物質の質量フラックスの関係を示す図である。なお、図5は廃棄物層の影響が粘土層に及ばないモデルを用いて行ったものである。ここで、鋼管矢板とは2本の鋼管を鋼管継手で連結した建材のことである.   Next, a water shielding / purifying technique using the hollow space 11 will be described with reference to FIGS. 4 and 5. 4 is a diagram showing a cross section AA of FIG. 2, and FIG. 5 is a diagram showing the relationship between the water level held in the hollow space formed inside the steel pipe joint of the steel pipe sheet pile and the mass flux of harmful substances. . FIG. 5 is performed using a model in which the influence of the waste layer does not reach the clay layer. Here, a steel pipe sheet pile is a building material in which two steel pipes are connected by a steel pipe joint.

水溶性有害物質を含んだ廃棄物浸出水が廃棄物処分場1から鋼管矢板壁3を通過して廃棄物処分場外(海など)へ流出する場合、鋼管継手内(鋼管継手)の空洞空間11を必ず通過することになる。空洞空間11の内部には、液体13(たとえば、水)が注入されている。そして、この空洞空間11の内部に注入された液体13の水位は、鋼管矢板壁3と接する廃棄物処分場1の廃棄物2の高さより低く設定されている。これは、空洞空間11の内部に注入された液体13の水位を鋼管矢板壁3と接する廃棄物処分場1の廃棄物2の高さより低く設定するほうが、鋼管矢板の鋼管継手6の継手の浄化促進性能が高くなるからである(図5参照)。これについて図5を用いて説明する。図5に示すように、鋼管継手6の内部に形成された空洞空間11に保持する水位が−10mの場合、経過時間に関わらず浄化断面を通過する有害物質の質量フラックスは約0.15 l/m・yearである。一方、鋼管継手6の内部に形成された空洞空間11に保持する水位を−5mあるいは−1mに保持した場合、浄化断面を通過する有害物質の質量フラックスは各々約0.095 l/m・year、約0.0055 l/m・yearであり、空洞空間11内に保持する水位の上昇に伴って浄化性能は低下している。これは、空洞空間11の水位が高くなることによって空洞空間11へ流入する廃棄物層からの浸出水量が低減し、結果として、浸出水とともに移流する有害物質量も減少するためである。このように、空洞空間11に注入された液体13の水位を鋼管矢板壁3と接する廃棄物処分場1の廃棄物2の高さより低くしているので、空洞空間11に流入する廃棄物層からの浸出水量が増加し、その流入した浸出水をポンプ(図示略)などで集排水することにより遮水することできる。また、水溶性有害物質を含有し得る廃棄物層からの浸出水を揚水装置(図示略)に排水することにより、廃棄物層の有害物質の浄化を図ることができる。 When waste leachate containing water-soluble hazardous substances flows from the waste disposal site 1 through the steel pipe sheet pile wall 3 to the outside of the waste disposal site (such as the sea), the hollow space 11 in the steel pipe joint (steel pipe joint) 11 Will definitely pass. A liquid 13 (for example, water) is injected into the hollow space 11. The water level of the liquid 13 injected into the hollow space 11 is set lower than the height of the waste 2 in the waste disposal site 1 in contact with the steel pipe sheet pile wall 3. This is because the water level of the liquid 13 injected into the hollow space 11 is set to be lower than the height of the waste 2 in the waste disposal site 1 in contact with the steel pipe sheet pile wall 3 to purify the joint of the steel pipe joint 6 of the steel pipe sheet pile. This is because the acceleration performance is enhanced (see FIG. 5). This will be described with reference to FIG. As shown in FIG. 5, when the water level held in the hollow space 11 formed inside the steel pipe joint 6 is −10 m, the mass flux of harmful substances passing through the purification cross section is about 0.15 l regardless of the elapsed time. / M 2 · year. On the other hand, when the water level held in the hollow space 11 formed inside the steel pipe joint 6 is kept at -5 m or -1 m, the mass flux of harmful substances passing through the purification cross section is about 0.095 l / m 2. Year, about 0.0055 1 / m 2 · year, and the purification performance decreases as the water level retained in the cavity 11 increases. This is because the amount of leachate from the waste layer that flows into the cavity space 11 is reduced due to an increase in the water level of the cavity space 11, and as a result, the amount of harmful substances that are transferred along with the leachate is also reduced. Thus, since the water level of the liquid 13 injected into the hollow space 11 is set lower than the height of the waste 2 in the waste disposal site 1 in contact with the steel pipe sheet pile wall 3, the waste layer flowing into the hollow space 11 from the waste layer The amount of leached water increases, and the infiltrated leached water is collected and drained by a pump (not shown) or the like, and can be blocked. Further, by draining leachate from a waste layer that may contain water-soluble harmful substances to a pumping device (not shown), it is possible to purify the harmful substances in the waste layer.

次に、鋼管矢板壁3の有害物質の封じ込め性能および浄化促進性能について、図6および図7を用いて説明する。図6は廃棄物処分場側の鋼管矢板の鋼管継手の透水係数を変化させた場合の廃棄物の有害物質の濃度分布時刻暦を示す図であり、図7は廃棄物処分場側の鋼管矢板の鋼管継手の透水係数と有害物質の質量フラックスの関係を示す図である。なお、図6および図7は、廃棄物層の影響が粘土層に及ばないモデルを用いて行ったものである。   Next, the containment performance and purification promotion performance of harmful substances in the steel pipe sheet pile wall 3 will be described with reference to FIGS. FIG. 6 is a diagram showing a concentration distribution time calendar of waste hazardous substances when the water permeability coefficient of the steel pipe sheet pile on the waste disposal site side is changed, and FIG. 7 is a steel pipe sheet pile on the waste disposal site side. It is a figure which shows the relationship between the water permeability of a steel pipe joint, and the mass flux of a harmful substance. 6 and 7 are conducted using a model in which the influence of the waste layer does not reach the clay layer.

廃棄物処分場側の鋼管矢板の鋼管継手6の透水係数は、1.0×10−11m/s以上にしている。これは、廃棄物処分場側の鋼管矢板の鋼管継手6の透水係数を1.0×10−11m/s以上といった高い透水係数にすることにより、空洞空間11に流入する廃棄物層からの浸出水ともに移流する有害物質量が増加し、廃棄物層からの有害物質の浄化を広い範囲で行うことができるとともに、浄化促進性能も向上させることができるからである。以下で具体的に説明する。 The water permeability coefficient of the steel pipe joint 6 of the steel pipe sheet pile on the waste disposal site side is set to 1.0 × 10 −11 m / s or more. This is because the water permeability coefficient of the steel pipe sheet pile 6 of the steel pipe sheet pile on the waste disposal site side is set to a high water permeability coefficient of 1.0 × 10 −11 m / s or more, so that the waste layer flowing into the cavity space 11 This is because the amount of harmful substances transferred along with the leachate increases, and the purification of harmful substances from the waste layer can be performed in a wide range, and the purification promotion performance can be improved. This will be specifically described below.

図6に示すように、鋼管継手6の内部の空洞空間11に低水位環境を形成した場合、鋼管継手6の透水係数に関らず、鋼管継手6の継手近傍から廃棄物層における有害物質の浄化が進行している。また鋼管継手6の透水係数が高いほうが浄化範囲は広くなる。すなわち、鋼管継手6の透水係数が高いほうが広い範囲を浄化することができる。ここで、図6の処分場側鋼管継手の初期濃度は「0」で全水頭は−10mとし、廃棄物層の初期濃度は「1」で全水頭は2mとしている。また、図7に示すように、浄化断面を通過する有害物質の質量フラックスは経過時間に関らず、廃棄物処分場側の鋼管継手6の透水係数がk=1.0×10−7m/s、k=1.0×10−9m/sおよびk=1.0×10−11m/sのとき、各々約3.4 l/m・year、約0.15 l/m・year、約0.027 l/m・yearとなる。このように、鋼管継手6の透水係数が高いほうは浄化促進性能が優れている。これは、鋼管継手6の透水係数の上昇に伴って移流の影響が卓越し、結果として鋼管継手6の継手の浄化促進性能が飛躍的に向上するからである。よって、鋼管継手6の継手は、鋼管継手6の透水係数を高めることにより優れた浄化促進性能を発揮させることができる。 As shown in FIG. 6, when a low water level environment is formed in the hollow space 11 inside the steel pipe joint 6, regardless of the water permeability coefficient of the steel pipe joint 6, harmful substances in the waste layer from the vicinity of the steel pipe joint 6 can be seen. Purification is ongoing. Further, the higher the water permeability coefficient of the steel pipe joint 6, the wider the purification range. That is, a wider range can be purified as the water permeability coefficient of the steel pipe joint 6 is higher. Here, the initial concentration of the disposal site side steel pipe joint in FIG. 6 is “0”, the total head is −10 m, the initial concentration of the waste layer is “1”, and the total head is 2 m. Further, as shown in FIG. 7, the mass flux of harmful substances passing through the purification cross section has a water permeability coefficient of the steel pipe joint 6 on the waste disposal site side of k = 1.0 × 10 −7 m regardless of the elapsed time. / S, k = 1.0 × 10 −9 m / s and k = 1.0 × 10 −11 m / s, about 3.4 l / m 2 · year, about 0.15 l / m, respectively 2 · year, about 0.027 l / m 2 · year. As described above, the higher the water permeability of the steel pipe joint 6 is, the better the purification promotion performance is. This is because the influence of advection is prominent as the water permeability coefficient of the steel pipe joint 6 increases, and as a result, the purification promotion performance of the joint of the steel pipe joint 6 is dramatically improved. Therefore, the joint of the steel pipe joint 6 can exhibit excellent purification promoting performance by increasing the water permeability coefficient of the steel pipe joint 6.

次に、鋼管継手6の透水係数と廃棄物層の透水係数との関係について説明する。図8は廃棄物層の透水係数と浄化断面における有害物質の質量フラックスの関係を示すである。なお、図8は廃棄物層の影響が粘土層に及ばないモデルを用いて行ったものである。   Next, the relationship between the water permeability coefficient of the steel pipe joint 6 and the water permeability coefficient of the waste layer will be described. FIG. 8 shows the relationship between the water permeability of the waste layer and the mass flux of harmful substances in the purification section. FIG. 8 is performed using a model in which the influence of the waste layer does not reach the clay layer.

廃棄物処分場1の鋼管矢板の鋼管継手6の透水係数は、廃棄物処分場1の廃棄物2の透水係数と略同一以下にしている。これについて以下で具体的に説明する。 The water permeability coefficient of the steel pipe joint 6 of the steel pipe sheet pile of the waste disposal site 1 is made substantially equal to or less than the water permeability coefficient of the waste material 2 of the waste disposal site 1. This will be specifically described below.

図8に示すように、廃棄物層の透水係数がk=1.0×10−5m/s、およびk=1.0×10−8m/sで、廃棄物処分場側の鋼管継手6の透水係数がk=1.0×10−9m/sの場合、経過時間に関らず浄化断面を通過する有害物質の質量フラックスは約0.15 l/m・yearであり、一方、廃棄物層の透水係数がk=1.0×10−11m/sまで低下すると、経過時間に関らず浄化断面を通過する有害物質の質量フラックスは約0.055 l/m・yearとなる。このように、廃棄物層の透水係数が鋼管継手6の透水係数より低くなると、鋼管継手6の継手の浄化促進性能も低減することがわかる。これは、廃棄物処分場1から鋼管継手6の内部の空洞空間11への流入量は、廃棄物層の透水係数と鋼管継手6の透水係数が低い方に影響を受けるためである。すなわち、廃棄物層の透水係数が鋼管継手6の透水係数より高い場合は、廃棄物層を流れる水の流速は廃棄物処分場側の鋼管継手6の透水係数によって決まる。一方、廃棄物層の透水係数が鋼管継手6の透水係数より低い場合は、廃棄物層を流れる水の流速は廃棄物処分場側の鋼管継手6を流れる水の流速より緩慢となる。その結果、鋼管継手6を通過して空洞空間11に流入する流量が減少し、移流に伴う有害物質の浄化促進が抑制されるようになる。このように、本実施形態では、廃棄物処分場側の鋼管矢板の鋼管継手6の透水係数を廃棄物処分場1の廃棄物2の透水係数と略同一以下にしているので、廃棄物層からの有害物質の浄化促進性能を向上させることができる。 As shown in FIG. 8, the waste pipe has a water permeability coefficient of k = 1.0 × 10 −5 m / s and k = 1.0 × 10 −8 m / s, and is a steel pipe joint on the waste disposal site side. When the water permeability coefficient of 6 is k = 1.0 × 10 −9 m / s, the mass flux of the harmful substance passing through the purification cross section regardless of the elapsed time is about 0.15 l / m 2 · year, On the other hand, when the hydraulic conductivity of the waste layer decreases to k = 1.0 × 10 −11 m / s, the mass flux of harmful substances passing through the purification cross section regardless of the elapsed time is about 0.055 l / m 2.・ Year. Thus, when the water permeability coefficient of a waste layer becomes lower than the water permeability coefficient of the steel pipe joint 6, it turns out that the purification promotion performance of the joint of the steel pipe joint 6 also reduces. This is because the amount of inflow from the waste disposal site 1 to the hollow space 11 inside the steel pipe joint 6 is affected by the lower permeability coefficient of the waste layer and the steel pipe joint 6. That is, when the permeability coefficient of the waste layer is higher than the permeability coefficient of the steel pipe joint 6, the flow rate of the water flowing through the waste layer is determined by the permeability coefficient of the steel pipe joint 6 on the waste disposal site side. On the other hand, when the permeability coefficient of the waste layer is lower than the permeability coefficient of the steel pipe joint 6, the flow rate of water flowing through the waste layer is slower than the flow rate of water flowing through the steel pipe joint 6 on the waste disposal site side. As a result, the flow rate flowing into the hollow space 11 through the steel pipe joint 6 is reduced, and the promotion of purification of harmful substances accompanying advection is suppressed. Thus, in this embodiment, since the hydraulic conductivity of the steel pipe joint 6 of the steel pipe sheet pile on the waste disposal site side is set to be substantially equal to or less than the hydraulic conductivity of the waste 2 of the waste disposal site 1, the waste layer The performance of promoting the purification of harmful substances can be improved.

次に、粘土層4の透水係数と浄化促進性能および封じ込め性能との関係について説明する。ここで、図9は廃棄物処分場の廃棄物底部の粘土層の透水係数(鋼管継手6の透水係数はk=1.0×10−9m/s)と有害物質の質量フラックスの関係を示すであり、図10は廃棄物処分場の廃棄物底部の粘土層の透水係数と濃度測定断面における有害物質の濃度の関係を示す図である。 Next, the relationship between the water permeability of the clay layer 4 and the purification promotion performance and containment performance will be described. 9 shows the relationship between the permeability coefficient of the clay layer at the bottom of the waste disposal site (the permeability coefficient of the steel pipe joint 6 is k = 1.0 × 10 −9 m / s) and the mass flux of harmful substances. FIG. 10 is a diagram showing the relationship between the hydraulic conductivity of the clay layer at the bottom of the waste in the waste disposal site and the concentration of harmful substances in the concentration measurement section.

廃棄物処分場1の廃棄物底部の粘土層4の透水係数を1.0×10−10m/s以下にしている。これについて以下で具体的に説明する。 The hydraulic conductivity of the clay layer 4 at the bottom of the waste disposal site 1 is set to 1.0 × 10 −10 m / s or less. This will be specifically described below.

まず、粘土層4の透水係数と浄化促進性能との関係について説明する。図9に示すように、粘土層4の透水係数がk=1.0×10−8m/sの場合およびk=1.0×10−12m/sの場合のいずれも、廃棄物処分場側の鋼管継手6の内部の空洞空間11の処分場側端を通過する有害物質の質量フラックスは約0.12 l/m・yearであり、同等の浄化促進性能を示している。このことから、粘土層4の浄水係数が変化しても、鋼管継手6の継手の浄化促進性能に影響しないといえる。これは、粘土層4の透水係数に関わらず、鋼管継手6の内部の空洞空間11に流入する廃棄物層からの浸出水量は同じであるため、浸出水に含有される有害物質も同じとなっているからである。しかしながら、図8に示す通り、廃棄物層の影響が粘土層4に及ばない場合の浄化促進性能は約0.15 l/m・yearであることから、粘土層4を不透明水かつ不拡散である場合のほうが浄化促進性能は優れているといえる。これは、粘土層4へ廃棄物層の影響が及ばない場合は廃棄物層に存在する有害物質は唯一の流出経路である鋼管継手6の継手に集中することから、鋼管継手6の継手の浄化促進性能が高くなることが要因である。 First, the relationship between the water permeability coefficient of the clay layer 4 and the purification promotion performance will be described. As shown in FIG. 9, waste disposal is performed both when the permeability coefficient of the clay layer 4 is k = 1.0 × 10 −8 m / s and when k = 1.0 × 10 −12 m / s. The mass flux of the harmful substance passing through the disposal site side end of the hollow space 11 inside the steel pipe joint 6 on the site side is about 0.12 l / m 2 · year, and shows the same purification promotion performance. From this, it can be said that even if the water purification coefficient of the clay layer 4 changes, the purification promotion performance of the joint of the steel pipe joint 6 is not affected. This is because the amount of leaching water from the waste layer flowing into the hollow space 11 inside the steel pipe joint 6 is the same regardless of the water permeability coefficient of the clay layer 4, so that the harmful substances contained in the leaching water are the same. Because. However, as shown in FIG. 8, the purification promotion performance when the influence of the waste layer does not reach the clay layer 4 is about 0.15 l / m 2 · year. It can be said that the purification promotion performance is better in the case of. This is because when the waste layer does not affect the clay layer 4, harmful substances present in the waste layer concentrate on the joint of the steel pipe joint 6, which is the only outflow path. The reason is that the acceleration performance becomes high.

次に、粘土層4の透水係数と封じ込め性能との関係について説明する。図10に示すように、粘土層4の透水係数がk=1.0×10−8m/sの場合、100年経過後の濃度測定断面における有害物質の濃度は約18%であり、一方、粘土層4の透水係数がk=1.0×10−12m/sの場合、100年経過後の濃度測定断面における有害物質の濃度は約1.8%である。これは、底部粘土層4の透水係数の上昇に従って移流に伴う有害物質の流出が促進されるからである。さらに、粘土層4の透水係数がk=1.0×10−10m/sの場合とk=1.0×10−12m/sの場合は、100年経過後の濃度測定断面における有害物質の濃度はいずれも約1.8%である。これは、粘土層4の透水係数がk=1.0×10−10m/s以下であれば、移流の影響はほとんど受けず有害物質の拡散によって流出が発生するためである。このように、粘土層4の透水係数をk=1.0×10−10m/s以下にすることにより優れた水溶性有害物質の封じ込め機能を発揮することができる。 本実施形態では、廃棄物処分場1の廃棄物底部の粘土層4の透水係数を1.0×10−10m/s以下といった低い透水係数にしているので、廃棄物底部の粘土層4から移流する有害物質が低減するため、有害物質を廃棄物処分場に封じ込めることができる。これにより、廃棄物底部から移流する有害物質が少ない場合は、廃棄物層に存在する有害物質は唯一の流出経路となる鋼管継手6に集中するので、結果として、浄化促進性能を向上させることができる。 Next, the relationship between the hydraulic conductivity of the clay layer 4 and the containment performance will be described. As shown in FIG. 10, when the hydraulic conductivity of the clay layer 4 is k = 1.0 × 10 −8 m / s, the concentration of harmful substances in the concentration measurement section after 100 years is about 18%, When the water permeability coefficient of the clay layer 4 is k = 1.0 × 10 −12 m / s, the concentration of harmful substances in the concentration measurement section after 100 years is about 1.8%. This is because the outflow of harmful substances accompanying advection is promoted as the water permeability coefficient of the bottom clay layer 4 increases. Further, when the water permeability coefficient of the clay layer 4 is k = 1.0 × 10 −10 m / s and k = 1.0 × 10 −12 m / s, it is harmful in the concentration measurement cross section after 100 years. The concentration of each substance is about 1.8%. This is because when the water permeability coefficient of the clay layer 4 is k = 1.0 × 10 −10 m / s or less, the influence of advection is hardly received and the outflow occurs due to diffusion of harmful substances. As described above, when the water permeability coefficient of the clay layer 4 is k = 1.0 × 10 −10 m / s or less, an excellent water-soluble harmful substance containment function can be exhibited. In this embodiment, the permeability coefficient of the clay layer 4 at the bottom of the waste disposal site 1 is set to a low permeability coefficient of 1.0 × 10 −10 m / s or less. Since the harmful substances to be transferred are reduced, the hazardous substances can be contained in the waste disposal site. As a result, when there are few harmful substances advancing from the bottom of the waste, the harmful substances present in the waste layer are concentrated on the steel pipe joint 6 which is the only outflow path. As a result, the purification promotion performance can be improved. it can.

今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 廃棄物処分場
2 廃棄物
3 鋼管矢板壁
4 粘土層
5 鋼管
6 鋼管継手
8 雌継手
9 雄継手
11 空洞空間
12 膨潤性止水材
13 液体




DESCRIPTION OF SYMBOLS 1 Waste disposal site 2 Waste 3 Steel pipe sheet pile wall 4 Clay layer 5 Steel pipe 6 Steel pipe joint 8 Female joint 9 Male joint 11 Cavity space 12 Swellable water stop material 13 Liquid




Claims (4)

鋼管相互を鋼管継手により嵌合する鋼管矢板を用いた海面廃棄物処分場の遮水浄化システムであって、
海面と廃棄物処分場の境界に廃棄物埋立護岸として構築され、H形鋼とH形鋼を用いた鋼管継手を相互に嵌合させて連結し、嵌合される互いの鋼管継手の重なり部分に形成される隙間のみに膨潤性止水材を接着させた鋼管矢板壁と、
相互に嵌合された前記鋼管矢板の鋼管継手の内壁により形成された空洞空間に注入される液体と、を有し、
前記鋼管矢板の鋼管継手の内壁および前記膨潤性止水材により四方密閉された前記空洞空間に注入される液体の水位は、前記鋼管矢板壁と接する廃棄物処分場の廃棄物の高さより低い海面廃棄物処分場の遮水浄化システム。
A water-impervious purification system for a sea surface waste disposal site using a steel pipe sheet pile that fits steel pipes with steel pipe joints,
Built as a waste reclamation revetment at the boundary between the sea surface and the waste disposal site, the H pipes and H pipes using H pipes are connected together and connected, and the overlapping parts of the steel pipe fittings that are fitted together A steel pipe sheet pile wall in which a swellable water-stopping material is bonded only to the gap formed in
Liquid injected into a cavity space formed by the inner wall of the steel pipe joint of the steel pipe sheet piles fitted to each other,
Inner wall and level of the liquid to be injected into the four-way sealed the cavity space by the swelling water stopping material of a steel pipe joint of the steel pipe sheet piles, have lower than the height of the waste landfill site in contact with the steel pipe sheet pile wall seepage control purification system of sea-level waste disposal site.
廃棄物処分場側の前記鋼管矢板の鋼管継手の透水係数は、1.0×10−11m/s以上にしたことを特徴とする請求項1記載の海面廃棄物処分場の遮水浄化システム。 The water-impermeable purification system for a sea surface waste disposal site according to claim 1, wherein the water permeability coefficient of the steel pipe joint of the steel pipe sheet pile on the waste disposal site side is 1.0 x 10 -11 m / s or more. . 廃棄物処分場側の前記鋼管矢板の鋼管継手の透水係数は、廃棄物処分場の廃棄物の透水係数と略同一以下にしたことを特徴とする請求項1記載の海面廃棄物処分場の遮水浄化システム。 2. The sea surface waste disposal site according to claim 1, wherein a water permeability coefficient of the steel pipe joint of the steel pipe sheet pile on the waste disposal site side is set to be substantially equal to or less than a water permeability coefficient of the waste at the waste disposal site. Water purification system. 廃棄物処分場の廃棄物底部の粘土層の透水係数は、1.0×10−10m/s以下にしたことを特徴とする請求項1〜3のいずれか1項に記載の海面廃棄物処分場の遮水浄化システム。
The sea surface waste according to any one of claims 1 to 3, wherein the permeability coefficient of the clay layer at the bottom of the waste disposal site is 1.0 x 10 -10 m / s or less. Water shielding purification system for disposal sites.
JP2011229800A 2011-10-19 2011-10-19 Impermeable purification system for sea surface waste disposal site Active JP5825668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229800A JP5825668B2 (en) 2011-10-19 2011-10-19 Impermeable purification system for sea surface waste disposal site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229800A JP5825668B2 (en) 2011-10-19 2011-10-19 Impermeable purification system for sea surface waste disposal site

Publications (2)

Publication Number Publication Date
JP2013087512A JP2013087512A (en) 2013-05-13
JP5825668B2 true JP5825668B2 (en) 2015-12-02

Family

ID=48531704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229800A Active JP5825668B2 (en) 2011-10-19 2011-10-19 Impermeable purification system for sea surface waste disposal site

Country Status (1)

Country Link
JP (1) JP5825668B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486804U (en) * 1977-12-01 1979-06-19
JP3500604B2 (en) * 1999-04-05 2004-02-23 大成建設株式会社 Construction method of impermeable construction
JP4285593B2 (en) * 2000-04-07 2009-06-24 新日本製鐵株式会社 Impermeable revetment structure with leaching detection function of retained water and its repair method
JP3744396B2 (en) * 2001-09-14 2006-02-08 Jfeスチール株式会社 Construction method of steel sheet pile impervious wall and its joint structure
JP3854850B2 (en) * 2001-11-07 2006-12-06 株式会社データ・トゥ Steel pipe sheet pile, steel pipe connection structure using it, steel pipe sheet pile wall and soil cement continuous wall
JP4129223B2 (en) * 2003-11-07 2008-08-06 株式会社データ・トゥ Steel pipe sheet pile and steel pipe sheet pile connection structure
JP4538239B2 (en) * 2004-01-08 2010-09-08 株式会社大林組 Impermeable wall, impermeable wall management system and impermeable wall management method
JP4505319B2 (en) * 2004-12-15 2010-07-21 東亜建設工業株式会社 Determination method of water shielding material
JP2008043845A (en) * 2006-08-11 2008-02-28 Ohbayashi Corp Deformation follow-up type impervious liner material

Also Published As

Publication number Publication date
JP2013087512A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
CN101798939B (en) Maintainable tunnel drainage system
CN206874310U (en) Be applicable to high-pressure rich water district tunnel decompression drainage device
JP2006204965A (en) Method of constructing impervious layer
JP2006226061A (en) Underground drainage construction method
TWI269823B (en) Steel wall and the manufacture method thereof
JP2005320845A (en) Rainwater reservoir tank
JP5825668B2 (en) Impermeable purification system for sea surface waste disposal site
JP2007144272A (en) Additional construction method of water impervious layer
JP4285593B2 (en) Impermeable revetment structure with leaching detection function of retained water and its repair method
CN102444145A (en) Porous sealing device for connecting vertical flexible barrier system
JP2011214252A (en) Structure for reinforcing embankment
CN103628899B (en) Retain CRD median septum and be welded with water flange construction technology
JP2008144412A (en) Rainwater reservoir tank and method of constructing rainwater reservoir tank
JP3664166B2 (en) Steel wall manufacturing method
RU2536496C1 (en) Method of creation of curtain grouting with filter windows and beam water intake
JP2005023514A (en) Water cut-off joint structure and its construction method
CN109837928B (en) Impermeable curtain, drainage guide impermeable system and application method of impermeable curtain
RU2539205C2 (en) Method of creation of cut-off curtains with filter windows
JP2003213670A (en) Water sealing structure
JP6298254B2 (en) Impermeable wall
CN218970182U (en) Combined lining repairing structure for seepage of well and pool
CN220266794U (en) Ventilation structure of drainage system
EP1067243B1 (en) Catchment basin for above ground water and construction method thereof
CN218911599U (en) Water supply pipe protection structure
CN211713884U (en) Vertical seepage-proofing structure with transverse pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151008

R150 Certificate of patent or registration of utility model

Ref document number: 5825668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250