JP5825148B2 - Resin fusing test method - Google Patents

Resin fusing test method Download PDF

Info

Publication number
JP5825148B2
JP5825148B2 JP2012046109A JP2012046109A JP5825148B2 JP 5825148 B2 JP5825148 B2 JP 5825148B2 JP 2012046109 A JP2012046109 A JP 2012046109A JP 2012046109 A JP2012046109 A JP 2012046109A JP 5825148 B2 JP5825148 B2 JP 5825148B2
Authority
JP
Japan
Prior art keywords
skin
parts
resin powder
mpa
storage modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012046109A
Other languages
Japanese (ja)
Other versions
JP2013181850A (en
Inventor
真司 渡邊
真司 渡邊
泰丈 工藤
泰丈 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012046109A priority Critical patent/JP5825148B2/en
Publication of JP2013181850A publication Critical patent/JP2013181850A/en
Application granted granted Critical
Publication of JP5825148B2 publication Critical patent/JP5825148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

本発明は、熱可塑性樹脂材料を成形してなる熱可塑性樹脂成形品(表皮)を検査するための方法に関する。 The present invention relates to a method for inspecting a thermoplastic resin molded article (skin) formed by molding a thermoplastic resin material.

近年、自動車内装部品のインストルメントパネルは、熱可塑性樹脂材料をスラッシュ成形してなるスラッシュ成形品が使用されている。インストルメントパネル下に格納されたエアバッグを展開させるために、インストルメントパネルには開裂口が設置されている。開裂口用の加工は、意匠性の点から、インストルメントパネルの裏面にカッターでスリットを入れる方法が実施されている。   In recent years, slush molded products obtained by slush molding a thermoplastic resin material are used for instrument panels for automobile interior parts. In order to deploy the airbag stored under the instrument panel, a cleavage opening is provided in the instrument panel. For the processing for the cleavage opening, a method of slitting the back surface of the instrument panel with a cutter is performed from the viewpoint of design.

特開2007−283865号公報JP 2007-283865 A 特開2002−326241号公報JP 2002-326241 A 特開平8−1696号公報JP-A-8-1696

しかし、スラッシュ成形時の低温成形を目的に、樹脂中の分子間の結合力を低下させた良溶融性熱可塑性樹脂からなる成形品は、通常の実使用環境下では特に問題なく使用できるが、高温の使用環境下ではカッターで加工したスリットの切断面に粘着性が発現し、切断面が粘着力で密着し、経時で接着面の分子鎖が絡み合い融着する可能性があることがわかってきた。
高温環境下での該スリットの融着を評価する方法として、これまでは実際に裏面にスリットを入れた熱可塑性樹脂成形品を高温の使用環境下に一定時間静置し、該スリットが融着するかどうか判定する方法がとられていたが、評価に長時間要するといった問題点があり、熱可塑性樹脂の開発に時間がかかっていた。また、これまで熱可塑性樹脂成形品の熱軟化温度や熱可塑性樹脂成形品の引張粘弾性測定で評価が可能か試みたが、該スリットの融着と必ずしも精度良く評価することが出来なかった。
本発明が解決しようとする課題は、インストルメントパネル裏面のスリットが高温環境下で融着するかどうかを短時間で精度良く評価できる検査方法を開発することを目的とする。
However, for the purpose of low-temperature molding during slush molding, a molded product made of a good-melting thermoplastic resin with reduced intermolecular bond strength in the resin can be used without any particular problem under normal actual use environment. Under high temperature usage conditions, it has been found that the cut surface of the slit processed by the cutter develops stickiness, the cut surface adheres with adhesive force, and the molecular chains of the adhesive surface may become entangled and fused over time. It was.
As a method for evaluating the fusion of the slit in a high temperature environment, until now, a thermoplastic resin molded product actually provided with a slit on the back surface is left in a high temperature use environment for a certain period of time, and the slit is fused. However, there has been a problem that it takes a long time for evaluation, and it has taken time to develop a thermoplastic resin. Further, until now, it has been tried whether the evaluation can be made by measuring the softening temperature of the thermoplastic resin molded article or the tensile viscoelasticity of the thermoplastic resin molded article, but it has not always been possible to accurately evaluate the fusion of the slit.
The problem to be solved by the present invention is to develop an inspection method capable of accurately evaluating in a short time whether or not the slit on the back surface of the instrument panel is fused in a high temperature environment.

本発明者らは鋭意研究した結果、本発明を完成させるに至った。
本発明は、熱可塑性樹脂粉末(P)をスラッシュ成形して得られ自動車内装部品のインストルメントパネルに用いられる表皮(L)の裏面に形成されたスリットが高温環境下で融着するかどうかの検査方法であって、熱可塑性樹脂粉末(P)を用いて表皮(L)を作成し、表皮(L)についてズリ動的粘弾性の測定を行い、ズリ貯蔵弾性率(x)を求め、(x)の測定値から表皮(L)が動的粘弾性測定温度以下で融着しないかどうかを判定するインストルメントパネル用熱可塑性樹脂表皮の検査方法である。
As a result of intensive studies, the present inventors have completed the present invention.
The present invention relates to whether or not the slit formed on the back surface of the skin (L) obtained by slush molding the thermoplastic resin powder (P) and used for an instrument panel of an automobile interior part is fused in a high temperature environment. It is an inspection method, the skin (L) is prepared using the thermoplastic resin powder (P), the shear dynamic viscoelasticity of the skin (L) is measured, and the shear storage elastic modulus (x) is obtained ( This is a method for inspecting a thermoplastic resin skin for an instrument panel that determines whether or not the skin (L) is not fused at or below the dynamic viscoelasticity measurement temperature from the measured value of x).

本発明の検査方法において、ズリ動的粘弾性の測定によるズリ貯蔵弾性率(x)から自動車内装部品のインストルメントパネルに用いられる表皮(L)の裏面に形成されたスリットが動的粘弾性測定温度で融着しないことを短時間かつ正確に判断することができる。 In the inspection method of the present invention, a slit formed on the back surface of an outer skin (L) used for an instrument panel of an automobile interior part is measured by dynamic viscoelasticity from a shear storage modulus (x) obtained by measuring shear dynamic viscoelasticity. It can be determined in a short time and accurately that it does not fuse at the temperature.

自動車内装部品のインストルメントパネルに用いられる表皮(L)の裏面に形成されたスリットが高温環境下で融着する原因は、表皮が熱により軟化し、粘着性が発現し、スリット切断面が粘着力で密着力が発現し、経時で接着面の分子鎖が絡み合い融着するからであると考えられる。本発明の方法では、被検樹脂の貯蔵弾性率を測定することにより上記経時的な粘着性発現の有無を予測することができるものである。 The reason why the slit formed on the back surface of the skin (L) used for instrument panels of automobile interior parts is fused in a high temperature environment is that the skin is softened by heat, and stickiness is developed. This is presumably because the adhesive force is expressed by the force, and the molecular chains on the adhesive surface are entangled and fused over time. In the method of the present invention, the presence or absence of the above-mentioned adhesion can be predicted by measuring the storage elastic modulus of the test resin.

熱可塑性樹脂粉末(P)を用いたズリ動的粘弾性測定前の表皮の作成方法として、加圧成形(成形機:加圧プレス機、成形方法:プレス部位上下共に好ましくは160〜220℃、より好ましくは170〜190℃に温調した加圧プレス機に、離型紙に挟んだパウダー5〜20g、好ましくは8〜12gをセットし、1分間0.2〜0.4MPa、好ましくは0.25〜0.35MPaの圧力でプレス成形した後に取り出し、冷却後離型紙から剥がすことで得ることができる。)が適当である。加圧成形において、表皮に樹脂の溶け不足による粉末間の空隙があると、正確にズリ貯蔵弾性率を測定することができなくなる。 As a method of creating the skin before the shear dynamic viscoelasticity measurement using the thermoplastic resin powder (P), pressure molding (molding machine: pressure press machine, molding method: preferably 160 to 220 ° C. both above and below the press part, More preferably, 5 to 20 g, preferably 8 to 12 g of powder sandwiched between release papers is set in a pressure press machine whose temperature is adjusted to 170 to 190 ° C., and 0.2 to 0.4 MPa for 1 minute, preferably 0.8. It can be obtained by press-molding at a pressure of 25 to 0.35 MPa and then removing from the release paper after cooling. In pressure molding, if there is a gap between powders due to insufficient melting of the resin in the skin, it is impossible to accurately measure the shear storage modulus.

ズリ動的粘弾性測定前の表皮の板厚は、ズリ貯蔵弾性率の測定値の正確性の観点から、1.0〜2.0mm 好ましい板厚は、1.25〜1.75mmである。測定試料の形状は円柱、サイズは直径がズリ動的粘弾性治具と同じ10mmであり、高さは1.0〜2.0mmである。 The plate thickness of the skin before the measurement of the shear dynamic viscoelasticity is 1.0 to 2.0 mm from the viewpoint of the accuracy of the measurement value of the shear storage modulus. The preferred plate thickness is 1.25 to 1.75 mm. The shape of the measurement sample is a cylinder, the size is 10 mm, the diameter is the same as that of the shearing dynamic viscoelastic jig, and the height is 1.0 to 2.0 mm.

一般的な動的粘弾性の測定方法として、曲げ、引っ張り、圧縮、ズリが挙げられるが、
本発明の動的粘弾性の測定方法としては、高温測定であるため、材料変形時に重力の影響を受けにくいズリ測定が適当である。
Common methods for measuring dynamic viscoelasticity include bending, tension, compression, and shearing.
Since the measurement method of dynamic viscoelasticity of the present invention is high-temperature measurement, it is appropriate to perform shear measurement that is not easily affected by gravity during material deformation.

動的粘弾性の測定機器は、ズリ動的粘弾性を測定することができれば、限定はしないが、動的粘弾性測定装置「RDS−2」(Rheometric Scientific社製)が挙げられる。   The measuring device for dynamic viscoelasticity is not limited as long as it can measure shear dynamic viscoelasticity, but includes a dynamic viscoelasticity measuring device “RDS-2” (manufactured by Rheometric Scientific).

ズリ動的粘弾性測定で得られるズリ貯蔵弾性率を正確に測定するためには、本発明の熱可塑性樹脂粉末(P)を用いて成形した表皮(L)をズリ動的粘弾性測定用治具に固定させる必要がある。固定させる方法としては、表皮(L)を動的粘弾性測定装置の治具にセットし、加熱溶融して治具に密着させることが適当である。接着剤等で密着させると、接着剤自体の貯蔵弾性率の影響を受けてしまうため、好ましくない。 In order to accurately measure the shear storage modulus obtained by shear dynamic viscoelasticity measurement, the skin (L) molded using the thermoplastic resin powder (P) of the present invention is treated for shear dynamic viscoelasticity measurement. It is necessary to fix it to the tool. As a fixing method, it is appropriate to set the skin (L) on a jig of a dynamic viscoelasticity measuring apparatus, and heat and melt it so as to be in close contact with the jig. Adhering with an adhesive or the like is not preferable because it is affected by the storage elastic modulus of the adhesive itself.

動的粘弾性の測定温度は、100〜150℃が好ましく、110〜140℃が更に好ましい。自動車内装材用部品のインストルメントパネルのエアバッグ展開試験に関して、高温地域での数年間の使用後のエアバッグ展開を想定し、自動車メーカー毎に100〜150℃の高温で一定時間静置させた後にエアバッグ展開試験を行うといった促進試験が行われている。そのため、本発明の検査方法においても、100〜150℃で評価することが好ましい。 The measurement temperature of dynamic viscoelasticity is preferably 100 to 150 ° C, more preferably 110 to 140 ° C. Regarding the airbag deployment test of instrument panels for automotive interior parts, we assumed that airbag deployment would occur after several years of use in high-temperature areas, and were allowed to stand at a high temperature of 100 to 150 ° C for a certain period of time for each automobile manufacturer. An accelerated test, such as an airbag deployment test, has been conducted later. Therefore, also in the inspection method of this invention, it is preferable to evaluate at 100-150 degreeC.

動的粘弾性の測定周波数は、0.01〜1.00Hzであり、0.01〜0.10Hzが好ましく、更に0.01Hzが好ましい。自動車内装材用部品のインストルメントパネルのエアバッグ展開試験に関して、高温地域での数年間の使用後のエアバッグ展開を想定し、自動車メーカー毎に高温で一定時間静置させた後にエアバッグ展開試験を行うため、静置の条件に近い小さい周波数が適当である。 The measurement frequency of dynamic viscoelasticity is 0.01 to 1.00 Hz, preferably 0.01 to 0.10 Hz, and more preferably 0.01 Hz. As for airbag deployment test of instrument panels for automotive interior parts, airbag deployment test after leaving for a certain time at high temperature for each automobile manufacturer, assuming airbag deployment after several years of use in high temperature area Therefore, a small frequency close to the stationary condition is appropriate.

ズリ貯蔵弾性率(x)は、測定開始から数値が安定した時間で、例えば60分後の数値を読み取る。数値が安定していれば、どの時間のズリ貯蔵弾性率を読み取っても良い。 The shear storage modulus (x) is a time when the numerical value is stable from the start of measurement, for example, a numerical value after 60 minutes is read. As long as the numerical value is stable, the shear storage modulus at any time may be read.

ズリ貯蔵弾性率(x)の測定値が0.1MPa以上であると表皮(L)のスリットが動的粘弾性測定温度以下で長時間かけても融着しないと判定することができる。好ましくは、0.15MPa以上である。 When the measured value of the shear storage modulus (x) is 0.1 MPa or more, it can be determined that the slit of the skin (L) is not fused even at a temperature lower than the dynamic viscoelasticity measurement temperature for a long time. Preferably, it is 0.15 MPa or more.

熱可塑性樹脂粉末(P)に用いられる熱可塑性樹脂として、ポリ塩化ビニル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリオレフィン樹脂、酢酸ビニル樹脂は、スチレン系樹脂等が挙げられる。好ましくはポリウレタン樹脂およびポリ塩化ビニル樹脂である。 Examples of the thermoplastic resin used for the thermoplastic resin powder (P) include polyvinyl chloride resin, polyurethane resin, acrylic resin, polyolefin resin, and vinyl acetate resin such as styrene resin. Polyurethane resins and polyvinyl chloride resins are preferred.

ポリウレタン樹脂は、高分子ポリオール、ポリイソシアネート、必要に応じて低分子ジオール、低分子ジアミン等からなる樹脂である。
高分子ポリオールとしては、ポリエステルポリオールが好ましい。
ポリイソシアネートとしては、脂環族ジイソシアネート、脂肪族ジイソシアネート、両者の混合物が好ましい。
The polyurethane resin is a resin composed of a high-molecular polyol, polyisocyanate, and a low-molecular diol, a low-molecular diamine, if necessary.
As the polymer polyol, polyester polyol is preferable.
As polyisocyanate, alicyclic diisocyanate, aliphatic diisocyanate, and a mixture of both are preferable.

熱可塑性樹脂粉末(P)は、スラッシュ成形法により樹脂成形体(表皮)に成形することができる。
スラッシュ成形法としては、たとえば、熱可塑性樹脂粉末(P)が入ったボックスと加熱した金型とを共に振動回転させ、樹脂粉末(P)を型内で溶融流動させた後、溶融した樹脂を冷却・固化させ、樹脂成形体(表皮)を製造する方法が含まれる。
The thermoplastic resin powder (P) can be molded into a resin molded body (skin) by a slush molding method.
As a slush molding method, for example, a box containing a thermoplastic resin powder (P) and a heated mold are both rotated and vibrated to melt and flow the resin powder (P) in the mold, A method of producing a resin molded body (skin) by cooling and solidification is included.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.

製造例1
プレポリマー溶液(A−1)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、数平均分子量(以下Mnと記す。)が1000のポリブチレンアジペート(360.5部)、Mnが900のポリヘキサメチレンイソフタレート(240.3部)、ペンタエリスリトール テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート][チバスペシャリティーケミカルズ(株)社製; イルガノックス1010](1.2部)、体積平均粒径9.2μmのカオリン(87.7部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、60℃まで冷却した。続いて、1−オクタノール(10.1部)、ヘキサメチレンジイソシアネート(148.3部)テトラヒドロフラン(150部)、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)−4−メチルフェノール[チバスペシャリティーケミカルズ(株)社製; チヌビン571](1.8部)を投入し、90℃で6時間反応させプレポリマー溶液(A−1)を得た。(A−1)のNCO含量は、1.82%であった。
Production Example 1
Production of prepolymer solution (A-1) In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate (360.5 parts) having a number average molecular weight (hereinafter referred to as Mn) of 1000, Polyhexamethylene isophthalate with Mn of 900 (240.3 parts), pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] [manufactured by Ciba Specialty Chemicals Co., Ltd. Irganox 1010] (1.2 parts), kaolin (87.7 parts) having a volume average particle diameter of 9.2 μm were charged, and after nitrogen substitution, the mixture was heated to 110 ° C. with stirring and melted to 60 ° C. Cooled down. Subsequently, 1-octanol (10.1 parts), hexamethylene diisocyanate (148.3 parts), tetrahydrofuran (150 parts), 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) ) -4-methylphenol [manufactured by Ciba Specialty Chemicals Co., Ltd .; Tinuvin 571] (1.8 parts) was added and reacted at 90 ° C. for 6 hours to obtain a prepolymer solution (A-1). The NCO content of (A-1) was 1.82%.

製造例2
プレポリマー溶液(A−2)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(408.6部)、Mnが2100のポリエチレンフタレート(108.8部)、ペンタエリスリトール テトラキス[3-(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート][チバスペシャリティーケミカルズ(株)社製; イルガノックス1010](3.2部)、体積平均粒径9.2μmのカオリン(15.5部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、60℃まで冷却した。続いて、ベンジルアルコール(6.3部)、1,4−クロロメチルベンゼン−2−エチレントリメリテート(7.0部)、ヘキサメチレンジイソシアネート(131.2部)、イソホロンジイソシアネート(4.5部)、テトラヒドロフラン(300部)、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール[チバスペシャリティーケミカルズ(株)社製; チヌビン571](1.8部)を投入し、90℃で6時間反応させプレポリマー溶液(A−2)を得た。(A−2)のNCO含量は、1.42%であった。
Production Example 2
Production of Prepolymer Solution (A-2) In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate (408.6 parts) with Mn of 1000 and polyethylene phthalate with Mn of 2100 (108. 8 parts), pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] [manufactured by Ciba Specialty Chemicals, Inc .; Irganox 1010] (3.2 parts), A kaolin (15.5 parts) having a volume average particle size of 9.2 μm was charged and purged with nitrogen, then heated to 110 ° C. with stirring and melted, and cooled to 60 ° C. Subsequently, benzyl alcohol (6.3 parts), 1,4-chloromethylbenzene-2-ethylene trimellitate (7.0 parts), hexamethylene diisocyanate (131.2 parts), isophorone diisocyanate (4.5 parts) ), Tetrahydrofuran (300 parts), 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol [manufactured by Ciba Specialty Chemicals, Inc .; Tinuvin 571] (1.8 parts) was added and reacted at 90 ° C. for 6 hours to obtain a prepolymer solution (A-2). The NCO content of (A-2) was 1.42%.

製造例3
プレポリマー溶液(A−3)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(390.7部)、Mnが900のポリヘキサメチレンイソフタレート(210.4部)、ペンタエリスリトール テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート][チバスペシャリティーケミカルズ(株)社製; イルガノックス1010](1.2部)、体積平均粒径9.2μmのカオリン(87.7部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、60℃まで冷却した。続いて、1−オクタノール(9.2部)、ヘキサメチレンジイソシアネート(147.9部)テトラヒドロフラン(150部)、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール[チバスペシャリティーケミカルズ(株)社製; チヌビン571](1.8部)を投入し、90℃で6時間反応させプレポリマー溶液(A−3)を得た。(A−3)のNCO含量は、1.82%であった。
Production Example 3
Production of prepolymer solution (A-3) In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate (390.7 parts) with Mn of 1000 and polyhexamethylene isophthalate with Mn of 900 (210.4 parts), pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] [manufactured by Ciba Specialty Chemicals, Inc .; Irganox 1010] (1.2 Part), kaolin (87.7 parts) having a volume average particle size of 9.2 μm was charged and purged with nitrogen, then heated to 110 ° C. with stirring and melted, and cooled to 60 ° C. Subsequently, 1-octanol (9.2 parts), hexamethylene diisocyanate (147.9 parts), tetrahydrofuran (150 parts), 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) ) -4-methylphenol [manufactured by Ciba Specialty Chemicals Co., Ltd .; Tinuvin 571] (1.8 parts) was added and reacted at 90 ° C. for 6 hours to obtain a prepolymer solution (A-3). The NCO content of (A-3) was 1.82%.

製造例4
プレポリマー溶液(A−4)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(555.5部)、Mnが2100のポリエチレンフタレート(138.9部)、ペンタエリスリトール テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート][チバスペシャリティーケミカルズ(株)社製; イルガノックス1010](1.39部)、体積平均粒径9.2μmのカオリン(20.3部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、60℃まで冷却した。続いて、ベンジルアルコール(9.4部)、ヘキサメチレンジイソシアネート(142.6部)、イソホロンジイソシアネート(4.8部)、テトラヒドロフラン(300部)、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール[チバスペシャリティーケミカルズ(株)社製; チヌビン571](2.1部)を投入し、90℃で6時間反応させプレポリマー溶液(A−4)を得た。(A−4)のNCO含量は、1.77%であった。
Production Example 4
Production of Prepolymer Solution (A-4) In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate (555.5 parts) with Mn of 1000 and polyethylene phthalate with Mn of 2100 (138.138). 9 parts), pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] [manufactured by Ciba Specialty Chemicals, Inc .; Irganox 1010] (1.39 parts), After charging kaolin (20.3 parts) having a volume average particle size of 9.2 μm and purging with nitrogen, the mixture was heated to 110 ° C. with stirring and melted, and cooled to 60 ° C. Subsequently, benzyl alcohol (9.4 parts), hexamethylene diisocyanate (142.6 parts), isophorone diisocyanate (4.8 parts), tetrahydrofuran (300 parts), 2- (2H-benzotriazol-2-yl)- 6- (Linear and side chain dodecyl) -4-methylphenol [manufactured by Ciba Specialty Chemicals Co., Ltd .; Tinuvin 571] (2.1 parts) was added and reacted at 90 ° C. for 6 hours to prepare a prepolymer solution ( A-4) was obtained. The NCO content of (A-4) was 1.77%.

製造例5
ジアミンのMEKケチミン化物(K−1)の製造
ヘキサメチレンジアミンと過剰のMEK(ジアミンに対して4倍モル量)を80℃で24時間還流させながら生成水を系外に除去した。その後減圧にて未反応のMEKを除去してジアミンのMEKケチミン化物(K−1)を得た。
Production Example 5
Production of MEK ketimine product of diamine (K-1) Hexamethylenediamine and excess MEK (4 times molar amount with respect to diamine) were refluxed at 80 ° C. for 24 hours, and the generated water was removed out of the system. Thereafter, unreacted MEK was removed under reduced pressure to obtain a MEK ketimine product (K-1) of diamine.

製造例6
ジアミンのMEKケチミン化物(K−2)の製造
イソホロンジアミンと過剰のMEK(ジアミンに対して4倍モル量)を80℃で24時間還流させながら生成水を系外に除去した。その後減圧にて未反応のMEKを除去してジアミンのMEKケチミン化物(K−2)を得た。
Production Example 6
Production of MEK ketimine product of diamine (K-2) Isophorone diamine and excess MEK (4-fold molar amount with respect to diamine) were refluxed at 80 ° C. for 24 hours, and the generated water was removed from the system. Thereafter, unreacted MEK was removed under reduced pressure to obtain a MEK ketimine product (K-2) of diamine.

製造例7
熱可塑性ポリウレタン樹脂粉末(B−1)の製造
反応容器に、製造例1で得たプレポリマー溶液(A−1)(100部)と製造例5で得たMEKケチミン化合物(K−1)(4.7部)を投入し、そこにジイソブチレンとマレイン酸との共重合体のNa塩を含む分散剤(三洋化成工業(株)製サンスパールPS−8)(1.3重量部)を溶解した水溶液315重量部を加え、ヤマト科学(株)製ウルトラディスパーサーを用いて9000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応させた。反応終了後、濾別及び乾燥を行い、熱可塑性ポリウレタン樹脂粉末(B−1)を製造した。(B−1)のMnは2.1万、体積平均粒径は155μmであった。
Production Example 7
Preparation of thermoplastic polyurethane resin powder (B-1) In a reaction vessel, the prepolymer solution (A-1) (100 parts) obtained in Production Example 1 and the MEK ketimine compound (K-1) obtained in Production Example 5 ( 4.7 parts), and a dispersant containing the sodium salt of a copolymer of diisobutylene and maleic acid (Sansu Pearl PS-8, manufactured by Sanyo Chemical Industries, Ltd.) (1.3 parts by weight) 315 parts by weight of the dissolved aqueous solution was added and mixed for 1 minute at a rotation speed of 9000 rpm using an ultradisperser manufactured by Yamato Scientific Co., Ltd. This mixture was transferred to a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, purged with nitrogen, and then reacted at 50 ° C. for 10 hours with stirring. After completion of the reaction, filtration and drying were performed to produce a thermoplastic polyurethane resin powder (B-1). Mn of (B-1) was 21,000, and the volume average particle size was 155 μm.

製造例8
熱可塑性ポリウレタン樹脂粉末(B−2)の製造
製造例7で、プレポリマー溶液(A−1)(100部)、MEKケチミン化合物(K−1)(4.7部)をプレポリマー溶液(A−2)(100部)、MEKケチミン化合物(K−1)(3.5部)に変更する以外は、製造例7と同様の方法で、熱可塑性ポリウレタン樹脂粉末(B−2)を製造した。(B−2)のMnは2.0万、体積平均粒径は165μmであった。
Production Example 8
Production of Thermoplastic Polyurethane Resin Powder (B-2) In Production Example 7, the prepolymer solution (A-1) (100 parts) and the MEK ketimine compound (K-1) (4.7 parts) were added to the prepolymer solution (A -2) A thermoplastic polyurethane resin powder (B-2) was produced in the same manner as in Production Example 7, except that it was changed to (100 parts) and MEK ketimine compound (K-1) (3.5 parts). . Mn of (B-2) was 20,000, and the volume average particle diameter was 165 μm.

製造例9
熱可塑性ポリウレタン樹脂粉末(B−3)の製造
製造例7で、プレポリマー溶液(A−1)(100部)、MEKケチミン化合物(K−1)(4.7部)をプレポリマー溶液(A−3)(100部)、MEKケチミン化合物(K−1)(3.8部)、MEKケチミン化合物(K−2)(1.2部)に変更する以外は、製造例7と同様の方法で、熱可塑性ポリウレタン樹脂粉末(B−3)を製造した。(B−3)のMnは2.3万、体積平均粒径は155μmであった。
Production Example 9
Production of Thermoplastic Polyurethane Resin Powder (B-3) In Production Example 7, prepolymer solution (A-1) (100 parts) and MEK ketimine compound (K-1) (4.7 parts) were mixed with prepolymer solution (A -3) (100 parts), MEK ketimine compound (K-1) (3.8 parts), MEK ketimine compound (K-2) (1.2 parts) Thus, a thermoplastic polyurethane resin powder (B-3) was produced. Mn of (B-3) was 23,000, and the volume average particle size was 155 μm.

製造例10
熱可塑性ポリウレタン樹脂粉末(B−4)の製造
製造例7で、プレポリマー溶液(A−1)(100部)、MEKケチミン化合物(K−1)(4.7部)をプレポリマー溶液(A−4)(100部)、MEKケチミン化合物(K−1)(4.5部)に変更する以外は、製造例7と同様の方法で、熱可塑性ポリウレタン樹脂粉末(B−4)を製造した。(B−4)のMnは2.1万、体積平均粒径は160μmであった。
Production Example 10
Production of Thermoplastic Polyurethane Resin Powder (B-4) In Production Example 7, prepolymer solution (A-1) (100 parts) and MEK ketimine compound (K-1) (4.7 parts) were mixed with prepolymer solution (A -4) A thermoplastic polyurethane resin powder (B-4) was produced in the same manner as in Production Example 7, except that it was changed to (100 parts) and MEK ketimine compound (K-1) (4.5 parts). . Mn of (B-4) was 21,000, and the volume average particle size was 160 μm.

製造例11
スラッシュ成形用樹脂粉末パウダー(P−1)の製造
100Lのナウタミキサー内に、熱可塑性ポリウレタン樹脂粉末(B−1)(100部)、芳香族縮合リン酸エステル[大八化学(株)社製;CR−741](12.0部)、ジペンタエリスリトールペンタアクリレート [三洋化成工業(株)社製; DA600](4.0部)、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート及びメチル1,2,2,6,6−ペンタメチル−4−ピペリジルセバケート(混合物)[商品名:TINUVIN 765、チバ社製](0.27部)を投入し80℃で2時間混合した。次いでジメチルポリシロキサン[日本ユニカー(株)製;ケイL45−1000](0.1部)、カルボキシル変性シリコン[信越化学工業(株)製;X−22−3710](0.1部)、を投入し1時間混合した後室温まで冷却した。最後に、架橋ポリメチルメタクリレート[ガンツ化成(株);ガンツパールPM−030S](0.3部)を投入混合することでスラッシュ成形用樹脂粉末組成物(P−1)を得た。(P−1)の体積平均粒径は158μmであった。
Production Example 11
Production of resin powder for slush molding (P-1) In a 100 L Nauta mixer, thermoplastic polyurethane resin powder (B-1) (100 parts), aromatic condensed phosphate ester [manufactured by Daihachi Chemical Co., Ltd. CR-741] (12.0 parts), dipentaerythritol pentaacrylate [manufactured by Sanyo Chemical Industries, Ltd .; DA600] (4.0 parts), bis (1,2,2,6,6-pentamethyl- 4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate (mixture) [trade name: TINUVIN 765, manufactured by Ciba] (0.27 parts) were added at 80 ° C. Mixed for 2 hours. Next, dimethylpolysiloxane [Nihon Unicar Co., Ltd .; Kei L45-1000] (0.1 part), carboxyl-modified silicon [Shin-Etsu Chemical Co., Ltd .; X-22-3710] (0.1 part), The mixture was added and mixed for 1 hour, and then cooled to room temperature. Finally, cross-linked polymethyl methacrylate [Ganz Kasei Co., Ltd .; Ganzpearl PM-030S] (0.3 parts) was added and mixed to obtain a slush molding resin powder composition (P-1). The volume average particle diameter of (P-1) was 158 μm.

製造例12
スラッシュ成形用樹脂粉末パウダー(P−2)の製造
製造例11で、熱可塑性ポリウレタン樹脂粉末(B−1)(100部)を、熱可塑性ポリウレタン樹脂粉末(B−2)(100部)に変更する以外は、製造例11と同様の方法で、スラッシュ成形用樹脂粉末パウダー(P−2)を製造した。(P−2)の体積平均粒径は168μmであった。
Production Example 12
Manufacture example 11 of resin powder for slush molding (P-2) Changed thermoplastic polyurethane resin powder (B-1) (100 parts) to thermoplastic polyurethane resin powder (B-2) (100 parts) in Production Example 11. A slush molding resin powder powder (P-2) was produced in the same manner as in Production Example 11 except that this was done. The volume average particle diameter of (P-2) was 168 μm.

製造例13
スラッシュ成形用樹脂粉末パウダー(P−3)の製造
製造例11で、熱可塑性ポリウレタン樹脂粉末(B−1)(100部)を、熱可塑性ポリウレタン樹脂粉末(B−3)(100部)に変更する以外は、製造例11と同様の方法で、スラッシュ成形用樹脂粉末パウダー(P−3)を製造した。(P−3)の体積平均粒径は156μmであった。
Production Example 13
Manufacture example 11 of resin powder for slush molding (P-3) Changed thermoplastic polyurethane resin powder (B-1) (100 parts) to thermoplastic polyurethane resin powder (B-3) (100 parts) in Production Example 11. A slush molding resin powder powder (P-3) was produced in the same manner as in Production Example 11 except that this was done. The volume average particle size of (P-3) was 156 μm.

製造例14
スラッシュ成形用樹脂粉末パウダー(P−4)の製造
製造例11で、熱可塑性ポリウレタン樹脂粉末(B−1)(100部)を、熱可塑性ポリウレタン樹脂粉末(B−4)(100部)に変更する以外は、製造例11と同様の方法で、スラッシュ成形用樹脂粉末パウダー(P−4)を製造した。(P−4)の体積平均粒径は162μmであった。
Production Example 14
Manufacture example 11 of resin powder for slush molding (P-4) Changed thermoplastic polyurethane resin powder (B-1) (100 parts) to thermoplastic polyurethane resin powder (B-4) (100 parts) in Production Example 11. A slush molding resin powder powder (P-4) was produced in the same manner as in Production Example 11 except that this was done. The volume average particle size of (P-4) was 162 μm.

実施例1
スラッシュ成形用ポリウレタン樹脂粉末パウダー(P−1)10gを180℃、0.3MPaで1分間、加圧プレス成形を行い、板厚1mmの成形表皮(L1)を作成した。
次に、スラッシュ成形用ポリウレタン樹脂粉末パウダー(P−2)10gを180℃、0.3MPaで1分間、加圧プレス成形を行い、板厚1mmの成形表皮(L2)を作成した。
次に、スラッシュ成形用ポリウレタン樹脂粉末パウダー(P−3)10gを180℃、0.3MPaで1分間、加圧プレス成形を行い、板厚1mmの成形表皮(L3)を作成した。
次に、スラッシュ成形用ポリウレタン樹脂粉末パウダー(P−4)10gを180℃、0.3MPaで1分間、加圧プレス成形を行い、板厚1mmの成形表皮(L4)を作成した。
次に、スラッシュ成形用ポリ塩化ビニル樹脂粉末パウダー(P−5)10gを180℃、0.3MPaで1分間、加圧プレス成形を行い、板厚1mmの成形表皮(L5)を作成した。
(P−5)として、トリメリテート系可塑剤を含む平均重合度1000以上の塩化ビニルの単独重合体を使用した。
次に、スラッシュ成形用ポリ変性塩化ビニル樹脂粉末パウダー(P−6)10gを180℃、0.3MPaで1分間、加圧プレス成形を行い、板厚1mmの成形表皮(L6)を作成した。
(P−6)として、トリメリテート系可塑剤を含む平均重合度1000以上の塩化ビニルとオレフィン類の共重合体(共重合体中、塩化ビニルの重量が50wt%以上)を使用した。
Example 1
10 g of polyurethane resin powder powder (P-1) for slush molding was subjected to pressure press molding at 180 ° C. and 0.3 MPa for 1 minute to prepare a molded skin (L1) having a plate thickness of 1 mm.
Next, 10 g of polyurethane resin powder powder (P-2) for slush molding was subjected to pressure press molding at 180 ° C. and 0.3 MPa for 1 minute to form a molded skin (L2) having a plate thickness of 1 mm.
Next, 10 g of polyurethane resin powder powder (P-3) for slush molding was subjected to pressure press molding at 180 ° C. and 0.3 MPa for 1 minute to prepare a molded skin (L3) having a plate thickness of 1 mm.
Next, 10 g of polyurethane resin powder powder (P-4) for slush molding was subjected to pressure press molding at 180 ° C. and 0.3 MPa for 1 minute to prepare a molded skin (L4) having a plate thickness of 1 mm.
Next, 10 g of polyvinyl chloride resin powder powder (P-5) for slush molding was subjected to pressure press molding at 180 ° C. and 0.3 MPa for 1 minute to produce a molded skin (L5) having a plate thickness of 1 mm.
As (P-5), a vinyl chloride homopolymer having an average polymerization degree of 1000 or more containing a trimellitate plasticizer was used.
Next, 10 g of poly-modified vinyl chloride resin powder powder (P-6) for slush molding was subjected to pressure press molding at 180 ° C. and 0.3 MPa for 1 minute to form a molded skin (L6) having a plate thickness of 1 mm.
As (P-6), a copolymer of vinyl chloride and an olefin having an average polymerization degree of 1000 or more containing a trimellitate plasticizer (the weight of vinyl chloride in the copolymer is 50 wt% or more) was used.

次に、得られた成形表皮(L1)〜(L6)を用いて、動的粘弾性測定装置「RDS−2」(Rheometric Scientific社製)でそれぞれの成形表皮(L1)〜(L6)のズリ貯蔵弾性率の測定を行った。使用治具は、ズリ弾性測定用のパラレルプレートを用いた。得られた成形表皮を測定装置の治具にはみ出さないように切り取り、セットした後、180℃まで昇温して、180℃で1分間治具間に静置させることで溶融させた後、冷却し固化させることで治具に密着させた。その後、測定温度は130℃、周波数0.01Hzの条件でズリ動的粘弾性の測定を行い、測定60分後のズリ貯蔵弾性率を読み取った。
(L1)の130℃のズリ貯蔵弾性率(x1)は0.11MPa、(L2)の130℃のズリ貯蔵弾性率(x2)は0.25MPa、(L3)の130℃のズリ貯蔵弾性率(x3)は0.02MPa、(L4)の130℃のズリ貯蔵弾性率(x4)は0.06MPa、(L5)の130℃のズリ貯蔵弾性率(x5)は0.08MPa、(L6)の130℃のズリ貯蔵弾性率(x6)は0.07MPaであった。
Next, using the obtained molded skins (L1) to (L6), the dynamic viscoelasticity measuring device “RDS-2” (manufactured by Rheometric Scientific) was used to slip each of the molded skins (L1) to (L6). The storage elastic modulus was measured. The jig used was a parallel plate for shear elasticity measurement. After cutting and setting the obtained molded skin so as not to protrude into the jig of the measuring device, the temperature was raised to 180 ° C., and melted by being allowed to stand between the jigs at 180 ° C. for 1 minute. It was made to adhere to a jig by cooling and solidifying. Thereafter, shear dynamic viscoelasticity was measured under the conditions of a measurement temperature of 130 ° C. and a frequency of 0.01 Hz, and the shear storage modulus after 60 minutes of measurement was read.
(L1) 130 ° C. shear storage modulus (x1) is 0.11 MPa, (L2) 130 ° C. shear storage modulus (x2) is 0.25 MPa, (L3) 130 ° C. shear storage modulus ( x3) is 0.02 MPa, (L4) 130 ° C shear storage modulus (x4) is 0.06 MPa, (L5) 130 ° C shear storage modulus (x5) is 0.08 MPa, (L6) 130 The shear storage modulus (x6) at 0 ° C. was 0.07 MPa.

実施例2
実施例1において、測定温度を130℃から110℃に変更する以外は、実施例1と同様の方法で、成形表皮(L1)〜(L6)のズリ貯蔵弾性率を測定した。
(L1)の110℃のズリ貯蔵弾性率(x1)は0.82MPa、(L2)の110℃のズリ貯蔵弾性率(x2)は2.20MPa、(L3)の110℃のズリ貯蔵弾性率(x3)は0.09MPa、(L4)の110℃のズリ貯蔵弾性率(x4)は0.45MPa、(L5)の110℃のズリ貯蔵弾性率(x5)は0.70MPa、(L6)の110℃のズリ貯蔵弾性率(x6)は0.50MPaであった。
Example 2
In Example 1, the shear storage modulus of the molded skins (L1) to (L6) was measured by the same method as in Example 1 except that the measurement temperature was changed from 130 ° C to 110 ° C.
(L1) 110 ° C. shear storage modulus (x1) is 0.82 MPa, (L2) 110 ° C. shear storage modulus (x2) is 2.20 MPa, (L3) 110 ° C. shear storage modulus ( x3) is 0.09 MPa, (L4) 110 ° C shear storage modulus (x4) is 0.45 MPa, (L5) 110 ° C shear storage modulus (x5) is 0.70 MPa, (L6) 110 The shear storage modulus (x6) at 0 ° C was 0.50 MPa.

実施例3
実施例1において、測定温度を130℃から140℃に変更する以外は、実施例1と同様の方法で、成形表皮(L1)〜(L6)のズリ貯蔵弾性率を測定した。
(L1)の140℃のズリ貯蔵弾性率(x1)は0.07MPa、(L2)の140℃のズリ貯蔵弾性率(x2)は0.11MPa、(L3)の140℃のズリ貯蔵弾性率(x3)は0.01MPa、(L4)の140℃のズリ貯蔵弾性率(x4)は0.02MPa、(L5)の140℃のズリ貯蔵弾性率(x5)は0.01MPa、(L6)の140℃のズリ貯蔵弾性率(x6)は0.01MPaであった。
Example 3
In Example 1, the shear storage modulus of the molded skins (L1) to (L6) was measured by the same method as in Example 1 except that the measurement temperature was changed from 130 ° C to 140 ° C.
(L1) 140 ° C. shear storage modulus (x1) is 0.07 MPa, (L2) 140 ° C. shear storage modulus (x2) is 0.11 MPa, (L3) 140 ° C. shear storage modulus ( x3) is 0.01 MPa, (L4) 140 ° C shear storage modulus (x4) is 0.02 MPa, (L5) 140 ° C shear storage modulus (x5) is 0.01 MPa, (L6) 140 The shear storage modulus (x6) at 0 ° C. was 0.01 MPa.

実施例4
実施例1において、周波数を0.01Hzから1.00Hzに変更する以外は、実施例1と同様の方法で、成形表皮(L1)〜(L6)のズリ貯蔵弾性率を測定した。
(L1)の130℃のズリ貯蔵弾性率(x1)は0.25MPa、(L2)の130℃のズリ貯蔵弾性率(x2)は0.40MPa、(L3)の130℃のズリ貯蔵弾性率(x3)は0.05MPa、(L4)の130℃のズリ貯蔵弾性率(x4)は0.08MPa、(L5)の130℃のズリ貯蔵弾性率(x5)は0.08MPa、(L6)の130℃のズリ貯蔵弾性率(x6)は0.07MPaであった。
Example 4
In Example 1, the shear storage modulus of the molded skins (L1) to (L6) was measured by the same method as in Example 1 except that the frequency was changed from 0.01 Hz to 1.00 Hz.
(L1) 130 ° C shear storage modulus (x1) is 0.25 MPa, (L2) 130 ° C shear storage modulus (x2) is 0.40 MPa, (L3) 130 ° C shear storage modulus ( x3) is 0.05 MPa, (L4) 130 ° C. shear storage modulus (x4) is 0.08 MPa, (L5) 130 ° C. shear storage modulus (x5) is 0.08 MPa, (L6) 130 The shear storage modulus (x6) at 0 ° C. was 0.07 MPa.

比較例1
スラッシュ成形用ポリウレタン樹脂粉末パウダー(P−1)を予め250℃に加熱されたしぼ模様の入ったNi電鋳型に充填し、10秒後余分なポリウレタン樹脂粉末パウダーを排出した。60秒後水冷して厚さ1mmの表皮(L1’)を作成した。
スラッシュ成形用ポリウレタン樹脂粉末パウダー(P−2)を予め230℃に加熱されたしぼ模様の入ったNi電鋳型に充填し、10秒後余分なポリウレタン樹脂粉末パウダーを排出した。60秒後水冷して厚さ1mmの表皮(L2’)を作成した。
スラッシュ成形用ポリウレタン樹脂粉末パウダー(P−3)を予め230℃に加熱されたしぼ模様の入ったNi電鋳型に充填し、10秒後余分なポリウレタン樹脂粉末パウダーを排出した。60秒後水冷して厚さ1mmの表皮(L3’)を作成した。
スラッシュ成形用ポリウレタン樹脂粉末パウダー(P−4)を予め240℃に加熱されたしぼ模様の入ったNi電鋳型に充填し、10秒後余分なポリウレタン樹脂粉末パウダーを排出した。60秒後水冷して厚さ1mmの表皮(L4’)を作成した。
スラッシュ成形用ポリ塩化ビニル樹脂粉末パウダー(P−5)を予め250℃に加熱されたしぼ模様の入ったNi電鋳型に充填し、10秒後余分なポリ塩化ビニル樹脂粉末パウダーを排出した。60秒後水冷して厚さ1mmの表皮(L5’)を作成した。
スラッシュ成形用ポリ変性塩化ビニル樹脂粉末パウダー(P−6)を予め250℃に加熱されたしぼ模様の入ったNi電鋳型に充填し、10秒後余分なポリ変性塩化ビニル樹脂粉末パウダーを排出した。60秒後水冷して厚さ1mmの表皮(L6’)を作成した。
Comparative Example 1
The slush-forming polyurethane resin powder (P-1) was filled in a Ni electric mold having a wrinkle pattern that had been heated to 250 ° C. in advance, and after 10 seconds, the excess polyurethane resin powder powder was discharged. After 60 seconds, it was cooled with water to prepare a 1 mm thick epidermis (L1 ′).
The slush-molding polyurethane resin powder (P-2) was filled in a Ni electric mold with a wrinkle pattern that had been heated to 230 ° C. in advance, and after 10 seconds, the excess polyurethane resin powder powder was discharged. After 60 seconds, it was cooled with water to prepare a 1 mm-thick skin (L2 ′).
The polyurethane resin powder powder for slush molding (P-3) was filled in a Ni electric mold having a wrinkle pattern heated in advance to 230 ° C., and after 10 seconds, the excess polyurethane resin powder powder was discharged. After 60 seconds, it was cooled with water to prepare a 1 mm thick skin (L3 ′).
The polyurethane resin powder powder (P-4) for slush molding was filled in a Ni electric mold with a wrinkle pattern that had been heated to 240 ° C. in advance, and after 10 seconds, excess polyurethane resin powder powder was discharged. After 60 seconds, it was water-cooled to prepare a 1 mm-thick skin (L4 ′).
The slush-molded polyvinyl chloride resin powder powder (P-5) was filled in a Ni electric mold having a wrinkle pattern heated in advance to 250 ° C., and after 10 seconds, the excess polyvinyl chloride resin powder powder was discharged. After 60 seconds, it was cooled with water to prepare a 1 mm-thick skin (L5 ′).
The slush-molded poly-modified vinyl chloride resin powder powder (P-6) was filled in a Ni electric mold with a wrinkle pattern that had been heated to 250 ° C in advance, and after 10 seconds, the excess poly-modified vinyl chloride resin powder powder was discharged. . After 60 seconds, it was cooled with water to prepare a 1 mm thick epidermis (L6 ′).

得られた成形表皮(L1’)〜(L6’)を用いて、縦40mm、横50mmの大きさに切り、シートの裏面に、カッター(刃の厚み0.3mm)で表面に対しておよそ直角に深さ0.4〜0.6mm、長さ50mmの切り目を入れた。成形表皮を離型紙に挟み離型紙の上から重量95〜100g、寸法(縦、横、高さ)が縦100mm×横100mm×厚み1.2mmの鉄板を離型紙が隠れるように乗せ、常圧下130℃で100時間静置した後、上記シートの融着していない部分の割合である100時間非熱融着比率を下記の式に従い、算出した。
(L1’)の100時間非熱融着比率(z1’)は100%、(L2’)の100時間非熱融着比率(z2’)は100%、(L3’)の100時間非熱融着比率(z3’)は10%、(L4’)の100時間非熱融着比率(z4’)は50%、(L5’)の100時間非熱融着比率(z5’)は60%、(L6’)の100時間非熱融着比率(z6’)は50%であった。
Using the obtained molded skins (L1 ′) to (L6 ′), cut into a size of 40 mm in length and 50 mm in width, and on the back surface of the sheet with a cutter (blade thickness: 0.3 mm), approximately perpendicular to the surface. A cut having a depth of 0.4 to 0.6 mm and a length of 50 mm was made. Put the molding skin between the release paper and put the iron plate with the weight of 95-100g from the top of the release paper and the dimensions (vertical, horizontal, height) 100mm vertical x 100mm horizontal x 1.2mm thick so that the release paper is hidden, and under normal pressure After standing at 130 ° C. for 100 hours, the non-fused portion of the sheet for 100 hours was calculated according to the following formula.
(L1 ′) 100-hour non-thermal fusion ratio (z1 ′) is 100%, (L2 ′) 100-hour non-thermal fusion ratio (z2 ′) is 100%, (L3 ′) 100-hour non-thermal fusion. Adhesion ratio (z3 ′) is 10%, (L4 ′) 100 hour non-thermal fusion ratio (z4 ′) is 50%, (L5 ′) 100 hour non-thermal fusion ratio (z5 ′) is 60%, The 100-hour non-thermal fusion ratio (z6 ′) of (L6 ′) was 50%.

Figure 0005825148
Figure 0005825148

比較例2
比較例1と同様の方法で得られた成形表皮(L1’)〜(L6’)を用いて、動的粘弾性測定装置「Reogel−E4000」(UBM社製)で貯蔵弾性率の測定を行った。使用治具は、引張弾性測定用の治具を用いた。得られた成形表皮(L1’)〜(L6’)をそれぞれ幅5mm、長さ約45mmの試験片に切り取り、治具にセットした後、測定温度は130℃、周波数0.1Hzの条件で引張動的粘弾性の測定を行い、測定60分後の引張貯蔵弾性率を読み取った。
(L1’)の130℃の引張貯蔵弾性率(x1’)は1.60MPa、(L2’)の130℃の引張貯蔵弾性率(x2’)は1.20MPa、(L3’)の130℃の引張貯蔵弾性率(x3’)は0.80MPa、(L4’)の130℃の引張貯蔵弾性率(x4’)は4.20MPa、(L5’)の130℃の引張貯蔵弾性率(x5’)は1.00MPa、(L6’)の130℃の引張貯蔵弾性率(x6’)は0.80MPaであった。
Comparative Example 2
Using the molded skins (L1 ′) to (L6 ′) obtained in the same manner as in Comparative Example 1, the storage elastic modulus was measured with a dynamic viscoelasticity measuring device “Reogel-E4000” (manufactured by UBM). It was. The jig used was a jig for tensile elasticity measurement. The obtained molded skins (L1 ′) to (L6 ′) were cut into test pieces each having a width of 5 mm and a length of about 45 mm, set on a jig, and then tensioned at a measurement temperature of 130 ° C. and a frequency of 0.1 Hz. The dynamic viscoelasticity was measured, and the tensile storage modulus 60 minutes after the measurement was read.
The tensile storage elastic modulus (x1 ′) at 130 ° C. of (L1 ′) is 1.60 MPa, the tensile storage elastic modulus (x2 ′) at 130 ° C. of (L2 ′) is 1.20 MPa, and 130 ° C. of (L3 ′). Tensile storage modulus (x3 ′) is 0.80 MPa, (L4 ′) 130 ° C. tensile storage modulus (x4 ′) is 4.20 MPa, (L5 ′) 130 ° C. tensile storage modulus (x5 ′) Was 1.00 MPa, and the tensile storage modulus (x6 ′) at 130 ° C. of (L6 ′) was 0.80 MPa.

比較例3
比較例1と同様の方法で得られた成形表皮(L1’)〜(L6’)を用いて、熱機械分析装置TMA/SS6100、データ処理装置EXSTAR6000[エスアイアイ・ナノテクノロジー(株)製]で熱軟化温度の測定を行った。測定条件は、測定温度範囲25〜250℃、昇温速度5℃/min、荷重5g、針直径0.5mmであり、測定後の解析方法として、TMAチャートにおいて、「JIS K7121−1987、P.5、図3階段状変化」の方法に準じて、TMA曲線の接線の交点を求め、熱軟化温度とした。
(L1’)の熱軟化温度(y1’)は140℃、(L2’)の熱軟化温度(y2’)は131℃、(L3’)の熱軟化温度(y3’)は125℃、(L4’)の熱軟化温度(y4’)は138℃、(L5’)の熱軟化温度(y5’)は125℃、(L5’)の熱軟化温度(y5’)は122℃であった。
Comparative Example 3
Using molded skins (L1 ′) to (L6 ′) obtained by the same method as in Comparative Example 1, using a thermomechanical analyzer TMA / SS6100 and a data processing apparatus EXSTAR6000 [manufactured by SII Nanotechnology, Inc.] The thermal softening temperature was measured. The measurement conditions are a measurement temperature range of 25 to 250 ° C., a temperature increase rate of 5 ° C./min, a load of 5 g, and a needle diameter of 0.5 mm. As an analysis method after the measurement, “JIS K7121-1987, P.A. According to the method of “5, FIG. 3 stepwise change”, the intersection of the tangents of the TMA curve was determined and used as the thermal softening temperature.
(L1 ′) has a thermal softening temperature (y1 ′) of 140 ° C., (L2 ′) has a thermal softening temperature (y2 ′) of 131 ° C., (L3 ′) has a thermal softening temperature (y3 ′) of 125 ° C., (L4 ′) The thermal softening temperature (y4 ′) of ′) was 138 ° C., the thermal softening temperature (y5 ′) of (L5 ′) was 125 ° C., and the thermal softening temperature (y5 ′) of (L5 ′) was 122 ° C.

実施例、比較例に対する参考例として、より実際に近い条件で試験を行う長期熱融着試験を行った。本長期熱融着試験で融着しない場合には、実際にも融着しないものと見なして、本長期熱融着試験で融着する場合には、実際にも同程度融着するものと見なして、実施例の測定値の評価を行った。
比較例1と同様の方法で得られた成形表皮(L1’)〜(L6’)を用いて、下記に示した長期熱融着試験を行った。得られた長期非熱融着比率(z1)〜(z6)は、実施例1〜4のズリ貯蔵弾性率(x1)〜(x6)、比較例1の100時間非熱融着比率(z1’)〜(z6’)、比較例2の引張貯蔵弾性率(x1’)〜(x6’)、比較例3の熱軟化温度(y1’)〜(y6’)と共に結果を表1に示した。
As a reference example for the examples and comparative examples, a long-term heat fusion test was performed in which the test was performed under conditions closer to actual conditions. If it is not fused in this long-term heat fusion test, it is regarded as not actually fused, and if it is fused in this long-term heat fusion test, it is regarded as actually fused to the same extent. Then, the measurement values of the examples were evaluated.
Using the molded skins (L1 ′) to (L6 ′) obtained by the same method as in Comparative Example 1, the long-term heat fusion test shown below was performed. The obtained long-term non-thermal fusion ratios (z1) to (z6) are the shear storage elastic moduli (x1) to (x6) of Examples 1 to 4, and the 100-hour non-thermal fusion ratio (z1 ′) of Comparative Example 1. ) To (z6 ′), tensile storage elastic modulus (x1 ′) to (x6 ′) of Comparative Example 2, and thermal softening temperatures (y1 ′) to (y6 ′) of Comparative Example 3 are shown in Table 1.

Figure 0005825148
Figure 0005825148

<表皮の作成方法>
プレス部位上下共に180℃に温調した加圧プレス機に、離型紙に挟んだスラッシュ成形用ポリウレタン樹脂粉末パウダー(P)10gをセットし、1分間0.3MPaの圧力でプレス成形した後に取り出し、冷却後離型紙から剥がすことで板厚1mmの成形表皮を得た。
<How to make an epidermis>
10 g of polyurethane resin powder powder (P) for slush molding sandwiched between release papers was set in a pressure press machine whose temperature was adjusted to 180 ° C. both at the top and bottom of the press site, and after press molding at a pressure of 0.3 MPa for 1 minute, it was taken out. After cooling, it was peeled off from the release paper to obtain a molded skin having a thickness of 1 mm.

<長期非熱融着比率>
厚さ1mmの成形表皮を、縦40mm、横50mmの大きさに切り、シートの裏面に、コールドカッター(刃の厚み0.3mm)で表面に対しておよそ直角に深さ0.4〜0.6mm、長さ50mmの切り目を入れた。成形表皮を離型紙に挟み離型紙の上から重量95〜100g、寸法(縦、横、高さ)が縦100mm×横100mm×厚み1.2mmの鉄板を離型紙が隠れるように乗せ、表1にそれぞれ示した温度で空気中、常圧下で1000時間静置した後、上記シートの融着していない部分の割合である長期非熱融着比率(z)を下記の式に従い、算出した。
<Long-term non-thermal fusion ratio>
A 1 mm thick molded skin is cut into a size of 40 mm long and 50 mm wide, and a depth of 0.4 to 0. 0 is formed on the back surface of the sheet at a right angle to the surface with a cold cutter (blade thickness 0.3 mm). A slit of 6 mm and a length of 50 mm was made. A molded skin is sandwiched between release papers, and an iron plate with a weight of 95 to 100 g and dimensions (vertical, horizontal, height) of 100 mm x 100 mm x thickness 1.2 mm is placed on the release paper so that the release paper is hidden. Then, after standing for 1000 hours in air at normal temperature under normal temperature, the long-term non-thermal fusion ratio (z), which is the ratio of the unfused portion of the sheet, was calculated according to the following formula.

Figure 0005825148
Figure 0005825148

実施例1〜4において、ズリ貯蔵弾性率が0.1MPa以上であれば、110〜140℃での長期非熱融着比率が100%であり、0.1MPa未満になるとズリ貯蔵弾性率が小さいほど、長期非熱融着比率が小さくなる傾向にある。この結果とズリ貯蔵弾性率の測定時間が60分であることから、ズリ貯蔵弾性率は正しく融着のしにくさを短時間で評価できていると言える。比較例1は、100時間非熱融着比率で長期非熱融着比率を評価できているが、評価に100時間かかる。また比較例2、3では、長期非熱融比率に傾向がみられないため、評価できない。 In Examples 1 to 4, if the shear storage modulus is 0.1 MPa or more, the long-term non-thermal fusion ratio at 110 to 140 ° C. is 100%, and if it is less than 0.1 MPa, the shear storage modulus is small. As such, the long-term non-thermal fusion ratio tends to decrease. Since this result and the measurement time of the shear storage elastic modulus are 60 minutes, it can be said that the shear storage elastic modulus can correctly evaluate the difficulty of fusion in a short time. In Comparative Example 1, the long-term non-thermal fusion ratio can be evaluated with a non-thermal fusion ratio of 100 hours, but the evaluation takes 100 hours. Further, Comparative Examples 2 and 3 cannot be evaluated because there is no tendency in the long-term non-heat melting ratio.

本発明の検査方法は、インストルメントパネルに用いられる表皮(L)の裏面に形成されたスリットが高温環境下で融着するかどうかの評価方法として好適に使用される。
The inspection method of the present invention is suitably used as an evaluation method of whether or not the slit formed on the back surface of the skin (L) used in the instrument panel is fused in a high temperature environment.

Claims (4)

熱可塑性樹脂粉末(P)をスラッシュ成形して得られ自動車内装部品のインストルメントパネルに用いられる表皮(L)の裏面に形成されたスリットが高温環境下で融着するかどうかの検査方法であって、熱可塑性樹脂粉末(P)を用いて表皮(L)を作成し、表皮(L)についてズリ動的粘弾性の測定を行い、ズリ貯蔵弾性率(x)を求め、(x)の測定値から表皮(L)が動的粘弾性測定温度以下で融着しないかどうかを判定するインストルメントパネル用熱可塑性樹脂表皮の検査方法。 This is a method for inspecting whether a slit formed on the back surface of a skin (L) obtained by slush molding a thermoplastic resin powder (P) and used for an instrument panel of an automobile interior part is fused in a high temperature environment. Then, the skin (L) is prepared using the thermoplastic resin powder (P), the shear dynamic viscoelasticity is measured for the skin (L), the shear storage elastic modulus (x) is obtained, and the measurement of (x) is performed. The inspection method of the thermoplastic resin skin for instrument panels which judges whether skin (L) does not fuse below the dynamic viscoelasticity measurement temperature from a value. 熱可塑性樹脂粉末(P)を160〜220℃で加圧成形して板厚1.0〜2.0mmの表皮(L)を作成する請求項1に記載の検査方法。 The inspection method according to claim 1, wherein the thermoplastic resin powder (P) is pressure-molded at 160 to 220 ° C. to produce a skin (L) having a plate thickness of 1.0 to 2.0 mm. 表皮(L)について、100〜150℃で周波数0.01〜1.00Hzの条件でズリ動的粘弾性の測定を行う請求項1または2に記載の検査方法。 The test | inspection method of Claim 1 or 2 which measures a shear dynamic viscoelasticity on 100-150 degreeC on the conditions of a frequency of 0.01-1.00 Hz about epidermis (L). ズリ貯蔵弾性率(x)の測定値が0.1MPa以上であると表皮(L)が動的粘弾性測定温度以下で融着しないと判定する請求項1〜3のいずれか1項に記載の検査方法。
The skin (L) determines that the measured value of the shear storage modulus (x) is 0.1 MPa or more and does not fuse at or below the dynamic viscoelasticity measurement temperature. Inspection method.
JP2012046109A 2012-03-02 2012-03-02 Resin fusing test method Active JP5825148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012046109A JP5825148B2 (en) 2012-03-02 2012-03-02 Resin fusing test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012046109A JP5825148B2 (en) 2012-03-02 2012-03-02 Resin fusing test method

Publications (2)

Publication Number Publication Date
JP2013181850A JP2013181850A (en) 2013-09-12
JP5825148B2 true JP5825148B2 (en) 2015-12-02

Family

ID=49272592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012046109A Active JP5825148B2 (en) 2012-03-02 2012-03-02 Resin fusing test method

Country Status (1)

Country Link
JP (1) JP5825148B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5883332B2 (en) * 2012-03-30 2016-03-15 三洋化成工業株式会社 Polyurethane resin powder composition for slush molding

Also Published As

Publication number Publication date
JP2013181850A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
TW200401821A (en) Pressure-sensitive adhesive tape or sheet
JP2013536729A (en) Bonding structure having rigid protrusions on the bonding surface
JP2008214415A (en) Resin powder composition for slush molding and molded article
CN101528441A (en) Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
KR20150018849A (en) Double-sided adhesive tape having a first outer impact-adhesive side and a second outer side that can be heat activated
JP4874432B1 (en) Production method of polymer products
JP5825148B2 (en) Resin fusing test method
TW201738347A (en) Pressure-sensitive adhesive
KR100594616B1 (en) Polyurethane resin-based material for slush molding
Kadam et al. Synthesis and characterization of polyesteramide based hot melt adhesive obtained with dimer acid, castor oil and ethylenediamine
KR101661824B1 (en) Powdered polyurethane urea resin composition for slush molding and manufacturing process therefor
Chiu et al. Characterization of polyurethane foam as heat seal coating in medical pouch packaging application
JP2016531981A (en) Polyamide film and method for producing the same
CN104553103A (en) Laminate
Von Baeckmann et al. The influence of crystallization conditions on the macromolecular structure and strength of γ-polypropylene
JP4699165B2 (en) Slush molding resin powder composition and molded product
JP2010121003A (en) Resin powder composition for slash molding and molded article
CN103228713A (en) Polylactic acid film or sheet
US20140102223A1 (en) Method for measuring dynamic viscoelasticity of particulate material
CA2944988C (en) Resin molded article for automobile interior material
JP2006028319A (en) Resin powder composition for slush molding and molded article
JP5042890B2 (en) Slush molding resin powder, method for producing the same and molded product
JP2011080005A (en) Resin powder composition for slush molding
JP2010070145A (en) Processing method of instrument panel upholstery
JP2011236371A (en) Resin powder composition for slash molding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5825148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151